CA2863233A1 - Compositions comprising crosslinked cation-binding polymers and uses thereof - Google Patents

Compositions comprising crosslinked cation-binding polymers and uses thereof Download PDF

Info

Publication number
CA2863233A1
CA2863233A1 CA2863233A CA2863233A CA2863233A1 CA 2863233 A1 CA2863233 A1 CA 2863233A1 CA 2863233 A CA2863233 A CA 2863233A CA 2863233 A CA2863233 A CA 2863233A CA 2863233 A1 CA2863233 A1 CA 2863233A1
Authority
CA
Canada
Prior art keywords
polymer
base
subject
calcium carbonate
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2863233A
Other languages
French (fr)
Inventor
Alan D. Strickland
George M. Grass
Linda Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sorbent Therapeutics Inc
Original Assignee
Sorbent Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sorbent Therapeutics Inc filed Critical Sorbent Therapeutics Inc
Priority claimed from PCT/US2012/038909 external-priority patent/WO2013106073A1/en
Publication of CA2863233A1 publication Critical patent/CA2863233A1/en
Abandoned legal-status Critical Current

Links

Abstract

The present disclosure relates generally to compositions comprising a crosslinked cation-binding polymer comprising monomers containing carboxylic acid groups, and a base, wherein the polymer contains less than about 50,000 ppm, or less than about 20,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer. The present disclosure also relates to methods of preparation of said compositions and methods of using said compositions to treat various diseases or disorders.

Description

DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:
NOTE POUR LE TOME / VOLUME NOTE:

COMPOSITIONS COMPRISING CROSSLINKED CATION-BINDING
POLYMERS AND USES THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of International Patent Application No.
PCT/US12/20843, filed on January 10, 2012, which is incorporated by reference herein in its entirety.
FIELD OF THE DISCLOSURE
[0002] The present disclosure relates generally to compositions comprising crosslinked cation-binding polymers comprising monomers containing carboxylic acid groups, and a base, wherein said polymers contains less than about 20,000 ppm or less than about 50,000 ppm, of non-hydrogen cations, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer. The present disclosure also relates to methods of preparation of said compositions and methods of using such compositions in dosage forms and to treat various diseases or disorders.
BACKGROUND
[0003] Numerous diseases and disorders are associated with ion imbalances (e.g., hyperkalemia, hypernatremia, hypercalcemia, and hypermagnesia) and/or increased retention of fluid (e.g., heart failure and end stage renal disease (ESRD)).
For example, patients afflicted with an increased level of potassium (e.g., hyperkalemia) may exhibit a variety of symptoms ranging from malaise, palpitations, muscle weakness and, in severe cases, cardiac arrhythmias. Patients afflicted with increased levels of sodium (e.g., hypernatremia) may exhibit a variety of symptoms including, lethargy, weakness, irritability, edema and in severe cases, seizures and coma. Patients afflicted with retention of fluid often suffer from edema (e.g., pulmonary edema, peripheral edema, edema of the legs, etc.) and the buildup of waste products in the blood (e.g., urea, creatinine, other nitrogenous waste products, and electrolytes or minerals such as sodium, phosphate and potassium).
[0004] Treatments for diseases or disorders associated with ion imbalances and/or an increased retention of fluid attempt to restore the ion balance and decrease the retention of fluid. For example, treatment of diseases or disorders associated with ion imbalances may employ the use of ion exchange resins to restore ion balance. Treatment of diseases or disorders associated with an increased retention of fluid may involve the use of diuretics (e.g., administration of diuretic agents and/or dialysis, such as hemodialysis or peritoneal io dialysis and remediation of waste products that accumulate in the body).
Additionally or alternatively, treatment for ion imbalances and/or increased retention of fluid may include restrictions on dietary consumption of electrolytes and water. However, the effectiveness and/or patient compliance with present treatments is less than desired.
SUMMARY
[0005] The present disclosure is directed to compositions comprising crosslinked cation-binding polymers comprising monomers containing carboxylic acid groups, and a base (e.g., calcium carbonate).
[0006] The present disclosure provides compositions comprising a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.%
of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol%
including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.%
to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%; and a base (e.g., calcium carbonate), wherein said monomers are acrylic acid or salts thereof, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cationsõ and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base (e.g., 0.2 to 0.95 equivalents, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents, 0.2 to 0.8 equivalents, 0.2 to 0.75 equivalents, 0.2 to 0.7 equivalents, 0.2 to 0.65 equivalents, 0.2 to 0.6 equivalents, 0.2 to 0.55 equivalents, 0.2 to 0.5 equivalents, 0.2 to 0.45 equivalents, 0.2 to 0.4 equivalents, 0.2 to 0.35 equivalents, 0.2 to 0.3 equivalents, or 0.2 to 0.25 equivalents of base) per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.5 equivalents to 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer.
In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
[0007] The present disclosure also provides compositions comprising a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.%
of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol%
including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.%
to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and a base (e.g., calcium carbonate), wherein said monomers are acrylic acid or salts thereof, wherein the polymer contains less than about 50,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base (e.g., 0.2 to 0.95 equivalents, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents, 0.2 to 0.8 equivalents, 0.2 to 0.75 equivalents, 0.2 to 0.7 equivalents, 0.2 to 0.65 equivalents, 0.2 to 0.6 equivalents, 0.2 to 0.55 equivalents, 0.2 to 0.5 equivalents, 0.2 to 0.45 equivalents, 0.2 to 0.4 equivalents, 0.2 to 0.35 equivalents, 0.2 to 0.3 equivalents, or 0.2 to 0.25 equivalents of base) per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.5 equivalents to 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer.
In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
[0008] The present disclosure also provides compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0009] The present disclosure also provides compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0010] The present disclosure also provides compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0011] The present disclosure also provides compositions comprising a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0012] The present disclosure also provides compositions comprising polycarbophil, and a base, wherein wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0013] The present disclosure also provides compositions comprising polycarbophil, and a base, wherein wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0014] The present disclosure also provides compositions comprising a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0015] The present disclosure also provides compositions comprising a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0016] In some embodiments, the crosslinked cation-binding polymer is a crosslinked polyacrylate polymer crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%. For example, the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity (e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more. For the purposes of this disclosure saline absorption capacity (e.g., saline holding capacity) is measured in a saline solution buffered to pH 7. In some embodiments, the crosslinked polyacrylate polymer is in the form of individual particles or particles that are agglomerated (for example, flocculated) to form a larger particle, wherein the diameter of individual particles or agglomerated particles is about 1 micron to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns. In one embodiment, the polyacrylate polymer is in the form of small particles that flocculate to form agglomerated particles with a diameter of about 1 micron to about 10 microns. Additionally, any suitable base or combination of two or more bases may be used to prepare the compositions as disclosed herein. In some embodiments, the composition comprises a base such as an alkali earth metal carbonate, an alkali earth metal acetate, an alkali earth metal oxide, an alkali earth metal bicarbonate, an alkali earth metal hydroxide, an organic base, or combinations thereof.
[0017] In some embodiments, the base is a calcium base such as calcium carbonate, calcium acetate, calcium oxide, calcium citrate, or combinations thereof In some embodiments, the base is a magnesium base such as magnesium carbonate, magnesium hydroxide, magnesium oxide, or combinations thereof In some embodiments, the base is a sodium base such as sodium bicarbonate. In some embodiments, the base is a potassium base such as potassium bicarbonate. In some embodiments, the base is an aluminum base such as aluminum hydroxide. In some embodiments, the base is an organic base such as lysine, choline, histidine, arginine, or combinations thereof.
[0018] The present disclosure also provides formulations and dosage forms (e.g., oral dosage forms) that comprise one or more of the compositions disclosed herein.
[0019] The present disclosure also relates to methods of using such compositions and or dosage forms comprising the compositions disclosed herein to treat various diseases or disorders, including signs and/or symptoms of the diseases or disorders, and including those involving ion imbalances and/or fluid imbalances (e.g., overloads). In some embodiments, the disease is heart failure. In some embodiments, the disease is heart failure with chronic kidney disease. In some embodiments, the disease is end stage renal disease.
In some embodiments, the disease is end stage renal disease with heart failure. In some embodiments, the disease is chronic kidney disease. In some embodiments, the disease is hypertension. In some embodiments, the disease is salt-sensitive hypertension.
In some embodiments, the disease is refractory hypertension. In some embodiments, the disease involves an ion imbalance such as hyperkalemia, hypernatremia, hypercalcemia, etc. In some embodiments, the disease or disorder involves a fluid maldistribution or fluid overload state such as edema or ascites.
[0020] In some embodiments, the disease or disorder is the result of, or is associated with, administration of another agent (e.g., drug). For example, compositions according to the present disclosure are useful in treating an increase in a subject's potassium level when co-administered with an agent (e.g., drug) known to cause increases in potassium levels, such as an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II
receptor blocker, a beta blocker, an aldosterone antagonist, etc. For example, compositions according to the present disclosure are useful in treating an increase in a subject's sodium level when co-administered with an agent (e.g., drug) known to cause increases in sodium levels, such as an anabolic steroid, a birth control pill, an antibiotic, clonidine, a corticosteroid, a laxative, lithium, a nonsteroidal anti-inflammatory drug (NSAID), etc.
[0021] These and other embodiments will be described more fully by the detailed description and examples that follow.
DETAILED DESCRIPTION
[0022] The present disclosure relates generally to compositions comprising a crosslinked cation-binding polymer and a base, wherein the polymer comprises carboxylic acid-containing monomers, wherein the polymer contains less than about 50,000 ppm, or less than about 20,000 ppm, of non-hydrogen cations, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.%
to about 0.34 mol.%, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer (alternatively, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents, 0.2 to 0.8 equivalents, 0.2 to 0.75 equivalents, 0.2 to 0.7 equivalents, 0.2 to 0.65 equivalents, 0.2 to 0.6 equivalents, 0.2 to 0.55 equivalents, 0.2 to 0.5 equivalents, 0.2 to 0.45 equivalents, 0.2 to 0.4 equivalents, 0.2 to 0.35 equivalents, 0.2 to 0.3 equivalents, 0.2 to 0.25 equivalents; alternatively from about 0.5 equivalents to about 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer; alternatively, from about 0.7 equivalents to about 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer; or alternatively about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer). The present disclosure relates generally to compositions comprising a crosslinked cation-binding polymer and a base, wherein the polymer comprises carboxylic acid-containing monomers, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer (alternatively, from about 0.2 equivalents to about 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer; alternatively, from about 0.2 equivalents to about 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer; or alternatively about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer). In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns. In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm. In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70%
of the polymer has a particle size of 75 microns or less.
In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer, and wherein no less than about 70% of the polymer has a particle size of 75 microns or less. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm. Such compositions with unexpected cation binding or removal and/or fluid binding or removal properties when administered to a subject (e.g., a mammal, such as a human) while minimizing any acidosis or alkylosis effects from the administration, are useful for the treatment of a variety of diseases or disorders, including those involving ion and/or fluid imbalances (e.g., overloads). Surprisingly, ranges of base and polymer in the compositions have been discovered and are disclosed herein that are optimized for maintaining the cation binding and/or removal properties of the polymer (e.g., for potassium and/or sodium) and the fluid binding and/or removal properties of the polymer in humans, while neutralizing hydrogen cations released from administration of the polymer. In some embodiments, a neutral or substantially neutral acid/base status (e.g., acid/base balance) is maintained in the body of a subject, for example, a human subject. In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total CO2, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap. An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
[0023] The present disclosure also relates to methods of preparation of such compositions. The present disclosure also relates to methods of using such compositions, for example, in dosage forms, for the treatment of various diseases or disorders as disclosed 1 0 herein, including, for example, heart failure (e.g., with or without chronic kidney disease), end stage renal disease (e.g., with or without heart failure), chronic kidney disease, hypertension (including, e.g., salt sensitive and refractory), hyperkalemia (e.g., any origin), hypernatremia (e.g., any origin), and/or fluid overload states (e.g., edema or ascities).
[0024] In some embodiments, compositions and/or dosage forms comprising a base and a cross-linked cation-binding polymer, including a cross-linked polyacrylate polymer, absorb about 20-fold, 30-fold, or 40-fold or more of their mass in a sodium solution (e.g., a solution of sodium salts at 0.154 molar total sodium concentration, for example, a saline solution or a physiological saline solution). For example, saline holding capacity for a disclosed cross-linked cation-binding polymer may be determined in a buffered saline solution, e.g., a buffered saline solution that maintains pH at about 7.
[0025] In some embodiments, the polymer is a polycarboxylic acid polymer, such as a polyacrylate. In some embodiments, the polymer is derived from polymerization of carboxylic acid-containing monomers. Non-limiting examples of suitable carboxylic acid-containing monomers include, for example: acrylic acid and its salts, methacrylic acid and its salts, crotonic acid and its salts, tiglinic acid and its salts, 2-methyl-2-butenoic acid (Z) and its salts, 3-butenoic acid (vinylacetic acid) and its salts, 1-cyclopentene carboxylic acid and its salts, 2-cyclopentene carboxylic acid and its salts; and unsaturated dicarboxylic acids and their salts, such as maleic acid, fumaric acid, itaconic acid, glutaconic acid, and their salts. Copolymers of the above monomers may be included in the polymers. Other cross-linked cation-binding polyelectrolyte polymers may be based on sulfonic acids and their salts, or phosphonic acids and their salts and amines and their salts, for example, acrylic acid with sulfonic acids or salts thereof, phosphonic acids or salts thereof, or amines and their salts thereof. Regardless of the choice of monomer, the polymers useful in the present disclosure contain a plurality of carboxylic acid (¨C(0)0H) groups. In some embodiments, such carboxylate groups are not bound to a cation other than a proton (H'), that is, essentially all, substantially all, or greater than about 99% of the carboxylate groups of the polymers are bound to protons. In some embodiments, at least 99%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, or at least 99.9% of the carboxylate groups in the polymer are bound to protons. In some embodiments, less than 2%, less than 1%, less than 0.5%, less than 0.4%, less than 0.3%, less than 0.2%, or less than 0.1% of the carboxylate groups of the polymer are bound to cations other than hydrogen, such as sodium, potassium, calcium, magnesium, and/or choline.
[0026] Polymers of the present disclosure are crosslinked. Any crosslinker known in the art may be used. Crosslinking agents contemplated for use in the present disclosure, include, for example, diethelyeneglycol diacrylate (diacryl glycerol), triallylamine, tetraallyloxyethane, allylmethacrylate, 1,1,1-trimethylolpropane triacrylate (TMPTA), divinyl benzene, and divinyl glycol. The amount of crosslinking agent used may vary depending on the absorbent characteristics desired. In general, increasing amounts of crosslinking agent will yield polymers with increasing degrees of crosslinking. Such polymers with higher degrees of crosslinking may be preferred over less crosslinked polymers when fluid absorption is unnecessary. For polymers of the present disclosure, an amount of crosslinking may be chosen that yields a polymer with an in vitro saline absorption capacity (e.g., saline holding capacity) of greater than about 20 times its own weight. For the purposes of this disclosure saline absorption capacity (e.g., saline holding capacity) is measured in a saline solution buffered to pH 7. For example, the amount of crosslinker used to crosslink polymers according to the present disclosure may range from about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%.
[0027] In certain exemplary embodiments, the crosslinked cation-binding polymer, as described, for example, for inclusion in compositions, formulations, and/or dosage forms and/or for use in methods for treatment of various diseases or disorders as described herein, and/or for use in methods for cation binding and/or removal, and/or fluid binding and/or removal, as described herein, is a crosslinked polyacrylate polymer (i.e., derived from acrylic acid monomers or a salt thereof). For example, the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.%
to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity (e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more. As used herein an in vitro saline absorption capacity (e.g., saline holding capacity) is measured in a saline solution buffered to pH 7 including as described in Examples 5 and 6). In some embodiments, the crosslinked polyacrylate polymer comprises individual particles or particles that are agglomerated (for example, flocculated) to form a larger particle, wherein the individual or agglomerated particle diameter is about 1 to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns. In one embodiment, the polyacrylate polymer is in the form of small particles that flocculate to form agglomerated particles with a diameter of about 1 micron to about 10 microns.
[0028] As used herein, the term non-hydrogen cations refers to sodium, potassium, magnesium and calcium cations. In some embodiments, the polymer contains less than about 20,000 ppm of non-hydrogen cations. As used herein, the term "about 20,000 ppm of non-hydrogen cations" refers to a maximum level in the polymer of about 20,000 ppm of the combination of sodium, potassium, magnesium, and calcium cations; and a maximum level in the polymer for each non-hydrogen cation (sodium, potassium, magnesium and calcium) of about 5,000 ppm. In some embodiments, the polymer contains less than about 19,000 ppm of non-hydrogen cations ( e.g., less than or equal to about 4,750 ppm of each non-hydrogen cation), about 18,000 ppm of non-hydrogen cations (e.g., less than or equal to about 4,500 ppm of each non-hydrogen cation), about 17,000 ppm of non-hydrogen cations (e.g., less than or equal to about 4,250 ppm of each non-hydrogen cation), about 16,000 ppm of non-hydrogen cations (e.g., less than or equal to about 4,000 ppm of each non-hydrogen cation), about 15,000 ppm of non-hydrogen cations (e.g., less than or equal to about 3,750 ppm of each non-hydrogen cation), about 14,000 ppm of non-hydrogen cations (e.g., less than or equal to about 3,500 ppm of each non-hydrogen cation), about 13,000 ppm of non-hydrogen cations (e.g., less than or equal to about 3,250 ppm of each non-hydrogen cation), about 12,000 ppm of non-hydrogen cations (e.g., less than or equal to about 3,000 ppm of each non-hydrogen cation), about 11,000 ppm of non-hydrogen cations (e.g., less than or equal to about 2,750 ppm of each non-hydrogen cation), about 10,000 ppm of non-hydrogen cations (e.g., less than or equal to about 2,500 ppm of each non-hydrogen cation), about 9,000 ppm of non-hydrogen cations (e.g., less than or equal to about 2,250 ppm of each non-hydrogen cation), about 8,000 ppm of non-hydrogen cations (e.g., less than or equal to about 2,000 ppm of each non-hydrogen cation), about 7,000 ppm of non-hydrogen cations (e.g., less than or equal to about 1,750 ppm of each non-hydrogen cation), about 6,000 ppm of non-hydrogen cations (e.g., less than or equal to about 1,500 ppm of each non-hydrogen cation), about 5,000 ppm of non-hydrogen cations (e.g., less than or equal to about 1,250 ppm of each non-hydrogen cation), about 4,000 ppm of non-hydrogen cations (e.g., less than or equal to about 1,000 ppm of each non-hydrogen cation), about 3,000 ppm of non-hydrogen cations (e.g., less than or equal to about 750 ppm of each non-hydrogen cation), about 2,000 ppm of non-hydrogen cations (e.g., less than or equal to about 500 ppm of each non-hydrogen cation), about 1,000 ppm of non-hydrogen cations (e.g., less than or equal to about 250 ppm of each non-hydrogen cation), about 500 ppm of non-hydrogen cations (e.g., less than or equal to about 125 ppm of each non-hydrogen cation), about 400 ppm of non-hydrogen cations (e.g., less than or equal to about 100 ppm of each non-hydrogen cation), about 300 ppm of non-hydrogen cations (e.g., less than or equal to about 75 ppm of each non-hydrogen cation), about 200 ppm of non-hydrogen cations (e.g., less than or equal to about 50 ppm of each non-hydrogen cation), or about 100 ppm of non-hydrogen cations (e.g., less than or equal to about 25 ppm of each non-hydrogen cation.
[0029] In some embodiments, the polymer contains less than about 50,000 ppm of non-hydrogen cations. As used herein, the term "about 50,000 ppm of non-hydrogen cations" refers to a maximum level in the polymer of about 50,000 ppm of the combination of sodium, potassium, magnesium, and calcium cations. In some embodiments, the polymer contains less than about 50,000 ppm of all non-hydrogen cations combined, and at least about 5,000 ppm of one non-hydrogen cation; at least about 5,000 ppm each of two non-hydrogen cations (e.g., calcium and sodium, calcium and magnesium, calcium and potassium, sodium and magnesium, sodium and potassium, or magnesium and potassium);
at least about 5,000 ppm each of two non-hydrogen cations (e.g., calcium, sodium and magnesium; calcium, sodium and potassium; calcium, magnesium and potassium; or sodium, magnesium and potassium); or at least about 5,000 ppm of each non-hydrogen cation.
[0030] In some embodiments, the polymer contains less than about 5,000 ppm of any single non-hydrogen cation, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of any single non-hydrogen cation.
[0031] In some embodiments, the polymer contains less than about 5,000 ppm of sodium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of sodium.
[0032] In some embodiments, the polymer contains less than about 5,000 ppm of potassium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of potassium.
[0033] In some embodiments, the polymer contains less than about 5,000 ppm of magnesium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of magnesium.
[0034] In some embodiments, the polymer contains less than about 5,000 ppm of calcium, for example about 5,000 ppm, about 4,000 ppm, about 3,000 ppm, about 2,000 ppm, about 1,000 ppm, about 900 ppm, about 800 ppm, about 700 ppm, about 600 ppm, about 500 ppm, about 400 ppm, about 300 ppm, about 200 ppm, about 100 ppm, or less than about 100 ppm of calcium.
[0035] The present disclosure relates generally to compositions comprising a crosslinked cation-binding polymer and a base, wherein the polymer comprises carboxylic acid-containing monomers, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer (alternatively, from about 0.2 equivalents to about 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer;
alternatively, from about 0.2 equivalents to about 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer; or alternatively about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer).
[0036] In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
[0037] In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0038] In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of 75 microns or less, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
[0039] In some embodiments, a composition of the present disclosure comprises a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of 75 microns or less, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[0040] In some embodiments, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid, and further wherein: the polymer contains no more than about 5,000 ppm of sodium, no more than about 20 ppm of heavy metals, no more than about 1,000 ppm of residual monomer, no more than about 20 wt.% of soluble polymer, and loses less than about 5% of its weight upon drying; the polymer contains no more than about 1,000 ppm of sodium, no more than about 20 ppm of heavy metals, no more than about 500 ppm of residual monomer, no more than about 10 wt.% of soluble polymer, and loses less than about 5% of its weight upon drying; the polymer contains no more than about 500 ppm of sodium, no more than about 20 ppm of heavy metals, no more than about 100 ppm of residual monomer, no more than about 10 wt.% of soluble polymer, and loses less than about 5% of its weight upon drying;
the polymer contains no more than about 500 ppm of sodium, no more than about 20 ppm of heavy metals, no more than about 50 ppm of residual monomer, no more than about 10 wt.% of soluble polymer, and loses less than about 5% of its weight upon drying; the polymer contains about 430 ppm of sodium, less than about 20 ppm of heavy metals, less than about 2 ppm of residual monomer, about 3 wt.% of soluble polymer, and loses about 2% of its weight upon drying; the polymer contains about 160 ppm of sodium, less than about 20 ppm of heavy metals, about 4 ppm of residual monomer, about 4 wt.% of soluble polymer, and loses about 3% of its weight upon drying; the polymer contains about 335 ppm of sodium, less than about 20 ppm of heavy metals, about 36 ppm of residual monomer, about 4 wt.% of soluble polymer, and loses about 2% of its weight upon drying;
the polymer contains about 300 ppm of sodium, less than about 20 ppm of heavy metals, about 14 ppm of residual monomer, about 7 wt.% of soluble polymer, and loses about 2%

