CA2883717A1 - Chromophore combinations for biophotonic uses - Google Patents
Chromophore combinations for biophotonic uses Download PDFInfo
- Publication number
- CA2883717A1 CA2883717A1 CA2883717A CA2883717A CA2883717A1 CA 2883717 A1 CA2883717 A1 CA 2883717A1 CA 2883717 A CA2883717 A CA 2883717A CA 2883717 A CA2883717 A CA 2883717A CA 2883717 A1 CA2883717 A1 CA 2883717A1
- Authority
- CA
- Canada
- Prior art keywords
- composition
- biophotonic
- chromophore
- xanthene dye
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 claims abstract description 566
- 239000001018 xanthene dye Substances 0.000 claims abstract description 219
- 238000000034 method Methods 0.000 claims abstract description 142
- 230000029663 wound healing Effects 0.000 claims abstract description 34
- 208000017520 skin disease Diseases 0.000 claims abstract description 31
- 230000003716 rejuvenation Effects 0.000 claims abstract description 27
- 230000001737 promoting effect Effects 0.000 claims abstract description 22
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 claims description 160
- 210000003491 skin Anatomy 0.000 claims description 137
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 111
- 238000000862 absorption spectrum Methods 0.000 claims description 100
- 208000027418 Wounds and injury Diseases 0.000 claims description 89
- 210000001519 tissue Anatomy 0.000 claims description 88
- 206010052428 Wound Diseases 0.000 claims description 86
- 238000000295 emission spectrum Methods 0.000 claims description 77
- 238000011282 treatment Methods 0.000 claims description 72
- 108010035532 Collagen Proteins 0.000 claims description 45
- 102000008186 Collagen Human genes 0.000 claims description 45
- 229920001436 collagen Polymers 0.000 claims description 45
- 238000012546 transfer Methods 0.000 claims description 44
- 230000003213 activating effect Effects 0.000 claims description 43
- 239000001301 oxygen Substances 0.000 claims description 41
- 229910052760 oxygen Inorganic materials 0.000 claims description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 37
- 230000015572 biosynthetic process Effects 0.000 claims description 35
- GVKCHTBDSMQENH-UHFFFAOYSA-L phloxine B Chemical compound [Na+].[Na+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 GVKCHTBDSMQENH-UHFFFAOYSA-L 0.000 claims description 35
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 32
- 230000000699 topical effect Effects 0.000 claims description 29
- 238000005286 illumination Methods 0.000 claims description 28
- 238000002560 therapeutic procedure Methods 0.000 claims description 25
- 239000003349 gelling agent Substances 0.000 claims description 24
- 239000007800 oxidant agent Substances 0.000 claims description 24
- 238000001228 spectrum Methods 0.000 claims description 23
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 claims description 21
- 230000035876 healing Effects 0.000 claims description 20
- 231100000241 scar Toxicity 0.000 claims description 18
- 238000003786 synthesis reaction Methods 0.000 claims description 18
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 claims description 16
- 229940078916 carbamide peroxide Drugs 0.000 claims description 15
- 210000004207 dermis Anatomy 0.000 claims description 15
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 13
- 230000014509 gene expression Effects 0.000 claims description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 10
- 235000012732 erythrosine Nutrition 0.000 claims description 10
- 239000004174 erythrosine Substances 0.000 claims description 10
- 229940011411 erythrosine Drugs 0.000 claims description 10
- 230000031700 light absorption Effects 0.000 claims description 10
- 230000017423 tissue regeneration Effects 0.000 claims description 9
- 238000001429 visible spectrum Methods 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 210000002615 epidermis Anatomy 0.000 claims description 8
- 101000990915 Homo sapiens Stromelysin-1 Proteins 0.000 claims description 6
- 102100030416 Stromelysin-1 Human genes 0.000 claims description 6
- 230000033115 angiogenesis Effects 0.000 claims description 6
- 230000000451 tissue damage Effects 0.000 claims description 6
- 231100000827 tissue damage Toxicity 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 206010061218 Inflammation Diseases 0.000 claims description 4
- 230000004054 inflammatory process Effects 0.000 claims description 4
- 230000036961 partial effect Effects 0.000 claims description 4
- 102100034871 C-C motif chemokine 8 Human genes 0.000 claims description 3
- 101710155833 C-C motif chemokine 8 Proteins 0.000 claims description 3
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 claims description 3
- 101100441523 Homo sapiens CXCL5 gene Proteins 0.000 claims description 3
- 101001013150 Homo sapiens Interstitial collagenase Proteins 0.000 claims description 3
- 101000990908 Homo sapiens Neutrophil collagenase Proteins 0.000 claims description 3
- 101000577874 Homo sapiens Stromelysin-2 Proteins 0.000 claims description 3
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 claims description 3
- 102100030411 Neutrophil collagenase Human genes 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 102100028848 Stromelysin-2 Human genes 0.000 claims description 3
- AEUKDPKXTPNBNY-XEYRWQBLSA-N mcp 2 Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)C1=CC=CC=C1 AEUKDPKXTPNBNY-XEYRWQBLSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229920005862 polyol Polymers 0.000 claims description 2
- 150000003077 polyols Chemical class 0.000 claims description 2
- 229920001451 polypropylene glycol Polymers 0.000 claims description 2
- 239000002562 thickening agent Substances 0.000 claims 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical group [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims 3
- 229910021485 fumed silica Inorganic materials 0.000 claims 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- 239000003381 stabilizer Substances 0.000 claims 1
- 206010000496 acne Diseases 0.000 abstract description 58
- 208000002874 Acne Vulgaris Diseases 0.000 abstract description 49
- 238000001126 phototherapy Methods 0.000 abstract description 6
- 229960002143 fluorescein Drugs 0.000 description 65
- -1 levigate Substances 0.000 description 60
- 239000000499 gel Substances 0.000 description 41
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 34
- 229920002125 Sokalan® Polymers 0.000 description 30
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 22
- 238000002835 absorbance Methods 0.000 description 20
- 239000004599 antimicrobial Substances 0.000 description 20
- 239000004202 carbamide Substances 0.000 description 17
- 235000013877 carbamide Nutrition 0.000 description 17
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 description 17
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 229940081623 rose bengal Drugs 0.000 description 16
- 229930187593 rose bengal Natural products 0.000 description 16
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 15
- 208000025865 Ulcer Diseases 0.000 description 14
- 229920002674 hyaluronan Polymers 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- 206010040954 Skin wrinkling Diseases 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000037303 wrinkles Effects 0.000 description 12
- 208000004210 Pressure Ulcer Diseases 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 11
- RAGZEDHHTPQLAI-UHFFFAOYSA-L disodium;2',4',5',7'-tetraiodo-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C([O-])C(I)=C1OC1=C(I)C([O-])=C(I)C=C21 RAGZEDHHTPQLAI-UHFFFAOYSA-L 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 230000005284 excitation Effects 0.000 description 10
- 210000004379 membrane Anatomy 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 231100000397 ulcer Toxicity 0.000 description 10
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 9
- 210000002950 fibroblast Anatomy 0.000 description 9
- 229960003160 hyaluronic acid Drugs 0.000 description 9
- 208000009056 telangiectasis Diseases 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 208000032544 Cicatrix Diseases 0.000 description 8
- 230000001684 chronic effect Effects 0.000 description 8
- JMWHLOJMXZVRMC-UHFFFAOYSA-L disodium;4,7-dichloro-2',4',5',7'-tetraiodo-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C([O-])C(I)=C1OC1=C(I)C([O-])=C(I)C=C21 JMWHLOJMXZVRMC-UHFFFAOYSA-L 0.000 description 8
- 208000014674 injury Diseases 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 210000002510 keratinocyte Anatomy 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 8
- 229940006123 rose bengal at Drugs 0.000 description 8
- 230000037387 scars Effects 0.000 description 8
- 230000002195 synergetic effect Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 210000002744 extracellular matrix Anatomy 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000002757 inflammatory effect Effects 0.000 description 7
- 150000002978 peroxides Chemical group 0.000 description 7
- 238000006862 quantum yield reaction Methods 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 239000004342 Benzoyl peroxide Substances 0.000 description 6
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 6
- 206010065687 Bone loss Diseases 0.000 description 6
- 206010011985 Decubitus ulcer Diseases 0.000 description 6
- 201000004624 Dermatitis Diseases 0.000 description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 208000003251 Pruritus Diseases 0.000 description 6
- 235000019400 benzoyl peroxide Nutrition 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 6
- 229960001631 carbomer Drugs 0.000 description 6
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 229960000907 methylthioninium chloride Drugs 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 239000003642 reactive oxygen metabolite Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 210000002374 sebum Anatomy 0.000 description 6
- 230000009759 skin aging Effects 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000009885 systemic effect Effects 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 5
- HLUCICHZHWJHLL-UHFFFAOYSA-N Haematein Natural products C12=CC=C(O)C(O)=C2OCC2(O)C1=C1C=C(O)C(=O)C=C1C2 HLUCICHZHWJHLL-UHFFFAOYSA-N 0.000 description 5
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Natural products C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 206010033733 Papule Diseases 0.000 description 5
- RZUBARUFLYGOGC-MTHOTQAESA-L acid fuchsin Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=C(N)C(C)=CC(C(=C\2C=C(C(=[NH2+])C=C/2)S([O-])(=O)=O)\C=2C=C(C(N)=CC=2)S([O-])(=O)=O)=C1 RZUBARUFLYGOGC-MTHOTQAESA-L 0.000 description 5
- 208000038016 acute inflammation Diseases 0.000 description 5
- 230000006022 acute inflammation Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 210000002469 basement membrane Anatomy 0.000 description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 5
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 5
- FFUMCSDSJNSMQH-HEXQVDJKSA-K chromoxane cyanin R Chemical compound [Na+].[Na+].[Na+].C1=C(C([O-])=O)C(=O)C(C)=C\C1=C(C=1C(=CC=CC=1)S([O-])(=O)=O)\C1=CC(C)=C(O)C(C([O-])=O)=C1 FFUMCSDSJNSMQH-HEXQVDJKSA-K 0.000 description 5
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 230000002500 effect on skin Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 229960002442 glucosamine Drugs 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- SHXOKQKTZJXHHR-UHFFFAOYSA-N n,n-diethyl-5-iminobenzo[a]phenoxazin-9-amine;hydrochloride Chemical compound [Cl-].C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=[NH2+])C2=C1 SHXOKQKTZJXHHR-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- INCIMLINXXICKS-UHFFFAOYSA-M pyronin Y Chemical compound [Cl-].C1=CC(=[N+](C)C)C=C2OC3=CC(N(C)C)=CC=C3C=C21 INCIMLINXXICKS-UHFFFAOYSA-M 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical class OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 206010013786 Dry skin Diseases 0.000 description 4
- 206010015150 Erythema Diseases 0.000 description 4
- 206010063560 Excessive granulation tissue Diseases 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- 206010043189 Telangiectasia Diseases 0.000 description 4
- YJVBLROMQZEFPA-UHFFFAOYSA-L acid red 26 Chemical compound [Na+].[Na+].CC1=CC(C)=CC=C1N=NC1=C(O)C(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=CC=C12 YJVBLROMQZEFPA-UHFFFAOYSA-L 0.000 description 4
- HFVAFDPGUJEFBQ-UHFFFAOYSA-M alizarin red S Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=C(S([O-])(=O)=O)C(O)=C2O HFVAFDPGUJEFBQ-UHFFFAOYSA-M 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 235000012733 azorubine Nutrition 0.000 description 4
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 4
- DBZJJPROPLPMSN-UHFFFAOYSA-N bromoeosin Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 DBZJJPROPLPMSN-UHFFFAOYSA-N 0.000 description 4
- 235000012730 carminic acid Nutrition 0.000 description 4
- 229930002875 chlorophyll Natural products 0.000 description 4
- 235000019804 chlorophyll Nutrition 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 230000037336 dry skin Effects 0.000 description 4
- UKZQEOHHLOYJLY-UHFFFAOYSA-M ethyl eosin Chemical compound [K+].CCOC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 UKZQEOHHLOYJLY-UHFFFAOYSA-M 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 210000001126 granulation tissue Anatomy 0.000 description 4
- 229940099552 hyaluronan Drugs 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 210000004877 mucosa Anatomy 0.000 description 4
- CTIQLGJVGNGFEW-UHFFFAOYSA-L naphthol yellow S Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C([O-])=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 CTIQLGJVGNGFEW-UHFFFAOYSA-L 0.000 description 4
- 229930014626 natural product Natural products 0.000 description 4
- 239000002674 ointment Substances 0.000 description 4
- HSXUHWZMNJHFRV-QIKYXUGXSA-L orange G Chemical compound [Na+].[Na+].OC1=CC=C2C=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C2=C1\N=N\C1=CC=CC=C1 HSXUHWZMNJHFRV-QIKYXUGXSA-L 0.000 description 4
- 230000036407 pain Effects 0.000 description 4
- 201000001245 periodontitis Diseases 0.000 description 4
- 208000033808 peripheral neuropathy Diseases 0.000 description 4
- 235000019238 ponceau 6R Nutrition 0.000 description 4
- BBNQQADTFFCFGB-UHFFFAOYSA-N purpurin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC(O)=C3C(=O)C2=C1 BBNQQADTFFCFGB-UHFFFAOYSA-N 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 235000012756 tartrazine Nutrition 0.000 description 4
- 239000004149 tartrazine Substances 0.000 description 4
- 230000036269 ulceration Effects 0.000 description 4
- AXDJCCTWPBKUKL-UHFFFAOYSA-N 4-[(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]aniline;hydron;chloride Chemical compound Cl.C1=CC(=N)C(C)=CC1=C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 AXDJCCTWPBKUKL-UHFFFAOYSA-N 0.000 description 3
- OSDLLIBGSJNGJE-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Cl OSDLLIBGSJNGJE-UHFFFAOYSA-N 0.000 description 3
- RGCKGOZRHPZPFP-UHFFFAOYSA-N Alizarin Natural products C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 3
- AOMZHDJXSYHPKS-DROYEMJCSA-L Amido Black 10B Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(\N=N\C=3C=CC=CC=3)C(O)=C2C(N)=C1\N=N\C1=CC=C(N(=O)=O)C=C1 AOMZHDJXSYHPKS-DROYEMJCSA-L 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- MCZVRBLCRZWFJH-UHFFFAOYSA-N Bismark brown Y Chemical compound Cl.Cl.NC1=CC(N)=CC=C1N=NC1=CC=CC(N=NC=2C(=CC(N)=CC=2)N)=C1 MCZVRBLCRZWFJH-UHFFFAOYSA-N 0.000 description 3
- 108010017377 Collagen Type VII Proteins 0.000 description 3
- 102000004510 Collagen Type VII Human genes 0.000 description 3
- ZWYHVBGOBINPHN-AVRYKWKFSA-L Congo corinth Chemical compound [Na+].[Na+].Nc1c(cc(c2ccccc12)S([O-])(=O)=O)\N=N\c1ccc(cc1)-c1ccc(cc1)\N=N\c1cc(c2ccccc2c1[O-])S(O)(=O)=O ZWYHVBGOBINPHN-AVRYKWKFSA-L 0.000 description 3
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 3
- 208000008960 Diabetic foot Diseases 0.000 description 3
- 206010014970 Ephelides Diseases 0.000 description 3
- 108010085895 Laminin Proteins 0.000 description 3
- 208000003351 Melanosis Diseases 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 206010037867 Rash macular Diseases 0.000 description 3
- 206010037888 Rash pustular Diseases 0.000 description 3
- YIQKLZYTHXTDDT-UHFFFAOYSA-H Sirius red F3B Chemical compound C1=CC(=CC=C1N=NC2=CC(=C(C=C2)N=NC3=C(C=C4C=C(C=CC4=C3[O-])NC(=O)NC5=CC6=CC(=C(C(=C6C=C5)[O-])N=NC7=C(C=C(C=C7)N=NC8=CC=C(C=C8)S(=O)(=O)[O-])S(=O)(=O)[O-])S(=O)(=O)O)S(=O)(=O)O)S(=O)(=O)[O-])S(=O)(=O)[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] YIQKLZYTHXTDDT-UHFFFAOYSA-H 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 3
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 3
- 229930003268 Vitamin C Natural products 0.000 description 3
- DGOBMKYRQHEFGQ-UHFFFAOYSA-L acid green 5 Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 DGOBMKYRQHEFGQ-UHFFFAOYSA-L 0.000 description 3
- FUGCXLNGEHFIOA-UHFFFAOYSA-L acid red 44 Chemical compound [Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=CC2=C1 FUGCXLNGEHFIOA-UHFFFAOYSA-L 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 230000002491 angiogenic effect Effects 0.000 description 3
- MMRNCQMFQXTUGO-UHFFFAOYSA-N anthracene blue SWR Chemical compound OC1=CC(O)=C2C(=O)C3=C(O)C(O)=CC(O)=C3C(=O)C2=C1O MMRNCQMFQXTUGO-UHFFFAOYSA-N 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 3
- 239000003636 conditioned culture medium Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 201000010251 cutis laxa Diseases 0.000 description 3
- 208000031513 cyst Diseases 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- QGAYMQGSQUXCQO-UHFFFAOYSA-L eosin b Chemical compound [Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC([N+]([O-])=O)=C([O-])C(Br)=C1OC1=C2C=C([N+]([O-])=O)C([O-])=C1Br QGAYMQGSQUXCQO-UHFFFAOYSA-L 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 235000003642 hunger Nutrition 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 108010028309 kalinin Proteins 0.000 description 3
- CXORMDKZEUMQHX-UHFFFAOYSA-N kermesic acid Chemical compound O=C1C2=C(O)C(O)=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C CXORMDKZEUMQHX-UHFFFAOYSA-N 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 3
- MCPLVIGCWWTHFH-UHFFFAOYSA-L methyl blue Chemical compound [Na+].[Na+].C1=CC(S(=O)(=O)[O-])=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[NH+]C=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S([O-])(=O)=O)=CC=2)C=C1 MCPLVIGCWWTHFH-UHFFFAOYSA-L 0.000 description 3
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 3
- 201000001119 neuropathy Diseases 0.000 description 3
- 230000007823 neuropathy Effects 0.000 description 3
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- IFSXZLJQEKGQAF-UHFFFAOYSA-M nuclear fast red Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=C(S([O-])(=O)=O)C(O)=C2N IFSXZLJQEKGQAF-UHFFFAOYSA-M 0.000 description 3
- 210000004279 orbit Anatomy 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000002186 photoactivation Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical group OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 208000029561 pustule Diseases 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 230000036573 scar formation Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000037351 starvation Effects 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 210000004243 sweat Anatomy 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- UJMBCXLDXJUMFB-GLCFPVLVSA-K tartrazine Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-GLCFPVLVSA-K 0.000 description 3
- JADVWWSKYZXRGX-UHFFFAOYSA-M thioflavine T Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C1=[N+](C)C2=CC=C(C)C=C2S1 JADVWWSKYZXRGX-UHFFFAOYSA-M 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 235000019154 vitamin C Nutrition 0.000 description 3
- 239000011718 vitamin C Substances 0.000 description 3
- XOSXWYQMOYSSKB-LDKJGXKFSA-L water blue Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC(C=C2)=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C(C=C2)=CC=C2S([O-])(=O)=O)=CC(S(O)(=O)=O)=C1N.[Na+].[Na+] XOSXWYQMOYSSKB-LDKJGXKFSA-L 0.000 description 3
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 2
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 2
- PVPBBTJXIKFICP-UHFFFAOYSA-N (7-aminophenothiazin-3-ylidene)azanium;chloride Chemical compound [Cl-].C1=CC(=[NH2+])C=C2SC3=CC(N)=CC=C3N=C21 PVPBBTJXIKFICP-UHFFFAOYSA-N 0.000 description 2
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 2
- NKTOLZVEWDHZMU-UHFFFAOYSA-N 2,5-xylenol Chemical compound CC1=CC=C(C)C(O)=C1 NKTOLZVEWDHZMU-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- NCKMMSIFQUPKCK-UHFFFAOYSA-N 2-benzyl-4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1CC1=CC=CC=C1 NCKMMSIFQUPKCK-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- YCOXTKKNXUZSKD-UHFFFAOYSA-N 3,4-xylenol Chemical compound CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 2
- KKAJSJJFBSOMGS-UHFFFAOYSA-N 3,6-diamino-10-methylacridinium chloride Chemical compound [Cl-].C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 KKAJSJJFBSOMGS-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- REPMZEQSQQAHJR-UHFFFAOYSA-N 7-(diethylamino)-3,4-dioxo-10H-phenoxazine-1-carboxamide hydrochloride Chemical compound [Cl-].OC(=[NH2+])C1=CC(=O)C(=O)C2=C1NC1=CC=C(N(CC)CC)C=C1O2 REPMZEQSQQAHJR-UHFFFAOYSA-N 0.000 description 2
- AQSOTOUQTVJNMY-UHFFFAOYSA-N 7-(dimethylamino)-4-hydroxy-3-oxophenoxazin-10-ium-1-carboxylic acid;chloride Chemical compound [Cl-].OC(=O)C1=CC(=O)C(O)=C2OC3=CC(N(C)C)=CC=C3[NH+]=C21 AQSOTOUQTVJNMY-UHFFFAOYSA-N 0.000 description 2
- QFIIYGZAUXVPSZ-UHFFFAOYSA-N 8-(2,4-dihydroxy-6-methylanilino)-2-(2,4-dihydroxy-6-methylphenyl)imino-7-hydroxy-1,9-dimethyldibenzofuran-3-one Chemical compound CC1=CC(=CC(=C1NC2=C(C3=C(C=C2O)OC4=CC(=O)C(=NC5=C(C=C(C=C5C)O)O)C(=C43)C)C)O)O QFIIYGZAUXVPSZ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- VVAVKBBTPWYADW-UHFFFAOYSA-L Biebrich scarlet Chemical compound [Na+].[Na+].OC1=CC=C2C=CC=CC2=C1N=NC(C(=C1)S([O-])(=O)=O)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 VVAVKBBTPWYADW-UHFFFAOYSA-L 0.000 description 2
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- 102100031168 CCN family member 2 Human genes 0.000 description 2
- JUQPZRLQQYSMEQ-UHFFFAOYSA-N CI Basic red 9 Chemical compound [Cl-].C1=CC(N)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=[NH2+])C=C1 JUQPZRLQQYSMEQ-UHFFFAOYSA-N 0.000 description 2
- 235000005979 Citrus limon Nutrition 0.000 description 2
- 244000131522 Citrus pyriformis Species 0.000 description 2
- 102000012422 Collagen Type I Human genes 0.000 description 2
- 108010022452 Collagen Type I Proteins 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 2
- 206010012442 Dermatitis contact Diseases 0.000 description 2
- MDNWOSOZYLHTCG-UHFFFAOYSA-N Dichlorophen Chemical compound OC1=CC=C(Cl)C=C1CC1=CC(Cl)=CC=C1O MDNWOSOZYLHTCG-UHFFFAOYSA-N 0.000 description 2
- 208000019872 Drug Eruptions Diseases 0.000 description 2
- 102000016942 Elastin Human genes 0.000 description 2
- 108010014258 Elastin Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 208000035874 Excoriation Diseases 0.000 description 2
- RZSYLLSAWYUBPE-UHFFFAOYSA-L Fast green FCF Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC(O)=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 RZSYLLSAWYUBPE-UHFFFAOYSA-L 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- 206010017533 Fungal infection Diseases 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- 206010018852 Haematoma Diseases 0.000 description 2
- 101000899390 Homo sapiens Bone morphogenetic protein 6 Proteins 0.000 description 2
- 101000777550 Homo sapiens CCN family member 2 Proteins 0.000 description 2
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 2
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 2
- 101000659879 Homo sapiens Thrombospondin-1 Proteins 0.000 description 2
- 102100032999 Integrin beta-3 Human genes 0.000 description 2
- 208000034693 Laceration Diseases 0.000 description 2
- LUWJPTVQOMUZLW-UHFFFAOYSA-N Luxol fast blue MBS Chemical compound [Cu++].Cc1ccccc1N\C(N)=N\c1ccccc1C.Cc1ccccc1N\C(N)=N\c1ccccc1C.OS(=O)(=O)c1cccc2c3nc(nc4nc([n-]c5[n-]c(nc6nc(n3)c3ccccc63)c3c(cccc53)S(O)(=O)=O)c3ccccc43)c12 LUWJPTVQOMUZLW-UHFFFAOYSA-N 0.000 description 2
- 206010025421 Macule Diseases 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 206010054107 Nodule Diseases 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 208000009344 Penetrating Wounds Diseases 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 206010039580 Scar Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 206010040880 Skin irritation Diseases 0.000 description 2
- FHNINJWBTRXEBC-UHFFFAOYSA-N Sudan III Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 FHNINJWBTRXEBC-UHFFFAOYSA-N 0.000 description 2
- 208000002847 Surgical Wound Diseases 0.000 description 2
- 102100036034 Thrombospondin-1 Human genes 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- KNNFENIIZCXFDO-UHFFFAOYSA-N [7-(dimethylamino)-3,4-dioxo-10H-phenoxazine-1-carbonyl]azanium chloride Chemical compound [Cl-].OC(=[NH2+])C1=CC(=O)C(=O)C2=C1NC1=CC=C(N(C)C)C=C1O2 KNNFENIIZCXFDO-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- GXEAXHYQKZAJGB-UHFFFAOYSA-L acid red 29 Chemical compound [Na+].[Na+].OC1=C2C(O)=CC(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=C1N=NC1=CC=CC=C1 GXEAXHYQKZAJGB-UHFFFAOYSA-L 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- PBTFWNIEMRWXLI-UHFFFAOYSA-L alcian yellow Chemical compound [Cl-].[Cl-].CN(C)C(=[N+](C)C)SCC1=C(C)C=C2SC(C3=CC=C(C=C3)N=NC3=CC=C(C=C3)C3=NC=4C=C(C(=CC=4S3)C)CSC(N(C)C)=[N+](C)C)=NC2=C1 PBTFWNIEMRWXLI-UHFFFAOYSA-L 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- MACGOVWEZWQBMW-UHFFFAOYSA-L alizarin cyanin BBS Chemical compound [Na+].[Na+].O=C1C2=C(O)C(O)=C(S([O-])(=O)=O)C(O)=C2C(=O)C2=C1C(O)=C(S([O-])(=O)=O)C(O)=C2O MACGOVWEZWQBMW-UHFFFAOYSA-L 0.000 description 2
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 2
- WLDHEUZGFKACJH-UHFFFAOYSA-K amaranth Chemical compound [Na+].[Na+].[Na+].C12=CC=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=C1N=NC1=CC=C(S([O-])(=O)=O)C2=CC=CC=C12 WLDHEUZGFKACJH-UHFFFAOYSA-K 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- LUERODMRBLNCFK-UHFFFAOYSA-M azocarmine G Chemical compound [Na+].C1=CC(S(=O)(=O)[O-])=CC=C1NC(C1=CC(=CC=C1C1=NC2=CC=CC=C22)S([O-])(=O)=O)=CC1=[N+]2C1=CC=CC=C1 LUERODMRBLNCFK-UHFFFAOYSA-M 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- FUWUEFKEXZQKKA-UHFFFAOYSA-N beta-thujaplicin Chemical compound CC(C)C=1C=CC=C(O)C(=O)C=1 FUWUEFKEXZQKKA-UHFFFAOYSA-N 0.000 description 2
- 239000000227 bioadhesive Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 2
- 239000004106 carminic acid Substances 0.000 description 2
- DGQLVPJVXFOQEV-JNVSTXMASA-N carminic acid Chemical compound OC1=C2C(=O)C=3C(C)=C(C(O)=O)C(O)=CC=3C(=O)C2=C(O)C(O)=C1[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DGQLVPJVXFOQEV-JNVSTXMASA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- XWOVYFGIWQEHHR-UHFFFAOYSA-K chrome violet CG Chemical compound [Na+].[Na+].[Na+].C1=C(C([O-])=O)C(O)=CC=C1C(C=1C=C(C(O)=CC=1)C([O-])=O)=C1C=C(C([O-])=O)C(=O)C=C1 XWOVYFGIWQEHHR-UHFFFAOYSA-K 0.000 description 2
- GJWSUKYXUMVMGX-UHFFFAOYSA-N citronellic acid Chemical compound OC(=O)CC(C)CCC=C(C)C GJWSUKYXUMVMGX-UHFFFAOYSA-N 0.000 description 2
- 229940096422 collagen type i Drugs 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 230000009519 contusion Effects 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 238000001804 debridement Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- OOYIOIOOWUGAHD-UHFFFAOYSA-L disodium;2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C([O-])C(Br)=C1OC1=C(Br)C([O-])=C(Br)C=C21 OOYIOIOOWUGAHD-UHFFFAOYSA-L 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229920002549 elastin Polymers 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- ZBQZBWKNGDEDOA-UHFFFAOYSA-N eosin B Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC([N+]([O-])=O)=C(O)C(Br)=C1OC1=C2C=C([N+]([O-])=O)C(O)=C1Br ZBQZBWKNGDEDOA-UHFFFAOYSA-N 0.000 description 2
- JVICFMRAVNKDOE-UHFFFAOYSA-M ethyl violet Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 JVICFMRAVNKDOE-UHFFFAOYSA-M 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 235000019240 fast green FCF Nutrition 0.000 description 2
- FPVGTPBMTFTMRT-NSKUCRDLSA-L fast yellow Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 FPVGTPBMTFTMRT-NSKUCRDLSA-L 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 230000003325 follicular Effects 0.000 description 2
- HKIOYBQGHSTUDB-UHFFFAOYSA-N folpet Chemical compound C1=CC=C2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C2=C1 HKIOYBQGHSTUDB-UHFFFAOYSA-N 0.000 description 2
- PHLYOKFVXIVOJC-UHFFFAOYSA-N gallein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(O)=C1OC1=C(O)C(O)=CC=C21 PHLYOKFVXIVOJC-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 210000003780 hair follicle Anatomy 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 230000001969 hypertrophic effect Effects 0.000 description 2
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 230000007803 itching Effects 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 229940041616 menthol Drugs 0.000 description 2
- SQFDQLBYJKFDDO-UHFFFAOYSA-K merbromin Chemical compound [Na+].[Na+].C=12C=C(Br)C(=O)C=C2OC=2C([Hg]O)=C([O-])C(Br)=CC=2C=1C1=CC=CC=C1C([O-])=O SQFDQLBYJKFDDO-UHFFFAOYSA-K 0.000 description 2
- DWCZIOOZPIDHAB-UHFFFAOYSA-L methyl green Chemical compound [Cl-].[Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)[N+](C)(C)C)=C1C=CC(=[N+](C)C)C=C1 DWCZIOOZPIDHAB-UHFFFAOYSA-L 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- IPSIPYMEZZPCPY-UHFFFAOYSA-N new fuchsin Chemical compound [Cl-].C1=CC(=[NH2+])C(C)=CC1=C(C=1C=C(C)C(N)=CC=1)C1=CC=C(N)C(C)=C1 IPSIPYMEZZPCPY-UHFFFAOYSA-N 0.000 description 2
- NTPMRTUYLKDNSS-UHFFFAOYSA-N night blue Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C2=CC=CC=C2C(NC=2C=CC=CC=2)=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 NTPMRTUYLKDNSS-UHFFFAOYSA-N 0.000 description 2
- 230000037311 normal skin Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 235000010292 orthophenyl phenol Nutrition 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 125000002081 peroxide group Chemical group 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- ZYIBVBKZZZDFOY-UHFFFAOYSA-N phloxine O Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 ZYIBVBKZZZDFOY-UHFFFAOYSA-N 0.000 description 2
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000223 polyglycerol Polymers 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000037333 procollagen synthesis Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- DASFNRASQHZIIW-XOTKKQSBSA-M protochlorophyll a Chemical compound [Mg+2].N1=C2C3=C([N-]4)C(CCC(=O)OC\C=C(/C)CCCC(C)CCCC(C)CCCC(C)C)=C(C)C4=CC(C(=C4C=C)C)=NC4=CC(C(C)=C4CC)=NC4=CC1=C(C)C2=C([O-])C3C(=O)OC DASFNRASQHZIIW-XOTKKQSBSA-M 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000002165 resonance energy transfer Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- OARRHUQTFTUEOS-UHFFFAOYSA-N safranin Chemical compound [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N)C=C2[N+]=1C1=CC=CC=C1 OARRHUQTFTUEOS-UHFFFAOYSA-N 0.000 description 2
- RCTGMCJBQGBLKT-PAMTUDGESA-N scarlet red Chemical compound CC1=CC=CC=C1\N=N\C(C=C1C)=CC=C1\N=N\C1=C(O)C=CC2=CC=CC=C12 RCTGMCJBQGBLKT-PAMTUDGESA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000004927 skin cell Anatomy 0.000 description 2
- 230000036556 skin irritation Effects 0.000 description 2
- 231100000475 skin irritation Toxicity 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 229960000943 tartrazine Drugs 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 2
- MDYOLVRUBBJPFM-UHFFFAOYSA-N tropolone Chemical compound OC1=CC=CC=CC1=O MDYOLVRUBBJPFM-UHFFFAOYSA-N 0.000 description 2
- AODQPPLFAXTBJS-UHFFFAOYSA-M victoria blue 4R Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[N+](C)C1=CC=CC=C1 AODQPPLFAXTBJS-UHFFFAOYSA-M 0.000 description 2
- LLWJPGAKXJBKKA-UHFFFAOYSA-N victoria blue B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[NH+]C1=CC=CC=C1 LLWJPGAKXJBKKA-UHFFFAOYSA-N 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- FQTLCLSUCSAZDY-UHFFFAOYSA-N (+) E(S) nerolidol Natural products CC(C)=CCCC(C)=CCCC(C)(O)C=C FQTLCLSUCSAZDY-UHFFFAOYSA-N 0.000 description 1
- WZUVPPKBWHMQCE-XJKSGUPXSA-N (+)-haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-XJKSGUPXSA-N 0.000 description 1
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical class CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- CRDAMVZIKSXKFV-FBXUGWQNSA-N (2-cis,6-cis)-farnesol Chemical compound CC(C)=CCC\C(C)=C/CC\C(C)=C/CO CRDAMVZIKSXKFV-FBXUGWQNSA-N 0.000 description 1
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 1
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- CVCQAQVBOPNTFI-AAONGDSNSA-N (3r,4r,5s,6r)-3-amino-6-(hydroxymethyl)oxane-2,4,5-triol;sulfuric acid Chemical compound OS(O)(=O)=O.N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O.N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O CVCQAQVBOPNTFI-AAONGDSNSA-N 0.000 description 1
- MTDHILKWIRSIHB-UHFFFAOYSA-N (5-azaniumyl-3,4,6-trihydroxyoxan-2-yl)methyl sulfate Chemical compound NC1C(O)OC(COS(O)(=O)=O)C(O)C1O MTDHILKWIRSIHB-UHFFFAOYSA-N 0.000 description 1
- QBZIEGUIYWGBMY-FUZXWUMZSA-N (5Z)-5-hydroxyimino-6-oxonaphthalene-2-sulfonic acid iron Chemical compound [Fe].O\N=C1/C(=O)C=Cc2cc(ccc12)S(O)(=O)=O.O\N=C1/C(=O)C=Cc2cc(ccc12)S(O)(=O)=O.O\N=C1/C(=O)C=Cc2cc(ccc12)S(O)(=O)=O QBZIEGUIYWGBMY-FUZXWUMZSA-N 0.000 description 1
- IOOQHEFLQLMYPZ-GNQFORKWSA-M (7R,8Z)-bacteriochlorophyll b Chemical compound O=C([C@@H](C1=C2N3[Mg]N45)C(=O)OC)C2=C(C)\C3=C\C(\C(\[C@H]/2C)=C/C)=N\C\2=C/C4=C(C(C)=O)C(C)=C5\C=C/2[C@@H](C)[C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C1=N\2 IOOQHEFLQLMYPZ-GNQFORKWSA-M 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 1
- DCSCXTJOXBUFGB-JGVFFNPUSA-N (R)-(+)-Verbenone Natural products CC1=CC(=O)[C@@H]2C(C)(C)[C@H]1C2 DCSCXTJOXBUFGB-JGVFFNPUSA-N 0.000 description 1
- DCSCXTJOXBUFGB-SFYZADRCSA-N (R)-(+)-verbenone Chemical compound CC1=CC(=O)[C@H]2C(C)(C)[C@@H]1C2 DCSCXTJOXBUFGB-SFYZADRCSA-N 0.000 description 1
- 150000005207 1,3-dihydroxybenzenes Chemical class 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- QDGIEIGBQXURRS-UHFFFAOYSA-N 1-(3-chlorophenyl)-3-(3,4-dichlorophenyl)urea Chemical compound ClC1=CC=CC(NC(=O)NC=2C=C(Cl)C(Cl)=CC=2)=C1 QDGIEIGBQXURRS-UHFFFAOYSA-N 0.000 description 1
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Chemical compound CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- 239000001074 1-methoxy-4-[(E)-prop-1-enyl]benzene Substances 0.000 description 1
- 125000004804 1-methylmethylene group Chemical group [H]C([H])([H])C([H])([*:2])[*:1] 0.000 description 1
- IBLKWZIFZMJLFL-UHFFFAOYSA-N 1-phenoxypropan-2-ol Chemical compound CC(O)COC1=CC=CC=C1 IBLKWZIFZMJLFL-UHFFFAOYSA-N 0.000 description 1
- WVXRAFOPTSTNLL-NKWVEPMBSA-N 2',3'-dideoxyadenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO)O1 WVXRAFOPTSTNLL-NKWVEPMBSA-N 0.000 description 1
- YNBZQSXWRWAXMV-UHFFFAOYSA-N 2',7'-dibromo-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C(O)C=C1OC1=C2C=C(Br)C(O)=C1 YNBZQSXWRWAXMV-UHFFFAOYSA-N 0.000 description 1
- VFNKZQNIXUFLBC-UHFFFAOYSA-N 2',7'-dichlorofluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C=C1OC1=C2C=C(Cl)C(O)=C1 VFNKZQNIXUFLBC-UHFFFAOYSA-N 0.000 description 1
- IYOLBFFHPZOQGW-UHFFFAOYSA-N 2,4-dichloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=C(Cl)C(C)=C1Cl IYOLBFFHPZOQGW-UHFFFAOYSA-N 0.000 description 1
- KUFFULVDNCHOFZ-UHFFFAOYSA-N 2,4-xylenol Chemical compound CC1=CC=C(O)C(C)=C1 KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.000 description 1
- CFSOXRGHLCXRNB-UHFFFAOYSA-N 2-(3-phenylpropyl)benzene-1,3-diol Chemical compound OC1=CC=CC(O)=C1CCCC1=CC=CC=C1 CFSOXRGHLCXRNB-UHFFFAOYSA-N 0.000 description 1
- CEQFOVLGLXCDCX-UHFFFAOYSA-N 2-[[4-(dimethylamino)phenyl]diazenyl]benzoic acid Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-UHFFFAOYSA-N 0.000 description 1
- UGIJCMNGQCUTPI-UHFFFAOYSA-N 2-aminoethyl prop-2-enoate Chemical compound NCCOC(=O)C=C UGIJCMNGQCUTPI-UHFFFAOYSA-N 0.000 description 1
- WPMBXQJYQZTSGS-UHFFFAOYSA-N 2-benzyl-4-chlorobenzene-1,3-diol Chemical compound OC1=CC=C(Cl)C(O)=C1CC1=CC=CC=C1 WPMBXQJYQZTSGS-UHFFFAOYSA-N 0.000 description 1
- RKDMDAVSHRCXQZ-UHFFFAOYSA-N 2-benzylbenzene-1,3-diol Chemical compound OC1=CC=CC(O)=C1CC1=CC=CC=C1 RKDMDAVSHRCXQZ-UHFFFAOYSA-N 0.000 description 1
- DHVLDKHFGIVEIP-UHFFFAOYSA-N 2-bromo-2-(bromomethyl)pentanedinitrile Chemical compound BrCC(Br)(C#N)CCC#N DHVLDKHFGIVEIP-UHFFFAOYSA-N 0.000 description 1
- KSDMMSMHJOPTSY-UHFFFAOYSA-N 2-bromo-3-(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC=CC(O)=C1Br KSDMMSMHJOPTSY-UHFFFAOYSA-N 0.000 description 1
- COVGKJSMQVFLDP-UHFFFAOYSA-N 2-bromo-3-hexylphenol Chemical compound CCCCCCC1=CC=CC(O)=C1Br COVGKJSMQVFLDP-UHFFFAOYSA-N 0.000 description 1
- TYBHZVUFOINFDV-UHFFFAOYSA-N 2-bromo-6-[(3-bromo-5-chloro-2-hydroxyphenyl)methyl]-4-chlorophenol Chemical compound OC1=C(Br)C=C(Cl)C=C1CC1=CC(Cl)=CC(Br)=C1O TYBHZVUFOINFDV-UHFFFAOYSA-N 0.000 description 1
- VADKRMSMGWJZCF-UHFFFAOYSA-N 2-bromophenol Chemical compound OC1=CC=CC=C1Br VADKRMSMGWJZCF-UHFFFAOYSA-N 0.000 description 1
- BRYHBLAGEXUHSL-UHFFFAOYSA-N 2-butan-2-yl-4-chloro-5-methylphenol Chemical compound CCC(C)C1=CC(Cl)=C(C)C=C1O BRYHBLAGEXUHSL-UHFFFAOYSA-N 0.000 description 1
- COSYXLHTXXMVGM-UHFFFAOYSA-N 2-butyl-4-chlorophenol Chemical compound CCCCC1=CC(Cl)=CC=C1O COSYXLHTXXMVGM-UHFFFAOYSA-N 0.000 description 1
- FZLKMKSAXYZVJW-UHFFFAOYSA-N 2-chloro-3-(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC=CC(O)=C1Cl FZLKMKSAXYZVJW-UHFFFAOYSA-N 0.000 description 1
- UNRRZPJVYQDQPL-UHFFFAOYSA-N 2-chloro-3-ethylphenol Chemical compound CCC1=CC=CC(O)=C1Cl UNRRZPJVYQDQPL-UHFFFAOYSA-N 0.000 description 1
- NVIHKOLBNJOVTD-UHFFFAOYSA-N 2-chloro-3-heptylphenol Chemical compound CCCCCCCC1=CC=CC(O)=C1Cl NVIHKOLBNJOVTD-UHFFFAOYSA-N 0.000 description 1
- PFEPQLAKIAJJRQ-UHFFFAOYSA-N 2-chloro-3-hexylphenol Chemical compound CCCCCCC1=CC=CC(O)=C1Cl PFEPQLAKIAJJRQ-UHFFFAOYSA-N 0.000 description 1
- KHWKJUTXTSNBKW-UHFFFAOYSA-N 2-chloro-3-propylphenol Chemical compound CCCC1=CC=CC(O)=C1Cl KHWKJUTXTSNBKW-UHFFFAOYSA-N 0.000 description 1
- HKHXLHGVIHQKMK-UHFFFAOYSA-N 2-chloro-m-cresol Chemical compound CC1=CC=CC(O)=C1Cl HKHXLHGVIHQKMK-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- DWVXFVWWARTDCQ-UHFFFAOYSA-N 2-ethylbenzene-1,3-diol Chemical compound CCC1=C(O)C=CC=C1O DWVXFVWWARTDCQ-UHFFFAOYSA-N 0.000 description 1
- GOUWRHHYANYVLG-UHFFFAOYSA-N 2-heptylbenzene-1,3-diol Chemical compound CCCCCCCC1=C(O)C=CC=C1O GOUWRHHYANYVLG-UHFFFAOYSA-N 0.000 description 1
- NCTHQZTWNVDWGT-UHFFFAOYSA-N 2-hexylbenzene-1,3-diol Chemical compound CCCCCCC1=C(O)C=CC=C1O NCTHQZTWNVDWGT-UHFFFAOYSA-N 0.000 description 1
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- ZTMADXFOCUXMJE-UHFFFAOYSA-N 2-methylbenzene-1,3-diol Chemical compound CC1=C(O)C=CC=C1O ZTMADXFOCUXMJE-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- IEIHCSFJLQYKGJ-UHFFFAOYSA-N 2-nonylbenzene-1,3-diol Chemical compound CCCCCCCCCC1=C(O)C=CC=C1O IEIHCSFJLQYKGJ-UHFFFAOYSA-N 0.000 description 1