of its weight upon drying; or the polymer contains about 153 ppm of sodium, less than about 20 ppm of heavy metals, less than about 40 ppm of residual monomer, about 3 wt.%
of soluble polymer, and loses about 1% of its weight upon drying. In any of the above composition embodiments, the base is calcium carbonate and the calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer (e.g., from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer, or about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer).
[0041] Determination of the content of non-hydrogen cations (e.g., parts per million, weight percent, etc.) can be accomplished by any suitable means known in the art (e.g., ICP
spectroscopy, atomic absorption spectroscopy, ion chromatography, or similar analytic methods). For example and without limitation, the polymer may be analyzed with an inductively coupled plasma ("ICP") spectrometer (e.g., by mass spectroscopy (ICP-MS), atomic emission spectroscopy (ICP-AES), or optical emission spectroscopy (ICP-OES)) using methods known to those skilled in the art. Such methods include methods of sample preparation wherein the polymer is completely digested.
[0042] Compositions and/or dosage forms comprising a polymer as disclosed herein additionally comprise a base (alternatively termed an alkali). As used with respect to a component of the compositions and dosage forms disclosed herein, the term base refers to any suitable compound or mixture of compounds that is capable of increasing the pH of the blood or other bodily fluids. Preferred bases include calcium carbonate, calcium acetate, magnesium oxide, calcium oxide, potassium citrate, potassium acetate, and sodium bicarbonate. Generally, inorganic and organic bases can be used, provided they are acceptable, for example, pharmaceutically and/or physiologically acceptable.
To be acceptable, the dose and route of administration of the specific base are important considerations. For example, oral administration of even small amounts of sodium hydroxide would cause local tissue damage and would not be acceptable on this basis while administration of intermittent, small amounts of sodium hydroxide intravenously is performed routinely. Similarly, though lithium carbonate or rubidium acetate would be an acceptable base, only small amounts could be used due to the effects of the lithium or the 1 o rubidium, regardless of the route of administration.
[0043] In some embodiments, the base is one or more of: an alkali metal hydroxide, an alkali metal acetate, an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal oxide, an alkaline earth metal hydroxide, an alkaline earth metal acetate, an alkaline earth metal carbonate, an alkaline earth metal bicarbonate, an alkaline earth metal oxide, and an organic base. In some embodiments, the base is choline, lysine, arginine, histidine, a pharmaceutically acceptable salt thereof, or a combination thereof In some embodiments, the base is an acetate, a butyrate, a propionate, a lactate, a succinate, a citrate, an isocitrate, a fumarate, a malate, a malonate, an oxaloacetate, a pyruvate, a phosphate, a carbonate, a bicarbonate, a lactate, a benzoate, a sulfate, a lactate, a silicate, an oxide, an oxalate, a hydroxide, an amine, a dihydrogen citrate, or a combination thereof In some embodiments, the base is a bicarbonate, a carbonate, an oxide, or a hydrochloride. In related embodiments, the base is one or more of: calcium bicarbonate, calcium carbonate, calcium oxide, and calcium hydroxide. In some embodiments, the base is a lithium salt, a sodium salt, a potassium salt, a magnesium salt, a calcium salt, an aluminum salt, a rubidium salt, a barium salt, a chromium salt, a manganese salt, an iron salt, a cobalt salt, a nickel salt, a copper salt, a zinc salt, an ammonium salt, a lanthanum salt, a choline salt, or a serine salt of any of the foregoing anions or anion combinations.
[0044] In some embodiments, the base may be selected to avoid increasing a level of a particular cation associated with the subject. For example, a composition according to the present disclosure intended to treat hyperkalemia in a subject would preferably contain a base that does not include potassium cations. Similarly, a composition according to the present disclosure intended to treat hypernatremia in a subject would preferably contain a base that does not include sodium cations.
[0045] In some embodiments, the base is present in an amount sufficient to provide an equivalents ratio of from about 0.2 equivalents to 0.95 equivalents of base per equivalent (e.g., mole) of carboxylic acid groups in the polymer. As used herein, the term "equivalents ratio" ("ER") refers to the ratio between the number of units (e.g., equivalents) of base present in the composition and the number of units (e.g., moles) of carboxylic acid groups in the polymer. A monobasic base provides one equivalent of base per mole of monobasic base. A dibasic base provides two equivalents of base per mole of dibasic base. A tribasic base provides three equivalents of base per mole of tribasic base. For example, a composition comprising a polymer derived from polymerization and crosslinking of 1.0 mole of acrylic acid monomers may contain from about 0.2 moles to 0.95 moles of a monobasic base, such as a bicarbonate. If a dibasic base is used, such as a carbonate, a composition comprising 1.0 mole of carboxylic acid groups may contain from about 0.1 to about 0.475 equivalents of the dibasic base.
[0046] In some embodiments, compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide from about 0.2 to about 0.95 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.2 moles of base, about 0.25 moles of base, about 0.3 moles of base, about 0.35 moles of base, about 0.4 moles of base, about 0.45 moles of base, about 0.5 moles of base, about 0.55 moles of base, about 0.6 moles of base, about 0.65 moles of base, about 0.7 moles of base, about 0.75 moles of base, about 0.8 moles of base, about 0.85 moles of base, about 0.9 moles of base, or about 0.95 moles of base per mole of carboxylic acid groups in the polymer. In some embodiments, compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide from about 0.5 moles of base to about 0.85 moles of base of base, for example about 0.5 moles of base, about 0.55 moles of base, about 0.6 moles of base, about 0.65 moles of base, about 0.7 moles of base, about 0.75 moles of base, about 0.8 moles of base, or about 0.85 moles of base per mole of carboxylate groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.2 moles of base to about 0.3 moles of base, about 0.2 moles of base, about 0.25 moles of base, about 0.3 moles of base, or about 0.35 moles of base per mole of carboxylic acid groups in the polymer. In some embodiments, compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide from about 0.7 moles of base to about 0.8 moles of base of base, for example about 0.7 moles of base, about 0.75 moles of base, about or 0.8 moles of base per mole of carboxylate groups in the polymer. In some embodiments, compositions of the present disclosure comprise a monobasic base present in an amount sufficient to provide about 0.75 moles of base per mole of carboxylate groups in the polymer.
[0047] In some embodiments, compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide from about 0.1 to about 0.475 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.1 moles of base, about 0.125 moles of base, about 0.15 moles of base, about 0.175 moles of base, about 0.2 moles of base, about 0.225 moles of base, about 0.25 moles of base, about 0.275 moles of base, about 0.3 moles of base, about 0.325 moles of base, about 0.35 moles of base, about 0.375 moles of base, about 0.4 moles of base, about 0.425 moles of base, about 0.45 moles of base, or about 0.475 moles of base per mole of carboxylic acid groups in the polymer. In some embodiments, compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide from about 0.25 moles of base to about 0.425 moles of base of base, for example about 0.25 moles of base, about 0.275 moles of base, about 0.3 moles of base, about 0.325 moles of base, about 0.35 moles of base, about 0.375 moles of base, about 0.4 moles of base, or about 0.425 moles of base per mole of carboxylate groups in the polymer. In some embodiments, compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide from about 0.35 moles of base to about 0.4 moles of base of base, for example about 0.35 moles of base, about 0.375 moles of base, about or 0.4 moles of base per mole of carboxylate groups in the polymer. In some embodiments, compositions of the present disclosure comprise a dibasic base present in an amount sufficient to provide about 0.375 moles of base per mole of carboxylate groups in the polymer.
[0048] In some embodiments, compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide from about 0.065 to about 0.32 moles of base per mole of carboxylic acid groups in the polymer, for example about 0.065 moles of base, about 0.07 moles of base, about 0.075 moles of base, about 0.08 moles of base, about 0.085 moles of base, about 0.09 moles of base, about 0.095 moles of base, about 0.1 moles of base, about 0.105 moles of base, about 0.11 moles of base, about 0.115 moles of base, about 0.12 moles of base, about 0.125 moles of base, about 0.13 moles of base, about 0.135 moles of base, about 0.14 moles of base, about 0.145 moles of base, about 0.15 moles of base, about 0.155 moles of base, about 0.16 moles of base, about 0.165 moles of base, about 0.17 moles of base, about 0.175 moles of base, about 0.18 moles of base, about 0.185 moles of base, about 0.19 moles of base, about 0.195 moles of base, about 0.2 moles of base, about 0.205 moles of base, about 0.21 moles of base, about 0.215 moles of base, about 0.22 moles of base, about 0.225 moles of base, about 0.23 moles of base, about 0.235 moles of base, about 0.24 moles of base, about 0.245 moles of base, about 0.25 moles of base, about 0.255 moles of base, about 0.26 moles of base, about 0.265 moles of base, about 0.27 moles of base, about 0.275 moles of base, about 0.28 moles of base, about 0.285 moles of base, about 0.29 moles of base, about 0.295 moles of base, about 0.3 moles of base, about 0.305 moles of base, about 0.31 moles of base, about 0.315 moles of base, or about 0.32 moles of base per mole of carboxylic acid groups in the polymer. In some embodiments, compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide from about 0.165 moles of base to about 0.285 moles of base of base, for example about 0.065 moles of base, about 0.07 moles of base, about 0.075 moles of base, about 0.08 moles of base, about 0.085 moles of base, about 0.09 moles of base, about 0.095 moles of base, about 0.1 moles of base, about 0.105 moles of base, about 0.11 moles of base, about 0.115 moles of base, about 0.12 moles of base, about 0.125 moles of base, about 0.13 moles of base, about 0.135 moles of base, about 0.14 moles of base, about 0.145 moles of base, about 0.15 moles of base, about 0.155 moles of base, about 0.16 moles of base, about 0.165 moles of base, about 0.17 moles of base, about 0.175 moles of base, about 0.18 moles of base, about 0.185 moles of base, about 0.19 moles of base, about 0.195 moles of base, about 0.2 moles of base, about 0.205 moles of base, about 0.21 moles of base, about 0.215 moles of base, about 0.22 moles of base, about 0.225 moles of base, about 0.23 moles of base, about 0.235 moles of base, about 0.24 moles of base, about 0.245 moles of base, about 0.25 moles of base, about 0.255 moles of base, about 0.26 moles of base, about 0.265 moles of base, about 0.27 moles of base, about 0.275 moles of base, about 0.28 moles of base, or about 0.285 moles of base per mole of carboxylate groups in the polymer. In some embodiments, compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide from about 0.235 moles of base to about 0.265 moles of base of base, for example about 0.235 moles of base, about 0.24 moles of base, about 0.245 moles of base, about 0.25 moles of base, about 0.255 moles of base, about 0.26 moles of base, or about 0.265 moles of base per mole of carboxylate groups in the polymer. In some embodiments, compositions of the present disclosure comprise a tribasic base present in an amount sufficient to provide about 0.25 moles of base per mole of carboxylate groups in the polymer.
[0049] In some embodiments, compositions of the present disclosure comprise more than one base (e.g., one or more monobasic bases, one or more dibasic bases, one or more tribasic bases, etc.). In such embodiments, the compositions comprise an amount of each base such that the total number of equivalents of base present is between about 0.2 and about 0.95 equivalents per mole of carboxylic acid groups in the polymer. For example, a composition comprising 1.0 moles of carboxylic acid groups in the polymer may further comprise a total amount of base according to the following Equation 1:
(about 0.2)(NcooH) (Nmonobasic) +
(2)(Ndibasic) + (3)(Ntribasic) + (4)(Ntetrabasic) + = = = ..
(about 0.95)(NcooH), wherein:
Nc00H is the number of moles of carboxylate groups in the polymer;
Nmonobasic is the number of moles of all monobasic bases present in the composition;
Ndibasie is the number of moles of all dibasic bases present in the composition;
Ntribasic is the number of moles of all tribasic bases present in the composition; and Ntetrabasic is the number of moles of all tetrabasic bases present in the composition.
[0050] Thus, as one example embodiment, a composition according to the present invention that comprises 1.0 mole of carboxylic acid groups and 0.1 moles of sodium bicarbonate may also comprise from about 0.05 moles to about 0.425 moles of a dibasic base such as magnesium carbonate. In such an embodiment, the total equivalents of base would be equal to 0.1 + (2) (about 0.05 to about 0.425), or about 0.2 to about 0.95 equivalents of base.
[0051] In some embodiments, the base is present in an amount sufficient to provide from about 0.2 to about 0.95 equivalents of base, for example about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, about 0.35 equivalents, about 0.4 equivalents, about 0.45 equivalents, about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, about 0.85 equivalents, about 0.9 equivalents, or about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of base, for example about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, or about 0.35 equivalents of base per equivalent of carboxylate groups in the polymer.
In some embodiments, the base is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of base, for example about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, or about 0.85 equivalents of base per equivalent of carboxylate groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide from about 0.7 equivalents to about 0.8 equivalents of base, for example about 0.7 equivalents, about 0.75 equivalents, about or 0.8 equivalents of base per equivalent of carboxylate groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide about 0.75 equivalents of base per equivalent of carboxylate groups in the polymer.
[0052] In some embodiments, a composition of the present disclosure has an in vitro saline absorption capacity (e.g., saline holding capacity) of greater than about 20 times its own weight (e.g., greater than about 20 grams of saline per gram of composition, or "g/g").
In related embodiments, the composition has an in vitro saline absorption capacity (e.g., saline holding capacity) of about 20 times, about 25 times, about 30 times, about 35 times, about 40 times, about 45 times, about 50 times, about 55 times, about 60 times, about 65 times, about 70 times, about 75 times, about 80 times, about 85 times, about 90 times, about 95 times, or about 100 times its own weight, or more.
[0053] In one embodiment, a composition comprises a crosslinked cation-binding polymer comprising (e.g., acrylic acid) monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and a base, wherein said monomers are acrylic acid or salts thereof, wherein said polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein base (e.g., calcium carbonate) is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0054] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0055] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0056] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0057] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0058] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0059] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0060] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0061] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0062] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0063] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0064] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0065] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 20,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0066] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0067] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0068] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0069] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0070] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0071] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0072] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0073] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0074] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0075] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0076] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0077] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0078] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 15,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0079] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0080] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0081] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0082] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0083] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0084] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0085] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0086] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0087] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0088] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0089] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0090] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0091] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0092] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0093] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0094] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0095] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0096] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0097] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0098] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[0099] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00100] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00101] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00102] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00103] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00104] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00105] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00106] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00107] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00108] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00109] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00110] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00111] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00112] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00113] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00114] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00115] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00116] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00117] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00118] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00119] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00120] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00121] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00122] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00123] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00124] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00125] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00126] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00127] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00128] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00129] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00130] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00131] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00132] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00133] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00134] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00135] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00136] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00137] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00138] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00139] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00140] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00141] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00142] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00143] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00144] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00145] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00146] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00147] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00148] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00149] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00150] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00151] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00152] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00153] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00154] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00155] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00156] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00157] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00158] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to io provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00159] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00160] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00161] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00162] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00163] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00164] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00165] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00166] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00167] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00168] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00169] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00170] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00171] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00172] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00173] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00174] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00175] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00176] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00177] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00178] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00179] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00180] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00181] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00182] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00183] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00184] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00185] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00186] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00187] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00188] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00189] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00190] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00191] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00192] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00193] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00194] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00195] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00196] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00197] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00198] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00199] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about
200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00200] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00201] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00202] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00203] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00204] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00205] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00206] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00207] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00208] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00209] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00210] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00211] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00212] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00213] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00214] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00215] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00216] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00217] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00218] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00219] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00220] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00221] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00222] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00223] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00224] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00225] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00226] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00227] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00228] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00229] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00230] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00231] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00232] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00233] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00234] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00235] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00236] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00237] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00238] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00239] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00240] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00241] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00242] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00243] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00244] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00245] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00246] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00247] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00248] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00249] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00250] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00251] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00252] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00253] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00254] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00255] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00256] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00257] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00258] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00259] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00260] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00261] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00262] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00263] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00264] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00265] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00266] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00267] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00268] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00269] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00270] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00271] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00272] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00273] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00274] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00275] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00276] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00277] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00278] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00279] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00280] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00281] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00282] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00283] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00284] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00285] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00286] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00287] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00288] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00289] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00290] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00291] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00292] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00293] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00294] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00295] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00296] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00297] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00298] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00299] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00300] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00301] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00302] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00303] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00304] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00305] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00306] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00307] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00308] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00309] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00310] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00311] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00312] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00313] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00314] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00315] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00316] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00317] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00318] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00319] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00320] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00321] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00322] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00323] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00324] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00325] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00326] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00327] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00328] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00329] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00330] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00331] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00332] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00333] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.3 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00334] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.35 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00335] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00336] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00337] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00338] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00339] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00340] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00341] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00342] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00343] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00344] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00345] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00346] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00347] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00348] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00349] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00350] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00351] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00352] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 10,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00353] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00354]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00355]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00356]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00357] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00358] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00359] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00360] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00361] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00362] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00363] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00364] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00365] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00366] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00367] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00368] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00369] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00370] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00371] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00372] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00373] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00374] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00375] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00376] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00377] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00378] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00379] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00380] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00381] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00382] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00383] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00384] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00385] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00386] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00387] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00388] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00389] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00390] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00391] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00392] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00393] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00394] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00395] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00396] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00397] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00398] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00399] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00400] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00401] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00402] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00403] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00404] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00405] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00406] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00407] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00408] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00409] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00410] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00411]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00412]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00413]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00414] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00415] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00416] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00417] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00418] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00419] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00420] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00421] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00422] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00423] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00424] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00425] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00426] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00427] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00428] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00429] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00430] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00431] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00432] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00433] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00434] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00435] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00436] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00437] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00438] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00439] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00440] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00441] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00442] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00443] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00444] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00445] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00446] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00447] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid io groups of said polymer.
[00448] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00449] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00450] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00451] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00452] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of non-hydrogen cations, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00453] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00454] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00455] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00456] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00457] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00458] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00459] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00460] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00461] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00462] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 5,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00463] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00464] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00465] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00466] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00467] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00468] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00469] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00470] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00471] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00472] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 4,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00473] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00474] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00475] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00476] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00477] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00478] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00479] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00480] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00481] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00482] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 3,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00483] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00484] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00485] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00486] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00487] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00488] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00489] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00490] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00491] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00492] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 2,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00493] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00494] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00495] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00496] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00497] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00498] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00499] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00500] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00501] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00502] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 1,000 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00503] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00504] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00505] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00506] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00507] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00508] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00509] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00510] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00511] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00512] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 500 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00513] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00514] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00515] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00516] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00517] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00518] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00519] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00520] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00521] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00522] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 400 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00523] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00524] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00525] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00526] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00527] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00528] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00529] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00530] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00531] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00532] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 300 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00533] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00534] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00535] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00536] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00537] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00538] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00539] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00540] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00541] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00542] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 200 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00543] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00544]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.2 equivalents to about 0.25 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00545]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.25 equivalents to about 0.50 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00546]
In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00547] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.5 equivalents to about 0.55 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00548] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.6 equivalents to about 0.65 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00549] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00550] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.8 equivalents to about 0.85 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00551] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers io (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide from about 0.7 equivalents to about 0.80 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00552] In one embodiment, a composition comprises a crosslinked cation-binding polymer and a base, wherein the crosslinked cation-binding polymer comprising monomers (e.g., acrylic acid) containing carboxylic acid groups is a crosslinked polyacrylic acid; and the base is calcium carbonate, wherein said polymer contains less than about 100 ppm of sodium, and wherein at least about 98% or 99% (e.g., 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%) of the carboxylate groups of said polymer are bound to hydrogen, and wherein calcium carbonate is present in an amount sufficient to provide about 0.75 equivalents of calcium carbonate per equivalent of carboxylic acid groups of said polymer.
[00553] The present disclosure also relates to methods of using the polymers, and compositions, formulations, and/or dosage forms containing the polymers disclosed herein, with or without added base, to treat various diseases and disorders, ion imbalances, and fluid imbalances.
[00554] In some embodiments, the disease or disorder is one or more of: heart failure, a renal insufficiency disease, end stage renal disease, liver cirrhosis, chronic renal insufficiency, chronic kidney disease, fluid overload, fluid maldistribution, edema, pulmonary edema, peripheral edema, lymphedema, nephrotic edema, idiopathic edema, ascites, cirrhotic ascites, interdialytic weight gain, high blood pressure, hyperkalemia, hypernatremia, abnormally high total body sodium, hypercalcemia, tumor lysis syndrome, head trauma, an adrenal disease, hyporeninemic hypoaldosteronism, hypertension, salt-sensitive hypertension, refractory hypertension, renal tubular disease, rhabdomyolysis, crush injuries, renal failure, acute tubular necrosis, insulin insufficiency, hyperkalemic periodic paralysis, hemolysis, malignant hyperthermia, pulmonary edema secondary to cardiogenic pathophysiology, pulmonary edema with non-cardiogenic origin, drowning, acute glomerulonephritis, allergic pulmonary edema, high altitude sickness, Adult Respiratory Distress Syndrome, traumatic edema, cardiogenic edema, acute hemorrhagic edema, heatstroke edema, facial edema, eyelid edema, angioedema, cerebral edema, scleral edema, nephritis, nephrosis, nephrotic syndrome, glomerulonephritis, and/or renal vein thrombosis.
[00555] In some embodiments, the disease or disorder is the result of, or is associated with, administration of another drug. For example, compositions and/or dosage forms as disclosed herein are useful in treating an increase in a subject's potassium level when co-administered with a drug known to cause increases in potassium levels. In some embodiments, such a drug is an alpha-adrenergic agonist, a RAAS inhibitor, an ACE
inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, etc.
Preparation of Crosslinked Cation-Binding Polymers [00690] Crosslinked cation-binding polymers, including, for example, polyelectrolyte polymers, such as polyacrylate polymers, etc., may be prepared by methods known in the art, including by suspension methods, aqueous one-phase methods (e.g., Buchholz, F. L.
and Graham, A. T., "Modern Superabsorbent Polymer Technology," John Wiley &
Sons (1998)) and by precipitation polymerization (see, e.g., European Patent Application No.
EP0459373A2). Polymers with differential properties may be prepared that are useful as therapeutics for different diseases and disorders, including those involving an ion imbalance and/or a fluid imbalance. For example, methods are provided for washing the cross-linked polymer with an acid to replace bound counterions other than hydrogen with hydrogen. The polymeric material, including for example polymeric beads, may be further processed by milling or grinding the polymeric material into particles. A polymer as described herein may contain many carboxylic acid groups, for example, polyacrylic acid, which may be reacted with alkali metals to produce a polycarboxylate, for example, polyacrylate. Many of these polycarboxylates act as superabsorbent polymers and have a saline absorption capacity (e.g., saline holding capacity) of over twenty times their mass in vitro (e.g., about 40 times its mass) as measured in 0.9% saline solution (e.g., 0.15 M sodium chloride solution) buffered to pH 7 (see, e.g., Examples 5 and 6). Exemplary methods are provided below.
1. Manufacture of Crosslinked Cation-Binding Polymers [00691] Cross-linked cation-binding polymers, including cross-linked polyacrylate and/or polyacrylic acid polymers, may be prepared by commonly known methods in the art. In an exemplary method, cross-linked polyelectrolyte polymers may be prepared as a suspension of drops of aqueous solution in a hydrocarbon, for example, a liquid hydrocarbon (e.g., by inverse suspension polymerization).
[00692] Cross-linked polyacrylate polymers may be prepared by polymerization of partially neutralized acrylic acid in an aqueous environment where an appropriate cross-linker is present in small quantities. Given that there is an inverse relationship between the amount of fluid the polymer will absorb and the degree of cross-linking of the polymer, it may be desirable to have a low level of cross-linking to obtain a fluid absorption capacity of at least 20 g/g (e.g. 20 g/g, 30 g/g, 40 g/g, 50 g/g, 60 g/g, 70 g/g, 80 g/g, 90 g/g, or 100 g/g polymer), for use in methods as described herein. However, there is also an inverse relationship between the degree of cross-linking and the percentage of polymer chains that do not cross-link. Non-crosslinked polymer is soluble and may not contribute to the absorbency of the polymer since it dissolves in the fluid. For example, polyacrylates can be designed to absorb about 35 times their mass in pH 7 buffered physiological saline as a compromise between high absorbency and minimal soluble polymer.
[00693] Since the amount of reactants used in a polymerization reaction varies depending upon the size of the reactor and other factors, the precise amount of each reactant used in the preparation of cross-linked polyelectrolyte polymer, such as polyacrylate, may be determined by one of skill in the art. For example, in a five-hundred gallon reactor, about 190 to 200 pounds (roughly 85 to 90 kg) of acrylic acid may be used while in a three liter reactor 150 to 180 g of acrylic acid may be used. Accordingly, the amount of each reactant used for the preparation of an exemplary cross-linked polyacrylate may be expressed as a weight ratio to acrylic acid. Thus, acrylic acid weight may be taken as 1.0000 and other compounds are represented in relation to this value. Exemplary amounts of reactants used for the preparation of such a cross-linked polyacrylate by an inverse suspension polymerization are presented in Table 1.
[00694] Table 1: Exemplary amounts of reactants in an inverse suspension polymerization Substance Low value Hi211 Value Acrylic acid 1.0000 1.0000 Water 0.5000 3.0000 Hydrophobic solvent 1.2000 12.0000 Base (expressed as 50% NaOH) 0.6600 (60% neutral) 1.1100 (100% neutralized) Crosslinker 0.0030 0.0080 Initiator 0.0005 0.0200 Chelating agent 0.0000 0.0050 Surfactant 0.0050 0.0400 [00695] An exemplary inverse suspension reaction to form a crosslinked polymer may involve preparation of two mixtures (e.g., a hydrophobic mixture and an aqueous mixture) in two different vessels followed by combination of the mixtures to form a reaction mixture.
One vessel may be designated as a hydrophobic compound vessel and the other may be designated as an aqueous solution vessel. The hydrophobic compounds may be mixed in a larger vessel that will become a reaction vessel, while an aqueous solution may be prepared in a smaller vessel that may be discharged into the reaction vessel. In an exemplary embodiment, the hydrophobic mixture may contain solvent, surfactant, and crosslinking agent, and the aqueous mixture may contain water, base, monomer (e.g., acrylic acid), initiator, and optional chelating agent.
[00696] A hydrophobic solvent may be introduced into the reaction vessel. As will be appreciated by one of skill in the art, a hydrophobic solvent (also referred to herein as the "oil phase") may be chosen based upon one or more considerations, including, for example, the density and viscosity of the oil phase, the solubility of water in the oil phase, the partitioning of the neutralized and unneutralized ethylenically unsaturated monomers between the oil phase and the aqueous phase, the partitioning of the crosslinker and the initiator between the oil phase and the aqueous phase and/or the boiling point of the oil phase.

[00697] Hydrophobic solvents contemplated for use in the present disclosure include, for example, IsoparTM L (isoparaffin fluid), toluene, benzene, dodecane, cyclohexane, n-heptane and/or cumene. Preferably, IsoparTM L is chosen as a hydrophobic solvent due to its low viscosity, high boiling point and low solubility for neutralized monomers such as sodium acrylate and/or potassium acrylate. One of skill in the art will appreciate that a large enough volume of hydrophobic solvent is used to ensure that the aqueous phase is suspended as droplets in the oil rather than the reverse and that the aqueous phase droplets are sufficiently separated to prevent coalescence into large masses of aqueous phase.
[00698] One or more surfactants and one or more cross-linkers may be added to the oil (hydrophobic) phase. The oil phase may then be agitated and sparged with an inert gas, such as nitrogen or argon to remove oxygen from the oil phase. It will be appreciated that the amount of surfactant used in the reaction depends on the size of the desired polymer particles and the agitator stir rate. This addition of surfactant is designed to coat the water droplets formed in the initial reaction mixture before the reaction starts.
Higher amounts of surfactant and higher agitation rates produce smaller droplets with more total surface area.
It will be understood by those of skill in the art that an appropriate choice of cross-linker and initiator may be used to prepare spherical to ellipsoid shaped beads. One of skill in the art will be capable of determining an appropriate cross-linker for the preparation of a specified cross-linked cation-binding polymer. For example, cross-linker choice depends on whether it needs to be hydrophobic or hydrophilic polymer or whether it needs to resist acidic or basic external conditions. An amount of cross-linker depends on how much soluble polymer is permissible and how much saline holding capacity is desired.
[00699] Exemplary surfactants include hydrophobic agents that are solids at room temperature, including, for example, hydrophobic silicas (such as Aerosil or Perform-0-Si1TM) and glycolipids (such as polyethylene glycol distearate, polyethylene glycol dioleate, sorbitan monostearate, sorbitan monooleate or octyl glucoside).
[00700] Crosslinking agents with two or more vinyl groups, each group of which is independently polymerizable, may be used, allowing for a wide variety in molecular weight, aqueous solubility and/or lipid (e.g., oil) solubility. Crosslinking agents contemplated for use in the present disclosure, include, for example, diethyleneglycol diacrylate, diacryl glycerol, triallylamine, tetraallyloxyethane, allylmethacrylate, 1,1,1-trimethylolpropane triacrylate (TMPTA), divinyl benzene and divinyl glycol.

[00701] In some embodiments, the crosslinker is one or more compounds having (in one molecule) 2-4 groups selected from the group consisting of CH2=CHCO¨, CH=C(CH3)C0¨ and CH2=CH¨CH2¨, for example and without limitation: diacrylates and dimethacrylates of ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethyleneglycol, propylene glycol, dipropyleneglycol, tripropyleneglycol, tetrapropyleneglycol, polyoxyethylene glycols and polyoxypropylene glycols, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, trimethylol propane, and pentaerythritol; triacrylates and trimethacrylates of trimethylolpropane and pentaerythritol;
highly ethoxylated trimethylol propane triacrylate; tetracrylate and tetramethacrylate of io pentaerythritol; allyl methacrylate, triallylamine, triallylcitrate and tetraallyloxyethane.
[00702] In some embodiments, a heat activated crosslinker may be used in the preparation of crosslinked polymers according to the present disclosure. Non-limiting examples of heat-activated crosslinkers include hydroxyl-containing crosslinking agents, amine-containing crosslinking agents, or epoxy-containing crosslinking agents containing at least one functionality suitable to react with a carboxyl group on the polymer and containing at least two functional groups capable of forming covalent bonds with the polymer. Some non-limiting examples of heat-activated crosslinkers suitable for such use is the class of compounds commonly referred to as polyols or polyhydroxy compounds. Some non-limiting examples of polyols include: glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, polyglycerin, trimethylolpropane, polyethylene glycol, and polypropylene glycol-polyethylene glycol copolymers. Masked polyols, such as ethyleneglycol diacetate may also be used. Some non-limiting examples of heat-activated crosslinkers containing amine functionality are ethylenediamine, diethylenetriamine, triethylenetetramine, monoethanolamine, and aminoethylethanolamine. Some non-limiting examples of heat-activated crosslinkers containing epoxy functionality are glycidyl acrylate, glycidylmethacrylate, and ethyleneglycol diglycidylether, [00703] In some embodiments, dimodal crosslinkers may be used in the preparation of crosslinked polymers according to the present disclosure. Dimodal crosslinkers contain one or more carboxylic acid-reactive groups and one or more ethylenically unsaturated groups in the same compound. Non-limiting examples of dimodal crosslinkers suitable for use to crosslink polymers according to the present disclosure include: 2-hydroxyethyl(meth)acrylate, polyethylene glycol monomethacrylate, glycidyl methacrylate, allyl glycidyl ether, hydroxypropyl methacrylate, hydroxyethyl methacrylate, and hexapropylene glycol monomethacrylate.
[00704] In some embodiments, polyvinyl compounds may be used in the preparation of crosslinked polymers according to the present disclosure. Non-limiting examples of polyvinyl crosslinkers include divinyl compounds or polyvinyl compounds such as: divinyl glycol, divinyl benzene, divinyl toluene, divinyl xylene, divinyl ether, divinyl ketone, trivinyl benzene; unsaturated polyesters that can be obtained by reacting an unsaturated acid such as maleic acid with polyols such as: ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethyleneglycol, propylene glycol, dipropyleneglycol, tripropyleneglycol, tetrapropyleneglycol, polyoxyethylene glycols and polyoxypropylene glycols, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, trimethylol propane, and pentaerythritol; diesters or polyesters of unsaturated mono-or polycarboxylic acids with polyols derived from reaction of c2¨C10 polyhydric alcohols with 2-8 C2¨C4 alkylene oxide units per hydroxyl group, such as tri methylol propane hexaethoxyl triacrylate; di-methacrylic acid or tri-methacrylic acid esters that can be obtained by reacting polyepoxide with methacrylic acid; bis(meth)acrylamides such as N,N-methylene-bisacrylamide; carbamyl esters that can be obtained by reacting polyisocyanates, such as tolylene diisocyanate, hexamethylene diisocyanate, 4,4'-diphenyl methane diisocyanate; and NCO-containing prepolymers obtained by reacting such diisocyanates with active hydrogen atom-containing compounds with hydroxyl group-containing monomers, such as di-methacrylic acid carbamyl esters obtainable by reacting the above-mentioned diisocyanates with hydroxyethyl(meth)acrylate; di(meth)allyl ethers or poly(meth)allyl ethers of polyols such as alkylene glycols, glycerol, polyalkylene glycols, polyoxyalkylene polyols and carbohydrates such as polyethylene glycol diallyl ether, allylated starch, and allylated cellulose; di-allyl or poly-allyl esters of polycarboxylic acids, such as diallyl phthalate and diallyl adipate; and esters of unsaturated monocarboxylic acids or polycarboxylic acids with mono(meth)allyl ester of polyols, such as allyl methacrylate or (meth)acrylic acid ester of polyethylene glycol monoallyl ether.
[00705] In some embodiments, the crosslinker may be one or more compound consistent with the following formula:
wherein:
Rl is a straight-chain or branched-chain c,¨c,0 polyalkoxy radical, optionally substituted with one or more oxygen atoms in the backbone, having x valences;
each R2 is independently a c2¨C4 alkylene group;
each R3 is independently a straight-chain or branched-chain C2¨C10 alkenyl moiety;
n is a positive integer from 1-20; and x is a positive integer from 2-8.
[00706] An aqueous phase mixture may be prepared in another vessel (e.g., a vessel that is separate from that used to prepare the hydrophobic phase) that contains water.
For example, preparation of neutralized or partially neutralized polymer, base and monomer are added to the water. For preparation of non-neutralized (acid form) polymer, monomer is added to the water without base. It will be appreciated by one of skill in the art that the amount of base used in the vessel is determined by the degree of neutralization of the monomer desired. For neutralized or partially neutralized polymer, a degree of neutralization between about 60% and 100% is preferred. Without wishing to be bound by a theory or mechanism, it is believed that one-hundred percent neutralization minimizes the chance of suspension failure, but the highly charged monomer may not react as rapidly and may not pull hydrophobic crosslinkers into the forming polymer. Considerations in choosing the degree of neutralization may be determined by one of skill in the art and include, for example, the effect of monomer charge (e.g., as determined by ionization of the cation from the neutralized molecules) on reaction rate, partitioning of the monomer and neutralized monomer between oil phase and aqueous phase and/or tendency of the aqueous droplets to coalesce during the reaction. The solubilities of sodium acrylate and sodium methacrylate in water are limited and are lower at lower temperatures (e.g., sodium acrylate is soluble at about 45% at 70 C but less than 40% at 20 C). This solubility may establish the lower limit of the amount of water needed in the neutralization step. The upper limit of the amount of water may be based on reactor size, amount of oil phase needed to reliably suspend the aqueous phase as droplets and/or the desired amount of polymer produced per batch.
[00707] Bases contemplated for use in methods of making the crosslinked polymers of the present disclosure include, for example, hydroxides, bicarbonates, or carbonates. Use of these bases allows neutralization of the acid monomer without residual anions left in the reaction mixture as the anions react to form water or CO2. Frequently, sodium bases are chosen in the method of making the crosslinked polymers. However, potassium bases, ammonium bases, and bases of other cations, including calcium bases, are contemplated for use in the present disclosure.

[00708] The water used in the reaction may be purified water or water from other sources such as city water or well water. If the water used is not purified water, chelating agents may be needed to control metals, e.g., heavy metal ions, such as iron, calcium, and/or magnesium from destroying the initiator. Chelating agents contemplated for use with the present disclosure include, for example, diethylenetriaminepentaacetic acid pentasodium (VersenexTM 80). The amount of chelating agent added to the reaction mixture may be determined by one of skill in the art from a determination of the amount of undesirable metal in the water.
[00709] In some instances a metal may be added to catalyze the polymerization reaction (e.g., iron).
[00710] Once base is added to the water, the aqueous phase solution may be cooled to remove the heat released from dilution of the base, and one or more classes of monomers may be added, to react with the base, for example, monomers which will be neutralized by the base. As will be appreciated by one of skill in the art, the monomers will be neutralized to the degree dictated by the amount of base in the reaction. The aqueous phase solution may be kept cool (e.g., below 35 to 40 C) and preferably around 20 C to prevent formation of prepolymer strands, dimers and/or possible premature polymerization.
[00711] Monomers are dissolved in water at concentrations of 10-70 wt% or 20-40 wt%
and polymerization may subsequently be initiated by free radicals in the aqueous phase.
Monomers may be polymerized either in the acid form or as a partially neutralized salt. For an inverse suspension process, monomers in the acid form may be less desirable due to high solubility in the oil phase. The amount of water used to dissolve the monomer is minimally set so that all of the monomer (e.g., sodium acrylate) is dissolved in the water rather than crystallizing and maximally set so that there is the smallest volume of reaction mixture possible (to minimize the amount of distillation and allow the maximum yield per batch).
[00712] Exemplary monomer units contemplated for use in the present disclosure, include, for example, acrylic acid and its salts, methacrylic acid and its salts, crotonic acid and its salts, tiglinic acid and its salts, 2-methyl-2-butenoic acid (Z) and its salts, 3-butenoic acid (vinylacetic acid) and its salts, 1-cyclopentene carboxylic acid, and 2-cyclopentene carboxylic acid and their salts; and unsaturated dicarboxylic acids and their salts, such as maleic acid, fumaric acid, itaconic acid, glutaconic acid, and their salts.
Other cross-linked polyelectrolyte superabsorbent polymers may be based on sulfonic acids and their salts, or phosphonic acids and their salts. In other non-limiting embodiments, additional monomers may be contemplated for use. The additional monomers are those from which the desired carboxylic acid, sulfonic acid, or phosphonic acid functionality may be derived by known chemical reactions, for example by hydrolysis. In these embodiments, the monomer, for example, acrylonitrile, acrylamide, methacrylamide, lower alcohol esters of unsaturated, polymerizable carboxylic acids (such as those mentioned in the paragraph above) or their mixtures, and the like may be polymerized with a suitable crosslinker to an intermediate crosslinked polymer, which is then subjected to chemical reaction (so-called "polymer analogous reaction") to convert the functional groups of the polymer into carboxylic functionality. For example, ethyl acrylate may be polymerized with a non-hydrolysis-susceptible crosslinker (e.g. tetraallyloxyethane) to form a crosslinked intermediate polymer, which is then subjected to hydrolysis conditions to convert the ester functionality to carboxylic acid functionality by means known in the art. In another example, acrylonitrile is graft polymerized to starch with a crosslinker as necessary to form a crosslinked starch-graft intermediate polymer, which is then treated with aqueous base to hydrolyze the nitrile functionality to carboxylic acid functionality (see, e.g., U.S. Patent Nos.
3,935,099, 3,991,100, 3,997,484, and 4,134,863).
[00713] One or more initiators, such as free radical producers, may be added to the aqueous phase just before the aqueous phase is transferred into the oil phase.
As will be appreciated by one of skill in the art, the initiator amount and type used in the polymerization reaction depends on oil versus water solubility and whether longer chain lengths are desired. For example, a lower amount of initiator may be used in the polymerization reaction when longer chain lengths are desired.
[00714] In some embodiments, one of the initiators may be a thermally sensitive compound such as a persulfate, 2,2'-azobis(2-amidino-propane)-dihydrochloride, 2,2'-azobis (2-amidino-propane)-dihydrochloride and/or 2,2'-azobis (4-cyanopentanoic acid).
With thermally sensitive initiators polymerization does not begin until an elevated temperature is reached. For persulfates, this temperature is approximately 50 to 55 C.
Since the reaction is highly exothermic, vigorous removal of the heat of reaction is required to prevent boiling of the aqueous phase. It is preferred that the reaction mixture be maintained at approximately 65 C. As will be appreciated by one of skill in the art, thermal initiators have the advantage of allowing control of the start of the reaction when the reaction mixture is adequately sparged of oxygen.

[00715] In some embodiments, one of the initiators may be a redox pair such as persulfate/bisulfate, p ersulfate/thio sulfate, persulfate/ascorbate, hydrogen peroxide/ascorbate, sulfur dioxide/tert-butylhydroperoxide, persulfate/erythorbate, tert-butylhydroperoxide/erythorbate and/or tert-butylperbenzoate/erythorbate. These initiators are able to initiate the reaction at room temperature, thereby minimizing the chance of heating the reaction mixture to the boiling point of the aqueous phase as heat is removed through the jacket around the reactor.
[00716] In some embodiments, the reaction is not started immediately after the mixing of the aqueous phase into the oil phase in the final reactor because the aqueous phase still has io an excessive amount of oxygen dissolved in the water. It will be appreciated by one of skill in the art that an excessive amount of oxygen may cause poor reactivity and inadequate mixing may prevent the establishment of uniform droplet sizes. Instead, the final reaction mixture is first sparged with an inert gas for ten to sixty minutes after all reagents (except the redox pair if that initiator system is used) have been placed in the reactor. The reaction may be initiated when a low oxygen content (e.g., below 15 ppm) is measured in the inert gas exiting the reactor.
[00717] It will be appreciated by those of skill in the art that with acrylate and methacrylate monomers, polymerization begins in the droplets and progresses to a point where coalescence of the particles becomes more likely (the "sticky phase").
It may be necessary that a second addition of surfactant (e.g., appropriately degassed to remove oxygen) be added during this phase or that the agitation rate be increased.
For persulfate thermal initiation, this sticky phase may occur at about 50 to 55 C. For redox initiation systems, the need for additional surfactant may be lessened by the initial surface polymerization, but if additional surfactant is needed, it should be added as soon as an exotherm is noted.
[00718] The reaction may be continued for four to six hours after the peak exotherm is seen to allow for maximal consumption of the monomer into the polymer.
Following the reaction, the polymeric material may be isolated by either transferring the entire reaction mixture to a centrifuge or filter to remove the fluids or by initially distilling the water and some of the oil phase (e.g., frequently as an azeotrope) until no further removal of water is possible and the distillation temperature rises significantly above 100 C, followed by isolating the polymeric material by either centrifugation or filtering. The isolated crosslinked cation-binding polymeric material is then dried to a desired residual moisture content (e.g., less than 5%).
[00719] An exemplary cross-linked cation-binding polymer, polyacrylate, may be formed by copolymerizing an ethylenically unsaturated carboxylic acid with a multifunctional cross-linking monomer. The acid monomer or polymer may be substantially or partially neutralized with an alkali metal salt such as an oxide, a hydroxide, a carbonate, or a bicarbonate and polymerized by the addition of an initiator. One such exemplary polymer gel is a copolymer of acrylic acid/sodium acrylate and any of a variety of cross-linkers.
[00720] The reactants for the synthesis of an exemplary cross-linked cation-binding polymer, cross-linked polyacrylate, is provided in Table 2 below. This cross-linked cation-binding polymer may be produced as a one-hundred kilogram batch in a five-hundred gallon vessel.
Table 2: List of Components Used in the Manufacture of an Exemplary Cross-linked Polyacrylate Polymer Component Function Amount/batch (kg) Acrylic Acid Monomer 88 Water Solvent 90 50% Sodium Hydroxide Neutralization of acrylic 79 acid monomer Naphtha [petroleum], hydrotreated heavy, Continuous phase for As needed (IsoparTM L) Suspension Fumed silica (Aerosil R972) Suspending agent (Surfactant) 0.9 Diethylenetriaminepentaacetic Acid Control of metal ions in 0.9 Pentasodium (VersenexTM 80) reagents, solvents, or Sodium Persulfate Polymerization initiator 0.06 Cross-linking agent 0.3 Trimethylolpropane Triacrylate, (TMPTA) [00721] In addition to inverse (water-in-oil) suspension methods, cation-binding polymers may be prepared by other methods known in the art (e.g., Buchholz, F. L. and Graham, A.
T., "Modern Superabsorbent Polymer Technology," John Wiley & Sons (1998)), for example by aqueous one-phase methods, by precipitation polymerization (see, e.g., European Patent Application No. EP0459373A2), and by crosslinking of soluble polymer using monomers, crosslinkers, surfactants, initiators, neutralizing agents, solvents, suspending agents, and chelators as described herein. For example, cation-binding polymers containing carboxyl groups formed from monomers as described herein may be polymerized to form soluble polymer which may then be crosslinked. In some embodiments, it may be possible to incorporate the crosslinker either into the intermediate polymer, or into the chemically-reacted carboxylic acid functional polymer.
For example, crosslinker may be incorporated by copolymerization of the contemplated monomers with a crosslinker as described herein, and then the crosslinked polymer may be converted by, for io example hydrolysis, to the desired crosslinked carboxylic acid-functional product.
Alternatively, the contemplated additional monomers may be polymerized to a non-crosslinked polymer, then converted to the carboxylic acid-functional polymer and subsequently reacted with a suitable crosslinker (for example, one of the heat-activated crosslinkers in the list) to provide the desired, crosslinked, carboxylic acid-functional polymer. Because it is difficult to thoroughly mix a small amount of crosslinker into a high molecular weight polymer, it is desirable to add a heat-activated crosslinker to the monomer-containing reaction mixture, under conditions in which the crosslinker is inactive toward reaction. The polymerization is accomplished in the normal way to yield an uncrosslinked polymer that also contains the molecularly dispersed, heat-activated crosslinker. When it is desired to form the crosslinks, the polymer system is heated to a temperature that is suitable to cause the reaction between polymer functional groups and the crosslinker molecules, thereby crosslinking the polymer.
2. Preparation of Crosslinked Cation-Binding Polymers with Hydrogen Counterions from Neutralized or Partially Neutralized Crosslinked Cation-Binding Polymers [00722] Partially neutralized or fully neutralized crosslinked cation-binding polymers may be acidified by washing the polymer with acid. Suitable acids contemplated for use with the present disclosure, include, for example, hydrochloric acid, acetic acid and phosphoric acid.
[00723] Those skilled in the art will recognize that the replacement of the counterions, including cations such as sodium atoms, by hydrogen atoms can be performed with many different acids and different concentrations of acid. However, care must be taken in choice of acid and concentration to avoid damage to the polymer or the cross-linkers.
For instance, nitric and sulfuric acids would be avoided.