- HHSCZZZCAYSVRK-UHFFFAOYSA-N 2-octylbenzene-1,3-diol Chemical compound CCCCCCCCC1=C(O)C=CC=C1O HHSCZZZCAYSVRK-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- UPXZHXVOMCGZDS-UHFFFAOYSA-N 2-phenylbenzene-1,3-diol Chemical compound OC1=CC=CC(O)=C1C1=CC=CC=C1 UPXZHXVOMCGZDS-UHFFFAOYSA-N 0.000 description 1
- 229940061334 2-phenylphenol Drugs 0.000 description 1
- XDCMHOFEBFTMNL-UHFFFAOYSA-N 2-propylbenzene-1,3-diol Chemical compound CCCC1=C(O)C=CC=C1O XDCMHOFEBFTMNL-UHFFFAOYSA-N 0.000 description 1
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 description 1
- YUOSDRMYPOJFCP-UHFFFAOYSA-N 3',6'-dihydroxy-2',7'-diiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C=C1OC1=C2C=C(I)C(O)=C1 YUOSDRMYPOJFCP-UHFFFAOYSA-N 0.000 description 1
- DSVUBXQDJGJGIC-UHFFFAOYSA-N 3',6'-dihydroxy-4',5'-diiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(I)=C1OC1=C(I)C(O)=CC=C21 DSVUBXQDJGJGIC-UHFFFAOYSA-N 0.000 description 1
- HDJBTCAJIMNXEW-UHFFFAOYSA-N 3-(1-methylpyrrolidin-2-yl)pyridine;hydrochloride Chemical group Cl.CN1CCCC1C1=CC=CN=C1 HDJBTCAJIMNXEW-UHFFFAOYSA-N 0.000 description 1
- OAOFCENSKJNHQG-UHFFFAOYSA-N 3-butyl-2-chlorophenol Chemical compound CCCCC1=CC=CC(O)=C1Cl OAOFCENSKJNHQG-UHFFFAOYSA-N 0.000 description 1
- WMKZAKWDJDKLIW-UHFFFAOYSA-N 3-iodoprop-1-enyl n-butylcarbamate Chemical compound CCCCNC(=O)OC=CCI WMKZAKWDJDKLIW-UHFFFAOYSA-N 0.000 description 1
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 description 1
- ZDTNHRWWURISAA-UHFFFAOYSA-N 4',5'-dibromo-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(Br)=C1OC1=C(Br)C(O)=CC=C21 ZDTNHRWWURISAA-UHFFFAOYSA-N 0.000 description 1
- WLHLYHWMNUCWEV-UHFFFAOYSA-N 4',5'-dichloro-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(Cl)=C1OC1=C(Cl)C(O)=CC=C21 WLHLYHWMNUCWEV-UHFFFAOYSA-N 0.000 description 1
- PQSXNIMHIHYFEE-UHFFFAOYSA-N 4-(1-phenylethyl)benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)C1=CC=CC=C1 PQSXNIMHIHYFEE-UHFFFAOYSA-N 0.000 description 1
- IJALWSVNUBBQRA-UHFFFAOYSA-N 4-Isopropyl-3-methylphenol Chemical compound CC(C)C1=CC=C(O)C=C1C IJALWSVNUBBQRA-UHFFFAOYSA-N 0.000 description 1
- KLSLBUSXWBJMEC-UHFFFAOYSA-N 4-Propylphenol Chemical compound CCCC1=CC=C(O)C=C1 KLSLBUSXWBJMEC-UHFFFAOYSA-N 0.000 description 1
- BDBMLMBYCXNVMC-UHFFFAOYSA-O 4-[(2e)-2-[(2e,4e,6z)-7-[1,1-dimethyl-3-(4-sulfobutyl)benzo[e]indol-3-ium-2-yl]hepta-2,4,6-trienylidene]-1,1-dimethylbenzo[e]indol-3-yl]butane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS(O)(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C BDBMLMBYCXNVMC-UHFFFAOYSA-O 0.000 description 1
- ATVXBMXBDVUKPM-UHFFFAOYSA-N 4-bromo-2-butylphenol Chemical compound CCCCC1=CC(Br)=CC=C1O ATVXBMXBDVUKPM-UHFFFAOYSA-N 0.000 description 1
- QQVRKOIEEIGPMK-UHFFFAOYSA-N 4-bromo-2-cyclohexylphenol Chemical compound OC1=CC=C(Br)C=C1C1CCCCC1 QQVRKOIEEIGPMK-UHFFFAOYSA-N 0.000 description 1
- MAAADQMBQYSOOG-UHFFFAOYSA-N 4-bromo-2-ethylphenol Chemical compound CCC1=CC(Br)=CC=C1O MAAADQMBQYSOOG-UHFFFAOYSA-N 0.000 description 1
- NBJOEVNMBJIEBA-UHFFFAOYSA-N 4-bromo-2-hexylphenol Chemical compound CCCCCCC1=CC(Br)=CC=C1O NBJOEVNMBJIEBA-UHFFFAOYSA-N 0.000 description 1
- IWJGMJHAIUBWKT-UHFFFAOYSA-N 4-bromo-2-methylphenol Chemical compound CC1=CC(Br)=CC=C1O IWJGMJHAIUBWKT-UHFFFAOYSA-N 0.000 description 1
- IBNNFYOOPXNGIL-UHFFFAOYSA-N 4-bromo-2-pentan-2-ylphenol Chemical compound CCCC(C)C1=CC(Br)=CC=C1O IBNNFYOOPXNGIL-UHFFFAOYSA-N 0.000 description 1
- AEHYMMFSHCSYAA-UHFFFAOYSA-N 4-bromo-2-propylphenol Chemical compound CCCC1=CC(Br)=CC=C1O AEHYMMFSHCSYAA-UHFFFAOYSA-N 0.000 description 1
- RCMXKDPMOKHQKG-UHFFFAOYSA-N 4-bromophenol;4-chloro-3-methylphenol Chemical compound OC1=CC=C(Br)C=C1.CC1=CC(O)=CC=C1Cl RCMXKDPMOKHQKG-UHFFFAOYSA-N 0.000 description 1
- CGINIQPUMSCPLD-UHFFFAOYSA-N 4-chloro-2-(2-phenylethyl)phenol Chemical compound OC1=CC=C(Cl)C=C1CCC1=CC=CC=C1 CGINIQPUMSCPLD-UHFFFAOYSA-N 0.000 description 1
- GKCCTCWZNGMJKG-UHFFFAOYSA-N 4-chloro-2-[(5-chloro-2-hydroxyphenyl)methylsulfanylmethyl]phenol Chemical compound OC1=CC=C(Cl)C=C1CSCC1=CC(Cl)=CC=C1O GKCCTCWZNGMJKG-UHFFFAOYSA-N 0.000 description 1
- XRUHXAQEOJDPEG-UHFFFAOYSA-N 4-chloro-2-cyclohexylphenol Chemical compound OC1=CC=C(Cl)C=C1C1CCCCC1 XRUHXAQEOJDPEG-UHFFFAOYSA-N 0.000 description 1
- ZSTDEWVWZHPUCW-UHFFFAOYSA-N 4-chloro-2-ethyl-5-methylphenol Chemical compound CCC1=CC(Cl)=C(C)C=C1O ZSTDEWVWZHPUCW-UHFFFAOYSA-N 0.000 description 1
- QCEDDUSMBLCRNH-UHFFFAOYSA-N 4-chloro-2-ethylphenol Chemical compound CCC1=CC(Cl)=CC=C1O QCEDDUSMBLCRNH-UHFFFAOYSA-N 0.000 description 1
- LAMKHMJVAKQLOO-UHFFFAOYSA-N 4-chloro-2-heptylphenol Chemical compound CCCCCCCC1=CC(Cl)=CC=C1O LAMKHMJVAKQLOO-UHFFFAOYSA-N 0.000 description 1
- UUBASQRIVIRMIQ-UHFFFAOYSA-N 4-chloro-2-hexylphenol Chemical compound CCCCCCC1=CC(Cl)=CC=C1O UUBASQRIVIRMIQ-UHFFFAOYSA-N 0.000 description 1
- RHPUJHQBPORFGV-UHFFFAOYSA-N 4-chloro-2-methylphenol Chemical compound CC1=CC(Cl)=CC=C1O RHPUJHQBPORFGV-UHFFFAOYSA-N 0.000 description 1
- URMPKLJKRAGZEY-UHFFFAOYSA-N 4-chloro-2-methylphenol;4-chloro-3-methylphenol Chemical compound CC1=CC(Cl)=CC=C1O.CC1=CC(O)=CC=C1Cl URMPKLJKRAGZEY-UHFFFAOYSA-N 0.000 description 1
- LGIGBKMDIHECCC-UHFFFAOYSA-N 4-chloro-2-pentan-2-ylphenol Chemical compound CCCC(C)C1=CC(Cl)=CC=C1O LGIGBKMDIHECCC-UHFFFAOYSA-N 0.000 description 1
- GLXDMSOEJKXENG-UHFFFAOYSA-N 4-chloro-2-propylphenol Chemical compound CCCC1=CC(Cl)=CC=C1O GLXDMSOEJKXENG-UHFFFAOYSA-N 0.000 description 1
- HFHNPIHVXJLWNW-UHFFFAOYSA-N 4-chloro-3,5-dimethyl-2-pentan-2-ylphenol Chemical compound CCCC(C)C1=C(C)C(Cl)=C(C)C=C1O HFHNPIHVXJLWNW-UHFFFAOYSA-N 0.000 description 1
- YHAQKIKKAJAFTP-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol;4-chloro-3-methylphenol Chemical compound CC1=CC(O)=CC=C1Cl.CC1=CC(O)=CC(C)=C1Cl YHAQKIKKAJAFTP-UHFFFAOYSA-N 0.000 description 1
- FDFTZPSQIKUAMS-UHFFFAOYSA-N 4-chloro-3-methyl-2-(2-phenylethyl)phenol Chemical compound CC1=C(Cl)C=CC(O)=C1CCC1=CC=CC=C1 FDFTZPSQIKUAMS-UHFFFAOYSA-N 0.000 description 1
- KFZXVMNBUMVKLN-UHFFFAOYSA-N 4-chloro-5-methyl-2-propan-2-ylphenol Chemical compound CC(C)C1=CC(Cl)=C(C)C=C1O KFZXVMNBUMVKLN-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- MNVMYTVDDOXZLS-UHFFFAOYSA-N 4-methoxyguaiacol Natural products COC1=CC=C(O)C(OC)=C1 MNVMYTVDDOXZLS-UHFFFAOYSA-N 0.000 description 1
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 1
- CSHZYWUPJWVTMQ-UHFFFAOYSA-N 4-n-Butylresorcinol Chemical compound CCCCC1=CC=C(O)C=C1O CSHZYWUPJWVTMQ-UHFFFAOYSA-N 0.000 description 1
- KNDDEFBFJLKPFE-UHFFFAOYSA-N 4-n-Heptylphenol Chemical compound CCCCCCCC1=CC=C(O)C=C1 KNDDEFBFJLKPFE-UHFFFAOYSA-N 0.000 description 1
- SZWBRVPZWJYIHI-UHFFFAOYSA-N 4-n-Hexylphenol Chemical compound CCCCCCC1=CC=C(O)C=C1 SZWBRVPZWJYIHI-UHFFFAOYSA-N 0.000 description 1
- ZNPSUQQXTRRSBM-UHFFFAOYSA-N 4-n-Pentylphenol Chemical compound CCCCCC1=CC=C(O)C=C1 ZNPSUQQXTRRSBM-UHFFFAOYSA-N 0.000 description 1
- UZDMJPAQQFSMMV-UHFFFAOYSA-N 4-oxo-4-(2-prop-2-enoyloxyethoxy)butanoic acid Chemical compound OC(=O)CCC(=O)OCCOC(=O)C=C UZDMJPAQQFSMMV-UHFFFAOYSA-N 0.000 description 1
- 229940046305 5-bromo-5-nitro-1,3-dioxane Drugs 0.000 description 1
- QYYMDNHUJFIDDQ-UHFFFAOYSA-N 5-chloro-2-methyl-1,2-thiazol-3-one;2-methyl-1,2-thiazol-3-one Chemical compound CN1SC=CC1=O.CN1SC(Cl)=CC1=O QYYMDNHUJFIDDQ-UHFFFAOYSA-N 0.000 description 1
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- VDBJCDWTNCKRTF-UHFFFAOYSA-N 6'-hydroxyspiro[2-benzofuran-3,9'-9ah-xanthene]-1,3'-dione Chemical compound O1C(=O)C2=CC=CC=C2C21C1C=CC(=O)C=C1OC1=CC(O)=CC=C21 VDBJCDWTNCKRTF-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- ALJHHTHBYJROOG-UHFFFAOYSA-N 7-(dimethylamino)phenothiazin-3-one Chemical compound C1=CC(=O)C=C2SC3=CC(N(C)C)=CC=C3N=C21 ALJHHTHBYJROOG-UHFFFAOYSA-N 0.000 description 1
- NGZUCVGMNQGGNA-UHFFFAOYSA-N 7-[5-(2-acetamidoethyl)-2-hydroxyphenyl]-3,5,6,8-tetrahydroxy-9,10-dioxoanthracene-1,2-dicarboxylic acid 7-[5-(2-amino-2-carboxyethyl)-2-hydroxyphenyl]-3,5,6,8-tetrahydroxy-9,10-dioxoanthracene-1,2-dicarboxylic acid 3,5,6,8-tetrahydroxy-7-[2-hydroxy-5-(2-hydroxyethyl)phenyl]-9,10-dioxoanthracene-1,2-dicarboxylic acid 3,6,8-trihydroxy-1-methyl-9,10-dioxoanthracene-2-carboxylic acid Chemical compound Cc1c(C(O)=O)c(O)cc2C(=O)c3cc(O)cc(O)c3C(=O)c12.OCCc1ccc(O)c(c1)-c1c(O)c(O)c2C(=O)c3cc(O)c(C(O)=O)c(C(O)=O)c3C(=O)c2c1O.CC(=O)NCCc1ccc(O)c(c1)-c1c(O)c(O)c2C(=O)c3cc(O)c(C(O)=O)c(C(O)=O)c3C(=O)c2c1O.NC(Cc1ccc(O)c(c1)-c1c(O)c(O)c2C(=O)c3cc(O)c(C(O)=O)c(C(O)=O)c3C(=O)c2c1O)C(O)=O NGZUCVGMNQGGNA-UHFFFAOYSA-N 0.000 description 1
- RHAXKFFKGZJUOE-UHFFFAOYSA-N 7-acetyl-6-ethyl-3,5,8-trihydroxy-9,10-dioxoanthracene-1,2-dicarboxylic acid Chemical compound O=C1C2=CC(O)=C(C(O)=O)C(C(O)=O)=C2C(=O)C2=C1C(O)=C(CC)C(C(C)=O)=C2O RHAXKFFKGZJUOE-UHFFFAOYSA-N 0.000 description 1
- DDGMDTGNGDOUPX-UHFFFAOYSA-N 7-methyliminophenothiazin-3-amine;hydrochloride Chemical compound [Cl-].C1=C(N)C=C2SC3=CC(=[NH+]C)C=CC3=NC2=C1 DDGMDTGNGDOUPX-UHFFFAOYSA-N 0.000 description 1
- CKLBXIYTBHXJEH-UHFFFAOYSA-J 75881-23-1 Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cu+2].[N-]1C(N=C2C3=CC=C(CSC(N(C)C)=[N+](C)C)C=C3C(N=C3C4=CC=C(CSC(N(C)C)=[N+](C)C)C=C4C(=N4)[N-]3)=N2)=C(C=C(CSC(N(C)C)=[N+](C)C)C=C2)C2=C1N=C1C2=CC(CSC(N(C)C)=[N+](C)C)=CC=C2C4=N1 CKLBXIYTBHXJEH-UHFFFAOYSA-J 0.000 description 1
- 102100021407 ATP-dependent RNA helicase DDX18 Human genes 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 208000003911 Acne Keloid Diseases 0.000 description 1
- 206010000501 Acne conglobata Diseases 0.000 description 1
- 206010000502 Acne cosmetica Diseases 0.000 description 1
- 206010000503 Acne cystic Diseases 0.000 description 1
- 206010049141 Acne fulminans Diseases 0.000 description 1
- 206010000518 Acne varioliformis Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- CEZCCHQBSQPRMU-LLIZZRELSA-L Allura red AC Chemical compound [Na+].[Na+].COC1=CC(S([O-])(=O)=O)=C(C)C=C1\N=N\C1=C(O)C=CC2=CC(S([O-])(=O)=O)=CC=C12 CEZCCHQBSQPRMU-LLIZZRELSA-L 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 108010070075 Bacteriochlorophyll A Proteins 0.000 description 1
- 239000004857 Balsam Substances 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- MOZDKDIOPSPTBH-UHFFFAOYSA-N Benzyl parahydroxybenzoate Chemical compound C1=CC(O)=CC=C1C(=O)OCC1=CC=CC=C1 MOZDKDIOPSPTBH-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 102100039396 C-X-C motif chemokine 16 Human genes 0.000 description 1
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- YSVBPNGJESBVRM-ZPZFBZIMSA-L Carmoisine Chemical compound [Na+].[Na+].C1=CC=C2C(/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)O)=CC=C(S([O-])(=O)=O)C2=C1 YSVBPNGJESBVRM-ZPZFBZIMSA-L 0.000 description 1
- 102100028003 Catenin alpha-1 Human genes 0.000 description 1
- 235000009024 Ceanothus sanguineus Nutrition 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 208000001348 Chloracne Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 229930008398 Citronellate Natural products 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 102000004266 Collagen Type IV Human genes 0.000 description 1
- 108010042086 Collagen Type IV Proteins 0.000 description 1
- 102100031519 Collagen alpha-1(VI) chain Human genes 0.000 description 1
- 102100024335 Collagen alpha-1(VII) chain Human genes 0.000 description 1
- IQFVPQOLBLOTPF-UHFFFAOYSA-L Congo Red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(N=NC3=CC=C(C=C3)C3=CC=C(C=C3)N=NC3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- SEBIKDIMAPSUBY-ARYZWOCPSA-N Crocin Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O)OC(=O)C(C)=CC=CC(C)=C\C=C\C=C(/C)\C=C\C=C(C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SEBIKDIMAPSUBY-ARYZWOCPSA-N 0.000 description 1
- SEBIKDIMAPSUBY-JAUCNNNOSA-N Crocin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C(=O)OC1OC(COC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O)C=CC=C(/C)C(=O)OC3OC(COC4OC(CO)C(O)C(O)C4O)C(O)C(O)C3O SEBIKDIMAPSUBY-JAUCNNNOSA-N 0.000 description 1
- 235000015655 Crocus sativus Nutrition 0.000 description 1
- 244000124209 Crocus sativus Species 0.000 description 1
- 244000163122 Curcuma domestica Species 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 244000166675 Cymbopogon nardus Species 0.000 description 1
- 235000018791 Cymbopogon nardus Nutrition 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Polymers OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 235000012040 Dahlia pinnata Nutrition 0.000 description 1
- 244000033273 Dahlia variabilis Species 0.000 description 1
- 206010065701 Dermatillomania Diseases 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010012456 Dermatitis exfoliative generalised Diseases 0.000 description 1
- 206010051651 Dermatitis papillaris capillitii Diseases 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- PHMNXPYGVPEQSJ-UHFFFAOYSA-N Dimethoxane Chemical compound CC1CC(OC(C)=O)OC(C)O1 PHMNXPYGVPEQSJ-UHFFFAOYSA-N 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 206010014201 Eczema nummular Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 206010015218 Erythema multiforme Diseases 0.000 description 1
- 206010015226 Erythema nodosum Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 239000004214 Fast Green FCF Substances 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 240000006927 Foeniculum vulgare Species 0.000 description 1
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 240000001238 Gaultheria procumbens Species 0.000 description 1
- 235000007297 Gaultheria procumbens Nutrition 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 201000005708 Granuloma Annulare Diseases 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 208000023329 Gun shot wound Diseases 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- OKNJKIKBMQYONP-ZTFPKQFBSA-N Hoffman's violet Chemical compound CCNC(C=C1)=CC=C1/C(\C(C=C1)=CC(C)=C1NCC)=C(\C=C1)/C=C/C\1=N/CC.Cl OKNJKIKBMQYONP-ZTFPKQFBSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000889133 Homo sapiens C-X-C motif chemokine 16 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000859063 Homo sapiens Catenin alpha-1 Proteins 0.000 description 1
- 101000941581 Homo sapiens Collagen alpha-1(VI) chain Proteins 0.000 description 1
- 101000909498 Homo sapiens Collagen alpha-1(VII) chain Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 101000972489 Homo sapiens Laminin subunit alpha-1 Proteins 0.000 description 1
- 101000990912 Homo sapiens Matrilysin Proteins 0.000 description 1
- 101000622304 Homo sapiens Vascular cell adhesion protein 1 Proteins 0.000 description 1
- 101000860430 Homo sapiens Versican core protein Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 108090000320 Hyaluronan Synthases Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 108050009363 Hyaluronidases Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- 206010021531 Impetigo Diseases 0.000 description 1
- 208000006877 Insect Bites and Stings Diseases 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- XPJVKCRENWUEJH-UHFFFAOYSA-N Isobutylparaben Chemical compound CC(C)COC(=O)C1=CC=C(O)C=C1 XPJVKCRENWUEJH-UHFFFAOYSA-N 0.000 description 1
- CMHMMKSPYOOVGI-UHFFFAOYSA-N Isopropylparaben Chemical compound CC(C)OC(=O)C1=CC=C(O)C=C1 CMHMMKSPYOOVGI-UHFFFAOYSA-N 0.000 description 1
- 208000002260 Keloid Diseases 0.000 description 1
- 208000001126 Keratosis Diseases 0.000 description 1
- 241001446187 Kermes Species 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 150000000996 L-ascorbic acids Chemical class 0.000 description 1
- 229930192967 Laccaic acid Natural products 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- 102100022746 Laminin subunit alpha-1 Human genes 0.000 description 1
- 102100034710 Laminin subunit gamma-1 Human genes 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 240000003553 Leptospermum scoparium Species 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 235000015459 Lycium barbarum Nutrition 0.000 description 1
- 235000014837 Malpighia glabra Nutrition 0.000 description 1
- 240000003394 Malpighia glabra Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102100030417 Matrilysin Human genes 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- WWKGVZASJYXZKN-UHFFFAOYSA-N Methyl violet 2B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=[N+](C)C)C=C1 WWKGVZASJYXZKN-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 206010027626 Milia Diseases 0.000 description 1
- 240000009023 Myrrhis odorata Species 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- FQTLCLSUCSAZDY-ATGUSINASA-N Nerolidol Chemical compound CC(C)=CCC\C(C)=C\CC[C@](C)(O)C=C FQTLCLSUCSAZDY-ATGUSINASA-N 0.000 description 1
- 201000009053 Neurodermatitis Diseases 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 240000007926 Ocimum gratissimum Species 0.000 description 1
- NPGIHFRTRXVWOY-UHFFFAOYSA-N Oil red O Chemical compound Cc1ccc(C)c(c1)N=Nc1cc(C)c(cc1C)N=Nc1c(O)ccc2ccccc12 NPGIHFRTRXVWOY-UHFFFAOYSA-N 0.000 description 1
- 239000004218 Orcein Substances 0.000 description 1
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 1
- 206010033372 Pain and discomfort Diseases 0.000 description 1
- 241001459566 Papulosa Species 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 208000005888 Periodontal Pocket Diseases 0.000 description 1
- 208000009675 Perioral Dermatitis Diseases 0.000 description 1
- 230000010748 Photoabsorption Effects 0.000 description 1
- 235000012550 Pimpinella anisum Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001311 Poly(hydroxyethyl acrylate) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004237 Ponceau 6R Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- 241000245063 Primula Species 0.000 description 1
- 235000000497 Primula Nutrition 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 208000001818 Pseudofolliculitis barbae Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010037549 Purpura Diseases 0.000 description 1
- 241001672981 Purpura Species 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 208000003493 Rhinophyma Diseases 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 240000000513 Santalum album Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- 206010039793 Seborrhoeic dermatitis Diseases 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- KSQXVLVXUFHGJQ-UHFFFAOYSA-M Sodium ortho-phenylphenate Chemical compound [Na+].[O-]C1=CC=CC=C1C1=CC=CC=C1 KSQXVLVXUFHGJQ-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-NQAPHZHOSA-N Sorbitol Polymers OCC(O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-NQAPHZHOSA-N 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 206010041954 Starvation Diseases 0.000 description 1
- YCUVUDODLRLVIC-UHFFFAOYSA-N Sudan black B Chemical compound C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1N=NC(C1=CC=CC=C11)=CC=C1N=NC1=CC=CC=C1 YCUVUDODLRLVIC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 206010042496 Sunburn Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 108010076830 Thionins Proteins 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241000159243 Toxicodendron radicans Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 208000000558 Varicose Ulcer Diseases 0.000 description 1
- 208000009443 Vascular Malformations Diseases 0.000 description 1
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 1
- 235000018718 Verbena officinalis Nutrition 0.000 description 1
- 240000001519 Verbena officinalis Species 0.000 description 1
- 102100028437 Versican core protein Human genes 0.000 description 1
- 241000256856 Vespidae Species 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 206010048222 Xerosis Diseases 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- GMCVSEFMPYGLOB-UHFFFAOYSA-N [6-amino-2,4,5,7-tetrabromo-9-(2-methoxycarbonylphenyl)xanthen-3-ylidene]azanium;chloride Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=[NH2+])C(Br)=C2OC2=C(Br)C(N)=C(Br)C=C21 GMCVSEFMPYGLOB-UHFFFAOYSA-N 0.000 description 1
- JRMSLDWZFJZLAS-UHFFFAOYSA-M [7-(dimethylamino)-1,9-dimethylphenothiazin-3-ylidene]-dimethylazanium;chloride Chemical compound [Cl-].CC1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC(C)=C3N=C21 JRMSLDWZFJZLAS-UHFFFAOYSA-M 0.000 description 1
- PGLXYLYDLCVKEE-UHFFFAOYSA-N [Al].[Al].[Al].[Zr] Chemical compound [Al].[Al].[Al].[Zr] PGLXYLYDLCVKEE-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- ZXGIHDNEIWPDFW-UHFFFAOYSA-M acid red 4 Chemical compound [Na+].COC1=CC=CC=C1N=NC1=CC(S([O-])(=O)=O)=C(C=CC=C2)C2=C1O ZXGIHDNEIWPDFW-UHFFFAOYSA-M 0.000 description 1
- 210000001193 acne keloid Anatomy 0.000 description 1
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 1
- 229940023020 acriflavine Drugs 0.000 description 1
- 208000009621 actinic keratosis Diseases 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- 235000012741 allura red AC Nutrition 0.000 description 1
- 239000004191 allura red AC Substances 0.000 description 1
- 229940086737 allyl sucrose Drugs 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- TUFYVOCKVJOUIR-UHFFFAOYSA-N alpha-Thujaplicin Natural products CC(C)C=1C=CC=CC(=O)C=1O TUFYVOCKVJOUIR-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- AIPNSHNRCQOTRI-UHFFFAOYSA-N aluminon Chemical compound [NH4+].[NH4+].[NH4+].C1=C(C([O-])=O)C(O)=CC=C1C(C=1C=C(C(O)=CC=1)C([O-])=O)=C1C=C(C([O-])=O)C(=O)C=C1 AIPNSHNRCQOTRI-UHFFFAOYSA-N 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000002266 amputation Methods 0.000 description 1
- CKGWFZQGEQJZIL-UHFFFAOYSA-N amylmetacresol Chemical compound CCCCCC1=CC=C(C)C=C1O CKGWFZQGEQJZIL-UHFFFAOYSA-N 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 210000002403 aortic endothelial cell Anatomy 0.000 description 1
- 208000002399 aphthous stomatitis Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- KSCQDDRPFHTIRL-UHFFFAOYSA-N auramine O Chemical compound [H+].[Cl-].C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 KSCQDDRPFHTIRL-UHFFFAOYSA-N 0.000 description 1
- JPIYZTWMUGTEHX-UHFFFAOYSA-N auramine O free base Chemical compound C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 JPIYZTWMUGTEHX-UHFFFAOYSA-N 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- QZKHGYGBYOUFGK-UHFFFAOYSA-L azocarmine B Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(S(=O)(=O)[O-])=CC=C1NC(C1=CC(=CC=C1C1=NC2=CC=CC=C22)S([O-])(=O)=O)=CC1=[N+]2C1=CC=CC=C1 QZKHGYGBYOUFGK-UHFFFAOYSA-L 0.000 description 1
- 239000004176 azorubin Substances 0.000 description 1
- TVWOWDDBXAFQDG-DQRAZIAOSA-N azorubine Chemical compound C1=CC=C2C(\N=N/C3=C(C4=CC=CC=C4C(=C3)S(O)(=O)=O)O)=CC=C(S(O)(=O)=O)C2=C1 TVWOWDDBXAFQDG-DQRAZIAOSA-N 0.000 description 1
- PGWTYMLATMNCCZ-UHFFFAOYSA-M azure A Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 PGWTYMLATMNCCZ-UHFFFAOYSA-M 0.000 description 1
- KFZNPGQYVZZSNV-UHFFFAOYSA-M azure B Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(NC)=CC=C3N=C21 KFZNPGQYVZZSNV-UHFFFAOYSA-M 0.000 description 1
- DSJXIQQMORJERS-AGGZHOMASA-M bacteriochlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC([C@H](CC)[C@H]3C)=[N+]4C3=CC3=C(C(C)=O)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 DSJXIQQMORJERS-AGGZHOMASA-M 0.000 description 1
- 108010010589 bacteriochlorophyll b Proteins 0.000 description 1
- 108010010609 bacteriochlorophyll c Proteins 0.000 description 1
- 108010010601 bacteriochlorophyll d Proteins 0.000 description 1
- 229940052223 basic fuchsin Drugs 0.000 description 1
- 208000003373 basosquamous carcinoma Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229940034794 benzylparaben Drugs 0.000 description 1
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 1
- 229940093265 berberine Drugs 0.000 description 1
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- VVAVKBBTPWYADW-RVTJCSDESA-L biebrich scarlet Chemical compound [Na+].[Na+].OC1=CC=C2C=CC=CC2=C1\N=N\C(C(=C1)S([O-])(=O)=O)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 VVAVKBBTPWYADW-RVTJCSDESA-L 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- XVBRCOKDZVQYAY-UHFFFAOYSA-N bronidox Chemical compound [O-][N+](=O)C1(Br)COCOC1 XVBRCOKDZVQYAY-UHFFFAOYSA-N 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 229940067596 butylparaben Drugs 0.000 description 1
- 229930006739 camphene Natural products 0.000 description 1
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229940114118 carminic acid Drugs 0.000 description 1
- 229940031019 carmoisine Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- HNNSUZPWERIYIL-UHFFFAOYSA-N chembl1730100 Chemical compound O1CC2(O)CC3=CC(O)=C(O)C=C3C2=C2C1=C(O)C(=O)C=C2 HNNSUZPWERIYIL-UHFFFAOYSA-N 0.000 description 1
- PSWOBQSIXLVPDV-CXUHLZMHSA-N chembl2105120 Chemical compound C1=C(O)C(OC)=CC(\C=N\NC(=O)C=2C=CN=CC=2)=C1 PSWOBQSIXLVPDV-CXUHLZMHSA-N 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 1
- 229940031956 chlorothymol Drugs 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940080423 cochineal Drugs 0.000 description 1
- 230000037319 collagen production Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 210000000555 contractile cell Anatomy 0.000 description 1
- 208000006111 contracture Diseases 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- SEBIKDIMAPSUBY-RTJKDTQDSA-N crocin-1 Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O)OC(=O)C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SEBIKDIMAPSUBY-RTJKDTQDSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000035618 desquamation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- SOROIESOUPGGFO-UHFFFAOYSA-N diazolidinylurea Chemical compound OCNC(=O)N(CO)C1N(CO)C(=O)N(CO)C1=O SOROIESOUPGGFO-UHFFFAOYSA-N 0.000 description 1
- 229960001083 diazolidinylurea Drugs 0.000 description 1
- 229960004698 dichlorobenzyl alcohol Drugs 0.000 description 1
- 229960003887 dichlorophen Drugs 0.000 description 1
- VADJQOXWNSPOQA-UHFFFAOYSA-L dichlorozinc;3-n,3-n,6-n,6-n-tetramethylacridine-3,6-diamine;hydrochloride Chemical compound Cl.[Cl-].[Cl-].[Zn+2].C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 VADJQOXWNSPOQA-UHFFFAOYSA-L 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- AOMZHDJXSYHPKS-UHFFFAOYSA-L disodium 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(N=NC=3C=CC=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 AOMZHDJXSYHPKS-UHFFFAOYSA-L 0.000 description 1
- YSVBPNGJESBVRM-UHFFFAOYSA-L disodium;4-[(1-oxido-4-sulfonaphthalen-2-yl)diazenyl]naphthalene-1-sulfonate Chemical compound [Na+].[Na+].C1=CC=C2C(N=NC3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)O)=CC=C(S([O-])(=O)=O)C2=C1 YSVBPNGJESBVRM-UHFFFAOYSA-L 0.000 description 1
- XOSXWYQMOYSSKB-UHFFFAOYSA-M disodium;4-[4-[(4-amino-3-methyl-5-sulfophenyl)-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzenesulfonate Chemical compound [Na+].[Na+].OS(=O)(=O)C1=C(N)C(C)=CC(C(=C2C=CC(C=C2)=[NH+]C=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S([O-])(=O)=O)=CC=2)=C1 XOSXWYQMOYSSKB-UHFFFAOYSA-M 0.000 description 1
- MCPLVIGCWWTHFH-UHFFFAOYSA-M disodium;4-[4-[[4-(4-sulfoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzenesulfonate Chemical compound [Na+].[Na+].C1=CC(S(=O)(=O)O)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[NH+]C=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S([O-])(=O)=O)=CC=2)C=C1 MCPLVIGCWWTHFH-UHFFFAOYSA-M 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008846 dynamic interplay Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 229960001483 eosin Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- IDAQSADEMXDTKN-UHFFFAOYSA-L ethyl green Chemical compound [Cl-].[Br-].C1=CC([N+](C)(C)CC)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C1C=CC(=[N+](C)C)C=C1 IDAQSADEMXDTKN-UHFFFAOYSA-L 0.000 description 1
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 229960003699 evans blue Drugs 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 210000001097 facial muscle Anatomy 0.000 description 1
- 229930002886 farnesol Natural products 0.000 description 1
- 229940043259 farnesol Drugs 0.000 description 1
- QMMMCTXNYMSXLI-UHFFFAOYSA-N fast blue B Chemical compound C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 QMMMCTXNYMSXLI-UHFFFAOYSA-N 0.000 description 1
- GPPKNJIWDULNQH-UHFFFAOYSA-J fast blue salt B Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Zn+2].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 GPPKNJIWDULNQH-UHFFFAOYSA-J 0.000 description 1
- AXKAZKNOUOFMLN-UHFFFAOYSA-M fast red B Chemical compound COC1=CC([N+]([O-])=O)=CC=C1[N+]#N.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1S([O-])(=O)=O AXKAZKNOUOFMLN-UHFFFAOYSA-M 0.000 description 1
- 235000019233 fast yellow AB Nutrition 0.000 description 1
- 235000007144 ferric diphosphate Nutrition 0.000 description 1
- 239000011706 ferric diphosphate Substances 0.000 description 1
- CADNYOZXMIKYPR-UHFFFAOYSA-B ferric pyrophosphate Chemical compound [Fe+3].[Fe+3].[Fe+3].[Fe+3].[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O CADNYOZXMIKYPR-UHFFFAOYSA-B 0.000 description 1
- 229940036404 ferric pyrophosphate Drugs 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 1
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 1
- 229940114124 ferulic acid Drugs 0.000 description 1
- 235000001785 ferulic acid Nutrition 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 102000034240 fibrous proteins Human genes 0.000 description 1
- 108091005899 fibrous proteins Proteins 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229960001235 gentian violet Drugs 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 229960002849 glucosamine sulfate Drugs 0.000 description 1
- 150000002303 glucose derivatives Polymers 0.000 description 1
- 150000002304 glucoses Polymers 0.000 description 1
- 125000002791 glucosyl group Polymers C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229940074046 glyceryl laurate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000000527 greater trochanter Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 239000003722 gum benzoin Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000000301 hemidesmosome Anatomy 0.000 description 1
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 231100000652 hormesis Toxicity 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229940014041 hyaluronate Drugs 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 206010021198 ichthyosis Diseases 0.000 description 1
- 201000002597 ichthyosis vulgaris Diseases 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 229960004657 indocyanine green Drugs 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 208000005005 intertrigo Diseases 0.000 description 1
- JORABGDXCIBAFL-UHFFFAOYSA-M iodonitrotetrazolium chloride Chemical compound [Cl-].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C=CC=CC=2)=N1 JORABGDXCIBAFL-UHFFFAOYSA-M 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- WFKAJVHLWXSISD-UHFFFAOYSA-N isobutyramide Chemical compound CC(C)C(N)=O WFKAJVHLWXSISD-UHFFFAOYSA-N 0.000 description 1
- 229940113094 isopropylparaben Drugs 0.000 description 1
- 210000001117 keloid Anatomy 0.000 description 1
- 230000001530 keratinolytic effect Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 108010057670 laminin 1 Proteins 0.000 description 1
- 108010090909 laminin gamma 1 Proteins 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960002782 merbromin Drugs 0.000 description 1
- 229940008716 mercurochrome Drugs 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940051142 metanil yellow Drugs 0.000 description 1
- QDBPSMVYZMGGGG-UHFFFAOYSA-N methyl 2-(3-amino-4,5-dibromo-6-iminoxanthen-9-yl)benzoate Chemical compound COC(=O)C1=CC=CC=C1C1=C2C=CC(=N)C(Br)=C2OC2=C(Br)C(N)=CC=C21 QDBPSMVYZMGGGG-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 1
- ASHGTJPOSUFTGB-UHFFFAOYSA-N methyl resorcinol Natural products COC1=CC=CC(O)=C1 ASHGTJPOSUFTGB-UHFFFAOYSA-N 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 108700019599 monomethylolglycine Proteins 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000000651 myofibroblast Anatomy 0.000 description 1
- JMXROTHPANUTOJ-UHFFFAOYSA-H naphthol green b Chemical compound [Na+].[Na+].[Na+].[Fe+3].C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21.C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21.C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21 JMXROTHPANUTOJ-UHFFFAOYSA-H 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- WASNIKZYIWZQIP-AWEZNQCLSA-N nerolidol Natural products CC(=CCCC(=CCC[C@@H](O)C=C)C)C WASNIKZYIWZQIP-AWEZNQCLSA-N 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- FSVCQIDHPKZJSO-UHFFFAOYSA-L nitro blue tetrazolium dichloride Chemical compound [Cl-].[Cl-].COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 FSVCQIDHPKZJSO-UHFFFAOYSA-L 0.000 description 1
- JPXMTWWFLBLUCD-UHFFFAOYSA-N nitro blue tetrazolium(2+) Chemical compound COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 JPXMTWWFLBLUCD-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JPMIIZHYYWMHDT-UHFFFAOYSA-N octhilinone Chemical compound CCCCCCCCN1SC=CC1=O JPMIIZHYYWMHDT-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 235000019248 orcein Nutrition 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- NRZWYNLTFLDQQX-UHFFFAOYSA-N p-tert-Amylphenol Chemical compound CCC(C)(C)C1=CC=C(O)C=C1 NRZWYNLTFLDQQX-UHFFFAOYSA-N 0.000 description 1
- WOTPFVNWMLFMFW-ISLYRVAYSA-N para red Chemical compound OC1=CC=C2C=CC=CC2=C1\N=N\C1=CC=C(N(=O)=O)C=C1 WOTPFVNWMLFMFW-ISLYRVAYSA-N 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 230000003239 periodontal effect Effects 0.000 description 1
- 210000004261 periodontium Anatomy 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 229940106026 phenoxyisopropanol Drugs 0.000 description 1
- NTGBUUXKGAZMSE-UHFFFAOYSA-N phenyl n-[4-[4-(4-methoxyphenyl)piperazin-1-yl]phenyl]carbamate Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(NC(=O)OC=3C=CC=CC=3)=CC=2)CC1 NTGBUUXKGAZMSE-UHFFFAOYSA-N 0.000 description 1
- 229940106025 phenylethyl resorcinol Drugs 0.000 description 1
- 230000000886 photobiology Effects 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229950001046 piroctone Drugs 0.000 description 1
- BTSZTGGZJQFALU-UHFFFAOYSA-N piroctone olamine Chemical compound NCCO.CC(C)(C)CC(C)CC1=CC(C)=CC(=O)N1O BTSZTGGZJQFALU-UHFFFAOYSA-N 0.000 description 1
- 206010035114 pityriasis rosea Diseases 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920000765 poly(2-oxazolines) Polymers 0.000 description 1
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000012731 ponceau 4R Nutrition 0.000 description 1
- 239000004175 ponceau 4R Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- WYOHGPUPVHHUGO-UHFFFAOYSA-K potassium;oxygen(2-);titanium(4+);phosphate Chemical compound [O-2].[K+].[Ti+4].[O-]P([O-])([O-])=O WYOHGPUPVHHUGO-UHFFFAOYSA-K 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 230000035752 proliferative phase Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- CXZRDVVUVDYSCQ-UHFFFAOYSA-M pyronin B Chemical compound [Cl-].C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3C=C21 CXZRDVVUVDYSCQ-UHFFFAOYSA-M 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- MYFATKRONKHHQL-UHFFFAOYSA-N rhodamine 123 Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C21 MYFATKRONKHHQL-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- 229960003138 rose bengal sodium Drugs 0.000 description 1
- 235000013974 saffron Nutrition 0.000 description 1
- 239000004248 saffron Substances 0.000 description 1
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229960005369 scarlet red Drugs 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 208000008742 seborrheic dermatitis Diseases 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 230000008417 skin turnover Effects 0.000 description 1
- 231100000019 skin ulcer Toxicity 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940101011 sodium hydroxymethylglycinate Drugs 0.000 description 1
- 235000010268 sodium methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 235000010294 sodium orthophenyl phenol Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000011755 sodium-L-ascorbate Substances 0.000 description 1
- 235000019187 sodium-L-ascorbate Nutrition 0.000 description 1
- PESXGULMKCKJCC-UHFFFAOYSA-M sodium;4-methoxycarbonylphenolate Chemical compound [Na+].COC(=O)C1=CC=C([O-])C=C1 PESXGULMKCKJCC-UHFFFAOYSA-M 0.000 description 1
- IXMINYBUNCWGER-UHFFFAOYSA-M sodium;4-propoxycarbonylphenolate Chemical compound [Na+].CCCOC(=O)C1=CC=C([O-])C=C1 IXMINYBUNCWGER-UHFFFAOYSA-M 0.000 description 1
- KVMUSGMZFRRCAS-UHFFFAOYSA-N sodium;5-oxo-1-(4-sulfophenyl)-4-[(4-sulfophenyl)diazenyl]-4h-pyrazole-3-carboxylic acid Chemical compound [Na+].OC(=O)C1=NN(C=2C=CC(=CC=2)S(O)(=O)=O)C(=O)C1N=NC1=CC=C(S(O)(=O)=O)C=C1 KVMUSGMZFRRCAS-UHFFFAOYSA-N 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 229940033816 solvent red 27 Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 244000148755 species properties Species 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000009221 stress response pathway Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- YCUVUDODLRLVIC-VPHDGDOJSA-N sudan black b Chemical compound C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1\N=N\C(C1=CC=CC=C11)=CC=C1\N=N\C1=CC=CC=C1 YCUVUDODLRLVIC-VPHDGDOJSA-N 0.000 description 1
- 229940099373 sudan iii Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- JHYAVWJELFKHLM-UHFFFAOYSA-H tetrasodium;2-hydroxypropane-1,2,3-tricarboxylate;iron(2+) Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O JHYAVWJELFKHLM-UHFFFAOYSA-H 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- 229940025703 topical product Drugs 0.000 description 1
- CRDAMVZIKSXKFV-UHFFFAOYSA-N trans-Farnesol Natural products CC(C)=CCCC(C)=CCCC(C)=CCO CRDAMVZIKSXKFV-UHFFFAOYSA-N 0.000 description 1
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 1
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960001325 triclocarban Drugs 0.000 description 1
- ICUTUKXCWQYESQ-UHFFFAOYSA-N triclocarban Chemical compound C1=CC(Cl)=CC=C1NC(=O)NC1=CC=C(Cl)C(Cl)=C1 ICUTUKXCWQYESQ-UHFFFAOYSA-N 0.000 description 1
- 229960003500 triclosan Drugs 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 201000011531 vascular cancer Diseases 0.000 description 1
- 206010055031 vascular neoplasm Diseases 0.000 description 1
- DCSCXTJOXBUFGB-UHFFFAOYSA-N verbenone Natural products CC1=CC(=O)C2C(C)(C)C1C2 DCSCXTJOXBUFGB-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- XOSXWYQMOYSSKB-UHFFFAOYSA-L water blue Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=C(N)C(C)=CC(C(=C2C=CC(C=C2)=NC=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S(O)(=O)=O)=CC=2)=C1 XOSXWYQMOYSSKB-UHFFFAOYSA-L 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 150000003732 xanthenes Chemical class 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229930007845 β-thujaplicin Natural products 0.000 description 1
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
The present disclosure provides biophotonic compositions and methods useful in phototherapy. In particular, the biophotonic compositions of the present disclosure comprise at least two xanthene dyes. The biophotonic compositions and the methods of the present disclosure are useful for promoting wound healing and skin rejuvenation, as well as treating acne and other skin disorders.