[00724] Acid-washed crosslinked cation-binding polymers may be additionally rinsed with water and then dried in, for example, a vacuum oven or inert atmosphere until, for example, less than 5% moisture remains, to produce a substantially free acid form of cross-linked polyacrylic acid. Any particle form of partially or fully neutralized cross-linked cation-binding polymer may be used as the starting point, for example, particles, powders, or bead-form particles, or milled bead-form particles.
3. Preparation of Crosslinked Cation-Binding Polymers with Hydrogen Counterions [00725] Acid form cross-linked cation-binding polymers may be prepared by any method known by those skilled in the art (e.g., Buchholz, F. L. and Graham, A. T., "Modern Superabsorbent Polymer Technology," John Wiley & Sons (1998)), for example by inverse suspension, aqueous one-phase polymerization, by precipitation polymerization (see, e.g., European Patent Application No. EP0459373A2), and by crosslinking of soluble polymer.
Any of the methods, monomers, crosslinkers, surfactants, initiators, neutralizing agents, solvents, suspending agents, chelators, catalysts, and other agents as described herein may be used.
[00726] Crosslinked cation-binding polymers may be prepared from monomers with unneutralized carboxylic acid groups. For example, a crosslinked polyacrylate can be prepared from acrylic acid. A monomer solution is prepared in a reactor by dissolving an unsaturated carboxylic acid monomer (e.g., acrylic acid) in water. Optionally, a chelating agent (e.g., VersenexTM 80) may be added to control metal ions and/or a metal added to catalyze the polymerization reaction (e.g., iron). A suitable crosslinking agent (e.g., trimethylolpropane triacrylate) is added to the reactor. The solution may be agitated and oxygen may be removed using nitrogen, argon or by other means known in the art. The temperature of the solution may be adjusted as desired. One or more polymerization initiators may be added to the reactor and the oxygen tension may be reduced or the temperature may be increased to initiate polymerization. The reaction is allowed to proceed through the exothermic heating that occurs during reaction. Reaction heat can be removed and/or controlled as desired by methods known to those skilled in the art. The reaction vessel may then be heated and oxygen tension in the reaction vessel may be kept low to continue the polymerization to low levels of residual monomer. Once the reaction is completed, the polymerization reaction product can be removed from the reactor and the wet polymer may be reduced in size (e.g. by cutting or by methods known to those skilled in the art) into pieces of appropriate size for drying. The polymer pieces can then be dried in a vacuum oven or other equipment known to those skilled in the art. Conditions during drying may be adjusted (e.g. humidity level, rate of drying) so that polymerization and reduction of residual monomer continues during the drying process. After drying, the particles can be separated by size and/or milled and/or sieved to produce the desired particle size. Other examples of the polymerization of aqueous acrylic acid solutions with crosslinkers are disclosed in Buchholz, F. L. and Graham, A. T., "Modern Superabsorbent Polymer Technology," John Wiley & Sons (1998), U.S. Patent No. 4,654,039; U.S.
Patent No. 4,295,987; U.S. Patent No. 5,145,906; and U.S. Patent No. 4,861,849, the contents of which are incorporated herein by reference.
4. Preparation of Crosslinked Cation-Binding Polymers with Calcium and/or Magnesium Counterions [00727] Crosslinked, cation-binding polymers with calcium and/or magnesium ions may be prepared by ion-exchange from a partially neutralized crosslinked, cation-binding polymer, by the addition of a calcium and/or magnesium base to an acid form of a crosslinked, cation-binding polymer, by using a calcium or magnesium base to neutralize acrylic acid prior to polymerization, or by other methods known by those skilled in the art.
Any particle form of partially or fully neutralized cross-linked cation-binding polymer may be used as the starting point, for example, particles, powders, or bead-form particles, or milled bead-form particles.
[00728] Partially neutralized crosslinked cation-binding polymers (e.g. sodium acrylate) may be hydrated and equilibrated with several washes of a salt solution of calcium and/or magnesium (e.g. CaC12, MgC12) of a concentration high enough to exchange the original counterions on the polymer with the calcium and/or magnesium cations and remove the original counterions from the solution. For polymer more highly neutralized than the desired calcium or magnesium polymer, an appropriate amount of acid may be added with the calcium and/or magnesium salt to bring the neutralization level down to the desired level.
Those skilled in the art will recognize that the replacement of the counterions (ion-exchange), including cations such as sodium atoms, by calcium and/or magnesium cations can be performed with many different calcium and/or magnesium salts and salt concentrations. The calcium and/or magnesium crosslinked cation-binding polymers may be additionally rinsed with water and then dried in, for example, a vacuum oven or inert atmosphere until, for example, less than 5% moisture remains.
[00729] Crosslinked cation-binding polymers with calcium and/or magnesium counterions may be produced from the acid form of the polymer through the addition of a calcium and/or magnesium base (e.g, CaCO3, MgO). The base may be added to the polymer as a solid or solution and the polymer may be hydrated prior to addition of the base. The polymer and base may be stirred and/or heated to facilitate neutralization of the polymer with the base. The calcium and/or magnesium crosslinked cation-binding polymers may be additionally rinsed with water and then dried in, for example, a vacuum oven or inert atmosphere until, for example, less than 5% moisture remains.
[00730] Crosslinked cation-binding polymers with calcium and magnesium counterions may be prepared from monomers with unneutralized carboxylic acid groups (acid form) and a calcium or magnesium base. A solution of the calcium or magnesium base is prepared by adding the appropriate base slowly to water (e.g. CaCO3, MgO). Cooling may be used to control the solution temperature. The monomer solution is then prepared in a reactor by adding the monomer (e.g., acrylic acid), water and the base solution and then stirring.
Alternatively, the solid base can be added to the reactor with the monomer and water. Care should be taken to ensure that the base does not precipitate. Optionally, a chelating agent (e.g., VersenexTM 80) may be added to control metal ions and/or a metal added to catalyze the polymerization reaction (e.g., iron). A
suitable crosslinking agent (e.g., trimethylolpropane triacrylate) is added to the reactor and the mixture stirred. Oxygen may be removed using a nitrogen or argon sparge, or by other means known in the art. The temperature of the solution may be adjusted. One or more polymerization initiators (e.g.
sodium persulfate) are added to the reactor and the reaction mixture is bubbled with an inert gas (e.g., nitrogen) and agitated until adequate removal of oxygen is achieved. The reaction is then initiated either by reaching an oxygen concentration where a redox couple (e.g., tertiary butylhydroperoxide/thiosulfate, or hydrogen peroxide/erythorbic acid) produces enough radicals that are not quenched by oxygen, or by adding heat to cause a temperature dependent initiator (e.g., sodium persulfate) to produce radicals. The reaction is allowed to proceed through the exothermic heating that occurs during reaction. Reaction heat can be removed and/or controlled as desired by methods known to those skilled in the art. The reaction vessel may then be heated and oxygen tension in the reaction vessel may be kept low to continue the polymerization to low levels of residual monomer. Once the reaction is completed, the polymerization reaction product can be removed from the reactor and the wet polymer may be reduced in size (e.g. by cutting or by methods known to those skilled in the art) into pieces of appropriate size for drying. The polymer pieces can then be dried in a vacuum oven or other equipment known to those skilled in the art. Conditions during drying may be adjusted (e.g. humidity level, rate of drying) so that polymerization and reduction of residual monomer continues during the drying process. After drying, the particles can be separated by size and/or milled and/or sieved to produce the desired particle size.
[00731] Exemplary crosslinked cation-binding polymers, including for example those prepared according to Examples 1-4, generally have a pH 7 buffered saline holding capacity of about 20 g/g or greater, including, for example, greater than about 40 g/g as described in Examples 5 and 6; and contain less than about 5,000 ppm of sodium, less than about 20 ppm of heavy metals, less than about 1000 ppm (e.g., less than about 500 ppm) of residual monomer, less than about 2,000 ppm of residual chloride, and less than about 20 wt % of soluble polymer. Preferably, acidified polymers useful as crosslinked cation-binding polymers prepared according to this disclosure have a saline holding capacity of preferably greater than about 40 g/g, (e.g., 80 g/g) contain less than about 500 ppm of sodium, less than about 20 ppm of heavy metals, less than about 500 ppm of residual monomer, less than about 1,500 ppm of residual chloride, and less than about 10 wt.% of soluble polymer.
[00732] Crosslinked cation-binding polymers prepared, for example, according to the method of Example 1 or 2 using acrylic acid monomers, followed by acidification as described in Example 3, or crosslinked cation-binding polymers prepared, for example, as described in Example 4, are referred to as "H-CLP" or "HCLP" in Examples 7 to 15.
[00733] The polymer particles may be reduced in size by milling or grinding or other means known to those skilled in the art. Particles of certain size ranges or a particle size distribution may be obtained by means known to those of skill in the art, for example, by sieving through sieves or screens. Seives may be stacked vertically starting with the smallest pore size at the bottom (largest mesh size) to largest pore size at the top (smallest mesh size). The material is placed on top of the screen and the screens are shaken to allow particles to pass through screens until they are caught on a screen smaller than diameter.
The material on each screen will then be smaller than the screen above, but larger than the screen below. For example, particles that pass through an 18 Mesh screen and are caught on a 20 Mesh screen are between 850 and 1000 microns in diameter. Screen mesh and the corresponding maximum particle size allowed to pass through the mesh include, 18 mesh, 1000 microns; 20 mesh, 850 microns; 25 mesh, 710 microns; 30 mesh, 600 microns; 35 mesh, 500 microns, 40 mesh, 425 microns; 45 mesh, 35 microns; 50 mesh, 300 microns; 60 mesh, 250 microns; 70 mesh, 212 microns; 80 mesh, 180 microns; 100 mesh, 150 microns;
120 mesh, 125 microns; 140 mesh, 106 microns; 170 mesh, 90 microns; 200 mesh, microns; 230 mesh, 63 microns; and 270 mesh, 53 microns. Thus particles of varying sizes may be obtained through the use of one or more screens.
[00734] The particle size range may be characterized, for example, by sieves or screens, a particle size distribution determined, for example, by laser light diffraction, by an average size, or other measures. A particles size distribution for material passing through a 35 mesh (500 um) screen but captured on a 70 mesh (210 um) screen may be characterized as the weight % of the polymer greater than 500 um, the fraction between 210 to 500 um, and the fraction below 210 um. In an exemplary polymer fraction collected using 35 and 70 mesh screens, the fraction between 210-500um would preferably be greater than 70%.
The particle size distribution can also be characterized by describing particle diameters where 10% (D0.1), 50% (D0.5), or 90% (D0.9) of the particles are smaller than that particle size.
Pharmaceutical Compositions and Dosage Forms [00735] Pharmaceutical compositions are disclosed comprising a cross-linked cation-binding polymer (e.g., a cross-linked polyacrylic acid polymer). These compositions may be delivered to a subject, including using a wide variety of routes or modes of administration. Preferred routes for administration are oral or intestinal.
[00736] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%; and a base (e.g., calcium carbonate), wherein said monomers are acrylic acid or salts thereof, wherein the polymer contains less than about 20,000 ppm of non-hydrogen cationsõ and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base (e.g., 0.2 to 0.95 equivalents, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents, 0.2 to 0.8 equivalents, 0.2 to 0.75 equivalents, 0.2 to 0.7 equivalents, 0.2 to 0.65 equivalents, 0.2 to 0.6 equivalents, 0.2 to 0.55 equivalents, 0.2 to 0.5 equivalents, 0.2 to 0.45 equivalents, 0.2 to 0.4 equivalents, 0.2 to 0.35 equivalents, 0.2 to 0.3 equivalents, or 0.2 to 0.25 equivalents of base) per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.5 equivalents to 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer.
In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
[00737] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising: monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.08 mol.% to about 0.2 mol.% of crosslinker or alternatively from about 0.025 mol.% to about 3.0 mol% including, for example, from about 0.025 mol.% to about 0.3 mol.% or from about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.%, and a base (e.g., calcium carbonate), wherein said monomers are acrylic acid or salts thereof, wherein the polymer contains less than about 50,000 ppm of non-hydrogen cations, and wherein the base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base (e.g., 0.2 to 0.95 equivalents, 0.2 to 0.9 equivalents, 0.2 to 0.85 equivalents, 0.2 to 0.8 equivalents, 0.2 to 0.75 equivalents, 0.2 to 0.7 equivalents, 0.2 to 0.65 equivalents, 0.2 to 0.6 equivalents, 0.2 to 0.55 equivalents, 0.2 to 0.5 equivalents, 0.2 to 0.45 equivalents, 0.2 to 0.4 equivalents, 0.2 to 0.35 equivalents, 0.2 to 0.3 equivalents, or 0.2 to 0.25 equivalents of base) per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.5 equivalents to 0.85 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.7 equivalents to 0.8 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.75 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.35 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes from about 0.2 equivalents to 0.3 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the composition includes about 0.25 equivalents of base per equivalent of carboxylic acid groups in the polymer.
[00738] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[00739] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[00740] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[00741] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for io use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups, and a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[00742] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise polycarbophil, and a base, wherein wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[00743] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise polycarbophil, and a base, wherein wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil. In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.

[00744] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[00745] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, comprise a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups, and a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
In some embodiments, at least one non-hydrogen cation is present in an amount of at least about 5,000 ppm.
[00746] In some embodiments, the dosage form comprises a crosslinked cation-binding polymer comprising repeat units containing carboxylic acid groups, and a base, wherein less than 1% of carboxylic acid groups are neutralized by non-hydrogen cations; and said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer (e.g., moles of carboxylic acid groups in the polymer). In a related example the dosage form contains about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, about 0.35 equivalents, about 0.4 equivalents, about 0.45 equivalents, about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, about 0.85 equivalents, about 0.9 equivalents, or about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer.
In some embodiments, hydrogen cations, i.e., protons (H), are bound to at least 98%, at least 98.1%, at least 98.2%, at least 98.3%, at least 98.4%, at least 98.5%, at least 98.6%, at least 98.7%, at least 98.8%, at least 98.9%, at least 99%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, or at least 99.9%
of the carboxylate groups in the polymer. In some embodiments, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.4%, less than 0.3%, less than 0.2%, or less than 0.1% of the carboxylate groups of the polymer are bound to cations other than hydrogen (e.g., non-hydrogen cations), such as sodium, potassium, calcium, magnesium, choline, etc.
[00556] In some embodiments, the polymers disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein, are individual particles or particles agglomerated to form a larger particle (for example, flocculated particles), and have a diameter of about 1 to about 10,000 microns (alternatively, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns). In some embodiments, the particles or agglomerated particles have a diameter of about 1, about 5, about 10, about 20, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 250, about 300, about 350, about 400, about 450, about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000 , about 1500, about 2000, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 7000, about 7500, about 8000, about 8500, about 9000, about 9500, or about 10,000 microns.
[00557] In some embodiments, the crosslinked cation-binding polymer disclosed herein for inclusion in a composition, formulation, or dosage form, e.g., for administration to an individual, e.g., for use in methods of treatment disclosed herein is a crosslinked polyacrylate polymer. For example, the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.% to about 0.3 mol.% or about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.% to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity (e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more. In some embodiments, the crosslinked polyacrylate polymer is in the form of individual particles or particles that are agglomerated (for example, flocculated) to form a larger particle, wherein the diameter of individual particles or agglomerated particles is about 1 micron to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns. In one embodiment, the polyacrylate polymer is in the form of small particles that flocculate to form agglomerated particles with a diameter of about 1 micron to about 10 microns.
[00558] In some embodiments, the above dosage forms additionally comprise one or more excipients, carriers, or diluents. Compositions for use in accordance with the present disclosure may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients, diluents, and auxiliaries which facilitate processing of the polymer into preparations which may be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Such compositions may contain a therapeutically effective amount of polymer and may include a pharmaceutically acceptable carrier, excipient, and/or diluent.
Pharmaceutically acceptable carriers, additives, and formulation ingredients include those approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly, in humans.
Carriers can include an active ingredient in which the disclosed compositions are administered.
[00559]
In some embodiments, dosage forms according to the present disclosure comprise a crosslinked cation-binding polymer comprising carboxylic acid monomers, and a base. In related embodiments, the compositions contain less than about 20,000 ppm of non-hydrogen cations. In some embodiments, the dosage form comprises an amount of the base sufficient to provide from about 0.2 to about 0.95 equivalents of base per equivalent of carboxylic acid groups on the polymer. In some embodiments, the dosage form includes an amount of base sufficient to ameliorate or prevent acidosis in a subject to whom the polymer is administered. Monomers, crosslinkers, and bases useful in the preparation of the crosslinked cation-binding polymers as described above are also suitable for the dosage forms of the present disclosure.
[00560] In some embodiments, the dosage form is a capsule, a tablet, a chewable tablet, a suspension, an oral suspension, a powder, a gel block, a gel pack, a confection, a chocolate bar, a pudding, a flavored bar, or a sachet. In some embodiments, the dosage form contains about 0.25 g, 0.5 g, or 1 g to about 7.5 g, 15 g, 30 g, or about 100 g of a disclosed cation-binding polymer. For example and without limitation, the composition, formulation, or dosage form may include about 0.25 g, about 0.5 g, about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, about 30 g, about 35 g, about 40 g, about 45 g, about 50 g, about 55 g, about 60 g, about 65 g, about 70 g, about 75 g, about 80 g, about 85 g, about 90 g, about 95 g, or about 100 g, or more of the cation-binding polymer. For example and without limitation, the dosage form may include an amount of the composition to provide about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, or about 30 g, about 35 g, about 40 g, about 45 g, about 50 g, about 55 g, about 60 g, about 65 g, about 70 g, about 75 g, about 80 g, about 85 g, about 90 g, about 95 g, or about 100 g, or more of the cation-binding polymer. Regardless of the amount of polymer present in the dosage form, the dosage forms of the present disclosure also include from about 0.2 to about 0.95, about 0.5 to about 0.9, or about 0.6 to about 0.8 equivalents of base per equivalent of carboxylate groups in the polymer, for example, about 0.2 equivalents, about 0.25 equivalents, about 0.3 equivalents, about 0.35 equivalents, about 0.4 equivalents, about 0.45 equivalents, about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, about 0.85 equivalents, about 0.9 equivalents, or about 0.95 equivalents of base per equivalent of carboxylic acid groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of base, for example about 0.5 equivalents, about 0.55 equivalents, about 0.6 equivalents, about 0.65 equivalents, about 0.7 equivalents, about 0.75 equivalents, about 0.8 equivalents, or about 0.85 equivalents of base per equivalent of carboxylate groups in the polymer. In other embodiments, the base is present in an amount sufficient to provide from about 0.7 equivalents to about 0.8 equivalents of base, for example about 0.7 equivalents, about 0.75 equivalents, about or 0.8 equivalents of base per equivalent of carboxylate groups in the polymer. In some embodiments, the base is present in an amount sufficient to provide about 0.75 equivalents of base per equivalent of carboxylate groups in the polymer.
[00561] In some embodiments, the base component of the dosage form is one or more of: an alkali metal hydroxide, an alkali metal acetate, an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal oxide, an alkali earth metal hydroxide, an alkali earth metal acetate, an alkali earth metal carbonate, an alkali earth metal bicarbonate, an alkali earth metal oxide, an organic base, choline, lysine, arginine, histidine, an acetate, a butyrate, a propionate, a lactate, a succinate, a citrate, an isocitrate, a fumarate, a malate, a malonate, an oxaloacetate, a pyruvate, a phosphate, a carbonate, a bicarbonate, a lactate, a benzoate, a sulfate, a lactate, a silicate, an oxide, an oxalate, a hydroxide, an amine, a dihydrogen citrate, calcium bicarbonate, calcium carbonate, calcium oxide, calcium hydroxide, magnesium oxide, magnesium carbonate, magnesium hydrochloride, sodium bicarbonate, and potassium citrate, or a combination thereof
[00562] For oral administration, the disclosed compositions may be formulated readily by combining them with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compositions of the disclosure to be formulated, preferably in capsules but alternatively in other dosage forms such as tablets, chewable tablets, pills, dragees, capsules, liquids, gel packs, gel blocks, syrups, slurries, suspensions, wafers, sachets, powders, dissolving tablets and the like, for oral ingestion by a subject, including a subject to be treated. In some embodiments, the compositions or capsules containing the compositions have an enteric coating. In other embodiments, the compositions or capsules containing the compositions, do not have an enteric coating.
[00563] In some embodiments, the dosage form comprises a base and an unneutralized crosslinked polycarboxylate polymer as described herein, and is administered in an amount sufficient to provide from about 0.01 moles of carboxylate groups to about 0.5 moles or about 0.56 moles of carboxylate groups to the subject per day, for example, about 0.01 moles, about 0.02 moles, about 0.03 moles, about 0.04 moles, about 0.05 moles, about 0.06 moles, about 0.07 moles, about 0.08 moles, about 0.09 moles, about 0.1 moles, about 0.11 moles, about 0.12 moles, about 0.13 moles, about 0.14 moles, about 0.15 moles, about 0.16 moles, about 0.17 moles, about 0.18 moles, about 0.19 moles, about 0.2 moles, about 0.21 moles, about 0.22 moles, about 0.23 moles, about 0.24 moles, about 0.25 moles, about 0.26 moles, about 0.27 moles, about 0.28 moles, about 0.29 moles, about 0.3 moles, about 0.31 moles, about 0.32 moles, about 0.33 moles, about 0.34 moles, about 0.35 moles, about 0.36 moles, about 0.37 moles, about 0.38 moles, about 0.39 moles, about 0.4 moles, about 0.41 moles, about 0.42 moles, about 0.43 moles, about 0.44 moles, about 0.45 moles, about 0.46 moles, about 0.47 moles, about 0.48 moles, about 0.49 moles, or about 0.5 moles of carboxylate groups to the subject per day. In a preferred embodiment, the dosage forms are administered in an amount sufficient to provide from about 0.01 to about 0.25 moles of carboxylate groups per day. In a more preferred embodiment, the dosage forms are administered in an amount sufficient to provide from about 0.1 to about 0.25 moles of carboxylate groups per day.
[00564] In some embodiments, the dosage form comprises a base and an unneutralized crosslinked polyacrylate polymer as described herein, and is administered in an amount sufficient to provide from about 1 g to about 30 g or 100 g of polymer per day, for example, about 1 g per day, about 2 g per day, about 3 g per day, about 4 g per day, about 5 g per day, about 6 g per day, about 7 g per day, about 8 g per day, about 9 g per day, about 10 g per day, about 11 g per day, about 12 g per day, about 13 g per day, about 14 g per day, about 15 g per day, about 16 g per day, about 17 g per day, about 18 g per day, about 19 g per day, about 20 g per day, about 21 g per day, about 22 g per day, about 23 g per day, about 24 g per day, about 25 g per day, about 26 g per day, about 27 g per day, about 28 g per day, about 29 g per day, or about 30 g per day, about 35 g per day, about 40 g per day, about 45 g per day, about 50 g per day, about 55 g per day, about 60 g per day, about 65 g per day, about 70 g per day, about 75 g per day, about 80 g per day, about 85 g per day, about 90 g per day, about 95 g per day, or about 100 g of polymer per day or more.
[00565] In some embodiments, the dosage form is a sachet and contains a composition according to the present disclosure in sufficient amount to provide from about 1 g to about 30 g of the polymer. For example, a sachet may contain a composition according to the present disclosure in sufficient amount to provide about 1 g, about 1.5 g, about 2 g, about 2.5 g, about 3 g, about 3.5 g, about 4 g, about 4.5 g, about 5 g, about 5.5 g, about 6 g, about 6.5 g, about 7 g, about 7.5 g, about 8 g, about 8.5 g, about 9 g, about 9.5 g, about 10 g, about 10.5 g, about 11 g, about 11.5 g, about 12 g, about 12.5 g, about 13 g, about 13.5 g, about 14 g, about 14.5 g, about 15 g, about 15.5 g, about 16 g, about 16.5 g, about 17 g, about 17.5 g, about 18 g, about 18.5 g, about 19 g, about 19.5 g, about 20 g, about 20.5 g, about 21 g, about 21.5 g, about 22 g, about 22.5 g, about 23 g, about 23.5 g, about 24 g, about 24.5 g, about 25 g, about 25.5 g, about 26 g, about 26.5 g, about 27 g, about 27.5 g, about 28 g, about 28.5 g, about 29 g, about 29.5 g, or about 30 g of polymer.
[00566] In some embodiments, the dosage form is a capsule containing an amount of a composition according to the present disclosure sufficient to provide from about 0.1 g to about 1 g of the polymer. For example, a capsule may contain an amount of a composition according to the present disclosure that is sufficient to provide about 0.1 g, about 0.15 g, about 0.2 g, about 0.25 g, about 0.3 g, about 0.35 g, about 0.4 g, about 0.45 g, about 0.5 g, about 0.55 g, about 0.6 g, about 0.65 g, about 0.7 g, about 0.75 g, about 0.8 g, about 0.85 g, about 0.9 g, about 0.95 g, or about 1 g of polymer.
[00567] In some embodiments, the dosage form is a tablet that contains an amount of a composition according to the present disclosure to provide from about 0.3 g to about 1 g of the polymer. For example, the tablet may contain about 0.3 g, about 0.35 g, about 0.4 g, about 0.45 g, about 0.5 g, about 0.55 g, about 0.6 g, about 0.65 g, about 0.7 g, about 0.75 g, about 0.8 g, about 0.85 g, about 0.9 g, about 0.95 g, or about 1 g of polymer.
In some embodiments, a disclosed composition is formulated as a tablet that is spherical or substantially spherical.
[00568] In some embodiments, the dosage form is a sachet, flavored bar, gel block, gel pack, pudding, or powder that contains an amount of a composition according to the present disclosure to provide from about lg or about 2 g to about 30 g of the polymer.
For example, the sachet, flavored bar, gel block, gel pack, pudding, or powder may contain an amount of a composition according to the present disclosure to provide about 2 g, about 3 g, about 4 g, about 5 g, about 6 g, about 7 g, about 8 g, about 9 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, or about 30 g of the polymer.
[00569] In some embodiments, the dosage form is a suspension or an oral suspension that contains an amount of a composition according to the present disclosure to provide from about lg or about 2 g to about 30 g of the polymer. For example, the suspension or oral suspension may contain an amount of a composition according to the present disclosure to provide about 2 g, about 3 g, about 4 g, about 5 g, about 6 g, about 7 g, about 8 g, about 9 g, about 10 g, about 11 g, about 12 g, about 13 g, about 14 g, about 15 g, about 16 g, about 17 g, about 18 g, about 19 g, about 20 g, about 21 g, about 22 g, about 23 g, about 24 g, about 25 g, about 26 g, about 27 g, about 28 g, about 29 g, or about 30 g of the polymer.
[00570] In some embodiments, dosage forms according to the present disclosure further include an additional agent. In related embodiments, the additional agent is one that causes, routinely causes, typically causes, is known to cause, or is suspected of causing an increase in an ion level in at least some subjects upon administration. For example and without limitation, the additional agent may be an agent known to cause an increase in serum potassium levels in at least some subjects upon administration. For example and without limitation, the additional agent may be an agent known to cause an increase in serum sodium levels in at least some subjects upon administration. In related embodiments, the additional agent may be one or more of: a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, trandolapril, candesartan, eprosartan, irbesartan, losartan, valsartan, telmisartan, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, nadolol, propranolol, sotalol, timolol, canrenone, aliskiren, aldosterone synthesis inhibitors, VAP antagonists, amiloride, triamterine, a potassium supplement, heparin, a low molecular weight heparin, a non-steroidal anti-inflammatory drug, ketoconazole, trimethoprim, pentamide, a potassium sparing diuretic, amiloride, and/or triamterene. For example, in some embodiments, the additional agent may cause fluid retention and/or maldistribution in at least some subjects upon administration.
[00571] The compositions of the present disclosure may be administered in combination with other therapeutic agents. The choice of therapeutic agents that may be co-administered with the compositions of the disclosure will depend, in part, on the condition being treated.
[00572]
Compositions of the present disclosure may be administered in combination with a therapeutic agent that causes an increase, or is known to commonly cause an increase, in one or more ions in the subject. By way of example only, the crosslinked cation-binding polymer of the present disclosure may be administered with a therapeutic agent that causes an increase, or is known to commonly cause an increase, in the potassium and/or sodium level of a subject.
Therapeutic Uses
[00573]
The disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may be used to treat a subject with a disease and/or disorder.
Additionally or alternatively, the disclosed polymers, compositions comprising the disclosed polymers and/or oral dosage forms comprising the disclosed polymers may be used to prevent a subject from becoming afflicted with a disease and/or disorder. In any of the methods of treatment or prophylaxis described herein, a base may be co-administered along with the polymer, composition comprising a polymer, and/or dosage form comprising a polymer, either simultaneously (e.g., at the same time) or sequentially (e.g.õ before or after administration of the polymer). When administering the polymer in a dosage form, the base may be included in the same dosage form or separate from the dosage form containing the polymer, for example in a separate dosage form which is co-administered at the same time or before or after the dosage form that contains the polymer.
[00574]
The disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may be used in methods for the removal of fluid from a subject.
[00575] The disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may also be used in methods for treating diseases or disorders associated with increased retention of fluid and/or ion imbalances.
[00576]
The disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may also be used in methods to treat end stage renal disease (ESRD), chronic kidney disease (CKD), congestive heart failure (CHF), hyperkalemia, hypernatremia, or hypertension.
[00577] The polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein may be used to remove one or more ions selected from the group consisting of: sodium, potassium, calcium, magnesium and/or ammonium.
[00578] In some embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein may be substantially coated with a coating (e.g., an enteric coating) that allows it to pass through the gut and open in the intestine where the polymer may absorb fluid and/or specific ions that are concentrated in that particular portion of the intestine. In other embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers disclosed herein do not comprise such a coating. In some embodiments, the absorbent material, (i.e., polymer as disclosed herein) may be encapsulated in a capsule. In one embodiment, the capsule may be substantially coated with a coating (e.g., an enteric coating) that allows it to pass through the gut and open in the intestine where the capsule may release the polymer to absorb fluid or specific ions that are concentrated in that particular position of the intestine. In another embodiment, the capsule does not contain such a coating. Individual particles of polymer or groups of particles may be encapsulated or alternatively, larger quantities of beads or particles may be encapsulated together.
[00579] In some embodiments, polymers as disclosed herein may be milled to give finer particles in order to increase drug loading of capsules, or to provide better palatability for formulations such as gels, bars, puddings, or sachets. In addition, milled particles or groups of particles, or unmilled polymeric material (e.g., beads) may be coated with various common pharmaceutical coatings. These coatings may or may not have enteric properties but will have the common characteristic that they will separate the polymer from the tissues of the mouth and prevent the polymer from adhering to tissue. For example, such coatings may include, but are not limited to: a single polymer or mixtures thereof, such as may be selected from polymers of ethyl cellulose, polyvinyl acetate, cellulose acetate, polymers such as cellulose phthalate, acrylic based polymers and copolymers or any combination of soluble, insoluble polymers or polymer systems, waxes and wax based coating systems.
[00580] In some embodiments, the polymers disclosed herein for administration to an individual or inclusion in a composition, formulation, or dosage form for administration to an individual, e.g., for use in a method of treatment as disclosed herein, are individual particles or particles agglomerated to form a larger particle (for example, flocculated particles), and have a diameter of about 1 to about 10,000 microns (alternatively, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about 100 microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns). In some embodiments, the particles or agglomerated particles have a diameter of about 1, about 5, about 10, about 20, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 250, about 300, about 350, about 400, about 450, about 500, about 550, about 600, about 650, about 700, about 750, about 800, about 850, about 900, about 950, about 1000 , about 1500, about 2000, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 7000, about 7500, about 8000, about 8500, about 9000, about 9500, or about 10,000 microns. In one embodiment, the particles with a diameter of about 1 micron to about 10 microns.
[00581] In certain exemplary embodiments, the crosslinked cation-binding polymer, as described, for example, for administration to an individual or inclusion in a composition, formulation, or dosage form for administration to an individual, e.g., for use in a method of treatment as disclosed herein, is a crosslinked polyacrylate polymer (i.e., derived from acrylic acid monomers or a salt thereof). For example, the polymer may be a polyacrylate polymer crosslinked with about 0.08 mol% to about 0.2 mol% or alternatively from about 0.025 mol.% to about 3.0 mol.% including, for example, from about 0.025 mol.%
to about 0.3 mol.% or about 0.025 mol.% to about 0.17 mol.% or from about 0.025 mol.%
to about 0.34 mol.% crosslinker, and for example, may comprise an in vitro saline absorption capacity (e.g., saline holding capacity) of at least about 20 times its weight (e.g., at least about 20 grams of saline per gram of polymer, or "g/g"), at least about 30 times its weight, at least about 40 times its weight, at least about 50 times its weight, at least about 60 times its weight, at least about 70 times its weight, at least about 80 times its weight, at least about 90 times its weight, at least about 100 times its weight, or more. In some embodiments, the crosslinked polyacrylate polymer comprises individual particles or particles that are agglomerated (for example, flocculated) to form a larger particle, wherein the individual or agglomerated particle diameter is about 1 to about 10,000 microns (alternatively, about 1 micron to about 10 microns, about 1 micron to about 50 microns, about 10 microns to about 50 microns, about 10 microns to about 200 microns, about 50 microns to about microns, about 50 microns to about 200 microns, about 50 microns to about 1000 microns, about 500 microns to about 1000 microns, about 1000 to about 5000 microns, or about 5000 microns to about 10,000 microns.
[00582] In some embodiments, the polymer may be mixed with base in the same dosage form and may be in contact with fluid within the dosage from, such as suspensions or gels. To prevent interaction of the crosslinked cation-binding polymer and the base component before administration to a subject, pharmaceutical coatings known in the art can be used to coat the polymer, the base, or both to prevent or impede interaction of the polymer and the base. In some embodiments, the pharmaceutical coating may have enteric properties. As example, pharmaceutical coatings may include but are not limited to: a single polymeric coating or mixtures of more than one pharmaceutical coating, such as may be selected from polymers of ethyl cellulose, polyvinyl acetate, cellulose acetate; polymers such as cellulose phthalate, acrylic based polymers and copolymers, or any combination of soluble polymers, insoluble polymers and/or polymer systems, waxes and wax based coating systems. In alternate embodiments, the polymer and base are administered in separate dosage forms.
[00583] A subject (e.g., an individual or patient), as disclosed herein, includes a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, farm animals (such as cows), sport animals, pets (such as cats, dogs and horses), primates, and rodents (such as mice and rats). For purposes of treatment, prognosis and/or diagnosis, a subject includes any animal such as those classified as a mammal, including humans, domestic and farm animals, and zoo, wild, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the subject for treatment, prognosis and/or diagnosis is human.
[00584] A disease or disorder includes any condition that would benefit from treatment with a composition as disclosed herein. This includes both chronic and acute diseases or disorders, including those pathological conditions which predispose the subject to the disease or disorder in question.
[00585] As used herein, treatment refers to clinical intervention in an attempt to alter the natural course of the subject being treated, and can be performed either for prophylaxis (e.g., prevention) or during the course of clinical pathology (e.g., after the subject is identified as having a disease or disorder or the symptoms of a disease or disorder).
Desirable effects of treatment include preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease or disorder, decreasing the rate of disease progression, amelioration or palliation of the disorder, and remission or improved prognosis. Terms such as treating/treatment/to treat or alleviating/to alleviate refer to both 1) therapeutic measures that cure, slow down, lessen symptoms of, and/or halt progression of a diagnosed disease or disorder (e.g., a pathologic condition or disorder) and 2) prophylactic or preventative measures that prevent and/or slow the development of a disease or disorder (e.g., a targeted io pathologic condition or disorder). Thus, those in need of treatment may include those already with the disease or disorder; those prone to have the disease or disorder; and those in whom the disease or disorder is to be prevented.
[00586]
An effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
A
therapeutically effective amount of a composition disclosed herein, may vary according to factors such as the disorder, age, sex, and weight of the subject, and the ability of the composition to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the composition are outweighed by the therapeutically beneficial effects. A prophylactically effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount may be less than the therapeutically effective amount. For example, a therapeutically or prophylactically effective amount includes administration of about 1 g to about 30 g, about 15g to about 25g, or about 15g to about 30g, for example, about 15g per day of a disclosed cross-linked polymer to an individual. In various embodiments, base is co-administered at about 0.2 equivalents to about 0.95 equivalents, for example, about 0.5 equivalents to about 0.85 equivalents, about 0.7 equivalents to about 0.8 equivalents, or about 0.75 equivalents, with respect to carboxylic acid groups on the polymer.
A therapeutically or prophylactically effective amount of polymer and base may be administered in a single dosage or multiple doses, for example, administered once per day or administered 2-4 or more times daily, i.e., divided into and administered as 1, 2, 3, 4, or more doses per day, or administered at intervals of 2, 3, 4, 5, or 6 days, weekly, bi-weekly, etc..
[00587]
Pharmaceutically acceptable includes approved or approvable by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, including humans.
A
pharmaceutically acceptable salt includes a salt of a compound that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound.
A pharmaceutically acceptable excipient, carrier or adjuvant includes an excipient, carrier or adjuvant that can be administered to a subject, together with at least one composition of the present disclosure, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic or prophylactic amount of the composition. A pharmaceutically acceptable vehicle includes a diluent, adjuvant, excipient, or carrier with which at least one composition of the present disclosure is administered.
[00588]
Compositions comprising cross-linked cation binding polymers as disclosed herein can be used either alone or in combination with one or more other agents for administration to a subject (e.g., in a therapy or prophylaxis). As described herein, such combined therapies or prophylaxis include combined administration (where the composition and one or more agents are included in the same or separate formulations) and separate administration, in which case, administration of the composition disclosed herein can occur prior to, contemporaneous with and/or following, administration of the one or more other agents (e.g., for adjunct therapy or intervention). Thus, co-administered or co-administration includes administration of the compositions of the present disclosure before, during and/or after the administration of one or more additional agents or therapies.
[00589]
In some embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are useful for treating a disease or disorder. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments in which a composition and/or dosage form comprising the polymer is administered, the base may be included in the same composition and/or dosage form as the polymer. In other embodiments, the base may be administered separately from the composition and/or dosage form.
In some embodiments, the disease or disorder is one or more of: heart failure, a renal insufficiency disease, end stage renal disease, liver cirrhosis, chronic renal insufficiency, chronic kidney disease, fluid overload, fluid maldistribution, edema, pulmonary edema, peripheral edema, lymphedema, nephrotic edema, idiopathic edema, ascites, cirrhotic ascites, interdialytic weight gain, high blood pressure, hyperkalemia, hypernatremia, abnormally high total body sodium, hypercalcemia, tumor lysis syndrome, head trauma, an adrenal disease, hyporeninemic hypoaldosteronism, hypertension, salt-sensitive hypertension, refractory hypertension, renal tubular disease, rhabdomyolysis, crush injuries, renal failure, acute tubular necrosis, insulin insufficiency, hyperkalemic periodic paralysis, hemolysis, malignant hyperthermia, pulmonary edema secondary to cardiogenic pathophysiology, pulmonary edema with non-cardiogenic origin, drowning, acute glomerulonephritis, allergic pulmonary edema, high altitude sickness, Adult io Respiratory Distress Syndrome, traumatic edema, cardiogenic edema, acute hemorrhagic edema, heatstroke edema, facial edema, eyelid edema, angioedema, cerebral edema, scleral edema, nephritis, nephrosis, nephrotic syndrome, glomerulonephritis, and/or renal vein thrombosis.
[00590] In some embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a disease or disorder involving an ion imbalance in a subject by administering to the subject an effective amount of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer (e.g., an effective amount) as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the disease or disorder is hyperkalemia. In some embodiments, the disease or disorder is hypernatremia.
In some embodiments, the disease or disorder is a high sodium level. In some embodiments, the disease or disorder is an abnormally high potassium level. In some embodiments, the disease or disorder is hypernatremia and hyperkalemia.
[00591] In some embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a subject with heart failure by administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the subject has both heart failure and chronic kidney disease. In some related embodiments, the methods further comprise reducing one or more symptoms of a fluid overload state in the subject. Symptoms of a fluid overload state in a subject are known to those skilled in the art, and may include, for example and without limitation, difficulty breathing when lying down, ascites, fatigue, shortness of breath, increased body weight, peripheral edema, and/or pulmonary edema. In some related embodiments, the subject may be on concomitant dialysis therapy. In some further related embodiments, the dialysis therapy may be reduced or discontinued after administration of the polymer, the composition comprising the disclosed polymer, and/or the dosage form comprising the disclosed polymer as disclosed herein. In some related embodiments, the method further comprises identifying the subject as having heart failure before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer. In some embodiments, administration of the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers, as described herein, improves or ameliorates at least one symptom of heart failure, for example, at least one symptom that impacts the subject's quality of life and/or physical function. For example, administration may result in body weight reduction, dyspnea improvement (for example, overall and dyspnea at exertion), six minute walk test improvement, and/or improvement or absence of edema (e.g., peripheral edema).
In some embodiments, administration of the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers, as described herein, results in reduction of patient classification by at least one heart failure class, according to the New York Heart Association Class I, II, III, IV functional classification system.
[00592] In some embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a subject with end stage renal disease (ESRD) by administering to the subject an effective amount of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some related embodiments, the subject is on concomitant dialysis therapy. In some embodiments, the method reduces blood pressure in an ESRD subject on concomitant dialysis therapy, for example, pre-dialysis, post-dialysis, and/or interdialytic systolic and diastolic blood pressure may be reduced. In some embodiments, the method reduces interdialytic weight gain in an ESRD subject on concomitant dialysis therapy.
In some embodiments, the subject also has heart failure. In some embodiments, one or more symptoms of intradialytic hypotension are improved after administration of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein. For example and without limitation, incidences of vomiting, fainting and/or drops in blood pressure levels are reduced or eliminated. In some embodiments, the subject experiences one or more of: a reduced frequency of emergency dialysis sessions, a reduced frequency of inadequate dialysis sessions, a reduced frequency io of dialysis sessions on low-potassium dialysis bath, and/or reduced frequency or reduced severity of EKG signs during dialysis sessions. In some embodiments, one or more symptom of intradialytic hypotension are reduced or eliminated after administration of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer. Symptoms of intradialytic hypotension are known to those skilled in the art and may include, for example, vomiting, fainting, an abrupt decrease in blood pressure, seizures, dizziness, severe abdominal cramping, severe leg or arm muscular cramping, intermittent blindness, infusion, medication, and dialysis session interruption or discontinuation. In some embodiments, ESRD subjects may experience an improvement in physical function as expressed by increaseas in the 6 Minute Walk Test.
[00593] In some embodiments, polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating a subject having a chronic kidney disease. In some embodiments, the methods comprise administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the methods further comprise identifying the subject as having a chronic kidney disease before administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some related embodiments, the methods further comprise reducing one or more symptoms of a fluid overload state in the subject. In some embodiments, a comorbidity of chronic kidney disease is reduced, alleviated, and/or eliminated after administration of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer.
Comorbidities of chronic kidney disease are known to those skilled in the art and include, for example, fluid overload, edema, pulmonary edema, hypertension, hyperkalemia, excess total body sodium, heart failure, ascites, and/or uremia. In some embodiments, CKD patients may experience prevention of doubling of serum creatinine over the duration of a study (for example, 1 to 2 years), prevention of disease progression to dialysis, and/or prevention of death and CKD
related hospitalizations and/or complications.
[00594] In some embodiments, polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein are useful for treating a subject having hypertension. In some embodiments, the methods comprise administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the methods further comprise identifying that the subject has hypertension before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
As used herein, the term hypertension includes the various subtypes of hypertension known to those skilled in the art, for example and without limitation: primary hypertension, secondary hypertension, salt sensitive hypertension, and refractory hypertension and combinations thereof. In some embodiments, the method is effective in reducing the subject's blood pressure. In related embodiments, the method may further comprise determining a blood pressure level before, after, or both before and after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. For example, the method may further comprise determining the subject's diastolic blood pressure, systolic blood pressure, and/or mean arterial pressure ("MAP") before, after, or both before and after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, one or more symptom of a fluid overload state is reduced, improved, or alleviated by administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some related embodiments, the method may further comprise determining a fluid overload state symptom before, after, or both before and after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. For example, the method may further comprise observing an improvement in the subject's breathing while lying down, ascites, fatigue, shortness of breath, body weight, peripheral edema, and/or pulmonary edema. In some embodiments, the subject is on concomitant diuretic therapy. As used herein, the term diuretic therapy refers to administration of pharmaceutical compositions (e.g., diuretic agents), and non-chemical intervention, such as dialysis or restriction of fluid intake. Diuretic agents are known to those skilled in the art and include, for example, furosemide, bumetanide, torsemide, hydrochlorthiazide, amiloride and/or spironolactone. In io some related embodiments, the diuretic therapy may be reduced or discontinued following administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
[00595] In some embodiments, the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein of the present disclosure are useful for treating hyperkalemia in a subject. In some embodiments, the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer according to the present disclosure. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the method further comprises identifying the subject as having hyperkalemia, or as having a risk of developing hyperkalemia, before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the method may further comprise determining a potassium ion level in the subject before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some related embodiments, the potassium ion level may be within a normal range, slightly elevated, or elevated before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the subject has been prescribed or will be administered a drug known to increase potassium levels. In some embodiments, the subject has already ingested a drug known to increase potassium levels. In some embodiments, the method may further comprise determining a second, reduced potassium ion level in the subject after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total CO2, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap.
An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
[00596] In some embodiments, the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein of the present disclosure are useful for treating an high sodium level, e.g., hypernatremia, in a subject. In some embodiments, the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the method further comprises identifying the subject as having an high sodium level, or as having a risk of developing an high sodium level, before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the method may further comprise determining a sodium ion level in the subject before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some related embodiments, the sodium ion level may be within a normal range, slightly elevated, or elevated before administering the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the method may further comprise determining a second, reduced sodium ion level in the subject after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total CO2, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap. An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
In some embodiments, the subject has taken or will take a drug known to increase sodium levels, for example and without limitation: estrogen containing compositions, mineralocorticoids, osmotic diuretics (e.g., glucose or urea), vaptans (e.g., tolvaptan, lixivaptan), lactulose, cathartics (e.g., phenolphthalein), phenytoin, lithium, Amphotericin B, demeclocycline, dopamine, ofloxacin, orlistat, ifosfamide, cyclophosphamide, hyperosmolar radiographic contrast agents (e.g., gastrographin, renographin), cidofovir, ethanol, foscarnet, indinavir, libenzapril, mesalazine, methoxyflurane, pimozide, rifampin, streptozotocin, tenofir, triamterene, and/or cholchicine. In some embodiments, administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise increasing a dose of 1(1 one or more additional agents, for example, an agent known to cause an increase in sodium levels. In some embodiments, the method further comprises increasing a dose of one or more of: an aldosterone antagonist, an angiotensin II receptor blocker, and/or an angiotensin-converting enzyme inhibitor before, concomitantly, and/or after administering a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer. In some embodiments, administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise decreasing a dose or discontinuing administration or co-administration of a diuretic.
[00597]
In some embodiments, the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein are useful for treating a subject with a disease or disorder involving fluid overload (e.g., a fluid overload state such as heart failure, end stage renal disease, ascites, renal failure (for example, acute renal failure), nephritis, and nephrosis). In some embodiments, the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the subject may be on concomitant diuretic therapy. In some embodiments, the method may further comprise identifying a fluid overload state in the subject, or identifying a risk that the subject will develop a fluid overload state before administration of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer. Methods of identifying a fluid overload state or a risk of developing a fluid overload state are known to those skill in the art and may include, for example and without limitation:
assessing difficulty breathing when lying down, ascites, fatigue, shortness of breath, increased body weight, peripheral edema, and/or pulmonary edema associated with the subject.
In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total CO2, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap. An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
[00598] In some embodiments, the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein according to the present disclosure are useful for treating a subject with a disease or disorder involving fluid maldistribution (e.g., a fluid maldistribution state such as pulmonary edema, angioneurotic edema, ascites, high altitude sickness, adult respiratory distress syndrome, uticarial edema, papille edema, facial edema, eyelid edema, cerebral edema, and scleral edema). In some embodiments, the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the method may further comprise identifying a fluid maldistribution state or a risk of developing a fluid maldistribution state in the subject before administering to the subject a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer.
[00599] In some embodiments, the polymers, compositions comprising a disclosed polymer, and/or dosage forms comprising a disclosed polymer as disclosed herein are useful for treating edema in a subject. In some embodiments, the method comprises administering to the subject an effective amount of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the method may further comprise identifying an edematous state or a risk of developing an edematous state in the subject before administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the edematous state is nephritic edema, pulmonary edema, peripheral edema, lymphedema, and/or angioneurotic edema. In some embodiments, the subject is on concomitant diuretic therapy.
In some related embodiments, the diuretic therapy may be reduced or discontinued after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the method may further comprise, before administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein, determining one or more of: a baseline level of one or more ions (e.g., sodium, potassium, io lithium and/or magnesium) in the subject, a baseline total body weight associated with the subject, a baseline total body water level associated with the subject, a baseline total extracellular water level associated with the subject, and/or a baseline total intracellular water level associated with the subject. In some embodiments, the method may further comprise, after administering a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein, determining one or more of: a second level of one or more ions in the subject, a second total body weight associated with the subject, a second total body water level associated with the subject, a second total extracellular water level associated with the subject, and/or a second total intracellular water level associated with said subject. In some embodiments, the second level is lower than the corresponding baseline level. In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total CO2, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap. An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject. In some embodiments, a blood pressure level associated with the subject after administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer is substantially lower than a baseline blood pressure level associated with the subject determined before administration of the polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer. In some embodiments, one or more symptoms of edema are reduced and/or eliminated following administration of a polymer, composition comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer as disclosed herein.
Symptoms of edema are known to those skilled in the art; some non-limiting examples include: difficulty breathing when lying down, shortness of breath, peripheral edema, and leg edema.
[00600] In some embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers according to the present disclosure are useful for treating ascites in a subject. In some embodiments, the method comprises administering to the subject an effective amount of a polymer composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer according to the present disclosure. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the method may further comprise identifying an ascitic state or a risk of developing an ascitic state in the subject. In some embodiments, the subject is on concomitant diuretic therapy. In some related embodiments, the diuretic therapy may be reduced or discontinued after administration of the composition. In some embodiments, the subject may have taken, or will take, a drug known to increase potassium levels.
[00601] In some embodiments, the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers as disclosed herein are useful for treating nephrotic syndrome in a subject. In some embodiments, the method comprises administering to said subject an effective amount of a polymer, a composition comprising a disclosed polymer, and/or a dosage form comprising a disclosed polymer as disclosed herein. For example, the disclosed polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers are co-administered with a base, as described herein. In some embodiments, the method further comprises identifying the subject as having nephrotic syndrome, or as having a risk of developing nephrotic syndrome, before administering the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer.
In some embodiments, the method may further comprise determining one or more of: a level of one or more ions (e.g., sodium, potassium calcium, lithium, and/or magnesium) in the subject, a total body weight associated with the subject, a total body water level associated with the subject, a total extracellular water level associated with the subject, and/or a total intracellular water level associated with the subject before administering the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer. In some embodiments, the method may further comprise determining a second, lower level of one or more of: a level of one or more ions in the subject, a total body weight associated with the subject, a total body water level associated with the subject, a total extracellular water level associated with the subject, and/or a total intracellular water level associated with the subject after administering the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer. In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total CO2, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap. An acid/base status that does not change includes one that 1(1 does not change outside the normal range or outside the normal range for the subject. In some embodiments, a blood pressure level associated with the subject after administration of the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer is substantially lower than a baseline blood pressure level associated with the subject before the administration(s). In some embodiments, one or more symptoms of fluid overload is alleviated, reduced, or eliminated after administration of polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer. In some related embodiments, the symptom may be one or more of: difficulty breathing when lying down, shortness of breath, peripheral edema, and/or leg edema. In some embodiments, the subject may be on concomitant diuretic therapy. In some related embodiments, the diuretic therapy may be reduced or eliminated after administration of the polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer.
[00602] In some embodiments, methods according to the present disclosure may further comprise administering to the subject an additional agent, for example, a drug or agent for treatment of a condition such as end stage renal disease, including, for example, phosphate binders. Non-limiting examples of additional agents include mannitol, sorbitol, calcium acetate, sevelamer carbonate (Renvelac)), and/or sevelamer hydrochloride.
[00603] In some embodiments, methods according to the present disclosure may further comprise administering to the subject an agent known to increase potassium levels.
As used herein, the term "an agent known to increase potassium levels" refers to agents that are known to cause an increase, are suspected of causing an increase, or are correlated with an increase in potassium levels upon administration. For example and without limitation, agents known to cause an increase in potassium levels may include: a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE
inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, trandolapril, candesartan, eprosartan, irbesartan, losartan, valsartan, telmisartan, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, nadolol, propranolol, sotalol, timolol, canrenone, aliskiren, aldosterone synthesis inhibitors, and/or VAP
antagonists. In some embodiments, administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise increasing a dose of one or more additional agents, for example, an agent known to cause an increase in potassium levels. In some embodiments, administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise decreasing a dose or discontinuing administration or co-administration of a diuretic.
[00604] In some embodiments, methods according to the present disclosure may further comprise administering to the subject an agent known to increase sodium levels. As used herein, the term "an agent known to increase sodium levels" refers to agents that are known to cause an increase, are suspected of causing an increase, or are correlated with an increase in sodium levels upon administration. For example and without limitation, agents known to cause an increase in sodium levels may include: estrogen containing compositions, mineralocorticoids, osmotic diuretics (e.g., glucose or urea), lactulose, cathartics (e.g., phenolphthalein), phenytoin, lithium, Amphotericin B, demeclocycline, dopamine, ofloxacin, orlistat, ifosfamide, cyclophosphamide, hyperosmolar radiographic contrast agents (e.g., gastrographin, renographin), cidofovir, ethanol, foscarnet, indinavir, libenzapril, mesalazine, methoxyflurane, pimozide, rifampin, streptozotocin, tenofir, triamterene, and/or cholchicine. In some embodiments, administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise increasing a dose of one or more additional agents, for example, an agent known to cause an increase in sodium levels. In some embodiments, administration of the polymers, compositions comprising the disclosed polymers, and/or dosage forms comprising the disclosed polymers may further comprise decreasing a dose or discontinuing administration or co-administration of a diuretic.
[00605] In some embodiments, methods according to the present disclosure may further comprise determining a baseline level of one or more ions in a subject before administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein, and determining a second level of said one or more ions in the subject after administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein. Ion levels may be determined in a subject, for example, in serum, urine, io and/or feces. Non-limiting examples of methods that may be used to measure ions include atomic absorption, clinical laboratory blood and urine tests, ion chromatography, and ICP
(inductively coupled plasma mass spectroscopy). In related embodiments, a baseline level of potassium is determined in a subject. In another embodiment, a baseline level of sodium is determined in a subject. Thereafter, a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein is administered to the subject, followed by a determination of a second potassium and/or sodium level. In some embodiments, the second potassium and/or sodium level is lower than the baseline potassium level.
[00606] In some embodiments, methods according to the present disclosure may further comprise determining a baseline total body weight associated with a subject before administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein, and determining a second total body weight associated with the subject after administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the second total body weight is lower than the baseline total body weight. Any suitable method for determining the total body weight associated with a subject may be used.
[00607] In some embodiments, methods according to the present disclosure may further comprise determining a baseline total water level associated with a subject before administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein, and determining a second total water level associated with the subject after administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the second total water level is lower than the baseline total water level. Any suitable method for determining a total water level associated with a subject may be used, for example, by bioimpedance measurement, or through invasive procedures, such as central vein catheters for measurement of pulmonary wedge pressure.
[00608] In some embodiments, methods according to the present disclosure may further comprise determining a baseline total extracellular water level associated with a subject before administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein, and determining a second total extracellular water level associated with the subject after administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the second total extracellular water level is lower than the baseline total extracellular water level. Any suitable method for determining a total extracellular water level associated with a subject may be used, for example, by bioimpedance measurement, or through invasive procedures, such as central vein catheters for measurement of pulmonary wedge pressure.
[00609] In some embodiments, methods according to the present disclosure may further comprise determining a baseline total intracellular water level associated with a subject before administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein, and determining a second total intracellular water level associated with the subject after administering a polymer, the composition comprising a disclosed polymer, and/or the dosage form comprising a disclosed polymer as disclosed herein. In some embodiments, the second total intracellular water level is lower than the baseline total intracellular water level. Any suitable method for determining a total intracellular water level associated with a subject may be used, for example, by bioimpedance measurement, or through invasive procedures, such as central vein catheters for measurement of pulmonary wedge pressure.
[00610] In some embodiments, methods according to the present disclosure may further comprise determining a pH level associated with a subject. Any method known in the art for determining a pH level may be employed. For example and without limitation, a pH level associated with a subject may be determined by determining the subject's pCO2, serum carbonate, urinary phosphorous level, etc. In some embodiments, methods according to the present disclosure comprise determining a pH level associated with a subject after administering a polymer, composition comprising a polymer, and/or dosage form according to the present disclosure. In related embodiments, the pH level is within a normal range for the subject, and/or within a clinically acceptable range for the subject. In some embodiments, a pH level associated with a subject after administering a polymer, composition comprising a polymer, and/or dosage form comprising a polymer according to the present disclosure is closer to a normal level for the subject, closer to a clinically acceptable level, etc., than compared to a baseline pH level associated with the subject before administration of the composition. In some embodiments, a pH level associated with the subject does not significantly change within about 1 day, within about 18 hours, within about 12 hours, within about 6 hours, within about 4 hours, or within about 2 hours of administration of the composition.
[00611] In some embodiments, methods according to the present disclosure may further comprise determining an acid/base status (e.g., acid/base balance) associated with a subject. Any method known in the art for determining an acid/base status (e.g., acid/base balance) may be employed. In some embodiments, methods according to the present disclosure comprise determining an acid/base status (e.g., acid/base balance) associated with a subject after administering a composition according to the present disclosure.
[00612] For example, an acid/base status (e.g., acid/base balance) may be measured by serum total bicarbonate, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap. In an exemplary method, anion gap may be calculated by subtracting the serum concentrations of chloride and bicarbonate (anions) from the concentrations of sodium and potassium (cations) as follows:
Anion gap = ([Na] + [K+]) ¨ ([C[] + [HCO3 ])
[00613] Alternatively, in another exemplary method, anion gap may be calculated by ignoring potassium concentration as follows:
Anion gap = [Na] ¨ ([C1-] + [HCO3 1)
[00614] In related embodiments, the acid/base status (e.g., acid/base balance) is within a normal range as set by a clinical laboratory.
[00615] In related embodiments, the acid/base status (e.g., acid/base balance) is within a normal range for the subject, and/or within a clinically acceptable range for the subject.
[00616] In some embodiments, an acid/base status (e.g., acid/base balance) associated with a subject after administering a disclosed polymer, composition comprising a disclosed polymer, formulation comprising a disclosed polymer, and/or dosage form comprising a disclosed polymer, according to the present disclosure, is closer to a normal level for the subject, closer to a clinically acceptable level, etc., than compared to a baseline acid/base status (e.g., acid/base balance) associated with the subject before administration of the polymer, composition, formulation, and/or dosage form.
[00617] In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change or does not significantly change, for example, at the end of io a time interval, or about 1 day, within about 18 hours, within about 12 hours, 10 hours, within about 9 hours, within about 8 hours, within about 7 hours, within about 6 hours, within about 5 hours, within about 4 hours, within about 3 hours, within about 2 hours, or within about 1 hour of administration of the composition. An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject. In some embodiments, an acid/base status (e.g., acid/base balance) associated with the subject does not change, for example, as measured by serum total bicarbonate, serum total CO2, arterial blood pH, urine pH, urine phosphorus, urine ammonium, and/or anion gap. An acid/base status that does not change includes one that does not change outside the normal range or outside the normal range for the subject.
[00618] Methods for determining an ion level in a subject are known to those skilled in the art. Any suitable method for determining an ion level may be used.
However, determination of serum sodium levels should be avoided as such levels tend not to fluctuate, even in hypernatremic subjects. If sodium ion levels are desired, another suitable method for determining such levels should preferably be used, such as determining a subject's total body sodium level.
[00619] In some embodiments, methods according to the present disclosure may further comprise determining a blood pressure level before, after, or both before and after administration of a composition according to the present disclosure. A
subject's blood pressure level may be determined using any suitable method known in the art.
For example and without limitation, a subject's blood pressure level may be determined by measuring the subject's systolic blood pressure, the subject's diastolic blood pressure, and/or the subject's mean arterial pressure ("MAP"). In some embodiments, the subject's blood pressure is lower after treatment than before treatment.
[00620] In some embodiments, the compositions according to the present disclosure are administered as needed to reduce an ion level in a subject, or to maintain an acceptable level of one or more ions in a subject, or to reduce a fluid overload state or fluid maldistribution state in a subject. In some embodiments, compositions according to the present disclosure are administered at a frequency from 1 time per every 3 days to about 4 times per day. Preferably, the compositions according to the present disclosure are administered from about 1 time per day to about 4 times per day; even more preferably once or twice per day.
EXAMPLES
[00621] The following examples are for illustrative purposes only and are not to be construed as limiting in any manner.
Example 1
[00622] This example demonstrates the preparation of an exemplary cross-linked polyelectrolyte polymer, such as crosslinked polyacrylic acid partially neutralized with sodium.
[00623] An inverse suspension process may be used with the following components: a monomer (e.g., acrylic acid), solvent for the monomer (e.g., hydrophilic, for example, water), base for neutralization of monomer (e.g., NaOH), lipophilic (e.g., hydrophobic) solvent (e.g., IsoparTM L), suspending agent (e.g., fumed silica such as Aerosil R972), chelating agent (e.g., VersenexTm-80), polymerization initiator (e.g., sodium persulfate), and cross-linking agent (e.g., TMPTA).
[00624] A monomer solution is prepared in a vessel as the aqueous phase by dissolving an unsaturated carboxylic acid monomer (e.g., acrylic acid) in water and neutralizing with an aqueous alkali (e.g., NaOH) to a desired percentage neutralization (e.g., 70% to 95% neutralized). Just before addition of this aqueous, partially neutralized, monomer solution to the reactor, one or more polymerization initiators (e.g., sodium persulfate alone or a redox-couple, such as t-butylhydroperoxide paired with thiosulfate) are added under conditions that do not favor polymerization. Optionally, a chelating agent (e.g., VersenexTm-80) can be added to the aqueous mixture ensure control of transition metal ions. An organic phase (e.g., IsoparTM L or toluene or n-heptane or cyclohexane) is placed into the main reactor (not the vessel with the aqueous monomer solution). A