Description
CHROMOPHORE COMBINATIONS FOR BIOPHOTONIC USES
BACKGROUND OF THE DISCLOSURE
Phototherapy has recently been recognized as having wide range of applications in both the medical, cosmetic and dental fields for use in surgeries, therapies and examinations. For example, phototherapy has been developed to treat cancers and tumors, to treat skin conditions, to disinfect target sites as an antimicrobial treatment, and to promote wound healing.
Known phototherapy techniques include photodynamic therapy which involves systemic administration or uptake of a photosensitive agent or chromophore into the diseased or injured tissue, followed by site-specific application of activating light.
Other types of phototherapy include the use of light alone at specific wavelengths to target tissue using light-emitting diode (LED) or fluorescent lamps, or lasers.
It is an object of the present disclosure to provide new and improved compositions and methods useful in phototherapy.
SUMMARY OF THE DISCLOSURE
The present disclosure provides topical biophotonic compositions and methods of using the biophotonic compositions for the biophotonic treatment of living tissue.
Biophotonic treatment may include skin rejuvenation; tissue repair including wound healing, scar removal and scar minimization; treatment of skin conditions such as acne; and treatment of periodontitis.
The biophotonic composition of the present disclosure comprises a gelling agent and at least two xanthene dyes, wherein a first xanthene dye has an emission spectrum that overlaps at least 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70% with an absorption spectrum of a second xanthene dye. In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye.
Particularly useful combinations of xanthene dyes include but are not limited to:
Fluorescein + Eosin Y; Fluorescein + Eosin Y + Rose Bengal; Fluorescein +
Eosin Y +
Phloxine B; Eosin Y + Rose Bengal; Eosin Y + Phloxine B; Fluorescein +
Erythrosine B +
Eosin Y; Eosin Y + Erythrosine; Eosin Y + Erythrosine B + Rose Bengal; Eosin Y
+
Erythrosine B + Phloxine B; Fluorescein + Eosin Y + Erythrosine B + Rose Bengal; and Fluorescein + Eosin Y + Erythrosine B + Phloxine B.
The gelling agent may comprise a hygroscopic substance. In addition or in the alternative, the gelling agent may also be a hydrophilic polymer, a hydrated polymer or a lipid.
In certain embodiments, the gelling agent comprises one or more of glycerin, glycols such as propylene glycol, polyacrylic acid polymers, hyaluronic acid, glucosamine sulphate or gelatin.
In certain embodiments, the gelling agent is a high molecular weight, cross-linked polyacrylic acid polymer having a viscosity in the range of about 20,000-80,000, 20,000-100,000, 25,000-90,000, 30,000-80,000, 30,000-70,000, 30,000-60,000, 25,000-40,000 cP. In certain embodiments, the cross-linked polyacrylic acid polymer is a carbomer selected from the group consisting of, but not limited to, Carbopol 71G NF, 971P NF, 974P NF, 980 NF, 981 NF, 5984 EP, ETD 2020NF, Ultrez 10 NF, 934 NF, 934P NF, 940 NF, 941 NF, or 1342 NF.
In certain embodiments, the biophotonic composition is substantially translucent and/or transparent. In certain embodiment, the biophotonic composition has a translucency of at least 70% at 460 nm. In other embodiments, the composition has a translucency of at least 20%, 30%, 40%, 50%, 60%, 70%, 75%, 85%, 90%, 95% or 100% at 460 nm.
In certain embodiments, the biophotonic composition is a liquid, a gel, a semi-solid, cream, foam, lotion, oil, ointment, paste, suspension, or aerosol spray.
In certain embodiments, the biophotonic composition is encapsulated in a transparent, impermeable membrane, or a breathable membrane which allows permeation of gases but not liquids. The membrane may comprise a lipid.
BACKGROUND OF THE DISCLOSURE
Phototherapy has recently been recognized as having wide range of applications in both the medical, cosmetic and dental fields for use in surgeries, therapies and examinations. For example, phototherapy has been developed to treat cancers and tumors, to treat skin conditions, to disinfect target sites as an antimicrobial treatment, and to promote wound healing.
Known phototherapy techniques include photodynamic therapy which involves systemic administration or uptake of a photosensitive agent or chromophore into the diseased or injured tissue, followed by site-specific application of activating light.
Other types of phototherapy include the use of light alone at specific wavelengths to target tissue using light-emitting diode (LED) or fluorescent lamps, or lasers.
It is an object of the present disclosure to provide new and improved compositions and methods useful in phototherapy.
SUMMARY OF THE DISCLOSURE
The present disclosure provides topical biophotonic compositions and methods of using the biophotonic compositions for the biophotonic treatment of living tissue.
Biophotonic treatment may include skin rejuvenation; tissue repair including wound healing, scar removal and scar minimization; treatment of skin conditions such as acne; and treatment of periodontitis.
The biophotonic composition of the present disclosure comprises a gelling agent and at least two xanthene dyes, wherein a first xanthene dye has an emission spectrum that overlaps at least 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70% with an absorption spectrum of a second xanthene dye. In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye.
Particularly useful combinations of xanthene dyes include but are not limited to:
Fluorescein + Eosin Y; Fluorescein + Eosin Y + Rose Bengal; Fluorescein +
Eosin Y +
Phloxine B; Eosin Y + Rose Bengal; Eosin Y + Phloxine B; Fluorescein +
Erythrosine B +
Eosin Y; Eosin Y + Erythrosine; Eosin Y + Erythrosine B + Rose Bengal; Eosin Y
+
Erythrosine B + Phloxine B; Fluorescein + Eosin Y + Erythrosine B + Rose Bengal; and Fluorescein + Eosin Y + Erythrosine B + Phloxine B.
The gelling agent may comprise a hygroscopic substance. In addition or in the alternative, the gelling agent may also be a hydrophilic polymer, a hydrated polymer or a lipid.
In certain embodiments, the gelling agent comprises one or more of glycerin, glycols such as propylene glycol, polyacrylic acid polymers, hyaluronic acid, glucosamine sulphate or gelatin.
In certain embodiments, the gelling agent is a high molecular weight, cross-linked polyacrylic acid polymer having a viscosity in the range of about 20,000-80,000, 20,000-100,000, 25,000-90,000, 30,000-80,000, 30,000-70,000, 30,000-60,000, 25,000-40,000 cP. In certain embodiments, the cross-linked polyacrylic acid polymer is a carbomer selected from the group consisting of, but not limited to, Carbopol 71G NF, 971P NF, 974P NF, 980 NF, 981 NF, 5984 EP, ETD 2020NF, Ultrez 10 NF, 934 NF, 934P NF, 940 NF, 941 NF, or 1342 NF.
In certain embodiments, the biophotonic composition is substantially translucent and/or transparent. In certain embodiment, the biophotonic composition has a translucency of at least 70% at 460 nm. In other embodiments, the composition has a translucency of at least 20%, 30%, 40%, 50%, 60%, 70%, 75%, 85%, 90%, 95% or 100% at 460 nm.
In certain embodiments, the biophotonic composition is a liquid, a gel, a semi-solid, cream, foam, lotion, oil, ointment, paste, suspension, or aerosol spray.
In certain embodiments, the biophotonic composition is encapsulated in a transparent, impermeable membrane, or a breathable membrane which allows permeation of gases but not liquids. The membrane may comprise a lipid.
2 In certain embodiments, the biophotonic composition further comprises an oxygen-generating agent. In some embodiments, the oxygen-generating agent comprises hydrogen peroxide, carbamide peroxide, benzoyl peroxide, molecular Oxygen or water.
When the oxygen-releasing agent is a peroxide, it may be present in values less than 6%
H202, from 0.5-6wt% H202 (or its equivalent), 0.5-5.5%, 0.5-5.0%, 0.5-4.5%, 0.5-4.0%, 0.5-
When the oxygen-releasing agent is a peroxide, it may be present in values less than 6%
H202, from 0.5-6wt% H202 (or its equivalent), 0.5-5.5%, 0.5-5.0%, 0.5-4.5%, 0.5-4.0%, 0.5-
3.5%, 0.5-3.0%, 0.5-2.5%, 0.5-2%, 0.5-1.5%, or 0.5-1.0%.
In certain embodiments, the biophotonic composition does not generate a substantial amount of heat following illumination with light. In some embodiments, the energy emitted by the biophotonic composition does not cause tissue damage.
In certain embodiments, the first and second xanthene dyes are present in the composition in the amount of about 0.001-0.5% per weight of the composition.
In certain embodiments, the biophotonic composition may be applied to or impregnated into a material such as a pad, a dressing, a woven or non-woven fabric or the like. The impregnated material may be used as a mask (e.g. a face mask) or a dressing.
In certain embodiments, the biophotonic composition further comprises at least one waveguide within or adjacent to the composition. The waveguide can be a particle, a fibre or a fibrillar network made of a material which can transmit and/or emit light.
In certain embodiments, the composition does not comprise silica, tanning agents, or non-fluorescent dyes.
The present disclosure also provides uses of the present composition and methods for biophotonic treatment of living tissue.
Accordingly, in some aspects, there is provided a method for providing biophotonic therapy to a wound, comprising: applying to a wound a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In some embodiments of the method for providing biophotonic therapy to a wound, the method promotes wound healing. In certain embodiments of the method, the wound as described herein includes for example chronic or acute wounds, such as diabetic foot ulcers, pressure ulcers, venous ulcers or amputations. In some embodiments of the method for providing biophotonic therapy to a wound, the method promotes reduction of scar tissue formation. In certain embodiments, the treatment can be applied in or on the wound once, twice, three times, four times, five times or six times a week, daily, or at any other frequency.
The total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate.
In other aspects, there is provided a method for biophotonic treatment of acne comprising: applying to skin tissue a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye;
and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye. In certain embodiments of the method for biophotonic treatment acne, the treatment can be applied to the skin tissue, such as on the face, once, twice, three times, four times, five times or six times a week, daily, or at any other frequency. The total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate. In certain embodiments, the face may be split into separate areas (cheeks, forehead), and each area treated separately. For example, the composition may be applied topically to a first portion, and that portion illuminated with light, and the biophotonic composition then removed. Then the composition is applied to a
In certain embodiments, the biophotonic composition does not generate a substantial amount of heat following illumination with light. In some embodiments, the energy emitted by the biophotonic composition does not cause tissue damage.
In certain embodiments, the first and second xanthene dyes are present in the composition in the amount of about 0.001-0.5% per weight of the composition.
In certain embodiments, the biophotonic composition may be applied to or impregnated into a material such as a pad, a dressing, a woven or non-woven fabric or the like. The impregnated material may be used as a mask (e.g. a face mask) or a dressing.
In certain embodiments, the biophotonic composition further comprises at least one waveguide within or adjacent to the composition. The waveguide can be a particle, a fibre or a fibrillar network made of a material which can transmit and/or emit light.
In certain embodiments, the composition does not comprise silica, tanning agents, or non-fluorescent dyes.
The present disclosure also provides uses of the present composition and methods for biophotonic treatment of living tissue.
Accordingly, in some aspects, there is provided a method for providing biophotonic therapy to a wound, comprising: applying to a wound a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In some embodiments of the method for providing biophotonic therapy to a wound, the method promotes wound healing. In certain embodiments of the method, the wound as described herein includes for example chronic or acute wounds, such as diabetic foot ulcers, pressure ulcers, venous ulcers or amputations. In some embodiments of the method for providing biophotonic therapy to a wound, the method promotes reduction of scar tissue formation. In certain embodiments, the treatment can be applied in or on the wound once, twice, three times, four times, five times or six times a week, daily, or at any other frequency.
The total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate.
In other aspects, there is provided a method for biophotonic treatment of acne comprising: applying to skin tissue a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye;
and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye. In certain embodiments of the method for biophotonic treatment acne, the treatment can be applied to the skin tissue, such as on the face, once, twice, three times, four times, five times or six times a week, daily, or at any other frequency. The total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate. In certain embodiments, the face may be split into separate areas (cheeks, forehead), and each area treated separately. For example, the composition may be applied topically to a first portion, and that portion illuminated with light, and the biophotonic composition then removed. Then the composition is applied to a
4 second portion, illuminated and removed. Finally, the composition is applied to a third portion, illuminated and removed.
The disclosed methods for treating acne or wounds may further include, for example, administering a systemic or topical drug before, during or after the biophotonic treatment. The drug may be an antibiotic, a hormone treatment, or any other pharmaceutical preparation which may help to treat acne or wounds. The combination of a systemic treatment together with a topical biophotonic treatment can reduce the duration of systemic treatment time.
In other aspects, there is provided a method for biophotonic treatment of a skin disorder, comprising: applying to target skin tissue a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In other aspects, there is provided a method for promoting skin rejuvenation, comprising: applying to target skin tissue a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye;
and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In other aspects, the present disclosure provides a method for treatment of periodontal disease, comprising: applying to a periodontal pocket a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In other aspects, there is provided a method of using a cascade of energy transfer between at least a first and a second fluorescent chromophore to absorb and/or emit light within the visible range of the electromagnetic spectrum for treatment of a skin disorder, treatment of a wound, skin rejuvenation, treatment of periodontitis. The present methods and compositions of the present disclosure may also be used to treat fungal and viral infections.
In certain embodiments of any method of the present disclosure, the biophotonic composition is illuminated for any time period per treatment in which the biophotonic composition is activated, for example 1 to 30 minutes. The distance of the light source from the biophotonic composition can be any distance which can deliver an appropriate light power density to the biophotonic composition and/or the skin tissue, for example 5, 10, 15 or 20 cm.
The biophotonic composition is applied topically at any suitable thickness.
Typically, the biophotonic composition is applied topically to skin or wounds at a thickness of at least about 2mm, about 2mm to about 1 Omm.
In certain embodiments, the method of the present disclosure comprises a step of illuminating the biophotonic composition for a period of at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, or 30 minutes.
In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes.
In certain embodiments of the methods of the present disclosure, the biophotonic composition is removed from the site of a treatment following application of light.
Accordingly, the biophotonic composition is removed from the site of treatment within at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes after application. In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes. In some embodiments, the biophotonic composition is removed after a period of at least 3 minutes post application of the biophotonic composition to treatment site.
In certain other embodiments, the biophotonic composition is kept in place for up to one, two or three weeks, and illuminated with light which may include ambient light at various intervals. In this case, the composition may be covered up in between exposure to light. For example, the biophotonic composition may be soaked in a dressing and placed inside or over a wound and be left in place for an extended period of time (e.g. more than one day).
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 depicts absorption of light in the various layers of the skin (Samson et al.
Evidence Report/Technology Assessment 2004, 111, pages 1-97).
Figure 2 illustrates the Stokes' shift.
Figure 3 illustrates the absorption and emission spectra of donor and acceptor chromophores. The spectral overlap between the absorption spectrum of the acceptor chromophore and the emission spectrum of the donor chromophore is also shown.
Figure 4 is a schematic of a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance.
Figures 5A and 5B are absorbance and emission spectra, respectively, of (i) Fluorescein sodium salt at about 0.09 mg/mL, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.09 mg/mL and Eosin Y at about 0.305 mg/mL, all in a carbamide gel (Example 1).
Figures 6A and 6B are absorbance and emission spectra, respectively, (i) Fluorescein sodium salt at 0.18 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.18 mg/mL and Eosin Y at about 0.305 mg/mL, all in an aqueous solution (Example 2).
Figures 7A and 7B are absorbance and emission spectra, respectively, of (i) Phloxine B
at 0.25mg/mL final concentration, (ii) Eosin Y at about 0.05 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y (0.05 mg/mL), all in a 12% carbamide gel (Example 3).
Figures 8A and 8B are absorbance and emission spectra, respectively, of (i) Phloxine B
at 0.25mg/mL final concentration, (ii) Eosin Y at about 0.08 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y (0.08 mg/mL), all in an aqueous solution (Example 4).
Figures 9A and 9B are absorbance and emission spectra, respectively, of (i) Phloxine B at 1001.1g/g, (ii) Fluorescein at about 100 g/g, and (iii) a mixture of Phloxine B (100 g/g) and Fluorescein (100 g/g), all in a 12% carbamide gel (Example 5).
Figures 10A and 10B are absorbance and emission spectra, respectively, of (i) Phloxine B at 100tig/g, (ii) Fluorescein at about 100 g/g, and (iii) a mixture of Phloxine B
(100 g/g) and Fluorescein (100 g/g), all in a 12% carbamide gel (Example 6).
Figures nA and 11B are absorbance and emission spectra, respectively, of (i) Eosin Y
at 0.305 mg/mL final concentration, (ii) Rose Bengal at about 0.085 mg/mL, and (iii) a mixture of Eosin Y (0.305mg/mL) and Rose Bengal (0.085 mg/mL), all in a 12% carbamide gel (Example 7).
Figure 12 shows that Eosin Y and Rose Bengal act in a synergistic manner (Example 8).
Figures 13A and 13B show the fluorescence emission (power density) over time of compositions comprising (i) Fluorescein + Eosin Y (Figure 11A), and (ii) Eosin Y + Rose Bengal (Figure 11B) (Example 9).
Figures 14A and 14B are absorbance and emission spectra, respectively, of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL
final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in a carbamide gel (Example 10).
' Figures 15A and 15B are absorbance and emission spectra, respectively, of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL
final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in an aqueous composition (Example 11).
Figure 16 is an emission spectrum showing the intensity over time of the light being emitted from the composition tested in Examples 12 and 13.
Figures 17A and 17B show that the energy density of emitted fluorescence from Eosin (top) and Fluorescein (bottom) in a composition increases rapidly with increasing chromophore concentration but slows down to a plateau with further concentration increase, whilst the activating light decreases with increasing concentration (Example 15).
DETAILED DESCRIPTION
(1) Overview The present disclosure provides compositions including at least two photoactive chromophores which can transfer energy from one to the other and methods useful for treating tissue with these compositions for example to promote tissue repair including wound healing, for cosmetic treatment of skin such as for skin rejuvenation, for treating skin disorders such as acne, and for periodontal treatment.
(2) Definitions Before continuing to describe the present disclosure in further detail, it is to be understood that this disclosure is not limited to specific compositions or process steps, as such may vary. It must be noted that, as used in this specification and the appended claims, the singular form "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.
As used herein, the term "about" in the context of a given value or range refers to a value or range that is within 20%, preferably within 10%, and more preferably within 5% of the given value or range.
It is convenient to point out here that "and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. For example "A and/or B" is to be taken as specific disclosure of each of (i) A, (ii) B
and (iii) A and B, just as if each is set out individually herein.
"Biophotonic" means the generation, manipulation, detection and application of photons in a biologically relevant context. In other words, biophotonic compositions exert their physiological effects primarily due to the generation and manipulation of photons.
"Biophotonic composition" is a composition as described herein that may be activated by light to produce photons for biologically relevant applications.
"Topical composition" means a composition to be applied to body surfaces, such as the skin, mucous membranes, vagina, oral cavity, wounds, and the like. A topical composition may be in the form of, including, but not limited to, a cream, gel, ointment, lotion, levigate, solution, bioadhesive, salve, milk. The topical composition may impregnate material such as a pad, sheet, fabric or fibres, dressings, spray, suspension, foam, or the like.
Terms "chromophore", "photoactivating agent" and "photoactivator" are used herein interchangeably. A chromophore means a chemical compound, when contacted by light irradiation, is capable of absorbing the light, for example a xanthene dye.
The chromophore readily undergoes photoexcitation and can then transfer its energy to other molecules or emit it as light.
"Oxidant", "oxidizing agent" or "oxygen-releasing agent" which terms are used interchangeably herein, means a chemical compound that readily transfers oxygen atoms and oxidizes other compounds. It includes molecular oxygen as well as oxygen containing compounds such as water, peroxide etc..
"Photobleaching" means the photochemical destruction of a chromophore.
The term "actinic light" is intended to mean light energy emitted from a specific light source (e.g., lamp, LED, or laser) and capable of being absorbed by matter (e.g. the chromophore or photoactivator defined above). In a preferred embodiment, the actinic light is visible light.
"Wound" means an injury to any tissue, including for example, acute, subacute, delayed or difficult to heal wounds, and chronic wounds. Examples of wounds may include both open and closed wounds. Wounds include, for example, burns, incisions, excisions, lesions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, ulcers (such as for example pressure, venous, pressure or diabetic), wounds caused by periodontitis (inflammation of the periodontium), and gun-shot wounds.
"Wound healing" means promotion or acceleration of tissue repair including closure of a wound, activation of a chronic wound, or minimizing scar formation.
"Skin rejuvenation" means a process of reducing, diminishing, retarding or reversing one or more signs of skin aging. For instance, common signs of skin aging include, but are not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion. According to the present disclosure, one or more of the above signs of aging may be reduced, diminished, retarded or even reversed by the compositions and methods of the present disclosure.
(3) Biophotonic Compositions The present disclosure provides biophotonic compositions. Biophotonic compositions are compositions that, in a broad sense, comprise chromophore(s) which are activated by light and accelerate the dispersion of light energy, which leads to light carrying on a therapeutic effect on its own, and/or to the photochemical activation of other agents contained in the composition (e.g., the break-down of an oxygen-releasing agent when such agent is present in the composition or at the treatment site, leading to the formation of oxygen radicals, such as singlet oxygen). The biophotonic compositions of the present disclosure comprise at least two xanthene dyes as chromophores.
When a chromophore absorbs a photon of a certain wavelength, it becomes excited.
This is an unstable condition and the molecule tries to return to the ground state, giving away the excess energy. For some chromophores, it is favorable to emit the excess energy as light when transforming back to the ground state. This process is called fluorescence. The peak wavelength of the emitted fluorescence is shifted towards longer wavelengths compared to the absorption wavelengths due to loss of energy in the conversion process. This is called the Stokes' shift and is illustrated in Figure 2. In the proper environment (e.g., in a biophotonic composition) much of this energy is transferred to the other components of the composition or to the treatment site directly.
Without being bound to theory, it is thought that fluorescent light emitted by photoactivated chromophores may have therapeutic properties due to its femto-, pico- or nano-second emission properties which may be recognized by biological cells and tissues, leading to favorable biomodulation. Furthermore, the emitted fluorescent light has a longer wavelength and hence a deeper penetration into the tissue than the activating light.
Irradiating tissue with such a broad range of wavelengths, including in some embodiments the activating light which passes through the composition, may have different and complementary effects on the cells and tissues. Moreover, the generation of oxygen species (e.g. singlet oxygen) by photoactivated chromophores has been observed by the inventors to cause micro-bubbling within the composition which can have a physical impact on the tissue to which it is applied, for example by dislodging biofilm and debridement of necrotic tissue or providing a pressure stimulation.
The biofilm can also be pre-treated with an oxygen-releasing agent to weaken the biofilm before treating with the composition of the present disclosure.
Furthermore, it is thought that use of chromophores in a composition to emit fluorescent light provides the ability to fine-tune the emitted light to a far greater degree than using a light source such as an LED or a laser. For example, according to the therapy or treatment required, chromophores may be chosen according to their emitted light wavelength, and appropriate concentrations used to control the power density of the emitted light.
The biophotonic compositions of the present disclosure are substantially transparent/translucent and/or have high light transmittance in order to permit light dissipation into and through the composition. In this way, the area of tissue under the composition can be treated both with the fluorescent light emitted by the composition and the light irradiating the composition to activate it. The % transmittance of the biophotonic composition can be measured in the range of wavelengths from 250 nm to 800 nm using, for example, a Perkin-Elmer Lambda 9500 series UV-visible spectrophotometer. In some embodiments, transmittance of the compositions disclosed herein is measured at 460 nm.
As transmittance is dependent upon thickness, the thickness of each sample can be measured with calipers prior to loading in the spectrophotometer.
Transmittance values can be normalized to a thickness of 100 lam (or any thickness) according to:
f2 t2 FT¨corr(A, t2) -= [Cerf (A)t1 ]11 = [FT¨coõ(A, tl )] II ) where, ti=actual specimen thickness, t2=thickness to which transmittance measurements can be normalized.
In some embodiments, the biophotonic composition has a transparency or translucency that exceeds 15%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or 85% at 460 nm.
In some embodiments, the transparency exceeds 70% at 460 nm, 86% at 460 nm, 87% at 460 nm, 88% at 460 nm, 89% at 460 nm, 90% at 460 nm, 91% at 460 nm, 92% at 460 nm, 93% at , 460 nm, 94% at 460 nm, 95% at 460 nm, 96% at 460 nm, 97% at 460 nm, 98% at 460 nm or 99% at 460 nm.
The biophotonic compositions of the present disclosure are for topical uses.
These compositions may be described based on the components making up the composition.
Additionally or alternatively, the compositions of the present disclosure have functional and structural properties and these properties may also be used to define and describe the compositions. Individual components of the composition of the present disclosure are detailed as below.
(a) Chromophores The biophotonic topical compositions of the present disclosure comprise at least two xanthene dyes as the chromophores. Combining xanthene dyes may increase photo-absorption by the combined dye molecules and enhance absorption and photobiomodulation selectivity.
This creates multiple possibilities of generating new photosensitive, and/or selective xanthene dye mixtures.
When such multi-xanthene dye compositions are illuminated with light of an appropriate wavelength to activate at least one of the xanthene dyes, energy transfer can occur between the xanthene dyes. This process, known as resonance energy transfer, is a photophysical process through which an excited 'donor' xanthene dye (also referred to herein as first xanthene dye) transfers its excitation energy to an 'acceptor' xanthene dye (also referred to herein as second xanthene dye). The efficiency and directedness of resonance energy transfer depends on the spectral features of donor and acceptor xanthene dyes. In particular, the flow of energy between xanthene dyes is dependent on a spectral overlap reflecting the relative positioning and shapes of the absorption and emission spectra. For energy transfer to occur the emission spectrum of the donor xanthene dye must preferably overlap with the absorption spectrum of the acceptor xanthene dye (Figure 3).
) Energy transfer manifests itself through decrease or quenching of the donor emission and a reduction of excited state lifetime accompanied also by an increase in acceptor emission intensity. Figure 4 is a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance.
To enhance the energy transfer efficiency, the donor xanthene dye should have good abilities to absorb photons and emit photons. Furthermore, it is thought that the more overlap there is between the donor xanthene dye's emission spectra and the acceptor xanthene dye's absorption spectra, the better a donor xanthene dye can transfer energy to the acceptor xanthene dye.
In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least about 80%, 50%, 40%, 30%, 20%, 10% with an absorption spectrum of the xanthene dye chromophore. In one embodiment, the first xanthene dye has an emission spectrum that overlaps at least about 20% with an absorption spectrum of the second xanthene dye. In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70%
with an absorption spectrum of the second xanthene dye.
% spectral overlap, as used herein, means the % overlap of a donor xanthene dye's emission wavelength range with an acceptor xanthene dye's absorption wavelength rage, measured at spectral full width quarter maximum (FWQM). For example, Figure 3 shows the normalized absorption and emission spectra of donor and acceptor xanthene dyes. The spectral FWQM of the acceptor xanthene dye's absorption spectrum is from about 60 nm (515 nm to about 575 nm). The overlap of the donor xanthene dye's spectrum with the absorption spectrum of the acceptor xanthene dye is about 40 nm (from 515 nm to about 555 nm). Thus, the % overlap can be calculated as 40nm / 60nm x 100 = 66.6%.
In some embodiments, the second xanthene dye absorbs at a wavelength in the range of the visible spectrum. In certain embodiments, the second xanthene dye has an absorption i wavelength that is relatively longer than that of the first xanthene dye within the range of about 50-250, 25-150 or 10-100 nm.
As discussed above, the application of light to the compositions of the present disclosure can result in a cascade of energy transfer between the xanthene dyes. In certain embodiments, such a cascade of energy transfer provides photons that penetrate the epidermis, dermis and/or mucosa at the target tissue, including, such as, a site of wound, or a tissue afflicted with acne or another skin disorder. In some embodiments, such a cascade of energy transfer is not accompanied by concomitant generation of heat. In some other embodiments, the cascade of energy transfer does not result in tissue damage.
In some embodiments, the first xanthene dye absorbs at a wavelength in the range of the visible spectrum, such as at a wavelength of about 380-800 nm, 380-700, or 380-600 nm.
In other embodiments, the first xanthene dye absorbs at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm. In one embodiment, the first xanthene dye absorbs at a wavelength of about 200-600 nm. In some embodiments, the first xanthene dye absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, nm, 400-600 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm.
It will be appreciated by those skilled in the art that optical properties of a particular xanthene dye may vary depending on the xanthene dye's surrounding medium.
Therefore, as used herein, a particular xanthene dye's absorption and/or emission wavelength (or spectrum) corresponds to the wavelengths (or spectrum) measured in a biophotonic composition of the present disclosure.
Exemplary xanthene dyes include but are not limited to Eosin B (4',5'-dibromo,21,7'-dinitr- o-fluorescein, dianion); eosin Y; eosin Y (2',4',5',7'-tetrabromo-fluoresc- ein, dianion);
eosin (2',4',5',7'-tetrabromo-fluorescein, dianion); eosin (2',4',5',7'-tetrabromo-fluorescein, dianion) methyl ester; eosin (2',4',5',7'-tetrabromo-fluorescein, monoanion) p-isopropylbenzyl ester; eosin derivative (2',7'-dibromo-fluorescein, dianion); eosin derivative (4',5'-dibromo-fluorescein, dianion); eosin derivative (2',7'-dichloro-fluorescein, dianion);
eosin derivative , (4',5'-dichloro-fluorescein, dianion); eosin derivative (2',7'-diiodo-fluorescein, dianion); eosin derivative (4',5'-diiodo-fluorescein, dianion); eosin derivative (tribromo-fluorescein, dianion);
eosin derivative (2',4',5',7'-tetrachlor- o-fluorescein, dianion); eosin;
eosin dicetylpyridinium chloride ion pair; erythrosin B (2',4',5',7'-tetraiodo-fluorescein, dianion);
erythrosin; erythrosin dianion; erythiosin B; fluorescein; fluorescein dianion; phloxin B
(2',4',5',7'-tetrabromo-3,4,5,6-tetrachloro-fluorescein, dianion); phloxin B (tetrachloro-tetrabromo-fluorescein);
phloxine B; rose bengal (3,4,5,6-tetrachloro-2',4',51,71-tetraiodofluorescein, dianion); pyronin G, pyronin J, pyronin Y; Rhodamine dyes such as rhodamines include 4,5-dibromo-rhodamine methyl ester; 4,5-dibromo-rhodamine n-butyl ester; rhodamine 101 methyl ester;
rhodamine 123; rhodamine 6G; rhodamine 6G hexyl ester; tetrabromo-rhodamine 123; and tetramethyl-rhodamine ethyl ester.
In certain embodiments, the first xanthene dye is present in an amount of about 0.01-40% per weight of the composition, and the second xanthene dye is present in an amount of about 0.001-40% per weight of the composition. In certain embodiments, the total weight per weight of xanthene dyes is in the amount of about 0.01-40.001% per weight of the composition. In certain embodiments, the first xanthene dye is present in an amount of about 0.01-1%, 0.01-2%, 0.05-1%, 0.05-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the second xanthene dye is present in an amount of about 0.001-1%, 0.001-2%, 0.001-0.01%, 0.01-0.1%, 0.1-1.0%, 1-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
In certain embodiments, the total weight per weight of xanthene dyes is in the amount of about less than 0.5%, less than 0.1%, 0.001-0.1%, 0.01-1%, 0.01-2%, 0.05-2%, 0.001-0.5%, 0.5-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition. All amounts are given as weight percentages per weight of the total concentration, and the equivalent weight or volume amounts.
In certain embodiments, the ratio of the concentrations of the first and second xanthene dyes in the composition range from 1:1 to 1:1000. In certain embodiments, the relative concentration of Eosin Y: Fluorescein may be such that there is less Eosin Y
than Fluorescein such as 1000:1 or 100:1 or 10:1 or 60-80%: 20-40%. In certain embodiments, the ratio of Eosin Y to Rose Bengal is 1:1 or 70-90%:10-30%. In certain embodiments, the ratio of Fluorescein to Eosin Y to Rose Bengal can be 20-40%: 30-60%: 10-20%. The ratio can be tailored according to the emitted light spectrum desired for a given treatment or therapy.
In some embodiments, the xanthene dye combinations are selected such that their emitted fluorescent light, on photoactivation, is within one or more of the green, yellow, orange, red and infrared portions of the electromagnetic spectrum, for example having a peak wavelength within the range of about 490 nm to about 800 nm. In certain embodiments, the emitted fluorescent light has a power density of between 0.005 to about 10 mW/cm2, about 0.5 to about 5 mW/cm2, or about 0.05 to about 2 mW/cm2.
Particularly useful combinations of xanthene dyes include but are not limited to:
Fluorescein + Eosin Y; Fluorescein + Eosin Y + Rose Bengal; Fluorescein +
Eosin Y +
Phloxine B; Eosin Y + Rose Bengal; Eosin Y + Phloxine B; Eosin Y +
Erythrosine;
Fluorescein + Erythrosine B + Eosin Y; Eosin Y + Erythrosine B + Rose Bengal;
Eosin Y +
Erythrosine B + Phloxine B; Fluorescein + Eosin Y + Erythrosine B + Rose Bengal; and Fluorescein + Eosin Y + Erythrosine B + Phloxine B.
It is thought that at least some of these combinations have a synergistic effect at certain concentration ratios within the composition. For example, at certain concentration ratios and with an appropriate activating light, Eosin Y can transfer energy to Rose Bengal, Erythrosin B
or Phloxine B when activated. This transferred energy is then emitted as fluorescence and/or by production of reactive oxygen species (such as singlet oxygen).
The synergistic effect may be apparent by the composition having a light absorption spectrum which spans a broader range of wavelengths compared to an individual light absorption spectrum of one of the individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light (light having substantially the same emission spectra). This may confer on the composition the ability to be activated by a broader range of activating light wavelengths, for example by white light avoiding the need for a precise wavelength of activating light.
The synergistic effect may also be evident through the composition having a light emission spectrum which spans a broader range of wavelengths compared to an individual light absorption spectrum of one of the individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light. This absorbed and re-emitted light spectrum is thought to be transmitted throughout the composition, and also to be transmitted into the site of treatment. This emitted spectrum will then illuminate the target tissue with different penetration depths (Figure 1), which may confer on the target tissue beneficial therapeutic effects. For example green light has been reported to have wound healing properties. By emitting a broader range of wavelengths, a broader range of therapeutic effects can be achieved. The emitted wavelength can be fine-tuned using different chromophore combinations and concentrations.
The synergistic effect may also be evident through the composition having a higher light absorption or emission peak compared to an individual light absorption/emission peak of one of the individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light. The ability to absorb and emit higher levels of photons may have a therapeutic effect in certain applications. Furthermore, less concentration of an individual chromophore may be required to achieve a certain power density. Higher power densities can equate to shorter treatment times.
The synergistic effect may also be evident through the composition producing more oxygen species, in the presence of an oxygen-releasing agent, compared to oxygen species produced by an individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light.
The ability to produce higher levels of oxygen species without the need to extend treatment time or increase the power density of the activating light may be advantageous in certain situations.