hydrophobic suspending agent (e.g., Aerosil R972) is dissolved or dispersed in the organic phase. A crosslinking agent is added. If the crosslinking agent is soluble in the organic phase (e.g., divinylbenzene or 1,1,1-trimethylolpropane triacrylate¨also called TMPTA), it is added to the reactor with the organic phase. If the crosslinking agent is water soluble (e.g., highly-ethoxylated trimethylolpropane triacrylate¨also called HE-TMPTA¨or diacryl glycerol), the crosslinking agent is added to the aqueous phase. The aqueous phase is then added to the organic phase in the reactor, e.g., with mixing, and the reaction mixture is agitated to produce aqueous droplets of the appropriate size in the organic solvent.
Simultaneously, oxygen is removed from the reaction mixture by bubbling an inert gas (e.g., nitrogen) through the reaction mixture. After adequate deoxygenation, the reaction will either begin (e.g., in the case of redox couples) or be started by increasing the temperature (e.g., in the case of sodium persulfate). A second addition of hydrophobic suspending agent may be added as the polymerization proceeds, i.e., to further stabilize the particles.
Reaction is completed by maintaining an elevated temperature (e.g., 65 C) for a time adequate to allow removal, i.e., reaction of substantially all of the monomer (e.g., 2 to 4 hours). Water may then be removed by azeotropic distillation and the crosslinked cation-binding polymeric material may be isolated by filtration or centrifugation to remove the remaining organic solvent. The polymeric material may be rinsed with fresh organic solvent and dried to the desired moisture and/or organic solvent content as measured by loss on further drying. In some embodiments, less than 500 ppm of the monomer remains after polymerization. The polymer may be rinsed to remove this residual monomer.
[00625] In an exemplary method, acrylic acid (140 g) was added dropwise to a solution of 124.35 g of 50% NaOH and 140 g of deionized water while keeping the temperature below 40 C to prevent initiation of polymerization. 3.5 g of VersenexTM 80 and 0.70 g of a 10% solution of sodium persulfate were added. Meanwhile, 1200 g of IsoparTM L were charged into the main reactor. 0.80 g Aerosil R972 dissolved in 40 g of IsoparTM L and 0.50 g of TMPTA were added to the main reactor. The aqueous monomer solution was added to the reactor, which was then closed. Agitation was started at 330 RPM and argon was bubbled through the reaction mixture. After 70 minutes of bubbling argon, the reaction was heated rapidly at 4 C increase per minute. When the temperature reached 50 C, another 0.80 g of Aerosil R972 in 40 g of IsoparTM L (that had been separately bubbled with argon) was added to the reaction mixture. The reaction exotherm heated the mixture to 80 C over the next 15 minutes while the constant temperature bath was removing heat to keep the reaction mixture at 65 C. The reaction mixture cooled to 70 C at approximately 60 minutes from the start of heating. The reaction mixture was kept at 65 C to 70 C for 4 hours. The reaction mixture was allowed to cool. The resulting crosslinked cation-binding polymer was isolated by filtration and dried in vacuum at 105 C.
Example 2
[00626] This example illustrates the preparation of an exemplary crosslinked polyelectrolyte polymer by an aqueous phase reaction of a partially neutralized carboxylic acid monomer.
[00627] A monomer solution is prepared in a reactor by dissolving an unsaturated carboxylic acid monomer (e.g., acrylic acid) in water and neutralizing with an aqueous alkali (e.g., NaOH) to a desired percentage neutralization (e.g., 70 to 95 percent neutralized). Optionally, a chelating agent (e.g., VersenexTM 80) may be added to control metal ions. A suitable crosslinking agent (e.g., 1,1,1-trimethylolpropane triacrylate or diacryl glycerol) is added to the reactor. A polymerization initiator is added to the reactor.
The reactor is then closed and the reaction mixture is bubbled with an inert gas (e.g., nitrogen) and agitated until adequate removal of oxygen is achieved. The reaction is then initiated either by reaching an oxygen concentration where a redox couple produces radicals or by adding heat to cause a temperature dependent initiator (e.g., persulfate salts) to produce radicals. The reaction is allowed to proceed through the exothermic heating that occurs during reaction. After 2 to 6 hours, the reaction is completed and the gel-like mass of reaction product can be removed from the reactor and cut into appropriately sized pieces.
After drying, the particles can be separated by size or milled to produce the desired size or size distribution.
[00628] Thus, in an exemplary method, 140 g of acrylic acid were added dropwise to a solution of 124.35 g of 50% NaOH and 140 g of deionized water while keeping the temperature below 40 C to prevent initiation of polymerization. Then, 3.5 g of VersenexTM
80 and 0.70 g of a 10% solution of sodium persulfate were added. The final addition was 0.50 g of TMPTA. The reactor was closed and the reaction mixture agitated at while argon was bubbled through the mixture. After 70 minutes of bubbling argon, the reaction was initiated by heating at a rate of a 4 C temperature rise per minute. After 7 minutes, the reaction reached 55 C and the entire reaction mixture became a gel. The agitation was stopped, allowing the gel to slowly settle to the bottom of the reactor. The temperature of the heating bath was maintained at 65 C for another 4 hours.
The gel was then cooled, cut into pieces, and dried in a vacuum at 105 C.
[00629] In an alternative exemplary large scale continuous production method, a monomer feed mix of approximately 6.0 g TMPTA, 2.2 kg water, 0.4 kg sodium hydroxide, and 3.0 g sodium persulfate per kg of acrylic acid was deoxygenated and polymerization initiated with 0.6 g sodium ascorbate per kg of acrylic acid. The solution was then charged to a curing conveyor belt, where the sodium acrylate solution polymerized to a gel as it traveled on the conveyor belt. The polymer gel was then mechanically cut and granulated to reduce the polymer gel particle size and then the polymer was dried. The dried polymer was then milled and sieved to a desired particle size.
Example 3
[00630] This example illustrates the conversion of a partially sodium-substituted crosslinked polycarboxylic polymer prepared, for example, according to Example 1 or 2, to a crosslinked polycarboxylic acid polymer with a reduced degree of sodium substitution (e.g., an acidified polymer).
[00631] The polymer is weighed and the relative content of different cations (either from knowledge of the preparation or, more preferably, from elemental analysis of a sample) is used to determine the number of moles of carboxylate present. The polymer is then washed with an excess (e.g., twice the number of moles of carboxylates, or more) of 1 N acid (preferably HC1), either in batches or by column elution. The resulting acidified polymer is rinsed with water to remove any excess of the 1 N acid, and dried in a vacuum at 60 C.
[00632] For example, 89.65 g of a polymer produced by the technique of Example 1 were placed into a beaker and stirred with 667 mL of 1 N HC1 for 2 hours. The liquid was drained and the polymeric particles were returned to the vessel. A second aliquot of 667 mL of 1 N HC1 was added and the mixture was stirred for 1 hour. The liquid was drained and a third rinse with 667 mL of 1 N HC1 was performed for 1 hour. The liquid was drained and the polymeric material was placed into 667 mL of deionized water and stirred for 1 hour. The liquid was drained and another 667 mL of deionized water was added.
The polymeric material was then stirred for 1 hour before draining the liquid.
This water washing was continued until the pH of the rinse water was above 3. The crosslinked cation-binding polymer was then dried in a vacuum at 60 C.
[00633] Alternatively, one-hundred grams of a cross-linked polyelectrolyte polymer, such as a partially neutralized cross-linked polyacrylate polymer (e.g., prepared as described in Example 1 above) was placed into a vessel. Next, about 2,250 milliliters of pure (e.g., trace metal or otherwise certified low metal) 1 M HC1 was added to the vessel and then the polymer and the acid were stirred gently for two hours. The liquid was removed by decanting or filtration. If desired due to vessel size or for improved mass balance, the 2,250 milliliters of 1M HC1 is divided into multiple batches and used sequentially.
For instance, 750 milliliters were added, stirred with the polymer, and removed followed by two or more separate additions of 750 milliliters. The polymer was then rinsed with 2,250 milliliters of low metal content water to remove excess acid surrounding the polyelectrolyte such as a polyacrylate. The crosslinked cation-binding polymer was then dried.
[00634] Further alternatively, one-hundred grams of a cross-linked polyelectrolyte polymer, such as a cross-linked polyacrylate polymer were placed into a filtration funnel or a column equipped with a bottom filter. The polymer was then rinsed with about 2,250 milliliters of pure (e.g., trace metal or otherwise certified low metal) 1 M
HC1 for about an hour or more. Next, the polymer was rinsed with 2,250 milliliters of low metal content water. The crosslinked cation-binding polymer was then dried.
[00635] Exemplary acidified polymers useful as crosslinked cation-binding polymers prepared according to this Example generally have a saline holding capacity of greater than about 40 g/g (see, e.g., Examples 8 and 9); and contain less than about 5,000 ppm of sodium, less than about 20 ppm of heavy metals, less than about 500 ppm of residual monomer, less than about 2,000 ppm of residual chloride, and less than about 20 wt.% of soluble polymer. Preferably, acidified polymers useful as crosslinked cation-binding polymers prepared according to this Example have a saline holding capacity of greater than about 80 g/g (see, e.g., Examples 6-8); and contain less than about 500 ppm of sodium, less than about 20 ppm of heavy metals, less than about 50 ppm of residual monomer, less than about 1,500 ppm of residual chloride, and less than about 10 wt.% of soluble polymer.
Crosslinked cation-binding polymers prepared according to the method of Example 1 (using acrylic acid monomers) and acidified to prepare the exemplary acidified polymers of the present Example may be referred to as "H-CLP" or "HCLP".

Example 4
[00636] This example demonstrates the preparation of substantially metal free (e.g., acid form) cross-linked polyelectrolyte polymers, such as cross-linked polyacrylic acid polymer.
[00637] In an exemplary method, substantially metal free (e.g., acid form) cross-linked polyacrylic acid polymer was prepared by placing 140 g of glacial acrylic acid (e.g., not neutralized as in Example 1) into a three to five liter reactor with 2,200 to 2,500 milliliters of dilute acid, such as 1 M HC1. A water soluble cross linking agent, such as 1,3-diglycerate diacrylate, in a ratio chosen to produce the desired saline holding capacity (e.g., 20-fold, 30-fold, 40-fold or more) and an initiator were added to the monomer solution.
After sparging the reactor with an inert gas, (e.g., nitrogen) and agitating the reaction mixture, the reaction was started and allowed to proceed for two to four hours until substantially all of the monomer had reacted. The resultant mass of wet polymer was then cut into smaller pieces (e.g., 1-2 cm per side), dried in a vacuum or in an inert atmosphere, and then disrupted (e.g., by milling) to produce particles or powder.
[00638] 140 g of acrylic acid was placed into a reactor and diluted with 326 g of deionized water followed by addition of 0.50 g of TMPTA and 0.70 g of a 10%
solution of sodium persulfate. The reactor was closed and the reaction mixture was agitated at 250 RPM while argon was bubbled through the reaction mixture. After 70 minutes of bubbling argon, the reaction mixture was heated to produce an approximately 4 C
increase in temperature per minute. After 7 minutes, the temperature reached approximately 50 C and the entire reaction mixture became a gel that quickly settled to the bottom of the reactor when the agitation was stopped. Heating at 65 C was continued for 2 hours and the gel was allowed to cool overnight. The gel was then cut into pieces and dried in a vacuum oven at 60 C.
[00639] 150 g of acrylic acid was placed into a reactor and diluted with 444 g of deionized water containing 0.5 g of iron sulfate heptahydrate, followed by addition of 0.17 mol% TMPTA. The solution is cooled to 20 C with a N2 purge. Then 0.091 mol%
sodium persulfate (mol% is moles per mole of acrylic acid) is added. The solution was stirred and inertized with nitrogen. Sodium ascorbate at 0.022 mol% was then added and nitrogen purge continued. The reactor was heated to 65 C and the reaction was allowed to proceed for more than two hours. The gel was then cut into pieces and dried in an oven at 80-100 C.
[00640]
150 g of acrylic acid was placed into a reactor and diluted with 444 g of deionized water containing 0.5 g of iron sulfate heptahydrate, followed by addition of 0.34 mol% TMPTA. The solution is cooled to 20 C with a N2 purge. Then 0.091 mol%
sodium persulfate (mol% is moles per mole of acrylic acid) is added. The solution was stirred and inertized with nitrogen. Sodium ascorbate at 0.022 mol% was then added and nitrogen purge continued. The reactor was heated to 80 C and the reaction was allowed to proceed for more than two hours. The gel was then cut into pieces and dried in an oven at 80-100 C.
[00641]
A crosslinked polyacrylic acid polymer was prepared as follows: 0.14g of TMPTA was placed in a reactor with 140g acrylic acid with stirring. Once the TMPTA is dissolved 0.17g of Versenex 80 and 420 g of water are added and the solution deoxygenated with argon sparging. Then 4.2g of a 10 wt% solution of sodium persulfate and 2.1 g of a 1 wt% solution of tert-butylhydroperoxide were added. After stirring for 2 minutes 1.05g of a 10 wt% solution of sodium thiosulfate pentahydrate and 0.84g of a 10 wt%
solution of sodium erythorbate were added to initiate the polymerization. After the temperature rose to 41 C the reactor was heated at 65 C for 2 hours. The polymer gel was then removed from the reactor, torn and cut into pieces and dried in a vacuum oven.
[00642]
Free-acid forms of crosslinked cation-binding polymers prepared according to the present example represent alternative forms of H-CLP.
[00643] In another exemplary method, the content of certain cations (e.g., calcium, sodium, magnesium, potassium or other cations) on a polymer may be determined by ICP-OES using microwave digestion of the sample in a nitric acid, hydrochloric acid, hydrogen peroxide digestion medium. For example, the sodium content of a polymer prepared according to any of Examples 1 to 4 can be determined by placing 50 mg of polymer with 0.800 mL trace metal grade nitric acid, 0.450 mL concentrated trace metal grade hydrochloric acid and 0.200 mL of 30 wt% hydrogen peroxide in a digestion vessel. The vessel is then placed in a MARS 5 (CEM Corp) microwave at 100% power for 10 minutes (to a temperature of 185 C) followed by 5 minutes at 100% power (to a temperature of 195 C) and then holding the sample at 195 C for 15 minutes to digest the sample.
[00644] The digested polymer sample is then diluted to a final volume of 50 mL with purified water to bring the concentration of the cation within the range of the standard curve. Standard solutions for construction of the standard curve were prepared at 0 (blank), 0.10, 0.50 and 1.00 ug/mL Na in 4% (v/v) nitric acid.
[00645]
An internal standard solution was prepared containing 20 mcg/mL yttrium and 100 mcg/mL germanium in 4% trace metal grade nitric acid. The internal standard was used in all analyses to normalize results and correct for matrix effects.
[00646]
Samples were analyzed on a Thermo Electron iCAP 6000 ICP-OES. Ca concentrations in mcg/g were determined from the standard curve with correction for dilution, and converted to weight percent as described above.
[00647]
Likewise, sodium content in the same sample was analyzed by placing 50 mg of polymer with 0.800 mL trace metal grade nitric acid, 0.450 mL concentrated trace metal grade hydrochloric acid and 0.200 mL of 30% (w/w) hydrogen peroxide in a digestion vessel. The vessel is then placed in a MARS 5 (CEM Corp) microwave at 100%
power for 10 minutes (to a temperature of 185 C) followed by 5 minutes at 100% power (to a temperature of 195 C) and then holding the sample at 195 C for 15 minutes to digest the sample.
[00648]
The digested polymer sample is then diluted to a final volume of 50 mL with purified water to bring the concentration of the cation within the range of the standard curve. Standard solutions for construction of the standard curve were prepared at 0 (blank), 0.1, 0.5 and 1.0 mcg/mL Na in 4% (v/v) nitric acid.
Example 5
[00649] The content (e.g., percentage; %) of certain cations including, for example, calcium, sodium, magnesium, and/or potassium, on a polymer may be determined by ICP-OES, ICP-AES and/or ICP-MS, for example, with a ThermoElectron Finnegan Element 2 or a Perkin Elmer Elan 6000 instrument. The percentage of cations that are counterions to the carboxylate groups in the polymer determined in different ICP measurements may vary by 20% or less. For example, the determination of 5% to 30% or 15% to 35%
calcium and/or magnesium cations as counterions to carboxylate groups in the polymer may vary in different measurements by ICP (e.g., 5% 20% to 30% 20% or 15% 20% to 35%
20%).
[00650]
For example, the calcium and/or sodium content of a polymer prepared according to Examples 1-4 can be determined by diluting a 250 mg sample of the polymer with 5% nitric acid solution to a total volume of 100 mL. After shaking overnight to extract the calcium and sodium cations from the polymer, an aliquot of the mixture can be diluted with a 1% nitric acid solution as necessary to bring the concentration of the cation within the range of a suitable calibration curve (e.g., a standard curve with a linear range). An appropriate internal standard (e.g., scandium, yttrium, germanium) is used to correct for matrix effects. Samples are diluted to within the range of the linear standard curve for analysis. Preferably the polymer is completely digested. To ensure complete digestion of the sample, an exemplary method is to fully digest the sample in nitric acid (e.g., until the solution becomes clear and colorless), for example by application of heat;
using microwave digestion; using other acids or mixture of acids, hydrogen peroxide, or other reagents; or by other methods known in the art. For example, the polymer may be placed in a nitric acid, hydrochloric acid, and hydrogen peroxide medium and microwave digesting the sample using any method known to one of skill in the art. For example, when using ICP-AES with a sample size (e.g., 250 mg), such as with a ThermoElectron Finnegan Element 2 instrument, a 10-fold dilution is used for sodium determinations and a 100-fold dilution is used for calcium determinations. For example, when using ICP-MS, such as with a Perkin Elmer Elan 6000 or a ThemoElement2 instrument, a 10-fold dilution is used for sodium determinations and a 10,000-fold dilution is used for calcium determinations.
The final dilution volume should be 10.0 mL to fall within a standard curve generated using standards at 0, 100, 250, 500, 2500, and 5000 ug/L. In order to normalize the results of multiple runs, an internal standard such as scandium or germanium (e.g., about 100 ILIL of a 10,000 ig/mL
solution of 99.999% scandium oxide in 5% nitric acid) was added to the 10-mL
diluted samples before analysis.
[00651] In an exemplary method, a 250.08 mg sample of a polymer prepared according to Examples 1-4 (e.g., Ca-CLP and/or Mg-CLP) was placed in a 100-mL
polypropylene tube and a 5% nitric acid solution was added until the total volume of the sample was 100 mL. The tube was then shaken overnight to produce "Mixed Sample A."
A 250.11 mg sample of the same polymer used to prepare Mixed Sample A was placed in a 100-mL polypropylene tube and a 5% nitric acid solution was added until the total volume of the sample was 100 mL. The tube is then shaken overnight to produce "Mixed Sample B." Next, three 0.100-mL aliquots Mixed Sample A were diluted with a 1% nitric acid solution to final volumes of 10.0 mL. As an internal standard, 102 L, 101 L, and 100 ILIL
of a 10,000 ig/mL standard solution of 99.999% scandium oxide in 5% nitric acid was added to the three aliquots, respectively. Separately, three 0.100-mL aliquots of Mixed Sample B were similarly diluted with 1% nitric acid to final volumes of 10.0 mL and doped with 100 L, 99.0 L, and 100 ILIL of the standard scandium solution, respectively.
Analysis of calcium content proceeded using a ThermoElectron Finnigan Element AES instrument (equipped with software version 2.42) according to the manufacturer's specifications. Standards at 0, 100, 250, 500, 2500, and 5000 ug/L were analyzed to generate a standard curve. The six raw calcium concentration measurements (e.g., 55,449, 55,318, 54,761, 56,079, 56,375, and 55,949 g/g, respectively) were determined (e.g., from the standard curve) by normalizing the intensity of the raw calcium measurement to the measurement of the internal scandium standard. These six raw calcium concentration measurements were then converted into weight percent values (e.g., 5.54, 5.53, 5.48, 5.61, 5.64, and 5.59 wt.% Ca, respectively) and averaged to provide an overall calcium content of 5.6 wt.%. The percentage of carboxylate groups to which calcium serves as a counterion on a polymer (e.g., the "[x]% Ca-CLP" nomenclature) can be determined from the weight percent calcium measurement (wt.% Ca) by the following equation:
[x]%Ca-CLP = (72.06)(wt.% Ca)/(20.05 ¨(0.19)(wt.% Ca))
[00652] For this example analysis, therefore, the polymer would be termed "21% Ca-CLP."
[00653] For example, polymers of the present disclosure such as crosslinked polyacrylate polymers may have calcium concentration measurements (e.g., average calcium concentration measurements as determined by ICP-AES analysis) of about 13,700 1..tg of calcium to about 77,300 [tg of calcium per gram of the polymer. This range approximately corresponds to a polymer in which calcium serves as a counterion to about 5% to about 30% of the carboxylate groups, as shown in Table 3 below.
Alternatively, for example, polymers of the present disclosure such as crosslinked polyacrylate polymers may have calcium concentration measurements (e.g., average calcium concentration measurements as determined by ICP-AES analysis) of about 40,100 [tg of calcium to about 89,100 [tg of calcium per gram of the polymer. This range approximately corresponds to a polymer in which calcium serves as a counterion to about 15% to about 35% of the carboxylate groups, as shown in Table 3 below.
Table 3: Calcium Content for Various Exemplary Polyacrylate Polymers.
% of Carboxylates with Ca MW Wt% Ca ug/g Ca 0 72.06 0.00 0 5 73.01 1.37 10 73.97 2.71 % of Carboxylates with Ca MW Wt% Ca ug/g Ca 15 74.92 4.01 40122 20 75.87 5.28 52825 25 76.82 6.52 65214 30 77.77 7.73 77299 35 78.72 8.91 89092 40 79.68 10.06 100603 45 80.63 11.18 111843 50 81.58 12.28 122821 55 82.53 13.35 133545 60 83.48 14.40 144025 62 83.86 14.82 148150 65 84.43 15.43 154269 70 85.38 16.43 164284 72 85.77 16.82 168228 75 86.34 17.41 174078 80 87.29 18.37 183660 85 88.24 19.30 193034 90 89.19 20.22 202208 95 90.14 21.12 211189 100 91.09 22.00 219982 [00747] Additionally, for example, polymers of the present disclosure such as crosslinked polyacrylate polymers may have magnesium concentration measurements (e.g., average magnesium concentration measurements as determined by ICP-AES
analysis) of about 8,400 [ig of magnesium to about 48,300 [ig of magnesium per gram of the polymer.
This range approximately corresponds to a polymer in which magnesium serves as a counterion to about 5% to about 30% of the carboxylate groups, as shown in Table 4 below.
Alternatively, for example, polymers of the present disclosure such as crosslinked polyacrylate polymers may have magnesium concentration measurements (e.g., average io magnesium concentration measurements as determined by ICP-AES analysis) of about 24,700 [ig of magnesium to about 56,000 [ig of magnesium per gram of the polymer. This range approximately corresponds to a polymer in which magnesium serves as a counterion to about 15% to about 35% of the carboxylate groups, as shown in Table 4 below.
Table 4:Magnesium Content for Various Exemplary Polyacrylate Polymers.