By means of synergistic effects of the xanthene dye combinations in the composition, xanthene dyes which cannot normally be activated by an activating light (such as a blue light) can be activated through energy transfer from xanthene dyes which are activated by the activating light. In this way, the different properties of photoactivated xanthene dyes can be harnessed and tailored according to the cosmetic or the medical therapy required.
For example, Rose Bengal can generate a high yield of singlet oxygen when photoactivated in the presence of molecular oxygen, however it has a low quantum yield in terms of emitted fluorescent light. Rose Bengal has a peak absorption around 540 nm and so is normally activated by green light. Eosin Y has a high fluorescence quantum yield and can be activated by blue light. By combining Rose Bengal with Eosin Y, one obtains a composition which can emit therapeutic fluorescent light and generate singlet oxygen when activated by blue light. In this case, the blue light is thought to photoactivate Eosin Y
which transfers some of its energy to Rose Bengal as well as emitting some energy as fluorescence.
One or more of the chromophores may photobleach during illumination. This can be a visible confirmation of 'dose' delivery. As the chromophores photobleach, they emit less fluorescence over time. At the same time, they also absorb less of the activating light over time and so the tissues receive increasingly higher amounts of the activating light. In this way, the chromophores modulate exposure of the tissue to the light which may provide a somewhat protective effect.
(b) Additional Chromophores In addition to the xanthene dye combination, the biophotonic topical compositions of the present disclosure may also include, but are not limited to the following:
Chlorophyll dyes Exemplary chlorophyll dyes include but are not limited to chlorophyll a;
chlorophyll b;
oil soluble chlorophyll; bacteriochlorophyll a; bacteriochlorophyll b;
bacteriochlorophyll c;
bacteriochlorophyll d; protochlorophyll; protochlorophyll a; amphiphilic chlorophyll derivative 1; and amphiphilic chlorophyll derivative 2.
Methylene blue dyes Exemplary methylene blue derivatives include but are not limited to 1-methyl methylene blue; 1,9-dimethyl methylene blue; methylene blue; methylene blue (16 µM);
methylene blue (14 µM); methylene violet; bromomethylene violet; 4-iodomethylene violet;
1,9-dimethy1-3-dimethyl-amino-7-diethyl-a- mino-phenothiazine; and 1,9-dimethy1-3-diethylamino-7-dibutyl-amino-phenot- hiazine.
Azo dyes Exemplary azo (or diazo-) dyes include but are not limited to methyl violet, neutral red, para red (pigment red 1), amaranth (Azorubine S), Carmoisine (azorubine, food red 3, acid red 14), allura red AC (FD&C 40), tartrazine (FD&C Yellow 5), orange G (acid orange 10), Ponceau 4R (food red 7), methyl red (acid red 2), and murexide-ammonium purpurate.
In some aspects of the disclosure, the additional chromophores of the biophotonic composition disclosed herein can be independently selected from any of Acid black 1, Acid blue 22, Acid blue 93, Acid fuchsin, Acid green, Acid green 1, Acid green 5, Acid magenta, Acid orange 10, Acid red 26, Acid red 29, Acid red 44, Acid red 51, Acid red 66, Acid red 87, Acid red 91, Acid red 92, Acid red 94, Acid red 101, Acid red 103, Acid roseine, Acid rubin, Acid violet 19, Acid yellow 1, Acid yellow 9, Acid yellow 23, Acid yellow 24, Acid yellow 36, Acid yellow 73, Acid yellow S, Acridine orange, Acriflavine, Alcian blue, Alcian yellow, Alcohol soluble eosin, Alizarin, Alizarin blue 2RC, Alizarin carmine, Alizarin cyanin BBS, Alizarol cyanin R, Alizarin red S, Alizarin purpurin, Aluminon, Amido black 10B, Amidoschwarz, Aniline blue WS, Anthracene blue SWR, Auramine 0, Azocannine B, Azocarmine G, Azoic diazo 5, Azoic diazo 48, Azure A, Azure B, Azure C, Basic blue 8, Basic blue 9, Basic blue 12, Basic blue 15, Basic blue 17, Basic blue 20, Basic blue 26, Basic brown 1, Basic fuchsin, Basic green 4, Basic orange 14, Basic red 2 (Saffranin 0), Basic red 5, Basic red 9, Basic violet 2, Basic violet 3, Basic violet 4, Basic violet 10, Basic violet 14, Basic yellow 1, Basic yellow 2, Biebrich scarlet, Bismarck brown Y, Brilliant crystal scarlet 6R, Calcium red, Carmine, Carminic acid (acid red 4), Celestine blue B, China blue, Cochineal, Coelestine blue, Chrome violet CG, Chromotrope 2R, Chromoxane cyanin R, Congo corinth, Congo red, Cotton blue, Cotton red, Croceine scarlet, Crocin, Crystal ponceau 6R, Crystal violet, Dahlia, Diamond green B, Di0C6, Direct blue 14, Direct blue 58, Direct red, Direct red 10, Direct red 28, Direct red 80, Direct yellow 7, Eosin B, Eosin Bluish, Eosin, Eosin Y, Eosin yellowish, Eosinol, Erie garnet B, Eriochrome cyanin R, Erythrosin B, Ethyl eosin, Ethyl green, Ethyl violet, Evans blue, Fast blue B, Fast green FCF, Fast red B, Fast yellow, Fluorescein, Food green 3, Gallein, Gallamine blue, Gallocyanin, Gentian violet, Haematein, Haematine, Haematoxylin, Helio fast rubin BBL, Helvetia blue, Hematein, Hematine, Hematoxylin, Hoffman's violet, Imperial red, Indocyanin green, Ingrain blue, Ingrain blue 1, Ingrain yellow 1, INT, Kermes, Kermesic acid, Kernechtrot, Lac, Laccaic acid, Lauth's violet, Light green, Lissamine green SF, Luxol fast blue, Magenta 0, Magenta I, Magenta II, Magenta III, Malachite green, Manchester brown, Martius yellow, Merbromin, Mercurochrome, Metanil yellow, Methylene azure A, Methylene azure B, Methylene azure C, Methylene blue, Methyl blue, Methyl green, Methyl violet, Methyl violet 2B, Methyl violet 10B, Mordant blue 3, Mordant blue 10, Mordant blue 14, Mordant blue 23, Mordant blue 32, Mordant blue 45, Mordant red 3, Mordant red 11, Mordant violet 25, Mordant violet 39 Naphthol blue black, Naphthol green B, Naphthol yellow S, Natural black 1, Natural red, Natural red 3, Natural red 4, Natural red 8, Natural red 16, Natural red 25, Natural red 28, Natural yellow 6, NBT, Neutral red, New fuchsin, Niagara blue 3B, Night blue, Nile blue, Nile blue A, Nile blue oxazone, Nile blue sulphate, Nile red, Nitro BT, Nitro blue tetrazolium, Nuclear fast red, Oil red 0, Orange G, Orcein, Pararosanilin, Phloxine B, phycobilins, Phycocyanins, Phycoerythrins. Phycoerythrincyanin (PEC), Phthalocyanines, Picric acid, Ponceau 2R, Ponceau 6R, Ponceau B, Ponceau de Xylidine, Ponceau S, Primula, Purpurin, Pyronin B, Pyronin G, Pyronin Y, Rhodamine B, Rosanilin, Rose bengal, Saffron, Safranin 0, Scarlet R, Scarlet red, Scharlach R, Shellac, Sirius red F3B, Solochrome cyanin R, Soluble blue, Solvent black 3, Solvent blue 38, Solvent red 23, Solvent red 24, Solvent red 27, Solvent red 45, Solvent yellow 94, Spirit soluble eosin, Sudan III, Sudan IV, Sudan black B, Sulfur yellow S, Swiss blue, Tartrazine, Thioflavine S, Thioflavine T, Thionin, Toluidine blue, Toluyline red, Tropaeolin G, Trypaflavine, Trypan blue, Uranin, Victoria blue 4R, Victoria blue B, Victoria green B, Water blue I, Water soluble eosin, Xylidine ponceau, or Yellowish eosin.
In certain embodiments, the composition of the present disclosure includes any of the additional chromophores listed above in addition to the xanthene dyes, or a combination thereof, so as to provide a biophotonic impact at the application site. This is a distinct application of these agents and differs from the use of chromophores as simple stains or as a catalyst for photo-polymerization.
Chromophores can be selected, for example, on their emission wavelength properties in the case of fluorophores, on the basis of their energy transfer potential, their ability to generate reactive oxygen species, or their antimicrobial effect. These needs may vary depending on the condition requiring treatment. For example, chlorophylls may have an antimicrobial effect on bacteria found on the face.
(c) Gelling Agent The composition may optionally comprise a gelling agent. A gelling agent for use according to the present disclosure may comprise any ingredient suitable for use in a topical biophotonic formulation as described herein. The gelling agent may be an agent capable of forming a cross-linked matrix, including physical and/or chemical cross-links.
The gelling agent is preferably biocompatible, and may be biodegradable. In some embodiments, the gelling agent is able to form a hydrogel or a hydrocolloid. An appropriate gelling agent is one that can form a viscous liquid or a semisolid. In preferred embodiments, the gelling agent and/or the composition has appropriate light transmission properties. It is also important to select a gelling agent which will allow biophotonic activity of the chromophores. For example, some chromophores require a hydrated environment in order to fluoresce. The gelling agent may be able to form a gel by itself or in combination with other ingredients such as water or another gelling agent, or when applied to a treatment site, or when illuminated with light.
In some embodiments the composition is in the form of a gel, cream, ointment, lotion, paste, spray or foam.
The gelling agent according to various embodiments of the present disclosure may comprise polyalkylene oxides, particularly polyethylene glycol and poly(ethylene oxide)-poly(propylene oxide) copolymers, including block and random copolymers;
polyols such as glycerol, polyglycerol (particularly highly branched polyglycerol), propylene glycol and trimethylene glycol substituted with one or more polyalkylene oxides, e.g., mono-, di- and tri-polyoxyethylated glycerol, mono- and di-polyoxy-ethylated propylene glycol, and mono- and di-polyoxyethylated trimethylene glycol; polyoxyethylated sorbitol, polyoxyethylated glucose;
acrylic acid polymers and analogs and copolymers thereof, such as polyacrylic acid per se, polymethacrylic acid, poly(hydroxyethylmethacrylate), poly(hydroxyethylacrylate), poly(methylalkylsulfoxide methacrylate), poly(methylalkylsulfoxide acrylate) and copolymers of any of the foregoing, and/or with additional acrylate species such as aminoethyl acrylate and mono-2-(acryloxy)-ethyl succinate; polymaleic acid; poly(acrylamides) such as polyacrylamide per se, poly(methacrylamide), poly(dimethylacrylamide), and poly(N-isopropyl-acrylamide);
poly(olefinic alcohol)s such as poly(vinyl alcohol); poly(N-vinyl lactams) such as poly(vinyl pyrrolidone), poly(N-vinyl caprolactam), and copolymers thereof, polyoxazolines, including poly(methyloxazoline) and poly(ethyloxazoline); and polyvinylamines.
The gelling agent according to certain embodiments of the present disclosure may comprise a polymer selected from any of synthetic or semi-synthetic polymeric materials, polyacrylate copolymers, cellulose derivatives and polymethyl vinyl ether/maleic anhydride copolymers. In some embodiments, the hydrophilic polymer comprises a polymer that is a high molecular weight (i.e., molar masses of more than about 5,000, and in some instances, more than about 10,000, or 100,000, or 1,000,000) and/or cross-linked polyacrylic acid polymer. In some embodiments, the polymer is a polyacrylic acid polymer and has a viscosity in the range of about 15,000-100,000, 15,000-90,000, 15,000-80,000, 20,000-80,000, 20,000-70,000, 20,000-40,000 cP. In certain embodiment, the polymer is a high molecular weight, and/or cross-linked polyacrylic acid polymer, where the polyacrylic acid polymer has a viscosity in the range of about 15,000-80,000 cP.
Carbomers may be used. Carbomers are synthetic high molecular weight polymer of acrylic acid that are crosslinked with either allylsucrose or allylethers of pentaerythritol having a molecular weight of about 3 x 106. The gelation mechanism depends on neutralization of the carboxylic acid moiety to form a soluble salt. The polymer is hydrophilic and produces sparkling clear gels when neutralized. Carbomer gels possess good thermal stability in that gel viscosity and yield value are essentially unaffected by temperature. As a topical product, carbomer gels possess optimum rheological properties. The inherent pseudoplastic flow permits immediate recovery of viscosity when shear is terminated and the high yield value and quick break make it ideal for dispensing. Aqueous solution of Carbopol is acidic in nature due to the presence of free carboxylic acid residues. Neutralization of this solution cross-links and gelatinizes the polymer to form a viscous integral structure of desired viscosity.
Carbomers are available as fine white powders which disperse in water to form acidic colloidal suspensions (a 1% dispersion has approx. pH 3) of low viscosity.
Neutralization of these suspensions using a base, for example sodium, potassium or ammonium hydroxides, low molecular weight amines and alkanolamines, results in the formation of translucent gels.
Nicotine salts such as nicotine chloride form stable water-soluble complexes with carbomers at about pH 3.5 and are stabilized at an optimal pH of about 5.6.
In some embodiments of the disclosure, the carbomer is Carbopol. Such polymers are commercially available from B.F. Goodrich or Lubrizol under the designation Carbopol 71G
NF, 420, 430, 475, 488, 493, 910, 934, 934P, 940, 971PNF, 974P NF, 980 NF, 981 NF and the like. Carbopols are versatile controlled-release polymers, as described by Brock (Pharmacotherapy, 14:430-7 (1994)) and Durrani (Pharmaceutical Res. (Supp.) 8:S-135 (1991)), and belong to a family of carbomers which are synthetic, high molecular weight, non-linear polymers of acrylic acid, crosslinked with polyalkenyl polyether. In some embodiments, the carbomer is Carbopol0 974P NF, 980 NF, 5984 EP, ETD 2020NF, Ultrez 10 NF, 934 NF, 934P NF or 940 NF. In certain embodiments, the carbomer is Carbopol 980 NF, NF, Ultrez 10 NF, Ultrez 21 or 1382 Polymer, 1342 NF, 940 NF.
In certain embodiments, the gelling agent comprises a hygroscopic material. By hygroscopic material is meant a substance capable of taking up water, for example, by absorption or adsorption even at relative humidity as low as 50%, at room temperature (e.g.
about 25 C). The hygroscopic material may include, but is not limited to, glucosamine, glycosaminoglycan, poly(vinyl alcohol), poly(2-hydroxyethylmethylacrylate), polyethylene oxide, collagen, chitosan, alginate, a poly(acrylonitrile)-based hydrogel, poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel, polyethylene oxide-polybutylene terephthalate, hyaluronic acid, high-molecular-weight polyacrylic acid, poly(hydroxy ethylmethacrylate), poly(ethylene glycol), tetraethylene glycol diacrylate, polyethylene glycol methacrylate, and poly(methyl acrylate-co-hydroxyethyl acrylate).
The biophotonic composition of the present disclosure may be further encapsulated, e.g, in a membrane. Such a membrane may be transparent, and/or substantially, or fully impermeable. The membrane may be impermeable to liquid but permeable to gases such as air.
In certain embodiments, the composition may form a membrane that encapsulates the chromophore(s) of the biophotonic topical composition, where the membrane may be substantially impermeable to liquid and/or gas.
The composition may include any other carrier.
(d) Oxygen-releasing agents According to certain embodiments, the compositions of the present disclosure may optionally further comprise an oxygen-releasing agent, for example, as a source of oxygen.
When a biophotonic composition of the present disclosure comprising an oxygen-releasing agent is illuminated with light, the xanthene dyes are excited to a higher energy state.
When the xanthene dyes' electrons return to a lower energy state, they emit photons with a lower energy level, thus causing the emission of light of a longer wavelength (Stokes' shift). In the proper environment, some of this energy release is transferred to oxygen or the reactive hydrogen peroxide and causes the formation of oxygen radicals, such as singlet oxygen. The singlet oxygen and other reactive oxygen species generated by the activation of the biophotonic composition are thought to operate in a hormetic fashion. That is, a health beneficial effect that is brought about by the low exposure to a normally toxic stimuli (e.g.
reactive oxygen), by stimulating and modulating stress response pathways in cells of the targeted tissues.
Endogenous response to exogenous generated free radicals (reactive oxygen species) is modulated in increased defense capacity against the exogenous free radicals and induces acceleration of healing and regenerative processes. Furthermore, activation of the composition can also produce an antibacterial effect. The extreme sensitivity of bacteria to exposure to free radicals makes the composition of the present disclosure a de facto bactericidal composition.
As stated above, the generation of oxygen species by the composition in some embodiments is accompanied by the micro-bubbling which can contribute to debridement or dislodging of biofilm at the site of application. This can allow for the improved penetration of the activating and/or fluorescence light to the treatment site for example to deactivate bacterial colonies leading to their reduction in number.
Suitable oxygen-releasing agents that may be included in the composition include, but are not limited to peroxides such as hydrogen peroxide, urea hydrogen peroxide and benzoyl peroxide. Peroxide compounds are oxygen-releasing agents that contain the peroxy group (R-0-0-R), which is a chainlike structure containing two oxygen atoms, each of which is bonded to the other and a radical or some element.
Hydrogen peroxide (H202) is the starting material to prepare organic peroxides. H202 is a powerful oxygen-releasing agent, and the unique property of hydrogen peroxide is that it breaks down into water and oxygen and does not form any persistent, toxic residual compound.
Hydrogen peroxide for use in this composition can be used in a gel, for example with 6%
hydrogen peroxide. A suitable range of concentration over which hydrogen peroxide can be used in the present composition is from about 0.1% to about 6%.
Urea hydrogen peroxide (also known as urea peroxide, carbamide peroxide or percarbamide) is soluble in water and contains approximately 35% hydrogen peroxide.
Carbamide peroxide for use in this composition can be used as a gel, for example with 16%
carbamide peroxide that represents 5.6 % hydrogen peroxide, or 12 % carbamide peroxide. A
suitable range of concentration over which urea peroxide can be used in the present composition is from about 0.3% to about 16%. Urea peroxide breaks down to urea and hydrogen peroxide in a slow-release fashion that can be accelerated with heat or photochemical reactions. The released urea [carbamide, (NH2)CO2)l, is highly soluble in water and is a powerful protein denaturant. It increases solubility of some proteins and enhances rehydration of the skin and/or mucosa.
Benzoyl peroxide consists of two benzoyl groups (benzoic acid with the H of the carboxylic acid removed) joined by a peroxide group. It is found in treatments for acne, in concentrations varying from 2.5% to 10%. The released peroxide groups are effective at killing bacteria. Benzoyl peroxide also promotes skin turnover and clearing of pores, which further contributes to decreasing bacterial counts and reduce acne. Benzoyl peroxide breaks down to benzoic acid and oxygen upon contact with skin, neither of which is toxic. A
suitable range of concentration over which benzoyl peroxide can be used in the present composition is from about 2.5% to about 5%.
Other oxygen-releasing agents include molecular oxygen, water, perbonates and carbonates. Oxygen-releasing agents can be provided in powder, liquid or gel form within the composition. The composition may include an amount of oxygen-releasing agent, which is augmented by the separate application of oxygen-releasing agents to the treatment site.
Alternatively, oxygen-releasing agents may also be applied to the tissue site separately to the composition.
(e) Healing Factors The composition of the present disclosure may comprise healing factors.
Healing factors comprise compounds that promote or enhance the healing or regenerative process of the tissues on the application site of the composition. During the photoactivation of the composition of the present disclosure, there is an increase of the absorption of molecules at the treatment site by the skin, wound or the mucosa. An augmentation in the blood flow at the site of treatment is observed for an extent period of time. An increase in the lymphatic drainage and a possible change in the osmotic equilibrium due to the dynamic interaction of the free radical cascades can be enhanced or even fortified with the inclusion of healing factors. Suitable healing factors include, but are not limited to:
Hyaluronic acid (Hyaluronan, hyaluronate): is a non-sulfated glycosaminoglycan, distributed widely throughout connective, epithelial and neural tissues. It is one of the primary components of the extracellular matrix, and contributes significantly to cell proliferation and migration. Hyaluronan is a major component of the skin, where it is involved in tissue repair.
While it is abundant in extracellular matrices, it contributes to tissues hydrodynamics, movement and proliferation of cells and participates in a wide number of cell surface receptor interactions, notably those including primary receptor CD44. The hyaluronidases enzymes degrade hyaluronan. There are at least seven types of hyaluronidase-like enzymes in humans, several of which are tumor suppressors. The degradation products of hyaluronic acid, the oligosaccharides and the very-low molecular weight hyaluronic acid, exhibit pro-angiogenic properties. In addition, recent studies show that hyaluronan fragments, but not the native high molecular mass of hyaluronan, can induce inflammatory responses in macrophages and dendritic cells in tissue injury. Hyaluronic acid is well suited to biological applications targeting the skin. Due to its high biocompatibility, it is used to stimulate tissue regeneration.
Studies have shown hyaluronic acid appearing in the early stages of healing to physically create room for white blood cells that mediate the immune response. It is used in the synthesis of biological scaffolds for wound healing applications and in wrinkle treatment. A suitable range of concentration over which hyaluronic acid can be used in the present composition is from about 0.001% to about 3%.
Glucosamine: is one of the most abundant monosaccharides in human tissues and a precursor in the biological synthesis of glycosilated proteins and lipids. It is commonly used in the treatment of osteoarthritis. The common form of glucosamine used is its sulfate salt.
Glucosamine shows a number of effects including an anti-inflammatory activity, stimulation of the synthesis of proteoglycans and the synthesis of proteolytic enzymes. A
suitable range of concentration over which glucosamine can be used in the present composition is from about 0.01% to about 3%.
Allantoin: is a diureide of glyosilic acid. It has keratolytic effect, increases the water content of the extracellular matrix, enhances the desquamation of the upper layers of dead (apoptotic) skin cells, and promotes skin proliferation and wound healing.
(f) Antimicrobials The composition of the present disclosure may comprise antimicrobial agents.
Antimicrobials kill microbes or inhibit their growth or accumulation.
Exemplary antimicrobials (or antimicrobial agent) are recited in U.S. Patent Application Publications 20040009227 and 20110081530. Suitable antimicrobials for use in the methods of the present disclosure include, but not limited to, phenolic and chlorinated phenolic and chlorinated phenolic compounds, resorcinol and its derivatives, bisphenolic compounds, benzoic esters (parabens), halogenated carbonilides, polymeric antimicrobial agents, thazolines, trichloromethylthioimides, natural antimicrobial agents (also referred to as "natural essential oils"), metal salts, and broad-spectrum antibiotics.
Specific phenolic and chlorinated phenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: phenol; 2-methyl phenol; 3-methyl phenol; 4-methyl phenol; 4-ethyl phenol; 2,4-dimethyl phenol; 2,5-dimethyl phenol; 3,4-dimethyl phenol; 2,6-dimethyl phenol; 4-n-propyl phenol; 4-n-butyl phenol; 4-n-amyl phenol; 4-tert-amyl phenol; 4-n-hexyl phenol; 4-n-heptyl phenol; mono- and poly-alkyl and aromatic halophenols; p-chlorophenyl; methyl p-chlorophenol; ethyl p-chlorophenol; n-propyl p-chlorophenol; n-butyl p-chlorophenol; n-amyl p-chlorophenol; sec-amyl p-chlorophenol; n-hexyl p-chlorophenol;
cyclohexyl p-chlorophenol; n-heptyl p-chlorophenol; n-octyl; p-chlorophenol; o-chlorophenol;
methyl o-chlorophenol; ethyl o-chlorophenol; n-propyl o-chlorophenol; n-butyl o-chlorophenol; n-amyl o-chlorophenol; tert-amyl o-chlorophenol; n-hexyl o-chlorophenol; n-heptyl o-chlorophenol; o-benzyl p-chlorophenol; o-benxyl-m-methyl p-chlorophenol; o-benzyl-m,m-dimethyl p-chlorophenol; o-phenylethyl p-chlorophenol; o-phenylethyl-m-methyl p-chlorophenol; 3-methyl p-chlorophenol 3,5-dimethyl p-chlorophenol, 6-ethyl-3-methyl p-chlorophenol, 6-n-propy1-3-methyl p-chlorophenol; 6-iso-propy1-3-methyl p-chlorophenol; 2-ethy1-3,5-dimethyl p-chlorophenol; 6-sec-butyl-3-methyl p-chlorophenol; 2-iso-propy1-3,5-dimethyl p-chlorophenol; 6-diethylmethy1-3-methyl p-chlorophenol; 6-iso-propy1-2-ethy1-3-methyl p-chlorophenol; 2-sec-amyl-3,5-dimethyl p-chlorophenol; 2-diethylmethy1-3,5-dimethyl p-chlorophenol; 6-sec-octy1-3-methyl p-chlorophenol; p-chloro-m-cresol p-bromophenol; methyl p-bromophenol; ethyl p-bromophenol; n-propyl p-bromophenol; n-butyl p-bromophenol; n-amyl p-bromophenol; sec-amyl p-bromophenol; n-hexyl p-bromophenol;
cyclohexyl p-bromophenol; o-bromophenol; tert-amyl o-bromophenol; n-hexyl o-bromophenol; n-propyl-m,m-dimethyl o-bromophenol; 2-phenyl phenol; 4-chloro-2-methyl phenol; 4-chloro-3-methyl phenol; 4-chloro-3,5-dimethyl phenol; 2,4-dichloro-3,5-dimethylphenol; 3,4,5 ,6-tetabromo-2-meth ylphenol- ; 5-methyl-2-pentylphenol;
4-isopropyl-3 -methylphenol; para-chloro-metaxylenol (PCMX); chlorothymol; phenoxyethanol;
phenoxyisopropanol; and 5-chloro-2-hydroxydiphenylmethane.
Resorcinol and its derivatives can also be used as antimicrobial agents.
Specific resorcinol derivatives include, but are not limited to: methyl resorcinol;
ethyl resorcinol; n-propyl resorcinol; n-butyl resorcinol; n-amyl resorcinol; n-hexyl resorcinol;
n-heptyl resorcinol; n-octyl resorcinol; n-nonyl resorcinol; phenyl resorcinol; benzyl resorcinol;
phenylethyl resorcinol; phenylpropyl resorcinol; p-chlorobenzyl resorcinol; 5-chloro-2,4-dihydroxydiphenyl methane; 4'-chloro-2,4-dihydroxydiphenyl methane; 5-bromo-2,4-dihydroxydiphenyl methane; and 4'-bromo-2,4-dihydroxydiphenyl methane.
Specific bisphenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: 2,2'-methylene bis-(4-chlorophenol); 2,4,4'trichloro-2'-hydroxy-diphenyl ether, which is sold by Ciba Geigy, Florham Park, N.J. under the tradename Triclosan0; 2,2'-methylene bis-(3,4,6-trichlorophenol); 2,2'-methylene bis-(4-chloro-6-bromophenol); bis-(2-hydroxy-3,5-dichlorop- henyl) sulphide; and bis-(2-hydroxy-5-chlorobenzyl)sulphide.
Specific benzoie esters (parabens) that can be used in the disclosure include, but are not limited to: methylparaben; propylparaben; butylparaben; ethylparaben;
isopropylparaben;
isobutylparaben; benzylparaben; sodium methylparaben; and sodium propylparaben.
Specific halogenated carbanilides that can be used in the disclosure include, but are not limited to: 3,4,4'-trichlorocarbanilides, such as 3-(4-chloropheny1)-1-(3,4-dichlorphenyl)urea sold under the tradename Triclocarban by Ciba-Geigy, Florham Park, N.J.; 3-trifluoromethy1-4,4'-dichlorocarbanilide; and 3,3',4-trichlorocarbanilide.
Specific polymeric antimicrobial agents that can be used in the disclosure include, but are not limited to: polyhexamethylene biguanide hydrochloride; and poly(iminoimidocarbonyl iminoimidocarbonyl iminohexamethylene hydrochloride), which is sold under the tradename Vantocil IB.
Specific thazolines that can be used in the disclosure include, but are not limited to that sold under the tradename Micro-Check ; and 2-n-octy1-4-isothiazolin-3-one, which is sold under the tradename Vinyzene IT-3000 DIDP.
Specific trichloromethylthioimides that can be used in the disclosure include, but are not limited to: N-(trichloromethylthio)phthalimide, which is sold under the tradename Fungitrol ; and N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide, which is sold under the tradename Vancide .
Specific natural antimicrobial agents that can be used in the disclosure include, but are not limited to, oils of: anise; lemon; orange; rosemary; wintergreen; thyme;
lavender; cloves;
hops; tea tree; citronella; wheat; barley; lemongrass; cedar leaf; cedarwood;
cinnamon;
fleagrass; geranium; sandalwood; violet; cranberry; eucalyptus; vervain;
peppermint; gum benzoin; basil; fennel; fir; balsam; menthol; ocmea origanuin; hydastis;
carradensis;
Berberidaceac daceae; Ratanhiae longa; and Curcuma longa. Also included in this class of natural antimicrobial agents are the key chemical components of the plant oils which have been found to provide antimicrobial benefit. These chemicals include, but are not limited to: anethol;
catechole; camphene; thymol; eugenol; eucalyptol; ferulic acid; farnesol;
hinokitiol; tropolone;
limonene; menthol; methyl salicylate; carvacol; terpineol; verbenone;
berberine; ratanhiae extract; caryophellene oxide; citronellic acid; curcumin; nerolidol; and geraniol.
Specific metal salts that can be used in the disclosure include, but are not limited to, salts of metals in groups 3a-5a, 3b-7b, and 8 of the periodic table. Specific examples of metal salts include, but are not limited to, salts of: aluminum; zirconium; zinc;
silver; gold; copper;
lanthanum; tin; mercury; bismuth; selenium; strontium; scandium; yttrium;
cerium;
praseodymiun; neodymium; promethum; samarium; europium; gadolinium; terbium;
dysprosium; holmium; erbium; thalium; ytterbium; lutetium; and mixtures thereof. An example of the metal-ion based antimicrobial agent is sold under the tradename HealthShield , and is manufactured by HealthShield Technology, Wakefield, Mass. [give other examples here e.g.
smith and nephew]
Specific broad-spectrum antimicrobial agents that can be used in the disclosure include, but are not limited to, those that are recited in other categories of antimicrobial agents herein.
Additional antimicrobial agents that can be used in the methods of the disclosure include, but are not limited to: pyrithiones, and in particular pyrithione-including zinc complexes such as that sold under the tradename Octopirox,O;
dimethyidimethylol hydantoin, which is sold under the tradename Glydant ; methylchloroisothiazolinone/
methylisothiazolinone, which is sold under the tradename Kathon CG ; sodium sulfite;
sodium bisulfite; imidazolidinyl urea, which is sold under the tradename Germall 115 ;
diazolidinyl urea, which is sold under the tradename Germall 11C); benzyl alcohol v2-bromo-2-nitropropane-1,3-diol, which is sold under the tradename BronopolO; formalin or formaldehyde; iodopropenyl butylcarbamate, which is sold under the tradename Polyphase P100 ; chloroacetamide; methanamine; methyldibromonitrile glutaronitrile (1,2-dibromo-2,4-dicyanobutane), which is sold under the tradename Tektamer0; glutaraldehyde; 5-bromo-5-nitro-1,3-dioxane, which is sold under the tradename Bronidoxia; phenethyl alcohol; o-phenylphenol/sodium o-phenylphenol sodium hydroxymethylglycinate, which is sold under the tradename Suttocide AC); polymethoxy bicyclic oxazolidine; which is sold under the tradename Nuosept CC); dimethoxane; thimersal; dichlorobenzyl alcohol; captan;
chlorphenenesin;
dichlorophene; chlorbutanol; glyceryl laurate; halogenated diphenyl ethers;
2,4,4'-trichloro-2'-hydroxy-diphenyl ether, which is sold under the tradename Triclosan and is available from Ciba-Geigy, Florham Park, N.J.; and 2,2'-dihydroxy-5,5'-dibromo-diphenyl ether.
Additional antimicrobial agents that can be used in the methods of the disclosure include those disclosed by U.S. Pat. Nos. 3,141,321; 4,402,959; 4,430,381;
4,533,435;
4,625,026; 4,736,467; 4,855,139; 5,069,907; 5,091,102; 5,639,464; 5,853,883;
The disclosed methods for treating acne or wounds may further include, for example, administering a systemic or topical drug before, during or after the biophotonic treatment. The drug may be an antibiotic, a hormone treatment, or any other pharmaceutical preparation which may help to treat acne or wounds. The combination of a systemic treatment together with a topical biophotonic treatment can reduce the duration of systemic treatment time.
In other aspects, there is provided a method for biophotonic treatment of a skin disorder, comprising: applying to target skin tissue a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In other aspects, there is provided a method for promoting skin rejuvenation, comprising: applying to target skin tissue a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye;
and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In other aspects, the present disclosure provides a method for treatment of periodontal disease, comprising: applying to a periodontal pocket a biophotonic composition comprising at least a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye.
In other aspects, there is provided a method of using a cascade of energy transfer between at least a first and a second fluorescent chromophore to absorb and/or emit light within the visible range of the electromagnetic spectrum for treatment of a skin disorder, treatment of a wound, skin rejuvenation, treatment of periodontitis. The present methods and compositions of the present disclosure may also be used to treat fungal and viral infections.
In certain embodiments of any method of the present disclosure, the biophotonic composition is illuminated for any time period per treatment in which the biophotonic composition is activated, for example 1 to 30 minutes. The distance of the light source from the biophotonic composition can be any distance which can deliver an appropriate light power density to the biophotonic composition and/or the skin tissue, for example 5, 10, 15 or 20 cm.
The biophotonic composition is applied topically at any suitable thickness.
Typically, the biophotonic composition is applied topically to skin or wounds at a thickness of at least about 2mm, about 2mm to about 1 Omm.
In certain embodiments, the method of the present disclosure comprises a step of illuminating the biophotonic composition for a period of at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, or 30 minutes.
In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes.
In certain embodiments of the methods of the present disclosure, the biophotonic composition is removed from the site of a treatment following application of light.
Accordingly, the biophotonic composition is removed from the site of treatment within at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes after application. In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes. In some embodiments, the biophotonic composition is removed after a period of at least 3 minutes post application of the biophotonic composition to treatment site.
In certain other embodiments, the biophotonic composition is kept in place for up to one, two or three weeks, and illuminated with light which may include ambient light at various intervals. In this case, the composition may be covered up in between exposure to light. For example, the biophotonic composition may be soaked in a dressing and placed inside or over a wound and be left in place for an extended period of time (e.g. more than one day).
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 depicts absorption of light in the various layers of the skin (Samson et al.
Evidence Report/Technology Assessment 2004, 111, pages 1-97).
Figure 2 illustrates the Stokes' shift.
Figure 3 illustrates the absorption and emission spectra of donor and acceptor chromophores. The spectral overlap between the absorption spectrum of the acceptor chromophore and the emission spectrum of the donor chromophore is also shown.
Figure 4 is a schematic of a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance.
Figures 5A and 5B are absorbance and emission spectra, respectively, of (i) Fluorescein sodium salt at about 0.09 mg/mL, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.09 mg/mL and Eosin Y at about 0.305 mg/mL, all in a carbamide gel (Example 1).
Figures 6A and 6B are absorbance and emission spectra, respectively, (i) Fluorescein sodium salt at 0.18 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.18 mg/mL and Eosin Y at about 0.305 mg/mL, all in an aqueous solution (Example 2).
Figures 7A and 7B are absorbance and emission spectra, respectively, of (i) Phloxine B
at 0.25mg/mL final concentration, (ii) Eosin Y at about 0.05 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y (0.05 mg/mL), all in a 12% carbamide gel (Example 3).
Figures 8A and 8B are absorbance and emission spectra, respectively, of (i) Phloxine B
at 0.25mg/mL final concentration, (ii) Eosin Y at about 0.08 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y (0.08 mg/mL), all in an aqueous solution (Example 4).
Figures 9A and 9B are absorbance and emission spectra, respectively, of (i) Phloxine B at 1001.1g/g, (ii) Fluorescein at about 100 g/g, and (iii) a mixture of Phloxine B (100 g/g) and Fluorescein (100 g/g), all in a 12% carbamide gel (Example 5).
Figures 10A and 10B are absorbance and emission spectra, respectively, of (i) Phloxine B at 100tig/g, (ii) Fluorescein at about 100 g/g, and (iii) a mixture of Phloxine B
(100 g/g) and Fluorescein (100 g/g), all in a 12% carbamide gel (Example 6).
Figures nA and 11B are absorbance and emission spectra, respectively, of (i) Eosin Y
at 0.305 mg/mL final concentration, (ii) Rose Bengal at about 0.085 mg/mL, and (iii) a mixture of Eosin Y (0.305mg/mL) and Rose Bengal (0.085 mg/mL), all in a 12% carbamide gel (Example 7).
Figure 12 shows that Eosin Y and Rose Bengal act in a synergistic manner (Example 8).
Figures 13A and 13B show the fluorescence emission (power density) over time of compositions comprising (i) Fluorescein + Eosin Y (Figure 11A), and (ii) Eosin Y + Rose Bengal (Figure 11B) (Example 9).
Figures 14A and 14B are absorbance and emission spectra, respectively, of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL
final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in a carbamide gel (Example 10).
' Figures 15A and 15B are absorbance and emission spectra, respectively, of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL
final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in an aqueous composition (Example 11).
Figure 16 is an emission spectrum showing the intensity over time of the light being emitted from the composition tested in Examples 12 and 13.
Figures 17A and 17B show that the energy density of emitted fluorescence from Eosin (top) and Fluorescein (bottom) in a composition increases rapidly with increasing chromophore concentration but slows down to a plateau with further concentration increase, whilst the activating light decreases with increasing concentration (Example 15).
DETAILED DESCRIPTION
(1) Overview The present disclosure provides compositions including at least two photoactive chromophores which can transfer energy from one to the other and methods useful for treating tissue with these compositions for example to promote tissue repair including wound healing, for cosmetic treatment of skin such as for skin rejuvenation, for treating skin disorders such as acne, and for periodontal treatment.
(2) Definitions Before continuing to describe the present disclosure in further detail, it is to be understood that this disclosure is not limited to specific compositions or process steps, as such may vary. It must be noted that, as used in this specification and the appended claims, the singular form "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.
As used herein, the term "about" in the context of a given value or range refers to a value or range that is within 20%, preferably within 10%, and more preferably within 5% of the given value or range.
It is convenient to point out here that "and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. For example "A and/or B" is to be taken as specific disclosure of each of (i) A, (ii) B
and (iii) A and B, just as if each is set out individually herein.
"Biophotonic" means the generation, manipulation, detection and application of photons in a biologically relevant context. In other words, biophotonic compositions exert their physiological effects primarily due to the generation and manipulation of photons.
"Biophotonic composition" is a composition as described herein that may be activated by light to produce photons for biologically relevant applications.
"Topical composition" means a composition to be applied to body surfaces, such as the skin, mucous membranes, vagina, oral cavity, wounds, and the like. A topical composition may be in the form of, including, but not limited to, a cream, gel, ointment, lotion, levigate, solution, bioadhesive, salve, milk. The topical composition may impregnate material such as a pad, sheet, fabric or fibres, dressings, spray, suspension, foam, or the like.
Terms "chromophore", "photoactivating agent" and "photoactivator" are used herein interchangeably. A chromophore means a chemical compound, when contacted by light irradiation, is capable of absorbing the light, for example a xanthene dye.
The chromophore readily undergoes photoexcitation and can then transfer its energy to other molecules or emit it as light.
"Oxidant", "oxidizing agent" or "oxygen-releasing agent" which terms are used interchangeably herein, means a chemical compound that readily transfers oxygen atoms and oxidizes other compounds. It includes molecular oxygen as well as oxygen containing compounds such as water, peroxide etc..
"Photobleaching" means the photochemical destruction of a chromophore.
The term "actinic light" is intended to mean light energy emitted from a specific light source (e.g., lamp, LED, or laser) and capable of being absorbed by matter (e.g. the chromophore or photoactivator defined above). In a preferred embodiment, the actinic light is visible light.
"Wound" means an injury to any tissue, including for example, acute, subacute, delayed or difficult to heal wounds, and chronic wounds. Examples of wounds may include both open and closed wounds. Wounds include, for example, burns, incisions, excisions, lesions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, ulcers (such as for example pressure, venous, pressure or diabetic), wounds caused by periodontitis (inflammation of the periodontium), and gun-shot wounds.
"Wound healing" means promotion or acceleration of tissue repair including closure of a wound, activation of a chronic wound, or minimizing scar formation.
"Skin rejuvenation" means a process of reducing, diminishing, retarding or reversing one or more signs of skin aging. For instance, common signs of skin aging include, but are not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion. According to the present disclosure, one or more of the above signs of aging may be reduced, diminished, retarded or even reversed by the compositions and methods of the present disclosure.
(3) Biophotonic Compositions The present disclosure provides biophotonic compositions. Biophotonic compositions are compositions that, in a broad sense, comprise chromophore(s) which are activated by light and accelerate the dispersion of light energy, which leads to light carrying on a therapeutic effect on its own, and/or to the photochemical activation of other agents contained in the composition (e.g., the break-down of an oxygen-releasing agent when such agent is present in the composition or at the treatment site, leading to the formation of oxygen radicals, such as singlet oxygen). The biophotonic compositions of the present disclosure comprise at least two xanthene dyes as chromophores.
When a chromophore absorbs a photon of a certain wavelength, it becomes excited.
This is an unstable condition and the molecule tries to return to the ground state, giving away the excess energy. For some chromophores, it is favorable to emit the excess energy as light when transforming back to the ground state. This process is called fluorescence. The peak wavelength of the emitted fluorescence is shifted towards longer wavelengths compared to the absorption wavelengths due to loss of energy in the conversion process. This is called the Stokes' shift and is illustrated in Figure 2. In the proper environment (e.g., in a biophotonic composition) much of this energy is transferred to the other components of the composition or to the treatment site directly.
Without being bound to theory, it is thought that fluorescent light emitted by photoactivated chromophores may have therapeutic properties due to its femto-, pico- or nano-second emission properties which may be recognized by biological cells and tissues, leading to favorable biomodulation. Furthermore, the emitted fluorescent light has a longer wavelength and hence a deeper penetration into the tissue than the activating light.
Irradiating tissue with such a broad range of wavelengths, including in some embodiments the activating light which passes through the composition, may have different and complementary effects on the cells and tissues. Moreover, the generation of oxygen species (e.g. singlet oxygen) by photoactivated chromophores has been observed by the inventors to cause micro-bubbling within the composition which can have a physical impact on the tissue to which it is applied, for example by dislodging biofilm and debridement of necrotic tissue or providing a pressure stimulation.
The biofilm can also be pre-treated with an oxygen-releasing agent to weaken the biofilm before treating with the composition of the present disclosure.
Furthermore, it is thought that use of chromophores in a composition to emit fluorescent light provides the ability to fine-tune the emitted light to a far greater degree than using a light source such as an LED or a laser. For example, according to the therapy or treatment required, chromophores may be chosen according to their emitted light wavelength, and appropriate concentrations used to control the power density of the emitted light.
The biophotonic compositions of the present disclosure are substantially transparent/translucent and/or have high light transmittance in order to permit light dissipation into and through the composition. In this way, the area of tissue under the composition can be treated both with the fluorescent light emitted by the composition and the light irradiating the composition to activate it. The % transmittance of the biophotonic composition can be measured in the range of wavelengths from 250 nm to 800 nm using, for example, a Perkin-Elmer Lambda 9500 series UV-visible spectrophotometer. In some embodiments, transmittance of the compositions disclosed herein is measured at 460 nm.
As transmittance is dependent upon thickness, the thickness of each sample can be measured with calipers prior to loading in the spectrophotometer.
Transmittance values can be normalized to a thickness of 100 lam (or any thickness) according to:
f2 t2 FT¨corr(A, t2) -= [Cerf (A)t1 ]11 = [FT¨coõ(A, tl )] II ) where, ti=actual specimen thickness, t2=thickness to which transmittance measurements can be normalized.
In some embodiments, the biophotonic composition has a transparency or translucency that exceeds 15%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or 85% at 460 nm.
In some embodiments, the transparency exceeds 70% at 460 nm, 86% at 460 nm, 87% at 460 nm, 88% at 460 nm, 89% at 460 nm, 90% at 460 nm, 91% at 460 nm, 92% at 460 nm, 93% at , 460 nm, 94% at 460 nm, 95% at 460 nm, 96% at 460 nm, 97% at 460 nm, 98% at 460 nm or 99% at 460 nm.
The biophotonic compositions of the present disclosure are for topical uses.
These compositions may be described based on the components making up the composition.
Additionally or alternatively, the compositions of the present disclosure have functional and structural properties and these properties may also be used to define and describe the compositions. Individual components of the composition of the present disclosure are detailed as below.
(a) Chromophores The biophotonic topical compositions of the present disclosure comprise at least two xanthene dyes as the chromophores. Combining xanthene dyes may increase photo-absorption by the combined dye molecules and enhance absorption and photobiomodulation selectivity.
This creates multiple possibilities of generating new photosensitive, and/or selective xanthene dye mixtures.
When such multi-xanthene dye compositions are illuminated with light of an appropriate wavelength to activate at least one of the xanthene dyes, energy transfer can occur between the xanthene dyes. This process, known as resonance energy transfer, is a photophysical process through which an excited 'donor' xanthene dye (also referred to herein as first xanthene dye) transfers its excitation energy to an 'acceptor' xanthene dye (also referred to herein as second xanthene dye). The efficiency and directedness of resonance energy transfer depends on the spectral features of donor and acceptor xanthene dyes. In particular, the flow of energy between xanthene dyes is dependent on a spectral overlap reflecting the relative positioning and shapes of the absorption and emission spectra. For energy transfer to occur the emission spectrum of the donor xanthene dye must preferably overlap with the absorption spectrum of the acceptor xanthene dye (Figure 3).
) Energy transfer manifests itself through decrease or quenching of the donor emission and a reduction of excited state lifetime accompanied also by an increase in acceptor emission intensity. Figure 4 is a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance.
To enhance the energy transfer efficiency, the donor xanthene dye should have good abilities to absorb photons and emit photons. Furthermore, it is thought that the more overlap there is between the donor xanthene dye's emission spectra and the acceptor xanthene dye's absorption spectra, the better a donor xanthene dye can transfer energy to the acceptor xanthene dye.
In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least about 80%, 50%, 40%, 30%, 20%, 10% with an absorption spectrum of the xanthene dye chromophore. In one embodiment, the first xanthene dye has an emission spectrum that overlaps at least about 20% with an absorption spectrum of the second xanthene dye. In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70%
with an absorption spectrum of the second xanthene dye.
% spectral overlap, as used herein, means the % overlap of a donor xanthene dye's emission wavelength range with an acceptor xanthene dye's absorption wavelength rage, measured at spectral full width quarter maximum (FWQM). For example, Figure 3 shows the normalized absorption and emission spectra of donor and acceptor xanthene dyes. The spectral FWQM of the acceptor xanthene dye's absorption spectrum is from about 60 nm (515 nm to about 575 nm). The overlap of the donor xanthene dye's spectrum with the absorption spectrum of the acceptor xanthene dye is about 40 nm (from 515 nm to about 555 nm). Thus, the % overlap can be calculated as 40nm / 60nm x 100 = 66.6%.
In some embodiments, the second xanthene dye absorbs at a wavelength in the range of the visible spectrum. In certain embodiments, the second xanthene dye has an absorption i wavelength that is relatively longer than that of the first xanthene dye within the range of about 50-250, 25-150 or 10-100 nm.
As discussed above, the application of light to the compositions of the present disclosure can result in a cascade of energy transfer between the xanthene dyes. In certain embodiments, such a cascade of energy transfer provides photons that penetrate the epidermis, dermis and/or mucosa at the target tissue, including, such as, a site of wound, or a tissue afflicted with acne or another skin disorder. In some embodiments, such a cascade of energy transfer is not accompanied by concomitant generation of heat. In some other embodiments, the cascade of energy transfer does not result in tissue damage.
In some embodiments, the first xanthene dye absorbs at a wavelength in the range of the visible spectrum, such as at a wavelength of about 380-800 nm, 380-700, or 380-600 nm.
In other embodiments, the first xanthene dye absorbs at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm. In one embodiment, the first xanthene dye absorbs at a wavelength of about 200-600 nm. In some embodiments, the first xanthene dye absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, nm, 400-600 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm.
It will be appreciated by those skilled in the art that optical properties of a particular xanthene dye may vary depending on the xanthene dye's surrounding medium.
Therefore, as used herein, a particular xanthene dye's absorption and/or emission wavelength (or spectrum) corresponds to the wavelengths (or spectrum) measured in a biophotonic composition of the present disclosure.
Exemplary xanthene dyes include but are not limited to Eosin B (4',5'-dibromo,21,7'-dinitr- o-fluorescein, dianion); eosin Y; eosin Y (2',4',5',7'-tetrabromo-fluoresc- ein, dianion);
eosin (2',4',5',7'-tetrabromo-fluorescein, dianion); eosin (2',4',5',7'-tetrabromo-fluorescein, dianion) methyl ester; eosin (2',4',5',7'-tetrabromo-fluorescein, monoanion) p-isopropylbenzyl ester; eosin derivative (2',7'-dibromo-fluorescein, dianion); eosin derivative (4',5'-dibromo-fluorescein, dianion); eosin derivative (2',7'-dichloro-fluorescein, dianion);
eosin derivative , (4',5'-dichloro-fluorescein, dianion); eosin derivative (2',7'-diiodo-fluorescein, dianion); eosin derivative (4',5'-diiodo-fluorescein, dianion); eosin derivative (tribromo-fluorescein, dianion);
eosin derivative (2',4',5',7'-tetrachlor- o-fluorescein, dianion); eosin;
eosin dicetylpyridinium chloride ion pair; erythrosin B (2',4',5',7'-tetraiodo-fluorescein, dianion);
erythrosin; erythrosin dianion; erythiosin B; fluorescein; fluorescein dianion; phloxin B
(2',4',5',7'-tetrabromo-3,4,5,6-tetrachloro-fluorescein, dianion); phloxin B (tetrachloro-tetrabromo-fluorescein);
phloxine B; rose bengal (3,4,5,6-tetrachloro-2',4',51,71-tetraiodofluorescein, dianion); pyronin G, pyronin J, pyronin Y; Rhodamine dyes such as rhodamines include 4,5-dibromo-rhodamine methyl ester; 4,5-dibromo-rhodamine n-butyl ester; rhodamine 101 methyl ester;
rhodamine 123; rhodamine 6G; rhodamine 6G hexyl ester; tetrabromo-rhodamine 123; and tetramethyl-rhodamine ethyl ester.
In certain embodiments, the first xanthene dye is present in an amount of about 0.01-40% per weight of the composition, and the second xanthene dye is present in an amount of about 0.001-40% per weight of the composition. In certain embodiments, the total weight per weight of xanthene dyes is in the amount of about 0.01-40.001% per weight of the composition. In certain embodiments, the first xanthene dye is present in an amount of about 0.01-1%, 0.01-2%, 0.05-1%, 0.05-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the second xanthene dye is present in an amount of about 0.001-1%, 0.001-2%, 0.001-0.01%, 0.01-0.1%, 0.1-1.0%, 1-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
In certain embodiments, the total weight per weight of xanthene dyes is in the amount of about less than 0.5%, less than 0.1%, 0.001-0.1%, 0.01-1%, 0.01-2%, 0.05-2%, 0.001-0.5%, 0.5-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition. All amounts are given as weight percentages per weight of the total concentration, and the equivalent weight or volume amounts.
In certain embodiments, the ratio of the concentrations of the first and second xanthene dyes in the composition range from 1:1 to 1:1000. In certain embodiments, the relative concentration of Eosin Y: Fluorescein may be such that there is less Eosin Y
than Fluorescein such as 1000:1 or 100:1 or 10:1 or 60-80%: 20-40%. In certain embodiments, the ratio of Eosin Y to Rose Bengal is 1:1 or 70-90%:10-30%. In certain embodiments, the ratio of Fluorescein to Eosin Y to Rose Bengal can be 20-40%: 30-60%: 10-20%. The ratio can be tailored according to the emitted light spectrum desired for a given treatment or therapy.
In some embodiments, the xanthene dye combinations are selected such that their emitted fluorescent light, on photoactivation, is within one or more of the green, yellow, orange, red and infrared portions of the electromagnetic spectrum, for example having a peak wavelength within the range of about 490 nm to about 800 nm. In certain embodiments, the emitted fluorescent light has a power density of between 0.005 to about 10 mW/cm2, about 0.5 to about 5 mW/cm2, or about 0.05 to about 2 mW/cm2.
Particularly useful combinations of xanthene dyes include but are not limited to:
Fluorescein + Eosin Y; Fluorescein + Eosin Y + Rose Bengal; Fluorescein +
Eosin Y +
Phloxine B; Eosin Y + Rose Bengal; Eosin Y + Phloxine B; Eosin Y +
Erythrosine;
Fluorescein + Erythrosine B + Eosin Y; Eosin Y + Erythrosine B + Rose Bengal;
Eosin Y +
Erythrosine B + Phloxine B; Fluorescein + Eosin Y + Erythrosine B + Rose Bengal; and Fluorescein + Eosin Y + Erythrosine B + Phloxine B.
It is thought that at least some of these combinations have a synergistic effect at certain concentration ratios within the composition. For example, at certain concentration ratios and with an appropriate activating light, Eosin Y can transfer energy to Rose Bengal, Erythrosin B
or Phloxine B when activated. This transferred energy is then emitted as fluorescence and/or by production of reactive oxygen species (such as singlet oxygen).
The synergistic effect may be apparent by the composition having a light absorption spectrum which spans a broader range of wavelengths compared to an individual light absorption spectrum of one of the individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light (light having substantially the same emission spectra). This may confer on the composition the ability to be activated by a broader range of activating light wavelengths, for example by white light avoiding the need for a precise wavelength of activating light.
The synergistic effect may also be evident through the composition having a light emission spectrum which spans a broader range of wavelengths compared to an individual light absorption spectrum of one of the individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light. This absorbed and re-emitted light spectrum is thought to be transmitted throughout the composition, and also to be transmitted into the site of treatment. This emitted spectrum will then illuminate the target tissue with different penetration depths (Figure 1), which may confer on the target tissue beneficial therapeutic effects. For example green light has been reported to have wound healing properties. By emitting a broader range of wavelengths, a broader range of therapeutic effects can be achieved. The emitted wavelength can be fine-tuned using different chromophore combinations and concentrations.
The synergistic effect may also be evident through the composition having a higher light absorption or emission peak compared to an individual light absorption/emission peak of one of the individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light. The ability to absorb and emit higher levels of photons may have a therapeutic effect in certain applications. Furthermore, less concentration of an individual chromophore may be required to achieve a certain power density. Higher power densities can equate to shorter treatment times.
The synergistic effect may also be evident through the composition producing more oxygen species, in the presence of an oxygen-releasing agent, compared to oxygen species produced by an individual chromophores in the composition, when the individual chromophores and the composition are activated by the same activating light.
The ability to produce higher levels of oxygen species without the need to extend treatment time or increase the power density of the activating light may be advantageous in certain situations.
By means of synergistic effects of the xanthene dye combinations in the composition, xanthene dyes which cannot normally be activated by an activating light (such as a blue light) can be activated through energy transfer from xanthene dyes which are activated by the activating light. In this way, the different properties of photoactivated xanthene dyes can be harnessed and tailored according to the cosmetic or the medical therapy required.
For example, Rose Bengal can generate a high yield of singlet oxygen when photoactivated in the presence of molecular oxygen, however it has a low quantum yield in terms of emitted fluorescent light. Rose Bengal has a peak absorption around 540 nm and so is normally activated by green light. Eosin Y has a high fluorescence quantum yield and can be activated by blue light. By combining Rose Bengal with Eosin Y, one obtains a composition which can emit therapeutic fluorescent light and generate singlet oxygen when activated by blue light. In this case, the blue light is thought to photoactivate Eosin Y
which transfers some of its energy to Rose Bengal as well as emitting some energy as fluorescence.
One or more of the chromophores may photobleach during illumination. This can be a visible confirmation of 'dose' delivery. As the chromophores photobleach, they emit less fluorescence over time. At the same time, they also absorb less of the activating light over time and so the tissues receive increasingly higher amounts of the activating light. In this way, the chromophores modulate exposure of the tissue to the light which may provide a somewhat protective effect.
(b) Additional Chromophores In addition to the xanthene dye combination, the biophotonic topical compositions of the present disclosure may also include, but are not limited to the following:
Chlorophyll dyes Exemplary chlorophyll dyes include but are not limited to chlorophyll a;
chlorophyll b;
oil soluble chlorophyll; bacteriochlorophyll a; bacteriochlorophyll b;
bacteriochlorophyll c;
bacteriochlorophyll d; protochlorophyll; protochlorophyll a; amphiphilic chlorophyll derivative 1; and amphiphilic chlorophyll derivative 2.
Methylene blue dyes Exemplary methylene blue derivatives include but are not limited to 1-methyl methylene blue; 1,9-dimethyl methylene blue; methylene blue; methylene blue (16 µM);
methylene blue (14 µM); methylene violet; bromomethylene violet; 4-iodomethylene violet;
1,9-dimethy1-3-dimethyl-amino-7-diethyl-a- mino-phenothiazine; and 1,9-dimethy1-3-diethylamino-7-dibutyl-amino-phenot- hiazine.
Azo dyes Exemplary azo (or diazo-) dyes include but are not limited to methyl violet, neutral red, para red (pigment red 1), amaranth (Azorubine S), Carmoisine (azorubine, food red 3, acid red 14), allura red AC (FD&C 40), tartrazine (FD&C Yellow 5), orange G (acid orange 10), Ponceau 4R (food red 7), methyl red (acid red 2), and murexide-ammonium purpurate.
In some aspects of the disclosure, the additional chromophores of the biophotonic composition disclosed herein can be independently selected from any of Acid black 1, Acid blue 22, Acid blue 93, Acid fuchsin, Acid green, Acid green 1, Acid green 5, Acid magenta, Acid orange 10, Acid red 26, Acid red 29, Acid red 44, Acid red 51, Acid red 66, Acid red 87, Acid red 91, Acid red 92, Acid red 94, Acid red 101, Acid red 103, Acid roseine, Acid rubin, Acid violet 19, Acid yellow 1, Acid yellow 9, Acid yellow 23, Acid yellow 24, Acid yellow 36, Acid yellow 73, Acid yellow S, Acridine orange, Acriflavine, Alcian blue, Alcian yellow, Alcohol soluble eosin, Alizarin, Alizarin blue 2RC, Alizarin carmine, Alizarin cyanin BBS, Alizarol cyanin R, Alizarin red S, Alizarin purpurin, Aluminon, Amido black 10B, Amidoschwarz, Aniline blue WS, Anthracene blue SWR, Auramine 0, Azocannine B, Azocarmine G, Azoic diazo 5, Azoic diazo 48, Azure A, Azure B, Azure C, Basic blue 8, Basic blue 9, Basic blue 12, Basic blue 15, Basic blue 17, Basic blue 20, Basic blue 26, Basic brown 1, Basic fuchsin, Basic green 4, Basic orange 14, Basic red 2 (Saffranin 0), Basic red 5, Basic red 9, Basic violet 2, Basic violet 3, Basic violet 4, Basic violet 10, Basic violet 14, Basic yellow 1, Basic yellow 2, Biebrich scarlet, Bismarck brown Y, Brilliant crystal scarlet 6R, Calcium red, Carmine, Carminic acid (acid red 4), Celestine blue B, China blue, Cochineal, Coelestine blue, Chrome violet CG, Chromotrope 2R, Chromoxane cyanin R, Congo corinth, Congo red, Cotton blue, Cotton red, Croceine scarlet, Crocin, Crystal ponceau 6R, Crystal violet, Dahlia, Diamond green B, Di0C6, Direct blue 14, Direct blue 58, Direct red, Direct red 10, Direct red 28, Direct red 80, Direct yellow 7, Eosin B, Eosin Bluish, Eosin, Eosin Y, Eosin yellowish, Eosinol, Erie garnet B, Eriochrome cyanin R, Erythrosin B, Ethyl eosin, Ethyl green, Ethyl violet, Evans blue, Fast blue B, Fast green FCF, Fast red B, Fast yellow, Fluorescein, Food green 3, Gallein, Gallamine blue, Gallocyanin, Gentian violet, Haematein, Haematine, Haematoxylin, Helio fast rubin BBL, Helvetia blue, Hematein, Hematine, Hematoxylin, Hoffman's violet, Imperial red, Indocyanin green, Ingrain blue, Ingrain blue 1, Ingrain yellow 1, INT, Kermes, Kermesic acid, Kernechtrot, Lac, Laccaic acid, Lauth's violet, Light green, Lissamine green SF, Luxol fast blue, Magenta 0, Magenta I, Magenta II, Magenta III, Malachite green, Manchester brown, Martius yellow, Merbromin, Mercurochrome, Metanil yellow, Methylene azure A, Methylene azure B, Methylene azure C, Methylene blue, Methyl blue, Methyl green, Methyl violet, Methyl violet 2B, Methyl violet 10B, Mordant blue 3, Mordant blue 10, Mordant blue 14, Mordant blue 23, Mordant blue 32, Mordant blue 45, Mordant red 3, Mordant red 11, Mordant violet 25, Mordant violet 39 Naphthol blue black, Naphthol green B, Naphthol yellow S, Natural black 1, Natural red, Natural red 3, Natural red 4, Natural red 8, Natural red 16, Natural red 25, Natural red 28, Natural yellow 6, NBT, Neutral red, New fuchsin, Niagara blue 3B, Night blue, Nile blue, Nile blue A, Nile blue oxazone, Nile blue sulphate, Nile red, Nitro BT, Nitro blue tetrazolium, Nuclear fast red, Oil red 0, Orange G, Orcein, Pararosanilin, Phloxine B, phycobilins, Phycocyanins, Phycoerythrins. Phycoerythrincyanin (PEC), Phthalocyanines, Picric acid, Ponceau 2R, Ponceau 6R, Ponceau B, Ponceau de Xylidine, Ponceau S, Primula, Purpurin, Pyronin B, Pyronin G, Pyronin Y, Rhodamine B, Rosanilin, Rose bengal, Saffron, Safranin 0, Scarlet R, Scarlet red, Scharlach R, Shellac, Sirius red F3B, Solochrome cyanin R, Soluble blue, Solvent black 3, Solvent blue 38, Solvent red 23, Solvent red 24, Solvent red 27, Solvent red 45, Solvent yellow 94, Spirit soluble eosin, Sudan III, Sudan IV, Sudan black B, Sulfur yellow S, Swiss blue, Tartrazine, Thioflavine S, Thioflavine T, Thionin, Toluidine blue, Toluyline red, Tropaeolin G, Trypaflavine, Trypan blue, Uranin, Victoria blue 4R, Victoria blue B, Victoria green B, Water blue I, Water soluble eosin, Xylidine ponceau, or Yellowish eosin.
In certain embodiments, the composition of the present disclosure includes any of the additional chromophores listed above in addition to the xanthene dyes, or a combination thereof, so as to provide a biophotonic impact at the application site. This is a distinct application of these agents and differs from the use of chromophores as simple stains or as a catalyst for photo-polymerization.
Chromophores can be selected, for example, on their emission wavelength properties in the case of fluorophores, on the basis of their energy transfer potential, their ability to generate reactive oxygen species, or their antimicrobial effect. These needs may vary depending on the condition requiring treatment. For example, chlorophylls may have an antimicrobial effect on bacteria found on the face.
(c) Gelling Agent The composition may optionally comprise a gelling agent. A gelling agent for use according to the present disclosure may comprise any ingredient suitable for use in a topical biophotonic formulation as described herein. The gelling agent may be an agent capable of forming a cross-linked matrix, including physical and/or chemical cross-links.
The gelling agent is preferably biocompatible, and may be biodegradable. In some embodiments, the gelling agent is able to form a hydrogel or a hydrocolloid. An appropriate gelling agent is one that can form a viscous liquid or a semisolid. In preferred embodiments, the gelling agent and/or the composition has appropriate light transmission properties. It is also important to select a gelling agent which will allow biophotonic activity of the chromophores. For example, some chromophores require a hydrated environment in order to fluoresce. The gelling agent may be able to form a gel by itself or in combination with other ingredients such as water or another gelling agent, or when applied to a treatment site, or when illuminated with light.
In some embodiments the composition is in the form of a gel, cream, ointment, lotion, paste, spray or foam.
The gelling agent according to various embodiments of the present disclosure may comprise polyalkylene oxides, particularly polyethylene glycol and poly(ethylene oxide)-poly(propylene oxide) copolymers, including block and random copolymers;
polyols such as glycerol, polyglycerol (particularly highly branched polyglycerol), propylene glycol and trimethylene glycol substituted with one or more polyalkylene oxides, e.g., mono-, di- and tri-polyoxyethylated glycerol, mono- and di-polyoxy-ethylated propylene glycol, and mono- and di-polyoxyethylated trimethylene glycol; polyoxyethylated sorbitol, polyoxyethylated glucose;
acrylic acid polymers and analogs and copolymers thereof, such as polyacrylic acid per se, polymethacrylic acid, poly(hydroxyethylmethacrylate), poly(hydroxyethylacrylate), poly(methylalkylsulfoxide methacrylate), poly(methylalkylsulfoxide acrylate) and copolymers of any of the foregoing, and/or with additional acrylate species such as aminoethyl acrylate and mono-2-(acryloxy)-ethyl succinate; polymaleic acid; poly(acrylamides) such as polyacrylamide per se, poly(methacrylamide), poly(dimethylacrylamide), and poly(N-isopropyl-acrylamide);
poly(olefinic alcohol)s such as poly(vinyl alcohol); poly(N-vinyl lactams) such as poly(vinyl pyrrolidone), poly(N-vinyl caprolactam), and copolymers thereof, polyoxazolines, including poly(methyloxazoline) and poly(ethyloxazoline); and polyvinylamines.
The gelling agent according to certain embodiments of the present disclosure may comprise a polymer selected from any of synthetic or semi-synthetic polymeric materials, polyacrylate copolymers, cellulose derivatives and polymethyl vinyl ether/maleic anhydride copolymers. In some embodiments, the hydrophilic polymer comprises a polymer that is a high molecular weight (i.e., molar masses of more than about 5,000, and in some instances, more than about 10,000, or 100,000, or 1,000,000) and/or cross-linked polyacrylic acid polymer. In some embodiments, the polymer is a polyacrylic acid polymer and has a viscosity in the range of about 15,000-100,000, 15,000-90,000, 15,000-80,000, 20,000-80,000, 20,000-70,000, 20,000-40,000 cP. In certain embodiment, the polymer is a high molecular weight, and/or cross-linked polyacrylic acid polymer, where the polyacrylic acid polymer has a viscosity in the range of about 15,000-80,000 cP.
Carbomers may be used. Carbomers are synthetic high molecular weight polymer of acrylic acid that are crosslinked with either allylsucrose or allylethers of pentaerythritol having a molecular weight of about 3 x 106. The gelation mechanism depends on neutralization of the carboxylic acid moiety to form a soluble salt. The polymer is hydrophilic and produces sparkling clear gels when neutralized. Carbomer gels possess good thermal stability in that gel viscosity and yield value are essentially unaffected by temperature. As a topical product, carbomer gels possess optimum rheological properties. The inherent pseudoplastic flow permits immediate recovery of viscosity when shear is terminated and the high yield value and quick break make it ideal for dispensing. Aqueous solution of Carbopol is acidic in nature due to the presence of free carboxylic acid residues. Neutralization of this solution cross-links and gelatinizes the polymer to form a viscous integral structure of desired viscosity.
Carbomers are available as fine white powders which disperse in water to form acidic colloidal suspensions (a 1% dispersion has approx. pH 3) of low viscosity.
Neutralization of these suspensions using a base, for example sodium, potassium or ammonium hydroxides, low molecular weight amines and alkanolamines, results in the formation of translucent gels.
Nicotine salts such as nicotine chloride form stable water-soluble complexes with carbomers at about pH 3.5 and are stabilized at an optimal pH of about 5.6.
In some embodiments of the disclosure, the carbomer is Carbopol. Such polymers are commercially available from B.F. Goodrich or Lubrizol under the designation Carbopol 71G
NF, 420, 430, 475, 488, 493, 910, 934, 934P, 940, 971PNF, 974P NF, 980 NF, 981 NF and the like. Carbopols are versatile controlled-release polymers, as described by Brock (Pharmacotherapy, 14:430-7 (1994)) and Durrani (Pharmaceutical Res. (Supp.) 8:S-135 (1991)), and belong to a family of carbomers which are synthetic, high molecular weight, non-linear polymers of acrylic acid, crosslinked with polyalkenyl polyether. In some embodiments, the carbomer is Carbopol0 974P NF, 980 NF, 5984 EP, ETD 2020NF, Ultrez 10 NF, 934 NF, 934P NF or 940 NF. In certain embodiments, the carbomer is Carbopol 980 NF, NF, Ultrez 10 NF, Ultrez 21 or 1382 Polymer, 1342 NF, 940 NF.
In certain embodiments, the gelling agent comprises a hygroscopic material. By hygroscopic material is meant a substance capable of taking up water, for example, by absorption or adsorption even at relative humidity as low as 50%, at room temperature (e.g.
about 25 C). The hygroscopic material may include, but is not limited to, glucosamine, glycosaminoglycan, poly(vinyl alcohol), poly(2-hydroxyethylmethylacrylate), polyethylene oxide, collagen, chitosan, alginate, a poly(acrylonitrile)-based hydrogel, poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel, polyethylene oxide-polybutylene terephthalate, hyaluronic acid, high-molecular-weight polyacrylic acid, poly(hydroxy ethylmethacrylate), poly(ethylene glycol), tetraethylene glycol diacrylate, polyethylene glycol methacrylate, and poly(methyl acrylate-co-hydroxyethyl acrylate).
The biophotonic composition of the present disclosure may be further encapsulated, e.g, in a membrane. Such a membrane may be transparent, and/or substantially, or fully impermeable. The membrane may be impermeable to liquid but permeable to gases such as air.
In certain embodiments, the composition may form a membrane that encapsulates the chromophore(s) of the biophotonic topical composition, where the membrane may be substantially impermeable to liquid and/or gas.
The composition may include any other carrier.
(d) Oxygen-releasing agents According to certain embodiments, the compositions of the present disclosure may optionally further comprise an oxygen-releasing agent, for example, as a source of oxygen.
When a biophotonic composition of the present disclosure comprising an oxygen-releasing agent is illuminated with light, the xanthene dyes are excited to a higher energy state.
When the xanthene dyes' electrons return to a lower energy state, they emit photons with a lower energy level, thus causing the emission of light of a longer wavelength (Stokes' shift). In the proper environment, some of this energy release is transferred to oxygen or the reactive hydrogen peroxide and causes the formation of oxygen radicals, such as singlet oxygen. The singlet oxygen and other reactive oxygen species generated by the activation of the biophotonic composition are thought to operate in a hormetic fashion. That is, a health beneficial effect that is brought about by the low exposure to a normally toxic stimuli (e.g.
reactive oxygen), by stimulating and modulating stress response pathways in cells of the targeted tissues.
Endogenous response to exogenous generated free radicals (reactive oxygen species) is modulated in increased defense capacity against the exogenous free radicals and induces acceleration of healing and regenerative processes. Furthermore, activation of the composition can also produce an antibacterial effect. The extreme sensitivity of bacteria to exposure to free radicals makes the composition of the present disclosure a de facto bactericidal composition.
As stated above, the generation of oxygen species by the composition in some embodiments is accompanied by the micro-bubbling which can contribute to debridement or dislodging of biofilm at the site of application. This can allow for the improved penetration of the activating and/or fluorescence light to the treatment site for example to deactivate bacterial colonies leading to their reduction in number.
Suitable oxygen-releasing agents that may be included in the composition include, but are not limited to peroxides such as hydrogen peroxide, urea hydrogen peroxide and benzoyl peroxide. Peroxide compounds are oxygen-releasing agents that contain the peroxy group (R-0-0-R), which is a chainlike structure containing two oxygen atoms, each of which is bonded to the other and a radical or some element.
Hydrogen peroxide (H202) is the starting material to prepare organic peroxides. H202 is a powerful oxygen-releasing agent, and the unique property of hydrogen peroxide is that it breaks down into water and oxygen and does not form any persistent, toxic residual compound.
Hydrogen peroxide for use in this composition can be used in a gel, for example with 6%
hydrogen peroxide. A suitable range of concentration over which hydrogen peroxide can be used in the present composition is from about 0.1% to about 6%.
Urea hydrogen peroxide (also known as urea peroxide, carbamide peroxide or percarbamide) is soluble in water and contains approximately 35% hydrogen peroxide.
Carbamide peroxide for use in this composition can be used as a gel, for example with 16%
carbamide peroxide that represents 5.6 % hydrogen peroxide, or 12 % carbamide peroxide. A
suitable range of concentration over which urea peroxide can be used in the present composition is from about 0.3% to about 16%. Urea peroxide breaks down to urea and hydrogen peroxide in a slow-release fashion that can be accelerated with heat or photochemical reactions. The released urea [carbamide, (NH2)CO2)l, is highly soluble in water and is a powerful protein denaturant. It increases solubility of some proteins and enhances rehydration of the skin and/or mucosa.
Benzoyl peroxide consists of two benzoyl groups (benzoic acid with the H of the carboxylic acid removed) joined by a peroxide group. It is found in treatments for acne, in concentrations varying from 2.5% to 10%. The released peroxide groups are effective at killing bacteria. Benzoyl peroxide also promotes skin turnover and clearing of pores, which further contributes to decreasing bacterial counts and reduce acne. Benzoyl peroxide breaks down to benzoic acid and oxygen upon contact with skin, neither of which is toxic. A
suitable range of concentration over which benzoyl peroxide can be used in the present composition is from about 2.5% to about 5%.
Other oxygen-releasing agents include molecular oxygen, water, perbonates and carbonates. Oxygen-releasing agents can be provided in powder, liquid or gel form within the composition. The composition may include an amount of oxygen-releasing agent, which is augmented by the separate application of oxygen-releasing agents to the treatment site.
Alternatively, oxygen-releasing agents may also be applied to the tissue site separately to the composition.
(e) Healing Factors The composition of the present disclosure may comprise healing factors.
Healing factors comprise compounds that promote or enhance the healing or regenerative process of the tissues on the application site of the composition. During the photoactivation of the composition of the present disclosure, there is an increase of the absorption of molecules at the treatment site by the skin, wound or the mucosa. An augmentation in the blood flow at the site of treatment is observed for an extent period of time. An increase in the lymphatic drainage and a possible change in the osmotic equilibrium due to the dynamic interaction of the free radical cascades can be enhanced or even fortified with the inclusion of healing factors. Suitable healing factors include, but are not limited to:
Hyaluronic acid (Hyaluronan, hyaluronate): is a non-sulfated glycosaminoglycan, distributed widely throughout connective, epithelial and neural tissues. It is one of the primary components of the extracellular matrix, and contributes significantly to cell proliferation and migration. Hyaluronan is a major component of the skin, where it is involved in tissue repair.
While it is abundant in extracellular matrices, it contributes to tissues hydrodynamics, movement and proliferation of cells and participates in a wide number of cell surface receptor interactions, notably those including primary receptor CD44. The hyaluronidases enzymes degrade hyaluronan. There are at least seven types of hyaluronidase-like enzymes in humans, several of which are tumor suppressors. The degradation products of hyaluronic acid, the oligosaccharides and the very-low molecular weight hyaluronic acid, exhibit pro-angiogenic properties. In addition, recent studies show that hyaluronan fragments, but not the native high molecular mass of hyaluronan, can induce inflammatory responses in macrophages and dendritic cells in tissue injury. Hyaluronic acid is well suited to biological applications targeting the skin. Due to its high biocompatibility, it is used to stimulate tissue regeneration.
Studies have shown hyaluronic acid appearing in the early stages of healing to physically create room for white blood cells that mediate the immune response. It is used in the synthesis of biological scaffolds for wound healing applications and in wrinkle treatment. A suitable range of concentration over which hyaluronic acid can be used in the present composition is from about 0.001% to about 3%.
Glucosamine: is one of the most abundant monosaccharides in human tissues and a precursor in the biological synthesis of glycosilated proteins and lipids. It is commonly used in the treatment of osteoarthritis. The common form of glucosamine used is its sulfate salt.
Glucosamine shows a number of effects including an anti-inflammatory activity, stimulation of the synthesis of proteoglycans and the synthesis of proteolytic enzymes. A
suitable range of concentration over which glucosamine can be used in the present composition is from about 0.01% to about 3%.
Allantoin: is a diureide of glyosilic acid. It has keratolytic effect, increases the water content of the extracellular matrix, enhances the desquamation of the upper layers of dead (apoptotic) skin cells, and promotes skin proliferation and wound healing.
(f) Antimicrobials The composition of the present disclosure may comprise antimicrobial agents.
Antimicrobials kill microbes or inhibit their growth or accumulation.
Exemplary antimicrobials (or antimicrobial agent) are recited in U.S. Patent Application Publications 20040009227 and 20110081530. Suitable antimicrobials for use in the methods of the present disclosure include, but not limited to, phenolic and chlorinated phenolic and chlorinated phenolic compounds, resorcinol and its derivatives, bisphenolic compounds, benzoic esters (parabens), halogenated carbonilides, polymeric antimicrobial agents, thazolines, trichloromethylthioimides, natural antimicrobial agents (also referred to as "natural essential oils"), metal salts, and broad-spectrum antibiotics.
Specific phenolic and chlorinated phenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: phenol; 2-methyl phenol; 3-methyl phenol; 4-methyl phenol; 4-ethyl phenol; 2,4-dimethyl phenol; 2,5-dimethyl phenol; 3,4-dimethyl phenol; 2,6-dimethyl phenol; 4-n-propyl phenol; 4-n-butyl phenol; 4-n-amyl phenol; 4-tert-amyl phenol; 4-n-hexyl phenol; 4-n-heptyl phenol; mono- and poly-alkyl and aromatic halophenols; p-chlorophenyl; methyl p-chlorophenol; ethyl p-chlorophenol; n-propyl p-chlorophenol; n-butyl p-chlorophenol; n-amyl p-chlorophenol; sec-amyl p-chlorophenol; n-hexyl p-chlorophenol;
cyclohexyl p-chlorophenol; n-heptyl p-chlorophenol; n-octyl; p-chlorophenol; o-chlorophenol;
methyl o-chlorophenol; ethyl o-chlorophenol; n-propyl o-chlorophenol; n-butyl o-chlorophenol; n-amyl o-chlorophenol; tert-amyl o-chlorophenol; n-hexyl o-chlorophenol; n-heptyl o-chlorophenol; o-benzyl p-chlorophenol; o-benxyl-m-methyl p-chlorophenol; o-benzyl-m,m-dimethyl p-chlorophenol; o-phenylethyl p-chlorophenol; o-phenylethyl-m-methyl p-chlorophenol; 3-methyl p-chlorophenol 3,5-dimethyl p-chlorophenol, 6-ethyl-3-methyl p-chlorophenol, 6-n-propy1-3-methyl p-chlorophenol; 6-iso-propy1-3-methyl p-chlorophenol; 2-ethy1-3,5-dimethyl p-chlorophenol; 6-sec-butyl-3-methyl p-chlorophenol; 2-iso-propy1-3,5-dimethyl p-chlorophenol; 6-diethylmethy1-3-methyl p-chlorophenol; 6-iso-propy1-2-ethy1-3-methyl p-chlorophenol; 2-sec-amyl-3,5-dimethyl p-chlorophenol; 2-diethylmethy1-3,5-dimethyl p-chlorophenol; 6-sec-octy1-3-methyl p-chlorophenol; p-chloro-m-cresol p-bromophenol; methyl p-bromophenol; ethyl p-bromophenol; n-propyl p-bromophenol; n-butyl p-bromophenol; n-amyl p-bromophenol; sec-amyl p-bromophenol; n-hexyl p-bromophenol;
cyclohexyl p-bromophenol; o-bromophenol; tert-amyl o-bromophenol; n-hexyl o-bromophenol; n-propyl-m,m-dimethyl o-bromophenol; 2-phenyl phenol; 4-chloro-2-methyl phenol; 4-chloro-3-methyl phenol; 4-chloro-3,5-dimethyl phenol; 2,4-dichloro-3,5-dimethylphenol; 3,4,5 ,6-tetabromo-2-meth ylphenol- ; 5-methyl-2-pentylphenol;
4-isopropyl-3 -methylphenol; para-chloro-metaxylenol (PCMX); chlorothymol; phenoxyethanol;
phenoxyisopropanol; and 5-chloro-2-hydroxydiphenylmethane.
Resorcinol and its derivatives can also be used as antimicrobial agents.
Specific resorcinol derivatives include, but are not limited to: methyl resorcinol;
ethyl resorcinol; n-propyl resorcinol; n-butyl resorcinol; n-amyl resorcinol; n-hexyl resorcinol;
n-heptyl resorcinol; n-octyl resorcinol; n-nonyl resorcinol; phenyl resorcinol; benzyl resorcinol;
phenylethyl resorcinol; phenylpropyl resorcinol; p-chlorobenzyl resorcinol; 5-chloro-2,4-dihydroxydiphenyl methane; 4'-chloro-2,4-dihydroxydiphenyl methane; 5-bromo-2,4-dihydroxydiphenyl methane; and 4'-bromo-2,4-dihydroxydiphenyl methane.
Specific bisphenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: 2,2'-methylene bis-(4-chlorophenol); 2,4,4'trichloro-2'-hydroxy-diphenyl ether, which is sold by Ciba Geigy, Florham Park, N.J. under the tradename Triclosan0; 2,2'-methylene bis-(3,4,6-trichlorophenol); 2,2'-methylene bis-(4-chloro-6-bromophenol); bis-(2-hydroxy-3,5-dichlorop- henyl) sulphide; and bis-(2-hydroxy-5-chlorobenzyl)sulphide.
Specific benzoie esters (parabens) that can be used in the disclosure include, but are not limited to: methylparaben; propylparaben; butylparaben; ethylparaben;
isopropylparaben;
isobutylparaben; benzylparaben; sodium methylparaben; and sodium propylparaben.
Specific halogenated carbanilides that can be used in the disclosure include, but are not limited to: 3,4,4'-trichlorocarbanilides, such as 3-(4-chloropheny1)-1-(3,4-dichlorphenyl)urea sold under the tradename Triclocarban by Ciba-Geigy, Florham Park, N.J.; 3-trifluoromethy1-4,4'-dichlorocarbanilide; and 3,3',4-trichlorocarbanilide.
Specific polymeric antimicrobial agents that can be used in the disclosure include, but are not limited to: polyhexamethylene biguanide hydrochloride; and poly(iminoimidocarbonyl iminoimidocarbonyl iminohexamethylene hydrochloride), which is sold under the tradename Vantocil IB.
Specific thazolines that can be used in the disclosure include, but are not limited to that sold under the tradename Micro-Check ; and 2-n-octy1-4-isothiazolin-3-one, which is sold under the tradename Vinyzene IT-3000 DIDP.
Specific trichloromethylthioimides that can be used in the disclosure include, but are not limited to: N-(trichloromethylthio)phthalimide, which is sold under the tradename Fungitrol ; and N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide, which is sold under the tradename Vancide .
Specific natural antimicrobial agents that can be used in the disclosure include, but are not limited to, oils of: anise; lemon; orange; rosemary; wintergreen; thyme;
lavender; cloves;
hops; tea tree; citronella; wheat; barley; lemongrass; cedar leaf; cedarwood;
cinnamon;
fleagrass; geranium; sandalwood; violet; cranberry; eucalyptus; vervain;
peppermint; gum benzoin; basil; fennel; fir; balsam; menthol; ocmea origanuin; hydastis;
carradensis;
Berberidaceac daceae; Ratanhiae longa; and Curcuma longa. Also included in this class of natural antimicrobial agents are the key chemical components of the plant oils which have been found to provide antimicrobial benefit. These chemicals include, but are not limited to: anethol;
catechole; camphene; thymol; eugenol; eucalyptol; ferulic acid; farnesol;
hinokitiol; tropolone;
limonene; menthol; methyl salicylate; carvacol; terpineol; verbenone;
berberine; ratanhiae extract; caryophellene oxide; citronellic acid; curcumin; nerolidol; and geraniol.
Specific metal salts that can be used in the disclosure include, but are not limited to, salts of metals in groups 3a-5a, 3b-7b, and 8 of the periodic table. Specific examples of metal salts include, but are not limited to, salts of: aluminum; zirconium; zinc;
silver; gold; copper;
lanthanum; tin; mercury; bismuth; selenium; strontium; scandium; yttrium;
cerium;
praseodymiun; neodymium; promethum; samarium; europium; gadolinium; terbium;
dysprosium; holmium; erbium; thalium; ytterbium; lutetium; and mixtures thereof. An example of the metal-ion based antimicrobial agent is sold under the tradename HealthShield , and is manufactured by HealthShield Technology, Wakefield, Mass. [give other examples here e.g.
smith and nephew]
Specific broad-spectrum antimicrobial agents that can be used in the disclosure include, but are not limited to, those that are recited in other categories of antimicrobial agents herein.
Additional antimicrobial agents that can be used in the methods of the disclosure include, but are not limited to: pyrithiones, and in particular pyrithione-including zinc complexes such as that sold under the tradename Octopirox,O;
dimethyidimethylol hydantoin, which is sold under the tradename Glydant ; methylchloroisothiazolinone/
methylisothiazolinone, which is sold under the tradename Kathon CG ; sodium sulfite;
sodium bisulfite; imidazolidinyl urea, which is sold under the tradename Germall 115 ;
diazolidinyl urea, which is sold under the tradename Germall 11C); benzyl alcohol v2-bromo-2-nitropropane-1,3-diol, which is sold under the tradename BronopolO; formalin or formaldehyde; iodopropenyl butylcarbamate, which is sold under the tradename Polyphase P100 ; chloroacetamide; methanamine; methyldibromonitrile glutaronitrile (1,2-dibromo-2,4-dicyanobutane), which is sold under the tradename Tektamer0; glutaraldehyde; 5-bromo-5-nitro-1,3-dioxane, which is sold under the tradename Bronidoxia; phenethyl alcohol; o-phenylphenol/sodium o-phenylphenol sodium hydroxymethylglycinate, which is sold under the tradename Suttocide AC); polymethoxy bicyclic oxazolidine; which is sold under the tradename Nuosept CC); dimethoxane; thimersal; dichlorobenzyl alcohol; captan;
chlorphenenesin;
dichlorophene; chlorbutanol; glyceryl laurate; halogenated diphenyl ethers;
2,4,4'-trichloro-2'-hydroxy-diphenyl ether, which is sold under the tradename Triclosan and is available from Ciba-Geigy, Florham Park, N.J.; and 2,2'-dihydroxy-5,5'-dibromo-diphenyl ether.
Additional antimicrobial agents that can be used in the methods of the disclosure include those disclosed by U.S. Pat. Nos. 3,141,321; 4,402,959; 4,430,381;
4,533,435;
4,625,026; 4,736,467; 4,855,139; 5,069,907; 5,091,102; 5,639,464; 5,853,883;
5,854,147;
5,894,042; and 5,919,554, and U.S. Pat. Appl. Publ. Nos. 20040009227 and 20110081530.
(g) Collagens and Agents that Promote Collagen Synthesis The compositions of the present disclosure may include collagens and agents that promote collagen synthesis. Collagen is a fibrous protein produced in dermal fibroblast cells and forming 70% of the dermis. Collagen is responsible for the smoothing and firming of the skin. Therefore, when the synthesis of collagen is reduced, skin aging will occur, and so the firming and smoothing of the skin will be rapidly reduced. As a result, the skin will be flaccid and wrinkled. On the other hand, when metabolism of collagen is activated by the stimulation of collagen synthesis in the skin, the components of dermal matrices will be increased, leading to effects, such as wrinkle improvement, firmness improvement and skin strengthening. Thus, collagens and agents that promote collagen synthesis may also be useful in the present disclosure. Agents that promote collagen synthesis (i.e., pro-collagen synthesis agents) include
5,894,042; and 5,919,554, and U.S. Pat. Appl. Publ. Nos. 20040009227 and 20110081530.
(g) Collagens and Agents that Promote Collagen Synthesis The compositions of the present disclosure may include collagens and agents that promote collagen synthesis. Collagen is a fibrous protein produced in dermal fibroblast cells and forming 70% of the dermis. Collagen is responsible for the smoothing and firming of the skin. Therefore, when the synthesis of collagen is reduced, skin aging will occur, and so the firming and smoothing of the skin will be rapidly reduced. As a result, the skin will be flaccid and wrinkled. On the other hand, when metabolism of collagen is activated by the stimulation of collagen synthesis in the skin, the components of dermal matrices will be increased, leading to effects, such as wrinkle improvement, firmness improvement and skin strengthening. Thus, collagens and agents that promote collagen synthesis may also be useful in the present disclosure. Agents that promote collagen synthesis (i.e., pro-collagen synthesis agents) include
6 PCT/CA2013/000786 amino acids, peptides, proteins, lipids, small chemical molecules, natural products and extracts from natural products.
For instance, it was discovered that intake of vitamin C, iron, and collagen can effectively increase the amount of collagen in skin or bone. See, e.g., U.S.
Patent Application Publication 20090069217. Examples of the vitamin C include an ascorbic acid derivative such as L-ascorbic acid or sodium L-ascorbate, an ascorbic acid preparation obtained by coating ascorbic acid with an emulsifier or the like, and a mixture containing two or more of those vitamin Cs at an arbitrary rate. In addition, natural products containing vitamin C such as acerola and lemon may also be used. Examples of the iron preparation include:
an inorganic iron such as ferrous sulfate, sodium ferrous citrate, or ferric pyrophosphate;
an organic iron such as heme iron, ferritin iron, or lactoferrin iron; and a mixture containing two or more of those irons at an arbitrary rate. In addition, natural products containing iron such as spinach or liver may also be used. Moreover, examples of the collagen include: an extract obtained by treating bone, skin, or the like of a mammal such as bovine or swine with an acid or alkaline; a peptide obtained by hydrolyzing the extract with a protease such as pepsine, trypsin, or chymotrypsin; and a mixture containing two or more of those collagens at an arbitrary rate.
Collagens extracted from plant sources may also be used.
Additional pro-collagen synthesis agents are described, for example, in U.S.
Patent Patents 7598291, 7722904, 6203805 , 5529769, etc, and U.S. Patent Application Publications 20060247313, 20080108681, 20110130459, 20090325885, 20110086060, etc.
(4) Methods of Use The biophotonic compositions of the present disclosure have numerous uses.
Without being bound by theory, the biophotonic compositions of the present disclosure may promote wound healing or tissue repair. The biophotonic compositions of the present disclosure may also be used to treat a skin disorder. The biophotonic compositions of the present disclosure may also be used to treat acne. The biophotonic compositions of the present disclosure may also be used for skin rejuvenation. The biophotonic compositions of the present disclosure may also be used for treating acute inflammation. Therefore, it is an objective of the present disclosure to provide a method for providing biophotonic therapy to a wound, where the method promotes wound healing. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to a skin tissue afflicted with acne, wherein the method is used to treat acne. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to a skin tissue afflicted with a skin disorder, wherein the method is used to treat the skin disorder. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to skin tissue, wherein the method is used for promoting skin rejuvenation.
In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a wound, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a site of a wound, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In yet another aspect, the present disclosure provides a method for promoting skin rejuvenation. In certain embodiments, the present disclosure provides a method for providing skin rejuvenation, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to the skin, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In yet another aspect, the present disclosure provides a method for providing biophotonic therapy to a target skin tissue afflicted with a skin disorder. In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In yet another aspect, the present disclosure provides a method for providing biophotonic therapy to a target skin tissue afflicted with acne. In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue afflicted with acne, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In other embodiments, the present disclosure provides a method for treating acute inflammation, the method comprising: topically applying a biophotonic composition of the present disclosure to a target skin tissue with acute inflammation, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
The biophotonic compositions suitable for use in the methods of the present disclosure may be selected from any of the embodiments of the biophotonic compositions described above. For instance, the biophotonic compositions useful in the method of the present disclosure may comprise a first xanthene dye that undergoes at least partial photobleaching upon application of light. The first xanthene dye may absorb at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm. In one embodiment, the first xanthene dye absorbs at a wavelength of about 200-600 nm. In some embodiments, the first xanthene dye absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, 400-500 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm. The absorption spectrum of the second xanthene dye should overlap at least about 80%, 50%, 40%, 30%, or 20% with the emission spectrum of the first xanthene dye. In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye.
Illumination of the biophotonic composition with light may cause a transfer of energy from the first xanthene dye to the second xanthene dye. Subsequently, the second xanthene dye may emit energy as fluorescence and/or generate reactive oxygen species. In certain embodiments of the methods the present disclosure, energy transfer caused by the application of light is not accompanied by concomitant generation of heat, or does not result in tissue damage.
The biophotonic compositions useful for the present methods can be formulated with any carrier. In certain embodiments, the carrier is a gelling agent. The gelling agent may include, but is not limited to, lipids such as glycerin, glycols such as propylene glycol, hyaluronic acid, glucosamine sulfate, cellulose derivatives (hydroxypropyl methylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methylcellulose and the like), noncellulose polysaccharides (galactomannans, guar gum, carob gum, gum arabic, sterculia gum, agar, alginates and the like) and acrylic acid polymers.
In the methods of the present disclosure, any source of actinic light can be used. Any type of halogen, LED or plasma arc lamp or laser may be suitable. The primary characteristic of suitable sources of actinic light will be that they emit light in a wavelength (or wavelengths) appropriate for activating the one or more chromophores present in the composition. In one embodiment, an argon laser is used. In another embodiment, a potassium-titanyl phosphate (KTP) laser (e.g. a GreenLightTM laser) is used. In another embodiment, sunlight may be used.
In yet another embodiment, a LED photocuring device is the source of the actinic light. In yet another embodiment, the source of the actinic light is a source of light having a wavelength between about 200 to 800 nm. In another embodiment, the source of the actinic light is a source of visible light having a wavelength between about 400 and 600 nm.
Furthermore, the source of actinic light should have a suitable power density. Suitable power density for non-collimated light sources (LED, halogen or plasma lamps) are in the range from about 1 mW/cm2 to about 200 mW/cm2. Suitable power density for laser light sources are in the range from about 0.5 mW/cm2 to about 0.8 mW/cm2.
In some embodiments of the methods of the present disclosure, the light has an energy at the subject's skin, wound or mucosa surface of between about 1 mW/cm2 and about 500 mW/cm2, 1-300 mW/cm2, or 1-200 mW/cm2, wherein the energy applied depends at least on the condition being treated, the wavelength of the light, the distance of the subject's skin from the light source, and the thickness of the biophotonic compsoition. In certain embodiments, the light at the subject's skin is between about 1-40 mW/cm2, or 20-60 mW/cm2, or mW/cm2, or 60-100 mW/cm2, or 80-120 mW/cm2, or 100-140 mW/cm2, or 120-160 mW/cm2, or 140-180 mW/cm2, or 160-200 mW/cm2, or 110-240 mW/cm2, or 110-150 mW/cm2, or 240 mW/cm2.
In some embodiments, a mobile device can be used to activate embodiments of the biophotonic composition of the present disclosure, wherein the mobile device can emit light having an emission spectra which overlaps an absorption spectra of the donor xanthene dye in the biophotonic composition. The mobile device can have a display screen through which the light is emitted and/or the mobile device can emit light from a flashlight which can photoactivate the biophotonic composition.
In some embodiments, a display screen on a television or a computer monitor can be used to activate the biophotonic composition, wherein the display screen can emit light having an emission spectra which overlaps an absorption spectra of the donor xanthene dye in the biophotonic composition.
In certain embodiments, the first and/or the second xanthene dye can be photoactivated by ambient light which may originate from the sun or other light sources.
Ambient light can be considered to be a general illumination that comes from all directions in a room that has no visible source. In certain embodiments, the first and/or the second xanthene dye can be photoactivated by light in the visible range of the electromagnetic spectrum.
Exposure times to ambient light may be longer than that to direct light.
In certain embodiments, different sources of light can be used to activate the biophotonic compositions, such as a combination of ambient light and direct LED light.
The duration of the exposure to actinic light required will be dependent on the surface of the treated area, the type of lesion, trauma or injury that is being treated, the power density, wavelength and bandwidth of the light source, the thickness of the biophotonic composition, and the treatment distance from the light source. The illumination of the treated area by fluorescence may take place within seconds or even fragment of seconds, but a prolonged exposure period is beneficial to exploit the synergistic effects of the absorbed, reflected and reemitted light on the composition of the present disclosure and its interaction with the tissue being treated. In one embodiment, the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes. In another embodiment, the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes. In some other embodiments, the biophotonic composition is illuminated for a period between 1 minute and 3 minutes. In certain embodiments, light is applied for a period of 1-30 seconds, 15-45 seconds, 30-60 seconds, 0.75-1.5 minutes, 1-2 minutes, 1.5-2.5 minutes, 2-3 minutes, 2.5-3.5 minutes, 3-4 minutes, 3.5-4.5 minutes, 4-5 minutes, 5-10 minutes, 10-15 minutes, 15-20 minutes, 20-25 minutes, or 20-30 minutes. In yet another embodiment, the source of actinic light is in continuous motion over the treated area for the appropriate time of exposure. In yet another embodiment, multiple applications of the biophotonic composition and actinic light are performed. In some embodiments, the tissue, skin or wound is exposed to actinic light at least two, three, four, five or six times. In some embodiments, a fresh application of the biophotonic composition is applied before exposure to actinic light.
In the methods of the present disclosure, the biophotonic composition may be optionally removed from the site of treatment following application of light.
In certain embodiments, the biophotonic composition is left on the treatment site for more than 30 minutes, more than one hour, more than 2 hours, more than 3 hours. It can be illuminated with ambient light. To prevent drying, the composition can be covered with a transparent or translucent cover such as a polymer film, or an opaque cover which can be removed before illumination.
(5) Wounds and Wound Healing The biophotonic compositions and methods of the present disclosure may be used to treat wounds and promote wound healing. Wounds that may be treated by the biophotonic compositions and methods of the present disclosure include, for example, injuries to the skin and subcutaneous tissue initiated in different ways (e.g., pressure ulcers from extended bed rest, wounds induced by trauma, wounds induced by conditions such as periodontitis) and with varying characteristics. In certain embodiments, the present disclosure provides biophotonic compositions and methods for treating and/or promoting the healing of, for example, burns, incisions, excisions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, gun shots, sores and ulcers.
Biophotonic compositions and methods of the present disclosure may be used to treat and/or promote the healing of chronic cutaneous ulcers or wounds, which are wounds that have failed to proceed through an orderly and timely series of events to produce a durable structural, functional, and cosmetic closure. The vast majority of chronic wounds can be classified into three categories based on their etiology: pressure ulcers, neuropathic (diabetic foot) ulcers and vascular (venous or arterial) ulcers.
In certain other embodiments, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing, Grade I-IV ulcers. In certain embodiments, the application provides compositions suitable for use with Grade II ulcers in particular.
Ulcers may be classified into one of four grades depending on the depth of the wound: i) Grade I: wounds limited to the epithelium; ii) Grade II: wounds extending into the dermis; iii) Grade III: wounds extending into the subcutaneous tissue; and iv) Grade IV (or full-thickness wounds): wounds wherein bones are exposed (e.g., a bony pressure point such as the greater trochanter or the sacrum).
For example, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a diabetic ulcer. Diabetic patients are prone to foot and other ulcerations due to both neurologic and vascular complications.
Peripheral neuropathy can cause altered or complete loss of sensation in the foot and/or leg. Diabetic patients with advanced neuropathy lose all ability for sharp-dull discrimination. Any cuts or trauma to the foot may go completely unnoticed for days or weeks in a patient with neuropathy. A patient with advanced neuropathy loses the ability to sense a sustained pressure insult, as a result, tissue ischemia and necrosis may occur leading to for example, plantar ulcerations.
Microvascular disease is one of the significant complications for diabetics which may also lead to ulcerations. In certain embodiments, compositions and methods of treating a chronic wound are provided here in, where the chronic wound is characterized by diabetic foot ulcers and/or ulcerations due to neurologic and/or vascular complications of diabetes.
In other examples, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a pressure ulcer. Pressure ulcer includes bed sores, decubitus ulcers and ischial tuberosity ulcers and can cause considerable pain and discomfort to a patient. A pressure ulcer can occur as a result of a prolonged pressure applied to the skin. Thus, pressure can be exerted on the skin of a patient due to the weight or mass of an individual. A pressure ulcer can develop when blood supply to an area of the skin is obstructed or cut off for more than two or three hours. The affected skin area can turns red, becomes painful and can become necrotic. If untreated, the skin breaks open and can become infected. An ulcer sore is therefore a skin ulcer that occurs in an area of the skin that is under pressure from e.g. lying in bed, sitting in a wheelchair, and/or wearing a cast for a prolonged period of time. Pressure ulcer can occur when a person is bedridden, unconscious, unable to sense pain, or immobile. Pressure ulcer often occur in boney prominences of the body such as the buttocks area (on the sacrum or iliac crest), or on the heels of a foot.
In other examples, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of acute wounds.
Additional types of wound that can be treated by the biophotonic compositions and methods of the present disclosure include those disclosed by U.S. Pat. Appl.
Publ. No.
20090220450, which is incorporated herein by reference.
Wound healing in adult tissues is a complicated reparative process. For example, the healing process for skin involves the recruitment of a variety of specialized cells to the site of the wound, extracellular matrix and basement membrane deposition, angiogenesis, selective protease activity and re-epithelialization.
There are three distinct phases in the wound healing process. First, in the inflammatory phase, which typically occurs from the moment a wound occurs until the first two to five days, platelets aggregate to deposit granules, promoting the deposit of fibrin and stimulating the release of growth factors. Leukocytes migrate to the wound site and begin to digest and transport debris away from the wound. During this inflammatory phase, monocytes are also converted to macrophages, which release growth factors for stimulating angiogenesis and the production of fibroblasts.
Second, in the proliferative phase, which typically occurs from two days to three weeks, granulation tissue forms, and epithelialization and contraction begin.
Fibroblasts, which are key cell types in this phase, proliferate and synthesize collagen to fill the wound and provide a strong matrix on which epithelial cells grow. As fibroblasts produce collagen, vascularization extends from nearby vessels, resulting in granulation tissue. Granulation tissue typically grows from the base of the wound. Epithelialization involves the migration of epithelial cells from the wound surfaces to seal the wound. Epithelial cells are driven by the need to contact cells of like type and are guided by a network of fibrin strands that function as a grid over which these cells migrate. Contractile cells called myofibroblasts appear in wounds, and aid in wound closure.
These cells exhibit collagen synthesis and contractility, and are common in granulating wounds.
Third, in the remodeling phase, the final phase of wound healing which can take place from three weeks up to several years, collagen in the scar undergoes repeated degradation and re-synthesis. During this phase, the tensile strength of the newly formed skin increases.
However, as the rate of wound healing increases, there is often an associated increase in scar formation. Scarring is a consequence of the healing process in most adult animal and human tissues. Scar tissue is not identical to the tissue which it replaces, as it is usually of inferior functional quality. The types of scars include, but are not limited to, atrophic, hypertrophic and keloidal scars, as well as scar contractures. Atrophic scars are flat and depressed below the surrounding skin as a valley or hole. Hypertrophic scars are elevated scars that remain within the boundaries of the original lesion, and often contain excessive collagen arranged in an abnormal pattern. Keloidal scars are elevated scars that spread beyond the margins of the original wound and invade the surrounding normal skin in a way that is site specific, and often contain whorls of collagen arranged in an abnormal fashion.
In contrast, normal skin consists of collagen fibers arranged in a basket-weave pattern, which contributes to both the strength and elasticity of the dermis. Thus, to achieve a smoother wound healing process, an approach is needed that not only stimulates collagen production, but also does so in a way that reduces scar formation.
The biophotonic compositions and methods of the present disclosure promote the wound healing by promoting the formation of substantially uniform epithelialization;
promoting collagen synthesis; promoting controlled contraction; and/or by reducing the formation of scar tissue. In certain embodiments, the biophotonic compositions and methods of the present disclosure may promote wound healing by promoting the formation of substantially uniform epithelialization. In some embodiments, the biophotonic compositions and methods of the present disclosure promote collagen synthesis. In some other embodiments, the biophotonic compositions and methods of the present disclosure promote controlled contraction. In certain embodiments, the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing the formation of scar tissue or by speeding up the wound closure process. In certain embodiments, the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing inflammation. In certain embodiments, the biophotonic composition can be used following wound closure to optimize scar revision. In this case, the biophotonic composition may be applied at regular intervals such as once a week, or at an interval deemed appropriate by the physician.
The biophotonic composition may be soaked into a woven or non-woven material or a sponge and applied as a wound dressing. A light source, such as LEDs or waveguides, may be provided within or adjacent the wound dressing or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymeth ylmethacryl ate.
Adjunct therapies which may be topical or systemic such as antibiotic treatment may also be used. Negative pressure assisted wound closure can also be used to assist wound closure and/or to remove the composition.
(6) Acne and Acne Scars The biophotonic compositions and methods of the present disclosure may be used to treat acne. As used herein, "acne" means a disorder of the skin caused by inflammation of skin glands or hair follicles. The biophotonic compositions and methods of the disclosure can be used to treat acne at early pre-emergent stages or later stages where lesions from acne are visible. Mild, moderate and severe acne can be treated with embodiments of the biophotonic compositions and methods. Early pre-emergent stages of acne usually begin with an excessive secretion of sebum or dermal oil from the sebaceous glands located in the pilosebaceous apparatus. Sebum reaches the skin surface through the duct of the hair follicle. The presence of excessive amounts of sebum in the duct and on the skin tends to obstruct or stagnate the normal flow of sebum from the follicular duct, thus producing a thickening and solidification of the sebum to create a solid plug known as a comedone. In the normal sequence of developing acne, hyperkeratinazation of the follicular opening is stimulated, thus completing blocking of the duct. The usual results are papules, pustules, or cysts, often contaminated with bacteria, which cause secondary infections. Acne is characterized particularly by the presence of comedones, inflammatory papules, or cysts. The appearance of acne may range from slight skin irritation to pitting and even the development of disfiguring scars. Accordingly, the biophotonic compositions and methods of the present disclosure can be used to treat one or more of skin irritation, pitting, development of scars, comedones, inflammatory papules, cysts, hyperkeratinazation, and thickening and hardening of sebum associated with acne.
The composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts such as the face, body, arms, legs etc. A light source, such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
The biophotonic compositions and methods of the present disclosure may be used to treat various types of acne. Some types of acne include, for example, acne vulgaris, cystic acne, acne atrophica, bromide acne, chlorine acne, acne conglobata, acne cosmetica, acne detergicans, epidemic acne, acne estivalis, acne fulminans, halogen acne, acne indurata, iodide acne, acne keloid, acne mechanica, acne papulosa, pomade acne, premenstral acne, acne pustulosa, acne scorbutica, acne scrofulosorum, acne urticata, acne varioliformis, acne venenata, propionic acne, acne excoriee, gram negative acne, steroid acne, and nodulocystic acne.
For instance, it was discovered that intake of vitamin C, iron, and collagen can effectively increase the amount of collagen in skin or bone. See, e.g., U.S.
Patent Application Publication 20090069217. Examples of the vitamin C include an ascorbic acid derivative such as L-ascorbic acid or sodium L-ascorbate, an ascorbic acid preparation obtained by coating ascorbic acid with an emulsifier or the like, and a mixture containing two or more of those vitamin Cs at an arbitrary rate. In addition, natural products containing vitamin C such as acerola and lemon may also be used. Examples of the iron preparation include:
an inorganic iron such as ferrous sulfate, sodium ferrous citrate, or ferric pyrophosphate;
an organic iron such as heme iron, ferritin iron, or lactoferrin iron; and a mixture containing two or more of those irons at an arbitrary rate. In addition, natural products containing iron such as spinach or liver may also be used. Moreover, examples of the collagen include: an extract obtained by treating bone, skin, or the like of a mammal such as bovine or swine with an acid or alkaline; a peptide obtained by hydrolyzing the extract with a protease such as pepsine, trypsin, or chymotrypsin; and a mixture containing two or more of those collagens at an arbitrary rate.
Collagens extracted from plant sources may also be used.
Additional pro-collagen synthesis agents are described, for example, in U.S.
Patent Patents 7598291, 7722904, 6203805 , 5529769, etc, and U.S. Patent Application Publications 20060247313, 20080108681, 20110130459, 20090325885, 20110086060, etc.
(4) Methods of Use The biophotonic compositions of the present disclosure have numerous uses.
Without being bound by theory, the biophotonic compositions of the present disclosure may promote wound healing or tissue repair. The biophotonic compositions of the present disclosure may also be used to treat a skin disorder. The biophotonic compositions of the present disclosure may also be used to treat acne. The biophotonic compositions of the present disclosure may also be used for skin rejuvenation. The biophotonic compositions of the present disclosure may also be used for treating acute inflammation. Therefore, it is an objective of the present disclosure to provide a method for providing biophotonic therapy to a wound, where the method promotes wound healing. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to a skin tissue afflicted with acne, wherein the method is used to treat acne. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to a skin tissue afflicted with a skin disorder, wherein the method is used to treat the skin disorder. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to skin tissue, wherein the method is used for promoting skin rejuvenation.
In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a wound, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a site of a wound, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In yet another aspect, the present disclosure provides a method for promoting skin rejuvenation. In certain embodiments, the present disclosure provides a method for providing skin rejuvenation, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to the skin, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In yet another aspect, the present disclosure provides a method for providing biophotonic therapy to a target skin tissue afflicted with a skin disorder. In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In yet another aspect, the present disclosure provides a method for providing biophotonic therapy to a target skin tissue afflicted with acne. In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue afflicted with acne, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
In other embodiments, the present disclosure provides a method for treating acute inflammation, the method comprising: topically applying a biophotonic composition of the present disclosure to a target skin tissue with acute inflammation, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye (e.g., donor xanthene dye) of the biophotonic composition.
The biophotonic compositions suitable for use in the methods of the present disclosure may be selected from any of the embodiments of the biophotonic compositions described above. For instance, the biophotonic compositions useful in the method of the present disclosure may comprise a first xanthene dye that undergoes at least partial photobleaching upon application of light. The first xanthene dye may absorb at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm. In one embodiment, the first xanthene dye absorbs at a wavelength of about 200-600 nm. In some embodiments, the first xanthene dye absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, 400-500 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm. The absorption spectrum of the second xanthene dye should overlap at least about 80%, 50%, 40%, 30%, or 20% with the emission spectrum of the first xanthene dye. In some embodiments, the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye.
Illumination of the biophotonic composition with light may cause a transfer of energy from the first xanthene dye to the second xanthene dye. Subsequently, the second xanthene dye may emit energy as fluorescence and/or generate reactive oxygen species. In certain embodiments of the methods the present disclosure, energy transfer caused by the application of light is not accompanied by concomitant generation of heat, or does not result in tissue damage.
The biophotonic compositions useful for the present methods can be formulated with any carrier. In certain embodiments, the carrier is a gelling agent. The gelling agent may include, but is not limited to, lipids such as glycerin, glycols such as propylene glycol, hyaluronic acid, glucosamine sulfate, cellulose derivatives (hydroxypropyl methylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methylcellulose and the like), noncellulose polysaccharides (galactomannans, guar gum, carob gum, gum arabic, sterculia gum, agar, alginates and the like) and acrylic acid polymers.
In the methods of the present disclosure, any source of actinic light can be used. Any type of halogen, LED or plasma arc lamp or laser may be suitable. The primary characteristic of suitable sources of actinic light will be that they emit light in a wavelength (or wavelengths) appropriate for activating the one or more chromophores present in the composition. In one embodiment, an argon laser is used. In another embodiment, a potassium-titanyl phosphate (KTP) laser (e.g. a GreenLightTM laser) is used. In another embodiment, sunlight may be used.
In yet another embodiment, a LED photocuring device is the source of the actinic light. In yet another embodiment, the source of the actinic light is a source of light having a wavelength between about 200 to 800 nm. In another embodiment, the source of the actinic light is a source of visible light having a wavelength between about 400 and 600 nm.
Furthermore, the source of actinic light should have a suitable power density. Suitable power density for non-collimated light sources (LED, halogen or plasma lamps) are in the range from about 1 mW/cm2 to about 200 mW/cm2. Suitable power density for laser light sources are in the range from about 0.5 mW/cm2 to about 0.8 mW/cm2.
In some embodiments of the methods of the present disclosure, the light has an energy at the subject's skin, wound or mucosa surface of between about 1 mW/cm2 and about 500 mW/cm2, 1-300 mW/cm2, or 1-200 mW/cm2, wherein the energy applied depends at least on the condition being treated, the wavelength of the light, the distance of the subject's skin from the light source, and the thickness of the biophotonic compsoition. In certain embodiments, the light at the subject's skin is between about 1-40 mW/cm2, or 20-60 mW/cm2, or mW/cm2, or 60-100 mW/cm2, or 80-120 mW/cm2, or 100-140 mW/cm2, or 120-160 mW/cm2, or 140-180 mW/cm2, or 160-200 mW/cm2, or 110-240 mW/cm2, or 110-150 mW/cm2, or 240 mW/cm2.
In some embodiments, a mobile device can be used to activate embodiments of the biophotonic composition of the present disclosure, wherein the mobile device can emit light having an emission spectra which overlaps an absorption spectra of the donor xanthene dye in the biophotonic composition. The mobile device can have a display screen through which the light is emitted and/or the mobile device can emit light from a flashlight which can photoactivate the biophotonic composition.
In some embodiments, a display screen on a television or a computer monitor can be used to activate the biophotonic composition, wherein the display screen can emit light having an emission spectra which overlaps an absorption spectra of the donor xanthene dye in the biophotonic composition.
In certain embodiments, the first and/or the second xanthene dye can be photoactivated by ambient light which may originate from the sun or other light sources.
Ambient light can be considered to be a general illumination that comes from all directions in a room that has no visible source. In certain embodiments, the first and/or the second xanthene dye can be photoactivated by light in the visible range of the electromagnetic spectrum.
Exposure times to ambient light may be longer than that to direct light.
In certain embodiments, different sources of light can be used to activate the biophotonic compositions, such as a combination of ambient light and direct LED light.
The duration of the exposure to actinic light required will be dependent on the surface of the treated area, the type of lesion, trauma or injury that is being treated, the power density, wavelength and bandwidth of the light source, the thickness of the biophotonic composition, and the treatment distance from the light source. The illumination of the treated area by fluorescence may take place within seconds or even fragment of seconds, but a prolonged exposure period is beneficial to exploit the synergistic effects of the absorbed, reflected and reemitted light on the composition of the present disclosure and its interaction with the tissue being treated. In one embodiment, the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes. In another embodiment, the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes. In some other embodiments, the biophotonic composition is illuminated for a period between 1 minute and 3 minutes. In certain embodiments, light is applied for a period of 1-30 seconds, 15-45 seconds, 30-60 seconds, 0.75-1.5 minutes, 1-2 minutes, 1.5-2.5 minutes, 2-3 minutes, 2.5-3.5 minutes, 3-4 minutes, 3.5-4.5 minutes, 4-5 minutes, 5-10 minutes, 10-15 minutes, 15-20 minutes, 20-25 minutes, or 20-30 minutes. In yet another embodiment, the source of actinic light is in continuous motion over the treated area for the appropriate time of exposure. In yet another embodiment, multiple applications of the biophotonic composition and actinic light are performed. In some embodiments, the tissue, skin or wound is exposed to actinic light at least two, three, four, five or six times. In some embodiments, a fresh application of the biophotonic composition is applied before exposure to actinic light.
In the methods of the present disclosure, the biophotonic composition may be optionally removed from the site of treatment following application of light.
In certain embodiments, the biophotonic composition is left on the treatment site for more than 30 minutes, more than one hour, more than 2 hours, more than 3 hours. It can be illuminated with ambient light. To prevent drying, the composition can be covered with a transparent or translucent cover such as a polymer film, or an opaque cover which can be removed before illumination.
(5) Wounds and Wound Healing The biophotonic compositions and methods of the present disclosure may be used to treat wounds and promote wound healing. Wounds that may be treated by the biophotonic compositions and methods of the present disclosure include, for example, injuries to the skin and subcutaneous tissue initiated in different ways (e.g., pressure ulcers from extended bed rest, wounds induced by trauma, wounds induced by conditions such as periodontitis) and with varying characteristics. In certain embodiments, the present disclosure provides biophotonic compositions and methods for treating and/or promoting the healing of, for example, burns, incisions, excisions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, gun shots, sores and ulcers.
Biophotonic compositions and methods of the present disclosure may be used to treat and/or promote the healing of chronic cutaneous ulcers or wounds, which are wounds that have failed to proceed through an orderly and timely series of events to produce a durable structural, functional, and cosmetic closure. The vast majority of chronic wounds can be classified into three categories based on their etiology: pressure ulcers, neuropathic (diabetic foot) ulcers and vascular (venous or arterial) ulcers.
In certain other embodiments, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing, Grade I-IV ulcers. In certain embodiments, the application provides compositions suitable for use with Grade II ulcers in particular.
Ulcers may be classified into one of four grades depending on the depth of the wound: i) Grade I: wounds limited to the epithelium; ii) Grade II: wounds extending into the dermis; iii) Grade III: wounds extending into the subcutaneous tissue; and iv) Grade IV (or full-thickness wounds): wounds wherein bones are exposed (e.g., a bony pressure point such as the greater trochanter or the sacrum).
For example, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a diabetic ulcer. Diabetic patients are prone to foot and other ulcerations due to both neurologic and vascular complications.
Peripheral neuropathy can cause altered or complete loss of sensation in the foot and/or leg. Diabetic patients with advanced neuropathy lose all ability for sharp-dull discrimination. Any cuts or trauma to the foot may go completely unnoticed for days or weeks in a patient with neuropathy. A patient with advanced neuropathy loses the ability to sense a sustained pressure insult, as a result, tissue ischemia and necrosis may occur leading to for example, plantar ulcerations.
Microvascular disease is one of the significant complications for diabetics which may also lead to ulcerations. In certain embodiments, compositions and methods of treating a chronic wound are provided here in, where the chronic wound is characterized by diabetic foot ulcers and/or ulcerations due to neurologic and/or vascular complications of diabetes.
In other examples, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a pressure ulcer. Pressure ulcer includes bed sores, decubitus ulcers and ischial tuberosity ulcers and can cause considerable pain and discomfort to a patient. A pressure ulcer can occur as a result of a prolonged pressure applied to the skin. Thus, pressure can be exerted on the skin of a patient due to the weight or mass of an individual. A pressure ulcer can develop when blood supply to an area of the skin is obstructed or cut off for more than two or three hours. The affected skin area can turns red, becomes painful and can become necrotic. If untreated, the skin breaks open and can become infected. An ulcer sore is therefore a skin ulcer that occurs in an area of the skin that is under pressure from e.g. lying in bed, sitting in a wheelchair, and/or wearing a cast for a prolonged period of time. Pressure ulcer can occur when a person is bedridden, unconscious, unable to sense pain, or immobile. Pressure ulcer often occur in boney prominences of the body such as the buttocks area (on the sacrum or iliac crest), or on the heels of a foot.
In other examples, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of acute wounds.
Additional types of wound that can be treated by the biophotonic compositions and methods of the present disclosure include those disclosed by U.S. Pat. Appl.
Publ. No.
20090220450, which is incorporated herein by reference.
Wound healing in adult tissues is a complicated reparative process. For example, the healing process for skin involves the recruitment of a variety of specialized cells to the site of the wound, extracellular matrix and basement membrane deposition, angiogenesis, selective protease activity and re-epithelialization.
There are three distinct phases in the wound healing process. First, in the inflammatory phase, which typically occurs from the moment a wound occurs until the first two to five days, platelets aggregate to deposit granules, promoting the deposit of fibrin and stimulating the release of growth factors. Leukocytes migrate to the wound site and begin to digest and transport debris away from the wound. During this inflammatory phase, monocytes are also converted to macrophages, which release growth factors for stimulating angiogenesis and the production of fibroblasts.
Second, in the proliferative phase, which typically occurs from two days to three weeks, granulation tissue forms, and epithelialization and contraction begin.
Fibroblasts, which are key cell types in this phase, proliferate and synthesize collagen to fill the wound and provide a strong matrix on which epithelial cells grow. As fibroblasts produce collagen, vascularization extends from nearby vessels, resulting in granulation tissue. Granulation tissue typically grows from the base of the wound. Epithelialization involves the migration of epithelial cells from the wound surfaces to seal the wound. Epithelial cells are driven by the need to contact cells of like type and are guided by a network of fibrin strands that function as a grid over which these cells migrate. Contractile cells called myofibroblasts appear in wounds, and aid in wound closure.
These cells exhibit collagen synthesis and contractility, and are common in granulating wounds.
Third, in the remodeling phase, the final phase of wound healing which can take place from three weeks up to several years, collagen in the scar undergoes repeated degradation and re-synthesis. During this phase, the tensile strength of the newly formed skin increases.
However, as the rate of wound healing increases, there is often an associated increase in scar formation. Scarring is a consequence of the healing process in most adult animal and human tissues. Scar tissue is not identical to the tissue which it replaces, as it is usually of inferior functional quality. The types of scars include, but are not limited to, atrophic, hypertrophic and keloidal scars, as well as scar contractures. Atrophic scars are flat and depressed below the surrounding skin as a valley or hole. Hypertrophic scars are elevated scars that remain within the boundaries of the original lesion, and often contain excessive collagen arranged in an abnormal pattern. Keloidal scars are elevated scars that spread beyond the margins of the original wound and invade the surrounding normal skin in a way that is site specific, and often contain whorls of collagen arranged in an abnormal fashion.
In contrast, normal skin consists of collagen fibers arranged in a basket-weave pattern, which contributes to both the strength and elasticity of the dermis. Thus, to achieve a smoother wound healing process, an approach is needed that not only stimulates collagen production, but also does so in a way that reduces scar formation.
The biophotonic compositions and methods of the present disclosure promote the wound healing by promoting the formation of substantially uniform epithelialization;
promoting collagen synthesis; promoting controlled contraction; and/or by reducing the formation of scar tissue. In certain embodiments, the biophotonic compositions and methods of the present disclosure may promote wound healing by promoting the formation of substantially uniform epithelialization. In some embodiments, the biophotonic compositions and methods of the present disclosure promote collagen synthesis. In some other embodiments, the biophotonic compositions and methods of the present disclosure promote controlled contraction. In certain embodiments, the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing the formation of scar tissue or by speeding up the wound closure process. In certain embodiments, the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing inflammation. In certain embodiments, the biophotonic composition can be used following wound closure to optimize scar revision. In this case, the biophotonic composition may be applied at regular intervals such as once a week, or at an interval deemed appropriate by the physician.
The biophotonic composition may be soaked into a woven or non-woven material or a sponge and applied as a wound dressing. A light source, such as LEDs or waveguides, may be provided within or adjacent the wound dressing or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymeth ylmethacryl ate.
Adjunct therapies which may be topical or systemic such as antibiotic treatment may also be used. Negative pressure assisted wound closure can also be used to assist wound closure and/or to remove the composition.
(6) Acne and Acne Scars The biophotonic compositions and methods of the present disclosure may be used to treat acne. As used herein, "acne" means a disorder of the skin caused by inflammation of skin glands or hair follicles. The biophotonic compositions and methods of the disclosure can be used to treat acne at early pre-emergent stages or later stages where lesions from acne are visible. Mild, moderate and severe acne can be treated with embodiments of the biophotonic compositions and methods. Early pre-emergent stages of acne usually begin with an excessive secretion of sebum or dermal oil from the sebaceous glands located in the pilosebaceous apparatus. Sebum reaches the skin surface through the duct of the hair follicle. The presence of excessive amounts of sebum in the duct and on the skin tends to obstruct or stagnate the normal flow of sebum from the follicular duct, thus producing a thickening and solidification of the sebum to create a solid plug known as a comedone. In the normal sequence of developing acne, hyperkeratinazation of the follicular opening is stimulated, thus completing blocking of the duct. The usual results are papules, pustules, or cysts, often contaminated with bacteria, which cause secondary infections. Acne is characterized particularly by the presence of comedones, inflammatory papules, or cysts. The appearance of acne may range from slight skin irritation to pitting and even the development of disfiguring scars. Accordingly, the biophotonic compositions and methods of the present disclosure can be used to treat one or more of skin irritation, pitting, development of scars, comedones, inflammatory papules, cysts, hyperkeratinazation, and thickening and hardening of sebum associated with acne.
The composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts such as the face, body, arms, legs etc. A light source, such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
The biophotonic compositions and methods of the present disclosure may be used to treat various types of acne. Some types of acne include, for example, acne vulgaris, cystic acne, acne atrophica, bromide acne, chlorine acne, acne conglobata, acne cosmetica, acne detergicans, epidemic acne, acne estivalis, acne fulminans, halogen acne, acne indurata, iodide acne, acne keloid, acne mechanica, acne papulosa, pomade acne, premenstral acne, acne pustulosa, acne scorbutica, acne scrofulosorum, acne urticata, acne varioliformis, acne venenata, propionic acne, acne excoriee, gram negative acne, steroid acne, and nodulocystic acne.
(7) Skin Aging and Rejuvenation The dermis is the second layer of skin, containing the structural elements of the skin, the connective tissue. There are various types of connective tissue with different functions.
Elastin fibers give the skin its elasticity, and collagen gives the skin its strength.
The junction between the dermis and the epidermis is an important structure.
The dermal-epidermal junction interlocks forming finger-like epidermal ridges. The cells of the epidermis receive their nutrients from the blood vessels in the dermis. The epidermal ridges increase the surface area of the epidermis that is exposed to these blood vessels and the needed nutrients.
The aging of skin comes with significant physiological changes to the skin.
The generation of new skin cells slows down, and the epidermal ridges of the dermal-epidermal junction flatten out. While the number of elastin fibers increases, their structure and coherence decrease. Also the amount of collagen and the thickness of the dermis decrease with the ageing of the skin.
Collagen is a major component of the skin's extracellular matrix, providing a structural framework. During the aging process, the decrease of collagen synthesis and insolubilization of collagen fibers contribute to a thinning of the dermis and loss of the skin's biomechanical properties.
The physiological changes to the skin result in noticeable aging symptoms often referred to as chronological-, intrinsic- and photo-ageing. The skin becomes drier, roughness and scaling increase, the appearance becomes duller, and most obviously fine lines and wrinkles appear. Other symptoms or signs of skin aging include, but are not limited to, thinning and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, a blotchy complexion.
The dermal-epidermal junction is a basement membrane that separates the keratinocytes in the epidermis from the extracellular matrix, which lies below in the dermis. This membrane consists of two layers: the basal lamina in contact with the keratinocytes, and the underlying reticular lamina in contact with the extracellular matrix. The basal lamina is rich in collagen type IV and laminin, molecules that play a role in providing a structural network and bioadhesive properties for cell attachment.
Laminin is a glycoprotein that only exists in basement membranes. It is composed of three polypeptide chains (alpha, beta and gamma) arranged in the shape of an asymmetric cross and held together by disulfide bonds. The three chains exist as different subtypes which result in twelve different isoforms for laminin, including Laminin-1 and Laminin-5.
The dermis is anchored to hemidesmosomes, specific junction points located on the keratinocytes, which consist of a-integrins and other proteins, at the basal membrane keratinocytes by type VII collagen fibrils. Laminins, and particularly Laminin-5, constitute the real anchor point between hemidesmosomal transmembrane proteins in basal keratinocytes and type VII collagen.
Laminin-5 synthesis and type VII collagen expression have been proven to decrease in aged skin. This causes a loss of contact between dermis and epidermis, and results in the skin losing elasticity and becoming saggy.
Recently another type of wrinkles generally referred to as expression wrinkles, got general recognition. These wrinkles require loss of resilience, particularly in the dermis, because of which the skin is no longer able to resume its original state when facial muscles which produce facial expressions exert stress on the skin, resulting in expression wrinkles.
The compositions and methods of the present disclosure promote skin rejuvenation. In certain embodiments, the compositions and methods of the present disclosure promote collagen synthesis. In certain other embodiments, the compositions and methods of the present disclosure may reduce, diminish, retard or even reverse one or more signs of skin aging including, but not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion.
In certain embodiments, the compositions and methods of the present disclosure may induce a reduction in pore size, enhance sculpturing of skin subsections, and/or enhance skin translucence.
Elastin fibers give the skin its elasticity, and collagen gives the skin its strength.
The junction between the dermis and the epidermis is an important structure.
The dermal-epidermal junction interlocks forming finger-like epidermal ridges. The cells of the epidermis receive their nutrients from the blood vessels in the dermis. The epidermal ridges increase the surface area of the epidermis that is exposed to these blood vessels and the needed nutrients.
The aging of skin comes with significant physiological changes to the skin.
The generation of new skin cells slows down, and the epidermal ridges of the dermal-epidermal junction flatten out. While the number of elastin fibers increases, their structure and coherence decrease. Also the amount of collagen and the thickness of the dermis decrease with the ageing of the skin.
Collagen is a major component of the skin's extracellular matrix, providing a structural framework. During the aging process, the decrease of collagen synthesis and insolubilization of collagen fibers contribute to a thinning of the dermis and loss of the skin's biomechanical properties.
The physiological changes to the skin result in noticeable aging symptoms often referred to as chronological-, intrinsic- and photo-ageing. The skin becomes drier, roughness and scaling increase, the appearance becomes duller, and most obviously fine lines and wrinkles appear. Other symptoms or signs of skin aging include, but are not limited to, thinning and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, a blotchy complexion.
The dermal-epidermal junction is a basement membrane that separates the keratinocytes in the epidermis from the extracellular matrix, which lies below in the dermis. This membrane consists of two layers: the basal lamina in contact with the keratinocytes, and the underlying reticular lamina in contact with the extracellular matrix. The basal lamina is rich in collagen type IV and laminin, molecules that play a role in providing a structural network and bioadhesive properties for cell attachment.
Laminin is a glycoprotein that only exists in basement membranes. It is composed of three polypeptide chains (alpha, beta and gamma) arranged in the shape of an asymmetric cross and held together by disulfide bonds. The three chains exist as different subtypes which result in twelve different isoforms for laminin, including Laminin-1 and Laminin-5.
The dermis is anchored to hemidesmosomes, specific junction points located on the keratinocytes, which consist of a-integrins and other proteins, at the basal membrane keratinocytes by type VII collagen fibrils. Laminins, and particularly Laminin-5, constitute the real anchor point between hemidesmosomal transmembrane proteins in basal keratinocytes and type VII collagen.
Laminin-5 synthesis and type VII collagen expression have been proven to decrease in aged skin. This causes a loss of contact between dermis and epidermis, and results in the skin losing elasticity and becoming saggy.
Recently another type of wrinkles generally referred to as expression wrinkles, got general recognition. These wrinkles require loss of resilience, particularly in the dermis, because of which the skin is no longer able to resume its original state when facial muscles which produce facial expressions exert stress on the skin, resulting in expression wrinkles.
The compositions and methods of the present disclosure promote skin rejuvenation. In certain embodiments, the compositions and methods of the present disclosure promote collagen synthesis. In certain other embodiments, the compositions and methods of the present disclosure may reduce, diminish, retard or even reverse one or more signs of skin aging including, but not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion.
In certain embodiments, the compositions and methods of the present disclosure may induce a reduction in pore size, enhance sculpturing of skin subsections, and/or enhance skin translucence.
(8) Skin Disorders The biophotonic compositions and methods of the present disclosure may be used to treat skin disorders that include, but are not limited to, erythema, telangiectasia, actinic telangiectasia, psoriasis, skin cancer, pemphigus, sunburn, dermatitis, eczema, rashes, impetigo, lichen simplex chronicus, rhinophyma, perioral dermatitis, pseudofolliculitis barbae, drug eruptions, erythema multiforme, erythema nodosum, granuloma annulare, actinic keratosis, purpura, alopecia areata, aphthous stomatitis, drug eruptions, dry skin, chapping, xerosis, ichthyosis vulgaris, fungal infections, parasitic infection, viral infections, herpes simplex, intertrigo, keloids, keratoses, milia, moluscum contagiosum, pityriasis rosea, pruritus, urticaria, and vascular tumors and malformations. Dermatitis includes contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, generalized exfoliative dermatitis, and statis dermatitis. Skin cancers include melanoma, basal cell carcinoma, and squamous cell carcinoma.
Some skin disorders present various symptoms including redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors. Accordingly, the biophotonic compositions and methods of the present disclosure can be used to treat redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, acute inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors. Acute inflammation can present itself as pain, heat, redness, swelling and loss of function. It includes those seen in allergic reactions such as insect bites e.g.; mosquito, bees, wasps, poison ivy, post-ablative treatment.
The composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts to treat skin disorders. A light source, such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
Some skin disorders present various symptoms including redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors. Accordingly, the biophotonic compositions and methods of the present disclosure can be used to treat redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, acute inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors. Acute inflammation can present itself as pain, heat, redness, swelling and loss of function. It includes those seen in allergic reactions such as insect bites e.g.; mosquito, bees, wasps, poison ivy, post-ablative treatment.
The composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts to treat skin disorders. A light source, such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
(9) Kits The present disclosure also provides kits for preparing and/or applying any of the compositions of the present disclosure. The kit may include a biophotonic topical composition of the present disclosure. The composition may include an oxygen-releasing agent present in amount about 0.01% - 40%, 0.01% - 1.0%, 0.5% - 10.0%, 5% - 15%, 10% - 20%, 15%
- 25%, 20% - 30%, 15.0% - 25%, 20% - 30%, 25% - 35%, or 30% - 40% by weight to weight of the composition. The first xanthene dye may be present in an amount of about 0.01-40% per weight of the composition, and a second xanthene dye may be present in an amount of about 0.01-40% per weight of the composition. In certain embodiments, the first xanthene dye is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-
- 25%, 20% - 30%, 15.0% - 25%, 20% - 30%, 25% - 35%, or 30% - 40% by weight to weight of the composition. The first xanthene dye may be present in an amount of about 0.01-40% per weight of the composition, and a second xanthene dye may be present in an amount of about 0.01-40% per weight of the composition. In certain embodiments, the first xanthene dye is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-
10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the second xanthene dye is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the amount of xanthene dyes may be in the amount of about 0.05-40.05%
per weight of the composition. In certain embodiments, the amount of xanthene dyes may be in the amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
In some embodiments, the kit includes more than one composition, for example, a first and a second composition. The first composition may include the oxygen-releasing agent and the second composition may include the xanthene dyes in a liquid or as a powder. In some embodiments, the kit includes containers comprising the compositions of the present disclosure.
The composition (s) may be contained in containers. The containers may be light impermeable, air-tight and/or leak resistant. Exemplary containers include, but are not limited to, syringes, vials, or pouches. For example, the container may be a dual-chamber syringe where the contents of the chambers mix on expulsion of the compositions from the chambers.
In another example, the pouch may include two chambers separated by a frangible membrane.
In another example, one component may be contained in a syringe and injectable into a container comprising the second component. The container may be a spray can which may or may not be pressurized. The composition may be in liquid and/or gaseous form.
The biophotonic composition may also be provided in a container comprising one or more chambers for holding one or more components of the biophotonic composition, and an outlet in communication with the one or more chambers for discharging the biophotonic composition from the container.
In other embodiments, the kit comprises a systemic or topical drug for augmenting the treatment of the composition. For example, the kit may include a systemic or topical antibiotic or hormone treatment for acne treatment or wound healing.
Written instructions on how to use the biophotonic composition in accordance with the present disclosure may be included in the kit, or may be included on or associated with the containers comprising the compositions of the present disclosure.
In certain embodiments, the kit may comprise a further component which is a dressing.
The dressing may be a porous or semi-porous structure for receiving the biophotonic composition. The dressing may comprise woven or non-woven fibrous materials.
In certain embodiments of the kit, the kit may further comprise a light source such as a portable light with a wavelength appropriate to activate the chromophore in the biophotonic composition. The portable light may be battery operated or re-chargeable.
In certain embodiments, the kit may further comprise one or more waveguides.
Identification of equivalent compositions, methods and kits are well within the skill of the ordinary practitioner and would require no more than routine experimentation, in light of the teachings of the present disclosure. Practice of the disclosure will be still more fully understood from the following examples, which are presented herein for illustration only and should not be construed as limiting the disclosure in any way.
EXAMPLES
The examples below are given so as to illustrate the practice of various embodiments of the present disclosure. They are not intended to limit or define the entire scope of this disclosure.
Example 1 ¨ Absorption/emission spectra of Fluorescein and Eosin Y in a gel The photodynamic properties of (i) Fluorescein sodium salt at about 0.09 mg/mL, (ii) Eosin Y
at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.09 mg/mL and Eosin Y at about 0.305 mg/mL, all in a gel (comprising about 12% carbamide peroxide), were evaluated. A flexstation 384 II spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT microplate reader: mode absorbance;
spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 5A and 5B which indicate an energy transfer between the chromophores in the combination. In particular a broader absorption and emission spectra was achieved with the Eosin Y and chromophore combination, compared with the individual chromophores. This means that the multiple chromophore composition can be activated with a broader bandwidth of light, and that the multiple chromophore light can emit a broader bandwidth of light after illumination. In other words, emission from the multi-chromophore composition occured in a broader range of wavelengths compared to the individual chromophores. In this example, the composition emitted light in the green, yellow and orange wavelengths of the visible spectra. Photobleaching of Eosin Y was observed during illumination. Furthermore, results (not shown) indicate that the presence of peroxide in the gel does not affect the absorbance and emission spectra.
Peroxide is optional in compositions and methods of the present disclosure.
Example 2 - Absorption/emission spectra of a Fluorescein and Eosin Y aqueous solution The photodynamic properties of (i) Fluorescein sodium salt at 0.18 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.18 mg/mL and Eosin Y at about 0.305 mg/mL, all in an aqueous solution were evaluated. A
flexstation 384 II spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm.
The absorbance was read using a synergy HT microplate reader: mode absorbance;
spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 6A and 6B which indicate an energy transfer between the chromophores in the combination. Also, as with Figures 5A
and 5B, a broader emission spectra was achieved with the Eosin Y and chromophore combination, compared with the individual chromophores. The composition emitted light in the green, yellow and orange wavelengths of the visible spectra. The difference in the absorption and emission spectra between Examples 1 and 2 may be explained by the optical difference in the media (gel in Example 1 and aqueous solution in this example) as well as possibly the effect of doubling the fluorescein concentration. It can be seen that adding Fluorescein to Eosin Y, broadens the bandwidth of the absorption and emission peaks of Eosin Y.
This confers on the multiple chromophore combination, the ability to absorb a broader range of wavelengths for photoactivation and to emit a wider range of wavelengths which may confer different therapeutic effects at the same time. Photobleaching of Eosin Y was observed during illumination.
Example 3 - Absorption/emission spectra of Phloxine B and Eosin Y in a gel The photodynamic properties of (i) Phloxine B at 0.25mg/mL final concentration, (ii) Eosin Y
at about 0.05 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y
(0.05 mg/mL), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 7A and 7B which indicate an energy transfer between the chromophores in the combination. As before, broader absorption and emission spectra were achieved with the Phloxine B and Eosin Y
chromophore combination, compared with the individual chromophores. The composition emitted light in the green, yellow, orange and red wavelengths of the visible spectra.
Example 4 - Absorption/emission spectra of an aqueous solution of Phloxine B
and Eosin 17 The photodynamic properties of (i) Phloxine B at 0.25mg/mL final concentration, (ii) Eosin Y
at about 0.08 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y
(0.08 mg/mL), all in an aqueous solution were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 8A and 8B which indicate an energy transfer between the chromophores in the combination. Broader absorption and emission spectra were achieved with the Phloxine B and Eosin Y chromophore combination, compared with the individual chromophores. The composition emitted light in the green, yellow, orange and red wavelengths of the visible spectra.
Example 5 - Absorption/emission spectra of Phloxine B and Fluorescein in a gel The photodynamic properties of (i) Fluorescein at about 100 g/g final concentration, (ii) Phloxine B at about 100 g/g, and (iii) a mixture of Fluorescein (100 g/g) and Phloxine B
(100pg/g), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 9A and 9B which indicate an energy transfer between the chromophores in the combination. For this particular combination of chromophores and at this concentration, for the chromophore combination two peaks corresponding to fluorescein and phloxine B emission was absorved, with a higher peak at around 577 nm absorption, compared with the individual chromophores.
Example 6 - Absorption/emission spectra of Fluorescein and Rose Bengal in a gel The photodynamic properties of (i) Fluorescein at about 100 g/g final concentration, (ii) Rose Bengal at about 100 g/g, and (iii) a mixture of Fluorescein (100 g/g) and Phloxine B
(100 g/g), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 10A and 10B which indicate an energy transfer between the chromophores in the combination. For this particular combination of chromophores and at this concentration, two emission peaks were observed in the combined chromophore composition with the combined composition having a higher peak at around 580 nm, compared with the individual chromophores.
Example 7 - Absorption/emission spectra of Rose Bengal and Eosin Y in a gel The photodynamic properties of (i) Eosin Y at 0.305 mg/mL final concentration, (ii) Rose Bengal at about 0.085 mg/mL, and (iii) a mixture of Eosin Y (0.305mg/mL) and Rose Bengal (0.085 mg/mL), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters:
mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 11A and 118 which indicate an energy transfer between the chromophores in the combination. For this particular combination of chromophores and at this concentration, a higher absorption was achieved with the chromophore combination, compared with the individual chromophores. The emission spectra of this specific combination had a lower power density than for Eosin Y alone. In the absence of a temperature rise in the composition during or after illumination, this apparent loss of energy may be attributed to reactive Oxygen species generation (see Example 8 below).
Example 8 - Eosin and Rose Bengal generate oxygen species The synergy between two chromophores according to various embodiments of the present disclosure was investigated by preparing the following:
1 ¨ Eosin Y (0.035%) + Rose Bengal (0.085%) in a 12% carbamide gel.
2 ¨ Rose Bengal (0.085%) in a 12% carbamide gel.
Rose Bengal is known to have a high quantum yield in terms of singlet oxygen production in the presence of oxygen-releasing agents when photoactivated by green light (a singlet oxygen quantum yield of approximately 75% in water [Murasecco-Suardi et al, Helvetica Chimica Acta, Vol. 70, pp.1760-73, 1987]). Eosin Y is known to have a high quantum yield in terms of emitted fluorescent light when photoactivated and can be at least partially activated by blue light when in a gel. Photoactivated Eosin Y has a much lower quantum yield in terms of singlet oxygen production in the presence of oxygen-releasing agents (a singlet oxygen quantum yield when fully activated of approximately 4%
[Gandin et al, Photochemistry and Photobiology, Vol.37, pp.27I-8, 1983]).
When Eosin Y and Rose Bengal are combined, it appears that both chromophores are activated by the same blue light as evidenced by Figure 12.
Figure 12, left panel, shows a photograph of the composition when viewed under a light microscope (x250) before exposure to an activating blue light. Very few bubbles were seen in both compositions. Following illumination with blue light a dramatic increase in bubbles was seen with the composition comprising a combination of Eosin Y and Rose Bengal, but not with the composition comprising Rose Bengal alone or Eosin Y alone (not shown).
This suggests that there is a transfer of energy from Eosin Y to Rose Bengal leading to the formation oxygen species. Eosin Y alone in a carbamide gel presented similar properties to Rose Bengal. A similar effect was observed with Fluorescein and Rose Bengal.
Example 9¨ Variation of the chromophore concentration ratios The effect of varying the concentrations of the individual chromophores in multiple chromophore compositions, according to embodiments of the present disclosure, were investigated. The fluorescence emission over time of compositions comprising (i) Fluorescein ¨ Eosin Y, and (ii) Eosin Y ¨ Rose Bengal, are presented in Figures 13A and 13B respectively.
As can be seen in Figure 13A, the emission properties of the following were investigated: (i) 109 pg/g of Eosin Y + 10pg/g of fluorescein, (ii) 109 pg/g of Eosin Y +
100pg/g of fluorescein, (iii) 109 pg/g of Eosin Y, (iv) 10pg/g of fluorescein, (v) 100p g/g of fluorescein, all in a carbamide peroxide gel. An SP-100 spectroradiometer was used to measure the power density spectra (mW/cm2 versus wavelength) of a photonic signal detected from the various compositions when illuminated with blue light (wavelength of about 440 to 480 nm at a power density of less than 150 mW/cm2 for about 5 minutes). Fluorescence is measured as light within the 519-700nm range.
As can be seen, the emitted fluorescence of all concentrations decay over time. This decay is often accompanied by a photobleaching of one or more of the chromophores in the composition. A higher concentration of fluorescein in a multiple chromophore composition provides a higher initial emitted fluorescence which also lasts longer, i.e.
has a longer lifetime.
For the Eosin Y (109 gig) and Fluorescein (100 g/g) composition, the initial emitted fluorescence is slightly lower than that of a composition comprising 100 g/g fluorescein alone.
This may be attributed to use of energy to form oxygen species (as described in Example 6 above). Therefore, the relative concentrations of the chromophores within a multiple chromophore composition can be varied to tailor the resultant fluorescence and oxygen species properties.
In Figure 13B, the following compositions were evaluated (i) 109 gig of Eosin Y +
1 g/g of rose bengal (ratio of about 10:1), (ii) 109 gig of Eosin Y + 100 g/g of rose bengal (ratio of about 1:1), (iii) 109 mg/g of Eosin Y, (iv) lpg/g of rose bengal, (v) 100 g/g of rose bengal, all in a carbamide peroxide gel. The same decay trend observed in Figure 13A was also observed for eosin Y alone, eosin Y- 1 pg/g rose bengal, as well as eosin Y-10 g/g rose Bengal (not shown). The very low fluorescence levels for both concentrations of rose bengal alone when activated by blue light can also be observed. Surprisingly, for the composition of 109jug/g of Eosin Y + 100 g/g of rose bengal a sustained fluorescence was observed, albeit at a lower level than that of Eosin Y alone, and Eosin Y + li_tg/g of rose bengal. In this composition, no photobleaching of Eosin Y was observed. Without wishing to be limited by theory, it is believed that Eosin Y is not photobleaching as at this ratio of Eosin Y/rose Bengal, Eosin Y is able to transfer all of its absorbed energy to rose bengal which then emits the energy and thus prevents the photodegradation of the eosin Y molecules. The peak emission wavelength of the 109 pg/g Eosin Y + 100 g/g rose bengal composition is closer to that of rose bengal's peak emission wavelength than that of eosin y.
A similar sustained fluorescence effect was observed for a composition comprising fluorescein, eosin Y and rose bengal at relative concentration ratios of about 1:10:10 (not shown).
Example 10 - Absorption/emission spectra of Fluorescein, Eosin Y and Rose Bengal in a gel The photodynamic properties of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) according to an embodiment of the present disclosure in a gel comprising about 12% carbamide peroxide were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters:
mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT microplate reader: mode absorbance; spectra between 300-650nm.
The absorbance and emission spectra are shown in Figures 14A and 14B which indicate an energy transfer between the chromophores in the chromophore combination. As is clear from Figure 14B, the bandwidth of the Fluorescein, Eosin Y and Rose Bengal combination is wider than that of Eosin Y alone.
Example 11 - Absorption/emission spectra of Fluorescein, Eosin Y and Rose Bengal in an aqueous solution The photodynamic properties of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in an aqueous solution according to an embodiment of the present disclosure were evaluated. A flexstation 384 II spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader:
mode absorbance; spectra between 300-650nm.
The absorbance and emission spectra are shown in Figures 15A and 15B which indicate an energy transfer between the chromophores in the chromophore combination, in the absence of a peroxide but in the presence of other oxygen-releasing agents (e.g. water).
In reference to the absorption and emission spectra of the compositions of the present disclosure within a carbamide peroxide gel, the same spectra was obtained for the same chromophores in a gel without the peroxide.
Example 12 - Angiogenic potential of a composition of the disclosure A human skin model was developed to assess the angiogenic potential of compositions of the present disclosure. Briefly, a composition comprising Eosin Y and Erythrosine was placed on top of a human skin model containing fibroblasts and keratinocytes. The skin model and the composition were separated by a nylon mesh of 20 micron pore size. The composition was then irradiated with blue light ('activating light') for 5 minutes at a distance of 5 cm from the light source. The activating light consisted of light emitted from an LED lamp having an average peak wavelength of about 400-470 nm, and a power intensity measured at 10 cm of 7.7 J/cm2 to 11.5 J/cm2. Upon illumination with the activating light, the composition emitted fluorescent light. Since the composition was in limited contact with the cells, the fibroblasts and keratinocytes were exposed mainly to the activating light and the fluorescent light emitted from the composition. Conditioned media from the treated human 3D skin model were then applied to human aortic endothelial cells previously plated in Matrigela The formation of tubes by endothelial cells was observed and monitored by microscopy and image analysis after 24 hours. The conditioned media from 3D skin models treated with light illumination induced endothelial tube formation in vitro, suggesting an indirect effect of the light treatment (blue light and fluorescence) on angiogenesis via the production of factors by fibroblasts and keratinocytes. Plain media and conditioned media from untreated skin samples were used as a control, and did not induce endothelial tube formation.
Figure 16 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition as measured using the spectroradiometer of Example 9. It can be reasonably inferred that other chromophore combinations exhibiting a comparable emission spectra would also induce angiogenesis. As can be seen from Figure 16, the emitted fluorescence light had a wavelength of about 520-620 nm with a peak at around 560 nm.
Similar emission spectra were observed using Eosin Y and Fluorescein (Figure 5B); Eosin Y
and Phloxine B (Figure 7B, Figure 8B); Eosin Y and Rose Bengal (Figure 11B);
Fluorescein, Eosin Y and Rose bengal (Figure 14B, Figure 15B). Other chromophore combinations with similar emission spectra are also possible, which can be reasonably expected to have angiogenic properties.
Example 13 - Protein secretion and gene expression profiles Wounded and unwounded 3D human skin models (EpiDermFT, MatTek Corporation) were used to assess the potential of a composition of the present disclosure to trigger distinct protein secretion and gene expression profiles. Briefly, a composition comprising Eosin and Erythrosine were placed on top of wounded and unwounded 3D human skin models cultured under different conditions (with growth factors (1X), 50% growth factors (0.5X) and no growth factors (OX)). The different conditions mimicked non-compromised healing, semi-starvation conditions and starvations conditions, respectively. The skin models and the composition were separated by a nylon mesh of 20 micron pore size. Each skin model-composition combination was then irradiated with blue light ('activating light') for 5 minutes at a distance of 5 cm from the light source. The activating light consisted of light emitted from an LED
lamp having an average peak wavelength of about 440-470 nm, a power density of 60-150mW/cm2 at 5 cm, and a total energy density after 5 minutes of about 18-39 J/cm2. The controls consisted of 3D
skin models not illuminated with light.
Gene expression and protein secretion profiles were measured 24 hours post-light exposure. Cytokine secretion was analyzed by antibody arrays (RayBio Human Cytokine antibody array), gene expression was analyzed by PCR array (PAHS-013A, SABioscience) and cytotoxicity was determined by GAPDH and LDH release. Results (Tables 1 and 2) showed that the light treatment is capable of increasing the level of protein secreted and gene expression involved in the early inflammatory phase of wound healing in wounded skin inserts and in non-starvation conditions. In starvation conditions mimicking chronic wounds, there was no increase in the level of inflammatory protein secreted when compared to the control.
Interestingly, the effect of the light treatment on unwounded skin models has a much lower impact at the cellular level than on wounded skin insert, which suggests an effect at the cellular effect level of the light treatment. It seems to accelerate the inflammatory phase of the wound healing process. Due to the lack of other cell types such as macrophages in the 3D skin model, the anti-inflammatory feed-back is absent and may explain the delay in wound closure.
Cytotoxicity was not observed in the light treatments. The eosin y and erythrosine b composition had the same emission properties as illustrated in Figure 16. As stated above, it can be reasonably inferred that other chromophore combinations exhibiting a comparable emission spectra would also induce secretion of proteins or gene expression as seen in this Example.
Table 1 ¨ List of proteins with statistically significant difference secretion ratio between treated and untreated control at day 3. Two arrows mean that the ratio was over 2 folds.
Medium 1X Medium 0.5X Medium OX
Increase ENA78 p=0.04 TT Angiogenin p=0.03 I
I1-1R4/ST2 p=0.02 l't CXCL16 p=0.04 I
MMP3 p=0.01 TT
MCP-2 p=0.04 TT
Decrease BMP6 p=0.01 .1, BMP6 p=0.02 1 TNFa p=0.005 1 Table 2 ¨ List of genes with statistically significant difference expression ratio between treated and untreated control during the first 24 hours. Two arrows mean that the ratio was over 2 folds.
Medium 1X Medium 0.5X Medium OX
Increase CTGF p=0.02 i CTGF P=0.04 i MMP3 p=0.007 IT
ITGB3 p=0.03 i ITGB3 p=0.05 i LAMA1 p=0.03 I
MMP1 p=0.03 i MMP1 p=0.02 Ti ITGA2 p=0.03 I
MMP3 p=0.01 i MMP10 p=0.003 IT
THBS1 P=0.02 i MMP3 p=0.007 IT
MMP8 p=0.02 it THBS1 p=0.03 't Decrease HAS1 p=0.009 4_4 NCAM1 p=0.02 14.
NCAM1 p=0.05 4,4, VCAN p=0.02 4, VCAM1 p=0.03 14 LAMC1 p=0.002 4.
COL7A1 p=0.04 I. COL6A1 p=0.007 4, CTNNA1 p=0.03 4. MMP7 p=0.003 4, Example 14 ¨ Eosin Y and Fluorescein induce collagen formation A composition according to an embodiment of the present invention, comprising 0.01% Eosin Y and 0.01% Fluorescein in a carrier matrix (1.8% carbopol gel) was evaluated for its potential to induce collagen formation. Dermal human fibroblasts were plated in glass-bottomed dishes with wells (MatTek ). There were approximately 4000 cells per well. After 48 hours, the glass-bottomed dishes were inverted and the cells were treated through the glass bottom with (i) a no light (control), (ii) sunlight exposure for about 13 minutes at noon (control), (iii) the composition applied to the glass well bottom on the other side of the cells (no light exposure), (iv) the composition applied to the glass well bottom on the other side of the cells (sun light exposure for about 13 minutes at noon), and (v) the composition applied to the glass well bottom on the other side of the cells (blue light exposure for about 5 minutes). In the case of (iii), (iv) and (v), there was no direct contact between the cells and the composition. In the case of (iv) and (v), the cells were exposed to emitted light from and through the Eosin Y and Fluorescein composition when exposed to sunlight and blue light respectively.
An at least partial photobleaching was observed in (iv) and (v). After the treatment, the cells were washed and incubated in regular medium for 48 hours. A collagen assay was then performed on the supernatant using the Picro-Sirius red method. This involved adding Sirius red dye solution in picric acid to the supernatant, incubating with gentle agitation for 30 minutes followed by centrifugation to form a pellet. The pellet was washed first with 0.1N HC1 and then 0.5 N
NaOH to remove free dye. After centrifugation, the suspension was read at 540 nm for collagen type I. The results are shown in Table 1.
Table 1 ¨ A qualitative comparison of collagen type I concentration in a dermal human fibroblast supernatant exposed to (i) a no light (control), (ii) sunlight exposure for about 13 minutes at noon (control), (iii) any light emitted from a Eosin Y and Fluorescein composition through a glass separation (no light exposure), (iv) any light emitted from a Eosin Y and Fluorescein composition through a glass separation (sun light exposure for about 13 minutes at noon), and (v) the composition applied to the glass well bottom on the other side of the cells (blue light exposure for about 5 minutes). ++ indicates collagen levels about twice as high as +, and +++ indicates collagen levels about three times as high as +.
No light Sunlight Eosin Y + Eosin and Eosin and (control) (control) Fluorescein ¨ Fluorescein ¨ Fluorescein ¨
no light sunlight blue light Collagen + + ++ +++ +++
concentration There was a statistical difference between the collagen levels induced by the Eosin Y
and Fluorescein composition exposed to sunlight and blue light compared to the no light and sunlight alone controls.
Collagen generation is indicative of a potential for tissue repair including stabilization of granulation tissue and decreasing of wound size. It is also linked to reduction of fine lines, a decrease in pore size, improvement of texture and improvement of tensile strength of intact skin. The emission spectra of the Eosin Y and Fluorescein composition of this example had a single peak emission with a wavelength that ranged from about 480-620 nm.
Following illumination with sunlight, the power density of the peak was reduced indicating an at least partial photobleaching in 13 minutes, which was also observed by a change in colour of the composition. The rate of fluorescence emission/photobleaching was slower when illuminated by sunlight (white light) compared to Eosin Y and Fluorescein compositions (e.g. compositions of Examples 5 and 6) when activated by blue light.
Example 15 ¨ Selecting the concentration of chromophore in the biophotonic composition The fluorescence spectra of compositions with different concentrations of chromophores were investigated using a spectroradiometer and an activating blue light (as in Example 9).
Exemplary fluorescence spectra of Eosin Y and Fluorescein are presented in Figures 17A and 17B. It was found that emitted fluorescence from the chromophore increases rapidly with increasing concentration but slows down to a plateau with further concentration increase.
Activating light passing through the composition decreases with increasing chromophore composition as more is absorbed by the chromophores. Therefore, the concentration of chromophores in compositions of the present disclosure can be selected according to a required ratio and level of activating light and fluorescence treating the tissue based on this example. In some embodiments, it will be after the zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y (Figure 17A).
Therefore, concentration can be selected according to required activating light and fluorescence. In some embodiments, it will be after zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y (Figure 17A).
Compositions with rose bengal behave slightly differently and become more opaque with increasing concentration which may be due to bubble formation.
Similarly, the relationship between the power density of light received by the tissues with illuminating time was investigated. It was found that the power density of the activating light was low initially and increased with time. This correlates with the light absorbing chromophores photobleaching and more of the activating light passing through the composition to reach tissues. In parallel, the fluorescent light emitted by the composition decreased with time as one or more of the chromophores photobleached. Overall, the total power density of the light treating the tissues increased gradually over illumination time.
It should be appreciated that the invention is not limited to the particular embodiments described and illustrated herein but includes all modifications and variations falling within the scope of the invention as defined in the appended claims.
per weight of the composition. In certain embodiments, the amount of xanthene dyes may be in the amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
In some embodiments, the kit includes more than one composition, for example, a first and a second composition. The first composition may include the oxygen-releasing agent and the second composition may include the xanthene dyes in a liquid or as a powder. In some embodiments, the kit includes containers comprising the compositions of the present disclosure.
The composition (s) may be contained in containers. The containers may be light impermeable, air-tight and/or leak resistant. Exemplary containers include, but are not limited to, syringes, vials, or pouches. For example, the container may be a dual-chamber syringe where the contents of the chambers mix on expulsion of the compositions from the chambers.
In another example, the pouch may include two chambers separated by a frangible membrane.
In another example, one component may be contained in a syringe and injectable into a container comprising the second component. The container may be a spray can which may or may not be pressurized. The composition may be in liquid and/or gaseous form.
The biophotonic composition may also be provided in a container comprising one or more chambers for holding one or more components of the biophotonic composition, and an outlet in communication with the one or more chambers for discharging the biophotonic composition from the container.
In other embodiments, the kit comprises a systemic or topical drug for augmenting the treatment of the composition. For example, the kit may include a systemic or topical antibiotic or hormone treatment for acne treatment or wound healing.
Written instructions on how to use the biophotonic composition in accordance with the present disclosure may be included in the kit, or may be included on or associated with the containers comprising the compositions of the present disclosure.
In certain embodiments, the kit may comprise a further component which is a dressing.
The dressing may be a porous or semi-porous structure for receiving the biophotonic composition. The dressing may comprise woven or non-woven fibrous materials.
In certain embodiments of the kit, the kit may further comprise a light source such as a portable light with a wavelength appropriate to activate the chromophore in the biophotonic composition. The portable light may be battery operated or re-chargeable.
In certain embodiments, the kit may further comprise one or more waveguides.
Identification of equivalent compositions, methods and kits are well within the skill of the ordinary practitioner and would require no more than routine experimentation, in light of the teachings of the present disclosure. Practice of the disclosure will be still more fully understood from the following examples, which are presented herein for illustration only and should not be construed as limiting the disclosure in any way.
EXAMPLES
The examples below are given so as to illustrate the practice of various embodiments of the present disclosure. They are not intended to limit or define the entire scope of this disclosure.
Example 1 ¨ Absorption/emission spectra of Fluorescein and Eosin Y in a gel The photodynamic properties of (i) Fluorescein sodium salt at about 0.09 mg/mL, (ii) Eosin Y
at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.09 mg/mL and Eosin Y at about 0.305 mg/mL, all in a gel (comprising about 12% carbamide peroxide), were evaluated. A flexstation 384 II spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT microplate reader: mode absorbance;
spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 5A and 5B which indicate an energy transfer between the chromophores in the combination. In particular a broader absorption and emission spectra was achieved with the Eosin Y and chromophore combination, compared with the individual chromophores. This means that the multiple chromophore composition can be activated with a broader bandwidth of light, and that the multiple chromophore light can emit a broader bandwidth of light after illumination. In other words, emission from the multi-chromophore composition occured in a broader range of wavelengths compared to the individual chromophores. In this example, the composition emitted light in the green, yellow and orange wavelengths of the visible spectra. Photobleaching of Eosin Y was observed during illumination. Furthermore, results (not shown) indicate that the presence of peroxide in the gel does not affect the absorbance and emission spectra.
Peroxide is optional in compositions and methods of the present disclosure.
Example 2 - Absorption/emission spectra of a Fluorescein and Eosin Y aqueous solution The photodynamic properties of (i) Fluorescein sodium salt at 0.18 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.18 mg/mL and Eosin Y at about 0.305 mg/mL, all in an aqueous solution were evaluated. A
flexstation 384 II spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm.
The absorbance was read using a synergy HT microplate reader: mode absorbance;
spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 6A and 6B which indicate an energy transfer between the chromophores in the combination. Also, as with Figures 5A
and 5B, a broader emission spectra was achieved with the Eosin Y and chromophore combination, compared with the individual chromophores. The composition emitted light in the green, yellow and orange wavelengths of the visible spectra. The difference in the absorption and emission spectra between Examples 1 and 2 may be explained by the optical difference in the media (gel in Example 1 and aqueous solution in this example) as well as possibly the effect of doubling the fluorescein concentration. It can be seen that adding Fluorescein to Eosin Y, broadens the bandwidth of the absorption and emission peaks of Eosin Y.
This confers on the multiple chromophore combination, the ability to absorb a broader range of wavelengths for photoactivation and to emit a wider range of wavelengths which may confer different therapeutic effects at the same time. Photobleaching of Eosin Y was observed during illumination.
Example 3 - Absorption/emission spectra of Phloxine B and Eosin Y in a gel The photodynamic properties of (i) Phloxine B at 0.25mg/mL final concentration, (ii) Eosin Y
at about 0.05 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y
(0.05 mg/mL), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 7A and 7B which indicate an energy transfer between the chromophores in the combination. As before, broader absorption and emission spectra were achieved with the Phloxine B and Eosin Y
chromophore combination, compared with the individual chromophores. The composition emitted light in the green, yellow, orange and red wavelengths of the visible spectra.
Example 4 - Absorption/emission spectra of an aqueous solution of Phloxine B
and Eosin 17 The photodynamic properties of (i) Phloxine B at 0.25mg/mL final concentration, (ii) Eosin Y
at about 0.08 mg/mL, and (iii) a mixture of Phloxine B (0.25mg/mL) and Eosin Y
(0.08 mg/mL), all in an aqueous solution were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 8A and 8B which indicate an energy transfer between the chromophores in the combination. Broader absorption and emission spectra were achieved with the Phloxine B and Eosin Y chromophore combination, compared with the individual chromophores. The composition emitted light in the green, yellow, orange and red wavelengths of the visible spectra.
Example 5 - Absorption/emission spectra of Phloxine B and Fluorescein in a gel The photodynamic properties of (i) Fluorescein at about 100 g/g final concentration, (ii) Phloxine B at about 100 g/g, and (iii) a mixture of Fluorescein (100 g/g) and Phloxine B
(100pg/g), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 9A and 9B which indicate an energy transfer between the chromophores in the combination. For this particular combination of chromophores and at this concentration, for the chromophore combination two peaks corresponding to fluorescein and phloxine B emission was absorved, with a higher peak at around 577 nm absorption, compared with the individual chromophores.
Example 6 - Absorption/emission spectra of Fluorescein and Rose Bengal in a gel The photodynamic properties of (i) Fluorescein at about 100 g/g final concentration, (ii) Rose Bengal at about 100 g/g, and (iii) a mixture of Fluorescein (100 g/g) and Phloxine B
(100 g/g), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 10A and 10B which indicate an energy transfer between the chromophores in the combination. For this particular combination of chromophores and at this concentration, two emission peaks were observed in the combined chromophore composition with the combined composition having a higher peak at around 580 nm, compared with the individual chromophores.
Example 7 - Absorption/emission spectra of Rose Bengal and Eosin Y in a gel The photodynamic properties of (i) Eosin Y at 0.305 mg/mL final concentration, (ii) Rose Bengal at about 0.085 mg/mL, and (iii) a mixture of Eosin Y (0.305mg/mL) and Rose Bengal (0.085 mg/mL), all in a 12% carbamide gel were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters:
mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT microplate reader: mode absorbance; spectra between 300-650nm.
The absorption and emission spectra are shown in Figures 11A and 118 which indicate an energy transfer between the chromophores in the combination. For this particular combination of chromophores and at this concentration, a higher absorption was achieved with the chromophore combination, compared with the individual chromophores. The emission spectra of this specific combination had a lower power density than for Eosin Y alone. In the absence of a temperature rise in the composition during or after illumination, this apparent loss of energy may be attributed to reactive Oxygen species generation (see Example 8 below).
Example 8 - Eosin and Rose Bengal generate oxygen species The synergy between two chromophores according to various embodiments of the present disclosure was investigated by preparing the following:
1 ¨ Eosin Y (0.035%) + Rose Bengal (0.085%) in a 12% carbamide gel.
2 ¨ Rose Bengal (0.085%) in a 12% carbamide gel.
Rose Bengal is known to have a high quantum yield in terms of singlet oxygen production in the presence of oxygen-releasing agents when photoactivated by green light (a singlet oxygen quantum yield of approximately 75% in water [Murasecco-Suardi et al, Helvetica Chimica Acta, Vol. 70, pp.1760-73, 1987]). Eosin Y is known to have a high quantum yield in terms of emitted fluorescent light when photoactivated and can be at least partially activated by blue light when in a gel. Photoactivated Eosin Y has a much lower quantum yield in terms of singlet oxygen production in the presence of oxygen-releasing agents (a singlet oxygen quantum yield when fully activated of approximately 4%
[Gandin et al, Photochemistry and Photobiology, Vol.37, pp.27I-8, 1983]).
When Eosin Y and Rose Bengal are combined, it appears that both chromophores are activated by the same blue light as evidenced by Figure 12.
Figure 12, left panel, shows a photograph of the composition when viewed under a light microscope (x250) before exposure to an activating blue light. Very few bubbles were seen in both compositions. Following illumination with blue light a dramatic increase in bubbles was seen with the composition comprising a combination of Eosin Y and Rose Bengal, but not with the composition comprising Rose Bengal alone or Eosin Y alone (not shown).
This suggests that there is a transfer of energy from Eosin Y to Rose Bengal leading to the formation oxygen species. Eosin Y alone in a carbamide gel presented similar properties to Rose Bengal. A similar effect was observed with Fluorescein and Rose Bengal.
Example 9¨ Variation of the chromophore concentration ratios The effect of varying the concentrations of the individual chromophores in multiple chromophore compositions, according to embodiments of the present disclosure, were investigated. The fluorescence emission over time of compositions comprising (i) Fluorescein ¨ Eosin Y, and (ii) Eosin Y ¨ Rose Bengal, are presented in Figures 13A and 13B respectively.
As can be seen in Figure 13A, the emission properties of the following were investigated: (i) 109 pg/g of Eosin Y + 10pg/g of fluorescein, (ii) 109 pg/g of Eosin Y +
100pg/g of fluorescein, (iii) 109 pg/g of Eosin Y, (iv) 10pg/g of fluorescein, (v) 100p g/g of fluorescein, all in a carbamide peroxide gel. An SP-100 spectroradiometer was used to measure the power density spectra (mW/cm2 versus wavelength) of a photonic signal detected from the various compositions when illuminated with blue light (wavelength of about 440 to 480 nm at a power density of less than 150 mW/cm2 for about 5 minutes). Fluorescence is measured as light within the 519-700nm range.
As can be seen, the emitted fluorescence of all concentrations decay over time. This decay is often accompanied by a photobleaching of one or more of the chromophores in the composition. A higher concentration of fluorescein in a multiple chromophore composition provides a higher initial emitted fluorescence which also lasts longer, i.e.
has a longer lifetime.
For the Eosin Y (109 gig) and Fluorescein (100 g/g) composition, the initial emitted fluorescence is slightly lower than that of a composition comprising 100 g/g fluorescein alone.
This may be attributed to use of energy to form oxygen species (as described in Example 6 above). Therefore, the relative concentrations of the chromophores within a multiple chromophore composition can be varied to tailor the resultant fluorescence and oxygen species properties.
In Figure 13B, the following compositions were evaluated (i) 109 gig of Eosin Y +
1 g/g of rose bengal (ratio of about 10:1), (ii) 109 gig of Eosin Y + 100 g/g of rose bengal (ratio of about 1:1), (iii) 109 mg/g of Eosin Y, (iv) lpg/g of rose bengal, (v) 100 g/g of rose bengal, all in a carbamide peroxide gel. The same decay trend observed in Figure 13A was also observed for eosin Y alone, eosin Y- 1 pg/g rose bengal, as well as eosin Y-10 g/g rose Bengal (not shown). The very low fluorescence levels for both concentrations of rose bengal alone when activated by blue light can also be observed. Surprisingly, for the composition of 109jug/g of Eosin Y + 100 g/g of rose bengal a sustained fluorescence was observed, albeit at a lower level than that of Eosin Y alone, and Eosin Y + li_tg/g of rose bengal. In this composition, no photobleaching of Eosin Y was observed. Without wishing to be limited by theory, it is believed that Eosin Y is not photobleaching as at this ratio of Eosin Y/rose Bengal, Eosin Y is able to transfer all of its absorbed energy to rose bengal which then emits the energy and thus prevents the photodegradation of the eosin Y molecules. The peak emission wavelength of the 109 pg/g Eosin Y + 100 g/g rose bengal composition is closer to that of rose bengal's peak emission wavelength than that of eosin y.
A similar sustained fluorescence effect was observed for a composition comprising fluorescein, eosin Y and rose bengal at relative concentration ratios of about 1:10:10 (not shown).
Example 10 - Absorption/emission spectra of Fluorescein, Eosin Y and Rose Bengal in a gel The photodynamic properties of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) according to an embodiment of the present disclosure in a gel comprising about 12% carbamide peroxide were evaluated. A flexstation 384 II
spectrophotometer was used to measure emitted fluorescence with the following parameters:
mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT microplate reader: mode absorbance; spectra between 300-650nm.
The absorbance and emission spectra are shown in Figures 14A and 14B which indicate an energy transfer between the chromophores in the chromophore combination. As is clear from Figure 14B, the bandwidth of the Fluorescein, Eosin Y and Rose Bengal combination is wider than that of Eosin Y alone.
Example 11 - Absorption/emission spectra of Fluorescein, Eosin Y and Rose Bengal in an aqueous solution The photodynamic properties of (i) Rose Bengal at about 0.085 mg/mL, (ii) Fluorescein sodium salt at about 0.44 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in an aqueous solution according to an embodiment of the present disclosure were evaluated. A flexstation 384 II spectrophotometer was used to measure emitted fluorescence with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance was read using a synergy HT
microplate reader:
mode absorbance; spectra between 300-650nm.
The absorbance and emission spectra are shown in Figures 15A and 15B which indicate an energy transfer between the chromophores in the chromophore combination, in the absence of a peroxide but in the presence of other oxygen-releasing agents (e.g. water).
In reference to the absorption and emission spectra of the compositions of the present disclosure within a carbamide peroxide gel, the same spectra was obtained for the same chromophores in a gel without the peroxide.
Example 12 - Angiogenic potential of a composition of the disclosure A human skin model was developed to assess the angiogenic potential of compositions of the present disclosure. Briefly, a composition comprising Eosin Y and Erythrosine was placed on top of a human skin model containing fibroblasts and keratinocytes. The skin model and the composition were separated by a nylon mesh of 20 micron pore size. The composition was then irradiated with blue light ('activating light') for 5 minutes at a distance of 5 cm from the light source. The activating light consisted of light emitted from an LED lamp having an average peak wavelength of about 400-470 nm, and a power intensity measured at 10 cm of 7.7 J/cm2 to 11.5 J/cm2. Upon illumination with the activating light, the composition emitted fluorescent light. Since the composition was in limited contact with the cells, the fibroblasts and keratinocytes were exposed mainly to the activating light and the fluorescent light emitted from the composition. Conditioned media from the treated human 3D skin model were then applied to human aortic endothelial cells previously plated in Matrigela The formation of tubes by endothelial cells was observed and monitored by microscopy and image analysis after 24 hours. The conditioned media from 3D skin models treated with light illumination induced endothelial tube formation in vitro, suggesting an indirect effect of the light treatment (blue light and fluorescence) on angiogenesis via the production of factors by fibroblasts and keratinocytes. Plain media and conditioned media from untreated skin samples were used as a control, and did not induce endothelial tube formation.
Figure 16 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition as measured using the spectroradiometer of Example 9. It can be reasonably inferred that other chromophore combinations exhibiting a comparable emission spectra would also induce angiogenesis. As can be seen from Figure 16, the emitted fluorescence light had a wavelength of about 520-620 nm with a peak at around 560 nm.
Similar emission spectra were observed using Eosin Y and Fluorescein (Figure 5B); Eosin Y
and Phloxine B (Figure 7B, Figure 8B); Eosin Y and Rose Bengal (Figure 11B);
Fluorescein, Eosin Y and Rose bengal (Figure 14B, Figure 15B). Other chromophore combinations with similar emission spectra are also possible, which can be reasonably expected to have angiogenic properties.
Example 13 - Protein secretion and gene expression profiles Wounded and unwounded 3D human skin models (EpiDermFT, MatTek Corporation) were used to assess the potential of a composition of the present disclosure to trigger distinct protein secretion and gene expression profiles. Briefly, a composition comprising Eosin and Erythrosine were placed on top of wounded and unwounded 3D human skin models cultured under different conditions (with growth factors (1X), 50% growth factors (0.5X) and no growth factors (OX)). The different conditions mimicked non-compromised healing, semi-starvation conditions and starvations conditions, respectively. The skin models and the composition were separated by a nylon mesh of 20 micron pore size. Each skin model-composition combination was then irradiated with blue light ('activating light') for 5 minutes at a distance of 5 cm from the light source. The activating light consisted of light emitted from an LED
lamp having an average peak wavelength of about 440-470 nm, a power density of 60-150mW/cm2 at 5 cm, and a total energy density after 5 minutes of about 18-39 J/cm2. The controls consisted of 3D
skin models not illuminated with light.
Gene expression and protein secretion profiles were measured 24 hours post-light exposure. Cytokine secretion was analyzed by antibody arrays (RayBio Human Cytokine antibody array), gene expression was analyzed by PCR array (PAHS-013A, SABioscience) and cytotoxicity was determined by GAPDH and LDH release. Results (Tables 1 and 2) showed that the light treatment is capable of increasing the level of protein secreted and gene expression involved in the early inflammatory phase of wound healing in wounded skin inserts and in non-starvation conditions. In starvation conditions mimicking chronic wounds, there was no increase in the level of inflammatory protein secreted when compared to the control.
Interestingly, the effect of the light treatment on unwounded skin models has a much lower impact at the cellular level than on wounded skin insert, which suggests an effect at the cellular effect level of the light treatment. It seems to accelerate the inflammatory phase of the wound healing process. Due to the lack of other cell types such as macrophages in the 3D skin model, the anti-inflammatory feed-back is absent and may explain the delay in wound closure.
Cytotoxicity was not observed in the light treatments. The eosin y and erythrosine b composition had the same emission properties as illustrated in Figure 16. As stated above, it can be reasonably inferred that other chromophore combinations exhibiting a comparable emission spectra would also induce secretion of proteins or gene expression as seen in this Example.
Table 1 ¨ List of proteins with statistically significant difference secretion ratio between treated and untreated control at day 3. Two arrows mean that the ratio was over 2 folds.
Medium 1X Medium 0.5X Medium OX
Increase ENA78 p=0.04 TT Angiogenin p=0.03 I
I1-1R4/ST2 p=0.02 l't CXCL16 p=0.04 I
MMP3 p=0.01 TT
MCP-2 p=0.04 TT
Decrease BMP6 p=0.01 .1, BMP6 p=0.02 1 TNFa p=0.005 1 Table 2 ¨ List of genes with statistically significant difference expression ratio between treated and untreated control during the first 24 hours. Two arrows mean that the ratio was over 2 folds.
Medium 1X Medium 0.5X Medium OX
Increase CTGF p=0.02 i CTGF P=0.04 i MMP3 p=0.007 IT
ITGB3 p=0.03 i ITGB3 p=0.05 i LAMA1 p=0.03 I
MMP1 p=0.03 i MMP1 p=0.02 Ti ITGA2 p=0.03 I
MMP3 p=0.01 i MMP10 p=0.003 IT
THBS1 P=0.02 i MMP3 p=0.007 IT
MMP8 p=0.02 it THBS1 p=0.03 't Decrease HAS1 p=0.009 4_4 NCAM1 p=0.02 14.
NCAM1 p=0.05 4,4, VCAN p=0.02 4, VCAM1 p=0.03 14 LAMC1 p=0.002 4.
COL7A1 p=0.04 I. COL6A1 p=0.007 4, CTNNA1 p=0.03 4. MMP7 p=0.003 4, Example 14 ¨ Eosin Y and Fluorescein induce collagen formation A composition according to an embodiment of the present invention, comprising 0.01% Eosin Y and 0.01% Fluorescein in a carrier matrix (1.8% carbopol gel) was evaluated for its potential to induce collagen formation. Dermal human fibroblasts were plated in glass-bottomed dishes with wells (MatTek ). There were approximately 4000 cells per well. After 48 hours, the glass-bottomed dishes were inverted and the cells were treated through the glass bottom with (i) a no light (control), (ii) sunlight exposure for about 13 minutes at noon (control), (iii) the composition applied to the glass well bottom on the other side of the cells (no light exposure), (iv) the composition applied to the glass well bottom on the other side of the cells (sun light exposure for about 13 minutes at noon), and (v) the composition applied to the glass well bottom on the other side of the cells (blue light exposure for about 5 minutes). In the case of (iii), (iv) and (v), there was no direct contact between the cells and the composition. In the case of (iv) and (v), the cells were exposed to emitted light from and through the Eosin Y and Fluorescein composition when exposed to sunlight and blue light respectively.
An at least partial photobleaching was observed in (iv) and (v). After the treatment, the cells were washed and incubated in regular medium for 48 hours. A collagen assay was then performed on the supernatant using the Picro-Sirius red method. This involved adding Sirius red dye solution in picric acid to the supernatant, incubating with gentle agitation for 30 minutes followed by centrifugation to form a pellet. The pellet was washed first with 0.1N HC1 and then 0.5 N
NaOH to remove free dye. After centrifugation, the suspension was read at 540 nm for collagen type I. The results are shown in Table 1.
Table 1 ¨ A qualitative comparison of collagen type I concentration in a dermal human fibroblast supernatant exposed to (i) a no light (control), (ii) sunlight exposure for about 13 minutes at noon (control), (iii) any light emitted from a Eosin Y and Fluorescein composition through a glass separation (no light exposure), (iv) any light emitted from a Eosin Y and Fluorescein composition through a glass separation (sun light exposure for about 13 minutes at noon), and (v) the composition applied to the glass well bottom on the other side of the cells (blue light exposure for about 5 minutes). ++ indicates collagen levels about twice as high as +, and +++ indicates collagen levels about three times as high as +.
No light Sunlight Eosin Y + Eosin and Eosin and (control) (control) Fluorescein ¨ Fluorescein ¨ Fluorescein ¨
no light sunlight blue light Collagen + + ++ +++ +++
concentration There was a statistical difference between the collagen levels induced by the Eosin Y
and Fluorescein composition exposed to sunlight and blue light compared to the no light and sunlight alone controls.
Collagen generation is indicative of a potential for tissue repair including stabilization of granulation tissue and decreasing of wound size. It is also linked to reduction of fine lines, a decrease in pore size, improvement of texture and improvement of tensile strength of intact skin. The emission spectra of the Eosin Y and Fluorescein composition of this example had a single peak emission with a wavelength that ranged from about 480-620 nm.
Following illumination with sunlight, the power density of the peak was reduced indicating an at least partial photobleaching in 13 minutes, which was also observed by a change in colour of the composition. The rate of fluorescence emission/photobleaching was slower when illuminated by sunlight (white light) compared to Eosin Y and Fluorescein compositions (e.g. compositions of Examples 5 and 6) when activated by blue light.
Example 15 ¨ Selecting the concentration of chromophore in the biophotonic composition The fluorescence spectra of compositions with different concentrations of chromophores were investigated using a spectroradiometer and an activating blue light (as in Example 9).
Exemplary fluorescence spectra of Eosin Y and Fluorescein are presented in Figures 17A and 17B. It was found that emitted fluorescence from the chromophore increases rapidly with increasing concentration but slows down to a plateau with further concentration increase.
Activating light passing through the composition decreases with increasing chromophore composition as more is absorbed by the chromophores. Therefore, the concentration of chromophores in compositions of the present disclosure can be selected according to a required ratio and level of activating light and fluorescence treating the tissue based on this example. In some embodiments, it will be after the zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y (Figure 17A).
Therefore, concentration can be selected according to required activating light and fluorescence. In some embodiments, it will be after zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y (Figure 17A).
Compositions with rose bengal behave slightly differently and become more opaque with increasing concentration which may be due to bubble formation.
Similarly, the relationship between the power density of light received by the tissues with illuminating time was investigated. It was found that the power density of the activating light was low initially and increased with time. This correlates with the light absorbing chromophores photobleaching and more of the activating light passing through the composition to reach tissues. In parallel, the fluorescent light emitted by the composition decreased with time as one or more of the chromophores photobleached. Overall, the total power density of the light treating the tissues increased gradually over illumination time.
It should be appreciated that the invention is not limited to the particular embodiments described and illustrated herein but includes all modifications and variations falling within the scope of the invention as defined in the appended claims.
Claims (138)
1. A biophotonic composition for topical application to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye, wherein the first xanthene dye has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second xanthene dye, and wherein the first and second xanthene dyes are present in the composition at a concentration of about 0.001-0.5% per weight of the composition.
2. A biophotonic composition for topical application to a target tissue, the composition comprising Eosin Y and Fluorescein.
3. A biophotonic composition for topical application to a target tissue, the composition comprising Eosin Y and Rose Bengal.
4. A biophotonic composition for topical application to a target tissue, the composition comprising Fluorescein and Rose Bengal.
5. The biophotonic composition of claim 2, further comprising a third xanthene dye which is Rose Bengal.
6. The biophotonic composition of any of claims 1-5, wherein activation by light results in a cascade of energy transfer between the first and second xanthene dye.
7. The biophotonic composition of claim 6, wherein the energy transfer provides photons that penetrate the epidermis and/or dermis at a target skin tissue site, in use.
8. The biophotonic composition of claim 6 or 7, wherein said energy transfer is not accompanied by concomitant generation of heat.
9. The biophotonic composition of any of claims 6-8, wherein the energy transfer does not result in tissue damage.
10. The biophotonic composition of any of claims 1-9, wherein the first xanthene dye absorbs at a wavelength in the range of the visible spectrum.
11. The biophotonic composition of any of claims 1-10, wherein the second xanthene dye absorbs at a wavelength in the range of the visible spectrum.
12. The biophotonic composition of any of claims 1-11, wherein the first xanthene dye absorbs at a wavelength of 400-500 nm.
13. The biophotonic composition of any of claims 1-12, wherein the second xanthene dye absorbs at a wavelength that is relatively longer than that of the first xanthene dye within the range of 10-100 nm.
14. The biophotonic composition of any of claims 1-13, further comprising an oxidizing agent.
15. The biophotonic composition of claim 14, wherein at least the first or the second xanthene dye undergoes photobleaching upon application of light.
16. The biophotonic composition of any of claims 1-15, wherein the first and second xanthene dyes are present in the composition at a concentration of about 0.001-0.1% or 0.001-0.01% per weight of the composition.
17. The biophotonic composition of any of claims 1-16, wherein said biophotonic composition promotes the healing of a skin disorder or a wound.
18. A method for biophotonic treatment of a skin disorder comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Fluorescein.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Fluorescein.
19. A method for biophotonic treatment of a skin disorder comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
20. A method for biophotonic treatment of a skin disorder comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second xanthene dye is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second xanthene dye is Rose Bengal.
21. A method for providing biophotonic therapy to a wound comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Fluorescein.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Fluorescein.
22. A method for providing biophotonic therapy to a wound comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
23. A method for providing biophotonic therapy to a wound comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second xanthene dye is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second xanthene dye is Rose Bengal.
24. A method for promoting wound healing comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Fluorescein.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Fluorescein.
25. A method for promoting wound healing comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
26. A method for promoting wound healing comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second chromophore is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second chromophore is Rose Bengal.
27. A method for providing skin rejuvenation comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second chromophore is Fluorescein.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second chromophore is Fluorescein.
28. A method for providing skin rejuvenation comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Eosin Y and the second xanthene dye is Rose Bengal.
29. A method for providing skin rejuvenation comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second chromophore is Rose Bengal.
- topically applying a biophotonic composition to a target tissue, the composition comprising a first xanthene dye and a second xanthene dye; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first xanthene dye, wherein the first xanthene dye is Fluorescein and the second chromophore is Rose Bengal.
30. The method of any of claims 26- 28, wherein said biophotonic composition promotes collagen synthesis.
31. The method of any of claims 18-20, wherein said biophotonic composition promotes the healing of a skin disorder.
32. The method of any one of claims 18-20, wherein said biophotonic composition reduces inflammation.
33. The method of any one of claims 18-26, wherein said biophotonic composition reduces the formation of scar tissue.
34. The method of any of claims 18, 21, 24 and 27, further comprising a third xanthene dye which is Rose Bengal.
35. The method of any of claims 18-34, wherein the biophotonic composition is illuminated for a period of at least 5 minutes.
36. The method of any of claims 18-35, wherein the biophotonic composition is illuminated for a period of at least 3 minutes.
37. The method of any of claims 18-36, wherein the biophotonic composition is removed from the target tissue following application of light.
38. The method of any of claims 18-37, wherein the first and/or the second xanthene dye undergoes photobleaching upon application of light.
39. The method of any one of claims 18-38, wherein the application of light results in a cascade of energy transfer between the chromophores.
40. The method of claim 39, wherein the cascade of energy transfer provides photons that penetrate into epidermis and/or dermis at the target tissue site.
41. The method of claim 39 or 40, wherein said cascade of energy transfer is not accompanied by concomitant generation of heat.
42. The method of claim 39-41, wherein the cascade of energy transfer does not result in tissue damage.
43. The method of any of claims 18-42, wherein the first xanthene dye absorbs at a wavelength of about 200-600 nm.
44. The method of any one of claims 18-43, wherein the first and second xanthene dyes are present in an amount of about 0.01-0.5%, about 0.001-0.1%, or about 0.001-0.01% per weight of the composition.
45. A biophotonic composition for topical application to a target skin tissue, the composition comprising a first chromophore and a second chromophore, wherein the first and second chromophores are first and second xanthene dyes and the composition has a light absorption spectrum spanning a broader range of wavelengths compared to a light absorption spectrum of at least one of the individual first and second chromophores, when the composition and the individual chromophores are illuminated with the same activating light.
46. A biophotonic composition for topical application to a target skin tissue, the composition comprising a first chromophore and a second chromophore, wherein the first and second chromophores are first and second xanthene dyes and the composition has a light emission spectrum spanning a broader range of wavelengths compared to a light emission spectrum of at least one of the individual first and chromophores, when the composition and the individual chromophores are illuminated with the same activating light.
47. A biophotonic composition for topical application to a target skin tissue, the composition comprising a first chromophore and a second chromophore, wherein the first and second chromophores are first and second xanthene dyes and the composition has a light absorption peak with a higher density compared to a light absorption peak of at least one of the individual first and chromophores, when the composition and the individual chromophores are illuminated with the same activating light.
48. A biophotonic composition for topical application to a target skin tissue, the composition comprising a first chromophore and a second chromophore, wherein the first and second chromophores are first and second xanthene dyes and the composition has a light emission peak with a higher density compared to a light emission peak of at least one of the individual first and chromophores, when the composition and the individual chromophores are illuminated with the same activating light.
49. A biophotonic composition for topical application to a target skin tissue, the composition comprising a first chromophore and a second chromophore, wherein the first and second chromophores are first and second xanthene dyes and the composition produces higher levels of Oxygen species compared to a level of Oxygen species generated by at least one of the individual first and chromophores, when the composition and the individual chromophores are illuminated with the same activating light.
50. A biophotonic composition for topical application to a target skin tissue, the composition comprising a first chromophore and a second chromophore, wherein the first and second chromophores are first and second xanthene dyes and an emitted fluorescence of the composition is substantially maintained over an illumination time compared to an emitted fluorescence of at least one of the individual first and chromophores, when the composition and the individual chromophores are illuminated with the same activating light.
51. The biophotonic composition of claim 45, wherein the light emission spectrum spans portions of the visible spectra selected from: green and yellow; yellow and orange; green, yellow and orange; yellow and red; or orange, yellow and red.
52. The biophotonic composition of any of claims 45-51, wherein the first and second xanthene dyes are selected from: Fluorescein and Eosin Y; Eosin Y and Phloxine B;
Fluorescein; Eosin Y and Rose Bengal; Fluorescein, Eosin Y and Rose Bengal.
Fluorescein; Eosin Y and Rose Bengal; Fluorescein, Eosin Y and Rose Bengal.
53. The biophotonic composition of any of claims 45-52, wherein the activating light has a single peak emission wavelength.
54. The biophotonic composition of claim 53, wherein the activating light has a peak emission wavelength within the blue and/or violet spectrum.
55. The biophotonic composition of any of claims 45-52, wherein the activating light is sunlight.
56. The biophotonic composition of any of claims 45-55, wherein the composition further comprises oxygen-releasing agents.
57. A method for promoting collagen formation, comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
58. A method for promoting healing of a skin disorder, comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
59. A method for promoting angiogenesis, comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
60. A method for promoting wound healing, comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
61. A method for modulating expression of any one of MMP1, MMP3, MMP8, MMP10, MCP-2, IL-1R4/ST2, ENA78 and TNF.alpha. to promote tissue repair, comprising:
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
- topically applying a biophotonic composition to a target tissue, the composition comprising a biophotonic composition according to any of claims 45-56; and - illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first and/or second xanthene dye.
62. The method of any of claims 57-61, wherein the biophotonic composition is illuminated for a period of at least 5 minutes.
63. The method of any of claims 57-62, wherein the biophotonic composition is removed from the target tissue following application of light.
64. The method of any of claims 57-63, wherein the first and/or the second xanthene dye undergoes at least partial photobleaching upon application of light.
65. The method of any of claims 57-64, wherein the application of light results in a cascade of energy transfer between the xanthene dye.
66. The method of claim 65, wherein the cascade of energy transfer provides photons that penetrate into the target tissue site.
67. The method of claim 65 or 66, wherein said cascade of energy transfer is not accompanied by concomitant generation of heat.
68. The method of claim 65-67, wherein the cascade of energy transfer does not result in tissue damage.
69. The method of any of claims 57-68, wherein the first xanthene dye absorbs at a wavelength of 400-600 nm.
70. The method of any of claims 57-68, wherein the activating light has a single peak emission wavelength.
71. The method of claim 70, wherein the activating light has a peak emission wavelength within the blue and/or violet spectrum.
72. The method of any of claims 57-69, wherein the activating light is sunlight.
73. A kit comprising:
a first component comprising a biophotonic composition according to any of claims 1-17 or claims 45-56; and optionally a second component comprising an oxidizing agent.
a first component comprising a biophotonic composition according to any of claims 1-17 or claims 45-56; and optionally a second component comprising an oxidizing agent.
74. A kit comprising:
a first component comprising the first xanthene dye of the biophotonic composition according to any of claims 1-17 or claims 45-56; and a second component comprising the second xanthene dye of the biophotonic composition according to any of claims 1-17 or claims 45-56 .
a first component comprising the first xanthene dye of the biophotonic composition according to any of claims 1-17 or claims 45-56; and a second component comprising the second xanthene dye of the biophotonic composition according to any of claims 1-17 or claims 45-56 .
75. The kit of claim 73 or 74, further comprising instructions for application of the biophotonic composition to skin.
76. The kit of claim 75, wherein the instructions are for treatment of a skin disorder, skin rejuvenation or treatment of a wound.
77. Use of a composition according to any of claims 1-15, or 45-56 for collagen formation.
78. The use of claim 77, wherein the collagen formation is in intact or broken skin.
79. Use of a composition according to any of claims 1-17, or 45-56 for modulating expression of any one of MMPI, MMP3, MMP8, MMP10, MCP-2, IL-1R4/ST2, ENA78 and TNF.alpha.
to promote tissue repair.
to promote tissue repair.
80. Use of a composition according to any of claims 1-17, or 45-56 for promoting angiogenesis.
81. A composition comprising:
an oxidizing agent; and Eosin Y and Fluorescein.
an oxidizing agent; and Eosin Y and Fluorescein.
82. A composition comprising:
an oxidizing agent; and Eosin Y, Fluorescein and Rose Bengal.
an oxidizing agent; and Eosin Y, Fluorescein and Rose Bengal.
83. A composition comprising:
an oxidizing agent; and Eosin Y and Rose Bengal.
an oxidizing agent; and Eosin Y and Rose Bengal.
84. A composition comprising:
an oxidizing agent; and Fluorescein and Rose Bengal.
an oxidizing agent; and Fluorescein and Rose Bengal.
85. A composition comprising:
an oxidizing agent; and Eosin Y, Fluorescein and Erythrosine.
an oxidizing agent; and Eosin Y, Fluorescein and Erythrosine.
86. A composition for use in wound healing, skin rejuvenation or treating skin disorders, the composition comprising:
an oxidizing agent; and Eosin Y and Fluorescein.
an oxidizing agent; and Eosin Y and Fluorescein.
87. A composition for use in wound healing, skin rejuvenation or treating skin disorders, the composition comprising:
an oxidizing agent; and Eosin Y, Fluorescein and Rose Bengal.
an oxidizing agent; and Eosin Y, Fluorescein and Rose Bengal.
88. A composition for use in wound healing, skin rejuvenation or treating skin disorders, the composition comprising:
an oxidizing agent; and Eosin Y and Rose Bengal.
an oxidizing agent; and Eosin Y and Rose Bengal.
89. A composition for use in wound healing, skin rejuvenation or treating skin disorders, the composition comprising:
an oxidizing agent; and Fluorescein and Rose Bengal.
an oxidizing agent; and Fluorescein and Rose Bengal.
90. A composition for use in wound healing, skin rejuvenation or treating skin disorders, the composition comprising:
an oxidizing agent; and Eosin Y, Fluorescein and Erythrosine.
an oxidizing agent; and Eosin Y, Fluorescein and Erythrosine.
91. The composition of claims 81-90, further comprising erythrosine.
92. The composition of any one of claims 81- 91, wherein the oxidizing agent comprises hydrogen peroxide.
93. The composition of claim 92, wherein the hydrogen peroxide content is less than or equal to 6% by weight of hydrogen peroxide in the composition.
94. The composition of any one of claims 81-92, wherein the oxidizing agent comprises carbamide peroxide.
95. The composition of claim 94, wherein the carbamide peroxide content is less than or equal to 22% by weight carbamide peroxide in the composition.
96. The composition of any one of claims 81-95, wherein the total content of the oxidizing agent is equivalent to about 6% by weight of hydrogen peroxide content.
97. The composition of any one of claims 81-96, further comprising a stabilizing agent.
98. The composition of any one of claims 81-97, further comprising a thickening agent.
99. The composition of claim 98, wherein the thickening agent is silicon dioxide and/or fumed silica having a particle size less than one micron.
100. The composition of any one of claims 91-99, further comprising a hydrophilic gelling agent.
101. The composition of claim 100, wherein the hydrophilic gelling agent comprises polypropylene glycol, polyethylene glycol, propylene glycol, glycerol, or a large molecular weight polyol, or any combination thereof.
102. The composition of any one of claims 91-101, further comprising a base.
103. The composition of claim 102, wherein the base is potassium hydroxide.
104. The composition of any one of claims 91-103, wherein the pH of the composition is between 2 and 10.
105. The composition of any one of claims 91-103, wherein the pH of the composition is between 4 and 8, preferably between 6 and 7, more preferably 6.5.
106. The composition of any one of claims 91-105, wherein Eosin Y is present in an amount of 0.001 % to 1 % weight per weight of the composition.
107. The composition of any one of claims 91-105, wherein Fluorescein is present in an amount of 0.001 % to 1 % weight per weight of the composition.
108. The composition of any one of claims 91-105, wherein Rose Bengal is present in an amount of 0.001 % to 1 % weight per weight of the composition.
109. The composition of any one of claims 91-108, wherein Erythrosine is present in an amount of 0.001 % to 1 % weight per weight of the composition.
110. A kit comprising:
a first component comprising an oxidizing agent; and a second component comprising Eosin Y and Fluorescein.
a first component comprising an oxidizing agent; and a second component comprising Eosin Y and Fluorescein.
111. A kit comprising:
a first component comprising an oxidizing agent; and a second component comprising Eosin Y, Fluorescein and Rose Bengal.
a first component comprising an oxidizing agent; and a second component comprising Eosin Y, Fluorescein and Rose Bengal.
112. A kit comprising:
a first component comprising an oxidizing agent; and a second component comprising Eosin Y and Rose Bengal.
a first component comprising an oxidizing agent; and a second component comprising Eosin Y and Rose Bengal.
113. A kit comprising:
a first component comprising an oxidizing agent; and a second component comprising Fluorescein and Rose Bengal.
a first component comprising an oxidizing agent; and a second component comprising Fluorescein and Rose Bengal.
114. A kit comprising:
a first component comprising an oxidizing agent; and a second component comprising Eosin Y, Fluorescein and Erythrosine.
a first component comprising an oxidizing agent; and a second component comprising Eosin Y, Fluorescein and Erythrosine.
115. The kit of claims 110-113, wherein the second component further comprises erythrosine.
116. The kit of any one of claims 110-115, wherein the oxidizing agent comprises hydrogen peroxide or carbamide peroxide.
117. The kit of claim 116, wherein the oxidizing agent is carbamide peroxide.
118. The kit of any one of claims 110-117, wherein one or both of the first and second components further comprises a thickening agent.
119. The kit of claim 118, wherein the thickening agent is silicon dioxide and/or fumed silica having a particle size less than one micron.
120. The kit of any one of claims 110-119, wherein one or both of the first and second components further comprises a hydrophilic gelling agent.
121. The kit of any one of claims 110 to 120, further comprising an applicator.
122. The kit of any one of claims 110 to 121, further comprising instructions for using the kit, apparatus for mixing together the first and second components, a light source, or information for assessing the efficacy of the composition.
123. The kit of any one of claims 110 to 122, further comprising instructions for application of the biophotonic composition to skin.
124. The kit of claim 123, wherein the instructions are for treatment of a skin disorder, for treatment of a wound or for skin rejuvenation.
125. Use of a biophotonic composition for treatment of a skin disorder, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, wherein the first chromophore is Eosin Y and the second chromophore is Fluorescein.
126. Use of a biophotonic composition for treatment of a skin disorder, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Eosin Y
and the second chromophore is Rose Bengal.
and the second chromophore is Rose Bengal.
127. Use of a biophotonic composition for treatment of a skin disorder, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Fluorescein and the second chromophore is Rose Bengal.
128. Use of a biophotonic composition for providing biophotonic therapy to a wound, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Eosin Y and the second chromophore is Fluorescein.
129. Use of a biophotonic composition for providing biophotonic therapy to a wound, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Eosin Y and the second chromophore is Rose Bengal.
130. Use of a biophotonic composition for providing biophotonic therapy to a wound, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Fluorescein and the second chromophore is Rose Bengal.
131. Use of a biophotonic composition for providing biophotonic therapy to a wound, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Eosin Y and the second chromophore is Fluorescein.
132. Use of a biophotonic composition for providing biophotonic therapy to a wound, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Eosin Y and the second chromophore is Rose Bengal.
133. Use of a biophotonic composition for providing biophotonic therapy to a wound, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Fluorescein and the second chromophore is Rose Bengal.
134. Use of a biophotonic composition for providing skin rejuvenation, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Eosin Y
and the second chromophore is Fluorescein.
and the second chromophore is Fluorescein.
135. Use of a biophotonic composition for providing skin rejuvenation, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Eosin Y
and the second chromophore is Rose Bengal.
and the second chromophore is Rose Bengal.
136. Use of a biophotonic composition for providing skin rejuvenation, the composition comprising a first chromophore and a second chromophore, wherein the biophotonic composition is suitable for illumination with light having a wavelength that overlaps with an absorption spectrum of the first chromophore, and wherein the first chromophore is Fluorescein and the second chromophore is Rose Bengal.
137. The biophotonic composition of any one of claims 1-17, or claims 45-56 for use in treatment of a skin disorder, for treatment of a wound or for skin rejuvenation.
138. A method of using a cascade of energy transfer between at least a first and a second fluorescent chromophore to absorb and/or emit light within the visible range of the electromagnetic spectrum for treatment of a skin disorder, treatment of a wound or skin rejuvenation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2883717A CA2883717A1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261701502P | 2012-09-14 | 2012-09-14 | |
US201261701510P | 2012-09-14 | 2012-09-14 | |
US201261701513P | 2012-09-14 | 2012-09-14 | |
US61/701,510 | 2012-09-14 | ||
US61/701,513 | 2012-09-14 | ||
US61/701,502 | 2012-09-14 | ||
US201361766611P | 2013-02-19 | 2013-02-19 | |
US61/766,611 | 2013-02-19 | ||
US13/830,488 US20130281913A1 (en) | 2012-04-20 | 2013-03-14 | Biophotonic compositions and methods for providing biophotonic treatment |
US13/830,488 | 2013-03-14 | ||
CAPCT/CA2013/000395 | 2013-04-19 | ||
PCT/CA2013/000395 WO2013155620A1 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
GB1307157.6 | 2013-04-19 | ||
GB1307157.6A GB2499921B (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
US201361873791P | 2013-09-04 | 2013-09-04 | |
US61/873,791 | 2013-09-04 | ||
PCT/CA2013/000786 WO2014040176A1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
CA2883717A CA2883717A1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2883717A1 true CA2883717A1 (en) | 2014-03-20 |
Family
ID=52673762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2883717A Abandoned CA2883717A1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2883717A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015149177A1 (en) * | 2014-04-01 | 2015-10-08 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
WO2015184551A1 (en) * | 2014-06-04 | 2015-12-10 | Klox Technologies Inc. | Biophotonic hydrogels |
WO2015196272A1 (en) * | 2014-06-24 | 2015-12-30 | Klox Technologies Inc. | Biophotonic compositions comprising halogen and uses thereof |
US10213373B2 (en) | 2012-04-20 | 2019-02-26 | Klox Technologies, Inc. | Chromophore combinations for biophotonic uses |
CN111093643A (en) * | 2017-07-12 | 2020-05-01 | 特米尔有限公司 | Antimicrobial compositions effective against bacteria and fungi |
US10881736B2 (en) | 2013-07-03 | 2021-01-05 | Klox Technologies Inc. | Biophotonic compositions comprising a chromophore and a gelling agent for treating wounds |
CN113912841A (en) * | 2021-10-22 | 2022-01-11 | 清华大学深圳国际研究生院 | PH and Redox dual-response diblock amphiphilic polymer prodrug and preparation method thereof |
EP3852806A4 (en) * | 2017-01-27 | 2022-12-28 | Klox Technologies Inc. | Methods for photobiomodulation of biological processes using fluorescence generated and emitted from a biophotonic composition or a biophotonic system |
-
2013
- 2013-09-13 CA CA2883717A patent/CA2883717A1/en not_active Abandoned
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10213373B2 (en) | 2012-04-20 | 2019-02-26 | Klox Technologies, Inc. | Chromophore combinations for biophotonic uses |
US10881736B2 (en) | 2013-07-03 | 2021-01-05 | Klox Technologies Inc. | Biophotonic compositions comprising a chromophore and a gelling agent for treating wounds |
WO2015149177A1 (en) * | 2014-04-01 | 2015-10-08 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
US10207029B2 (en) | 2014-04-01 | 2019-02-19 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
US10772990B2 (en) | 2014-04-01 | 2020-09-15 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
WO2015184551A1 (en) * | 2014-06-04 | 2015-12-10 | Klox Technologies Inc. | Biophotonic hydrogels |
EP3152250A4 (en) * | 2014-06-04 | 2018-01-03 | Klox Technologies Inc. | Biophotonic hydrogels |
WO2015196272A1 (en) * | 2014-06-24 | 2015-12-30 | Klox Technologies Inc. | Biophotonic compositions comprising halogen and uses thereof |
EP3852806A4 (en) * | 2017-01-27 | 2022-12-28 | Klox Technologies Inc. | Methods for photobiomodulation of biological processes using fluorescence generated and emitted from a biophotonic composition or a biophotonic system |
CN111093643A (en) * | 2017-07-12 | 2020-05-01 | 特米尔有限公司 | Antimicrobial compositions effective against bacteria and fungi |
US12059003B2 (en) | 2017-07-12 | 2024-08-13 | TerMir Inc. | Antimicrobial compositions effective against bacteria and fungus |
CN113912841A (en) * | 2021-10-22 | 2022-01-11 | 清华大学深圳国际研究生院 | PH and Redox dual-response diblock amphiphilic polymer prodrug and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11723854B2 (en) | Biophotonic compositions and methods for providing biophotonic treatment | |
US20190133908A1 (en) | Chromophore combinations for biophotonic uses | |
US20170151332A1 (en) | Biophotonic materials and uses thereof | |
US11116841B2 (en) | Biophotonic compositions, kits and methods | |
CA2883717A1 (en) | Chromophore combinations for biophotonic uses | |
CA2951467C (en) | Thermosetting biophotonic compositions and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20180911 |
|
EEER | Examination request |
Effective date: 20180911 |
|
EEER | Examination request |
Effective date: 20180911 |
|
EEER | Examination request |
Effective date: 20180911 |
|
FZDE | Discontinued |
Effective date: 20230920 |