% of Carboxylates with Mg MW Wt% Mg ug/g Mg 0 72.06 0.00 0 72.62 0.84 8365 73.18 1.66 16603 73.73 2.47 24717 74.29 3.27 32709 74.85 4.06 40581 75.41 4.83 48338 75.96 5.60 55980 76.52 6.35 63511 77.08 7.09 70934 77.64 7.82 78249 78.19 8.55 85461 78.75 9.26 92570 62 78.97 9.54 95386 79.31 9.96 99580 79.87 10.65 106491 72 80.09 10.92 109229 80.42 11.33 113307 80.98 12.00 120029 81.54 12.67 126659 82.10 13.32 133199 82.65 13.97 139651 100 83.21 14.60 146016 [00748] Using Mixed Sample A and Mixed Sample B described in the previous paragraph, sodium content was determined by ICP-AES as follows. Three 1.0-mL
aliquots of Mixed Sample A were each diluted to a final volume of 10.0 mL using a 1%
nitric acid 5 solution. To each was added 113 ILIL of a 10,000 ig/mL standard solution of 99.999%
scandium oxide in 5% nitric acid. Similarly, three 1.00-mL aliquots of Mixed Sample B
were diluted to final volumes of 10.0 mL and were doped with 115 L, 115 L, and 116 ILIL
of the standard scandium solution. Analysis of sodium content proceeded using a ThermoElectron Finnigan Element 2 ICP-AES instrument (equipped with software version 10 2.42) according to the manufacturer's specifications. The six raw sodium concentration measurements (e.g., 327, 328, 328, 381, 381, and 381 iLig/g, respectively) were determined by normalizing the intensity of the raw sodium measurement to the measurement of the internal scandium standard. These six raw sodium concentration measurements were then averaged (354 ug/g) wherein:
354 iug/g is equivalent to 0.035 wt% sodium [00749] The percentage of carboxylate groups to which sodium serves as a counterion (e.g., the "[x]% Na-CLP" nomenclature) on a polyacrylate polymer can be determined from the weight percent sodium measurement (wt.% Na) by the following equation:
[x]%Na-CLP = (72.06)(wt.% Na)/(23.0 ¨ (0.23)(wt.% Na)) [00750] For this example analysis, with an average sodium concentration of 354 ug of sodium per gram of polyacrylate polymer, or 0.035 wt.% sodium, sodium cations are counterions to about 0.11% of the carboxylate groups in the polymer.
[00751] Polymers of the present disclosure may have sodium concentration measurements (e.g., average sodium concentration measurements as determined by ICP-AES
analysis) of about Oi_tg of sodium to about 16,100 [tg of sodium per gram of polyacrylate polymer. This range approximately corresponds to a polymer in which sodium serves as a counterion to about 0% to about 5% of the carboxylate groups.
[00752] The percentage of carboxylate groups to which magnesium serves as a counterion on a polymer (e.g., the "[x]% Mg-CLP" nomenclature) can be determined from the weight percent measurement (wt.% Mg) by the following equation:
[x]%Mg-CLP = (72.06)(wt.% Mg)/(12.15 ¨ (0.11(wt.% Mg)) [00753] In another exemplary method, the content of certain cations (e.g., calcium, sodium, magnesium, potassium or other cations) on a polyacrylate polymer may be determined by ICP-OES. For example, the calcium content of a polymer prepared according to Examples 1-4 can be determined by diluting a measured mass of polyacrylate polymer with a known volume of a 5% aqueous solution of trace metal grade nitric acid.
The sample is then digested by first heating the polyacrylate polymer mixture until gaseous NO2 is apparent. While continuing to heat, a small measured aliquot of 30-40%
hydrogen peroxide is added to the solution. The solution foams and may turn brown. Once the foaming subsides an additional aliquot of hydrogen peroxide is added and repeated until the foaming after hydrogen peroxide addition is minimal, no particulate is visible, and a clear and colorless solution including, for example, a fully digested sample, has been prepared. The total volume of hydrogen peroxide is recorded. Additional measured volumes of 5% nitric acid may be added during the digestion process to maintain an adequate volume of liquid.
An appropriate volume of the digested polyacrylate polymer sample is diluted to a final volume of 10 mL with the 5% nitric acid solution to bring the concentration of the cation within the range of a suitable calibration curve; serial dilutions in 5%
nitric acid can be made with the total dilution recorded. An internal scandium/cesium standard/ionization buffer was prepared from CsNO3 and a scandium standard and was used in all analyses to normalize results and correct for matrix effects. The internal standard was prepared by adding 50 mg scandium standard (1000 g/mL) and 1.48 g anhydrous CsNO3 to 1 L
of 5%
trace metal grade nitric acid. The internal was mixed with the sample online prior to injection into the ICP instrument. Standard solutions for construction of the standard curve were prepared at 0.2, 1, 5 and 25 [ig/g Ca in 5% nitric acid. Samples were analyzed by ICP-OES on a Perkin Elmer Optima 5300 DV. Ca concentrations in iLig/g were determined from the standard curve with correction for dilution, and converted to weight percent as described above.
[00754] In another exemplary method, the content of certain cations (e.g., calcium, sodium, magnesium, potassium or other cations) on a polymer may be determined by ICP-OES using microwave digestion of the sample in a nitric acid, hydrochloric acid, and hydrogen peroxide digestion medium. For example, the calcium content of a polymer prepared according to Example 5 can be determined by placing 50 mg of polymer with 0.800 mL trace metal grade nitric acid, 0.450 mL concentrated trace metal grade hydrochloric acid and 0.200 mL of 30% (w/w) hydrogen peroxide in a digestion vessel. The vessel is then placed in a MARS 5 (CEM Corp) microwave at 100% power for 2 minutes (to a temperature of 165 C) followed by 3 minutes at 100% power (to a temperature of 175 C) and then holding the sample at 175 C for 10 minutes to digest the sample including, for example, to completely digest the sample. The digested polymer sample is then diluted to a final volume of 50 mL with purified water to bring the concentration of the cation within the range of the standard curve. Standard solutions for construction of the standard curve were prepared at 0 (blank), 100, 500 and 1000 ug/mL Ca in 4% (v/v) nitric acid. An internal standard solution was prepared containing 20 ig/mL yttrium and 100 ig/mL
germanium in 4% trace metal grade nitric acid. The internal standard was used in all analyses to normalize results and correct for matrix effects. Samples were analyzed on a Thermo Electron iCAP 6000 ICP-OES. Ca concentrations in iLig/g were determined from the standard curve with correction for dilution, and converted to weight percent as described above.
[00755] Likewise, sodium content in the same sample was analyzed by placing 50 mg of polymer with 0.800 mL trace metal grade nitric acid, 0.450 mL concentrated trace metal grade hydrochloric acid and 0.200 mL of 30% (w/w) hydrogen peroxide in a digestion vessel. The vessel is then placed in a MARS 5 (CEM Corp) microwave at 100%
power for minutes (to a temperature of 185 C) followed by 5 minutes at 100% power (to a temperature of 195 C) and then holding the sample at 195 C for 15 minutes to digest the sample. The digested polymer sample is then diluted to a final volume of 50 mL
with 10 purified water to bring the concentration of the cation within the range of the standard curve. Standard solutions for construction of the standard curve were prepared at 0 (blank), 0.1, 0.5 and 1.0 ug/mL Na in 4% (v/v) nitric acid.
Example 6 [00699] The saline holding capacity of a cross-linked polyelectrolyte polymer, such as a cross-linked polyacrylate polymer, may be determined by known methods in the art.
[00700] In an exemplary method, saline holding capacity was determined with a 0.15 M sodium solution as follows. A pH seven buffer of sodium phosphate tribasic (Na3PO4=12H20; MW 380.124) was prepared by dissolving 19.0062 grams in about milliliters pure water and adjusting the pH to a final pH of 7 0.1 with 1N
HC1 before final dilution to one liter resulting in a solution with a sodium concentration of 0.15 M. Next, an amount of cross-linked cation-binding polyelectrolyte, for example, cross-linked polyacrylate beads (e.g., HCLP prepared according to Examples 1-4) (e.g., 0.1 + 0.025 grams), were transferred to a tared filter tube and the mass of the polymer was recorded as in W1. Next, the tube was returned to the balance to record the weight of the tube plus the sample as W2. An excess (e.g., more than seventy times the mass of polymer) amount of the pH 7.0 buffer (e.g., ten milliliters) was then transferred to the tube containing the CLP
sample. The tube was then placed on a flat bed shaker with shaking for two, four or six hours. After shaking, all excess fluid was removed from the tube (e.g., no visible fluid in the tube). Last, the tube and sample were weighed and recorded as W3. The saline holding capacity (SHC) was calculated by dividing the mass of the fluid absorbed by the mass of the dry crosslinked polyacrylate polymer, for example, SHC (g/g) = (W3-W2)/ (W1).
According to the present disclosure, cross-linked cation-binding polymers, including polyacrylate beads prepared according to the methods disclosed herein, had a saline holding capacity of 20 g/g, 30 g/g, 40 g/g, or more. Alternatively stated, such cross-linked cation-binding polymers, including where the polyelectrolyte is polyacrylate, can absorb 20-fold, 30-fold, 40-fold, or more of their mass in a saline solution.
Example 7 [00701] The saline holding capacity of a cross-linked polyelectrolyte polymer, such as a cross-linked polyacrylate polymer, may be determined by known methods in the art.
[00702] In an exemplary method, saline holding capacity is determined with a 0.15 M
sodium phosphate solution buffered to pH 7 containing 0.05 wt.% sodium dodecyl sulfate (or other similar anionic surfactant) as follows. A sealable pouch, for example, a 2.5-inch by 3-inch rectangular pouch, is made by folding heat sealable tea bag material, for example, a 5-inch by 3-inch piece of heat sealable tea bag material (available from www.organzabagg.com) in half and heat-sealing two edges of the formed pouch.
The empty tea bag is weighed (MI). An amount of HCLP, for example, 200 mg of the cross-linked polyacrylate polymer, is added to the tea bag, which is then heat-sealed along the remaining edge. The mass of the polymer-containing tea bag is then recorded (M2).
[00703] A second tea bag is prepared in the same manner, except no polymer is added.
[00704] The sealed bags are then placed between two pieces of fiberglass screen (e.g., Teflon coated fiberglass screens having 0.635 cm opening, Taconic Plastics Inc., Petersburg, NY). The tea bags and fiberglass screens are then submerged in the saline solution and allowed to soak for the desired time, typically 30 minutes.
[00705] The wet tea bags are removed from the saline solution and placed into a centrifuge with water collection basket, digital speed gauge and drainage basket. The tea bags are spun in the centrifuge, for example, for 3 minutes at 350 G.
[00706] The mass of the wet polymer-containing tea bag is recorded (M3). The mass of the wet, empty tea bag is recorded (M4). The absorbent capacity of the polymer per gram of polymer, S, is calculated according to equation (1):
S = (M3 ¨ M2 ¨ (M4 ¨ Mr)) / (M2 ¨ Mr) Example 8 [00756] The saline holding capacity of a cross-linked polyelectrolyte polymer, such as a cross-linked polyacrylate polymer, may be determined by known methods in the art.

[00757] In an exemplary method, a saline absorption capacity (e.g., saline holding capacity) of crosslinked cation-binding polymers comprising monomers containing carboxylate groups, wherein the polymers further comprise calcium and/or magnesium cations (e.g., calcium cations or magnesium cations or a mixture thereof), wherein the calcium and/or magnesium cations are counterions to the carboxylate groups in the polymer is measured using a centrifugal method. According to this method, the centrifuge retention capacity (CRC) of the polymer (e.g., HCLP or HCLP) is determined without first treating the polymer with acid.
[00758] For example the saline holding capacity of HCLP particles may be determined. A
pH 7 phosphate buffered saline uptake buffer is prepared with 10.65 g of sodium phosphate dibasic (anhydrous) in 1 L purified water, with pH adjustment to pH 7.0 with 1N HC1. The weight of a centrifuge tube is determined (Wtube). 100 10 mg of the HCLP
particles are weighed and added to centrifuge tube and the tube reweighed (Wtube+sample). 25 mL of uptake buffer is then added to centrifuge tube and the tube capped and shaken vigorously.
The tube is then shaken on a wrist-action shaker for at least 8 hours. The tube is then centrifuged for 10 minutes at 3500 rpm and the supernatant decanted. The tube with the swollen gel particles is reweighed (Wtube+swollen gel) and the saline holding capacity determined as:
Saline holding capacity (w/w) = (Wt(tube+swollen gel) - W(tube) ) /
(W(tube+sample) -W(tube)).
Example 9 [00707] Mixtures of H-CLP with basic salts of calcium were tested in rats to determine the effect of administered calcium on the fecal removal of Na, K, and/or P
ions, and/or fluid (e.g., increase in fecal mass), and to evaluate the effect of added base on acid/base parameter (as urinary phosphate). The amount (mEq) of base administered was equivalent to the mEq of acid administered as polyacrylic acid. Multiple sets of 3 or 6 rats per set were placed into metabolic cages to allow assessment of food and water intake, measurement of fecal and urinary excretion, and collection of feces and urine for chemical analysis. Rats were fed diets with crosslinked polyacrylate polymer (H-CLP) made as described in Example 3), at 5% of the weight of their diets daily. Each rat was co-administered various amounts of calcium oxide, calcium carbonate, or calcium citrate mixed into the diet. After stabilization on the diets, feces and urine were collected for three consecutive days. These daily fecal and urinary samples were digested and analyzed by ICP/AES
(inductively coupled plasma/atomic emission spectroscopy) for fecal sodium, fecal potassium, and urinary phosphate.
Table 5. Change in Daily Fecal Sodium, Fecal Potassium, and Urinary Phosphorous in Rats Co-Administered H-CLP and a Calcium Base A Urinary Equivalents A Fecal Sodium A Fecal Potassium Phosphorous of Base (mg/day) (mg/day) (mg/day) 0 35.1 99.9 25.6 0.5 36.7 46.2 2.6 0.625 37.4 46.8 -1.4 0.75 33.2 36.2 -4.1 0.875 28.7 26.2 -10.5 1 18.1 18.7 -7.4 [00708] As shown in Table 5, co-administration of H-CLP and base increased fecal excretion of both sodium and potassium. However, increasing amounts of co-administered base decreased the net effect on fecal changes in sodium and potassium, and decreased urinary phosphorous levels (decreasing phosphorous levels indicates less acidosis). When H-CLP was administered without base, or with small amounts of base, acidosis was observed as indicated by increased levels (positive values of urinary phosphorous).
Surprisingly, however, co-administration of a moderate amount of base (e.g., 0.5 to 0.625 equivalents) largely prevented acidosis. When more than about 0.8 equivalents of base were co-administered, rats became slightly alkalotic.
[00709] Changes in fecal fluid excretion are shown in Table 6, in comparison to baseline values.
Table 6. Net Change from Baseline in Daily Fecal Mass in Rats Co-Administered H-CLP and a Calcium Base Equivalents A Fecal of Base Mass (g/day) 0 7.44 0.5 4.15 0.625 3.46 0.75 3.75 0.875 2.74 1 4.56 [00710] In an additional rat experiment with H-CLP made as described in Example 4, the H-CLP was similarly able to remove fecal sodium and potassium ions, as well as to increase fecal mass.
Example 10 [00711] Mixtures of H-CLP with a basic salt of magnesium were tested in rats to determrine whether the addition of Mg improves removal of Na, K, and/or fluid.
All mixtures supplied enough base to potentially neutralize the acid groups on the H-CLP.
Multiple sets of 3 or 6 rats per set were placed into metabolic cages to allow assessment of food and water intake, measurement of fecal and urinary excretion, and collection of feces and urine for chemical analysis. Rats were fed diets with crosslinked polyacrylate polymer (H-CLP, made as described in Example 4), at 5% of the weight of their diets daily. Various amounts of magnesium oxide were co-administered with the polymer. After stabilization on the diets, feces and urine were collected for three consecutive days. These daily fecal and urinary samples were digested and analyzed by ICP/AES for fecal sodium, fecal potassium, and urinary phosphorous.
Table 7. Net Change in Daily Fecal Sodium, Fecal Potassium, and Urinary Phosphorous in Rats Co-Administered H-CLP and a Magnesium Base A Fecal A Urinary Equivalents A Fecal sodium potassium phosphorous of Base (mg/day) (mg/day) (mg/day) 0 35.1 99.9 25.6 0.25 50.2 72.2 27.1 0.4 21.0 58.3 2.7 0.5 36.8 48.1 7.1 [00712] As shown in Table 7, co-administration of H-CLP and up to about 0.5 equivalents of magnesium base increased both fecal sodium excretion and fecal potassium excretion. As shown by the dramatic and unexpected changes in urinary phosphorous levels, co-administration of 0.4 or 0.5 equivalents of magnesium base largely prevented acidosis.
Example 11 [00713] A study was conducted in rats to evaluate an additional crosslinked polyacrylic acid polymer and its ability to remove fluid and impact on fecal and urinary levels of cations. For this study, polycarbophil was purchased from Lubrizol Advanced Materials, Inc. (Noveon AA-1). Polycarbophil is a polymer of acrylic acid, crosslinked with divinyl glycol. Polycarbophil used for this study contains carboxylic acid groups in acidic form. Noveon AA-1 polycarbophil is provided as a flocculated powder of particles averaging about 0.2 micron in diameter. The individual colloidal 0.2 micron polymer particles are formed by precipitation polymerization in an organic solvent such as benzene and/or ethyl acetate. The flocculated powders average 2 to 7 microns as determined by Coulter Counter. These agglomerates cannot be broken down into the primary particles once produced. In this study, the ability of polycarbophil to remove Na and K ions and fluid was examined.
[00714] To prepare the diet for the study, Noveon AA-1 polycarbophil was first granulated by spraying deionized water lightly on a non-stick sheet followed by spreading a thin layer of the flocculated polycarbophil powder on the wet surface.
Deionized water was sprayed again onto the polycarbophil layer and the material was allowed to dry at room temperature. All the dried material was collected and further dried at 80 C.
The dried material was placed into a vessel and mixed with pulverized Purina Rat Chow LabDiet 5012. This mixture was then milled in a blender until a powder with uniform distribution was obtained. Six male Sprague Dawley rats were fed with a diet of the milledpolycarbophil at 5% of the weight of their diets daily. An additional six male Sprague Dawley rats were fed diets with crosslinked polyacrylate polymer (H-CLP may as described in Examples 1 and 3) at 5% of the weight of their diets daily.
[00715] Daily measurements of rat weight, food intake, water intake, urine output, and fecal output were recorded. This was a 9-day study with the first 3 days of the study providing a baseline period, followed by a 6-day treatment period. Daily measurements of rat weight, food intake, water intake, urine output, and fecal output were recorded. The first three days of the treatment period were regarded as days of equilibration and after stabilization on the diets; feces and urine were collected for three consecutive days. Days 7, 8, and 9 of the study period (Days 4, 5, and 6 of the treatment period) were used for collection of the urine and feces for digestion and ICP-AES analysis. These daily fecal and urinary samples were digested by placing each sample into a flask, adding trace metal grade concentrated nitric acid, heating to boiling. This was followed by adding 30%
hydrogen peroxide in small aliquots until the solutions were clear and the vigorous foaming after additions of hydrogen peroxide had ceased. The digested samples were analyzed by ICP/AES (Inductively coupled plasma atomic emission spectroscopy) for fecal sodium, fecal potassium, and urinary phosphate. Changes in fecal sodium and potassium excretion levels and urinary phosphorus values over control (rats on rat chow and no polymer) were calculated and are shown in Table 6 (i.e., control fecal sodium and potassium and control urinary phosphorus excretion levels were subtracted from fecal sodium and potassium and urinary phosphorus levels in treatment groups). Changes in fecal weights over control (rats on rat chow and no polymer) as a measure of fecal fluid were also calculated and are shown in Table 8 (control fecal mass was subtracted from fecal mass in treatment groups).
Table 8. Net Change in Daily Fecal Sodium, Fecal Potassium, Urinary Phosphorous, and Fecal Mass in Rats Administered HCLP or Polycarbophil A Fecal A Fecal A Urinary A Fecal Sodium Potassium Phosphorous Mass(g/day) (mg/day) (mg/day) (mg/day) H-CLP 29.9 90.3 25.6 7.89 Polycarbophil 24.1 79.7 34.1 8.72 [00716] As shown in Table 8, these results show that polycarbophil has the ability to remove sodium and potassium in the feces.
Example 12 [00717] An open-label, multiple-dose escalation clinical trial was performed in twenty-five healthy human subjects divided into five groups (Table 9). One control group received no treatment, one group received 7.5 g H-CLP/day with meals, one group received 15 g H-CLP/day with meals, one received 15 g H-CLP/day one hour before meals, and one group received 25 g H-CLP/day with meals. Subjects remained in the clinical research unit for the duration of the study.
[00718] H-CLP was prepared according to Examples 1 and 3, for example, a cross-linked polyacrylic acid polymer with less than 5000 ppm sodium (e.g., 153 ppm sodium), less than 20 ppm heavy metals, less than 1000 ppm residual monomer (e.g., 40 ppm residual monomer), less than 20% insoluble polymer (e.g., 3% insoluble polymer), and with loss on drying of less than 5% of its weight (e.g., loss on drying of 1% of its weight). The H-CLP
polymer was milled to break up the bead structure and reduce the particle size. The milled H-CLP was then filled into capsules with 0.7 g per capsule.
[00719] The objectives of the clinical trial included (1) determination of the safety, tolerability and efficacy of H-CLP to remove, i.e., altered fecal excretion of, sodium, calcium, magnesium, potassium, iron, copper, zinc and/or phosphorous; (2) to determine whether administration of H-CLP altered the amount of fluid absorbed, i.e., altered fecal weight, per gram of H-CLP administered; (3) to determine whether administration of H-CLP altered measures of acidosis, including serum total bicarbonate, urine pH, and urine phosphorous; and (4) to determine whether administration of H-CLP altered serum potassium levels. For all outcomes, treated groups were compared to the control group.
[00720] The primary endpoints included net sodium balance compared among treated and control groups. Secondary endpoints included change in stool weight compared among treated and control groups; net balance of calcium, magnesium, potassium, iron, copper, zinc and phosphorous compared among treated and control groups; fluid consumed and excreted in the treated groups compared with the control group; and safety and tolerability based upon review of vital signs, clinical safety labs and adverse events.
[00721] H-CLP was administered with water, 4 times a day for a total of 9 days (a total of 36 consecutive doses). For each dose group of five subjects, H-CLP was administered one hour before or just after each of 4 standardized meals or snacks as shown in Table 9.
Doses were given at the scheduled time (+/- 10 minutes) for each subject.
Table 9: Dose Groups and Feeding Status at Dose Administration Group Number of Dose H-CLP Timing of Duration of Subjects (g/day) Dosing Dosing (d) Control 5 0 9 A 5 7.5 Just after each 9 meal or snack B 5 15 Just after each 9 meal or snack C 5 15 One hour before 9 each meal or snack D 5 25 Just after each 9 meal or snack [00722] Diet was controlled with all participants having identical meals. Each day all meals and snacks representing one subject were homogenized and the sodium, potassium, calcium, phosphorus, iron, copper, zinc and magnesium content determined. All meals provided to the subjects were controlled for the number of calories, level of sodium (5000 mg per day +/- 100 mg), fiber content (10-15 g per day), fat content and approximate recommended Dietary Reference Intakes. Subjects were requested to consume all of their meals. Meals that were not fully consumed were collected for an entire twenty-four hour period, weighed and frozen for possible metal analysis.
[00723] Subjects fasted for at least eight hours at screening and four hours at admission prior to the collection of blood and urine samples for clinical laboratory tests.
Fasting was not required prior to urine and blood samples taken during the study. Water ad libitum was allowed during the periods of fasting.
[00724] Stool weight, fecal electrolytes and fluid balance were determined daily.
Serum samples were collected daily and the concentration of sodium, potassium, magnesium, calcium, phosphorus and carbon dioxide determined. All urine specimens were collected and volume recorded. An aliquot of a daily afternoon urine sample was analyzed for pH and osmolality. Urine samples were pooled for each 24-hour period and an aliquot sampled for sodium, potassium, calcium, phosphorous and magnesium analysis.
[00725] All feces eliminated after consumption of the first controlled meal were collected as individual samples in tared collection containers. The color and consistency of the stool were noted, the sample weighed, then frozen and stored at or below -20 C. All fecal collections were analyzed for sodium, potassium, magnesium, calcium, phosphorous, iron, zinc and copper content. Fecal weights for all samples eliminated in each 24-hour period were added together to determine the total fecal weight per subject per day.
[00726] Daily fecal and urine weight, urine osmolality and pH, and daily fecal and urine content and concentrations of sodium, calcium, magnesium, potassium and phosphorus (plus copper, iron and zinc only in the stool) were determined for each subject and each treatment group. Daily fluid balance (fluid intake - output) and daily net balance of sodium, magnesium, calcium, potassium and phosphorus were calculated based on the analysis of diet, urine and stool samples for each patient and each group.
[00727] Daily parameters were compared for each H-CLP dose group and the control group. A steady state effect of dosing with H-CLP administered 4 times daily was reached after 4 days of dosing. Daily parameters were also averaged for days 5-9 for each group and treatment groups compared to the control group.
[00728] Fecal metal excretion (e.g., sodium, potassium, magnesium and calcium) for doses of H-CLP between 0 and 25 g are shown in Tables 10 to 13 below. Daily excretion of sodium, potassium, magnesium and calcium for the control group are shown in Table 10.
io The average daily value of metal cation excretion on days 1 to 9 for the treatment groups are compared to the average value for the control group and are shown for 7.5 g of H-CLP daily (Group A, Table 11), for 15 g of H-CLP daily taken immediately after meal (Group B, Table 12), and for 25 g of H-CLP daily (Group D, Table 13). Fasting before administration of H-CLP did not significantly affect ion excretion.
Table 10: Fecal Metal Excretion (mg/day)-0 grams H-CLP (Control Group) Day Sodium Potassium Magnesium Calcium Excretion Excretion Excretion Excretion (mg/day) (mg/day) (mg/day) (mg/day) 1 33.5 906.5 141.2 554.9 2 70.5 239.6 342.1 1663.4 3 12.1 728.7 112.1 691.2 4 114.8 394.4 292.6 2005.6 5 21.5 453.3 149.1 1134.1 6 32.8 680.2 182.2 1351.7 7 151.5 289.4 289.2 2003.1 8 44.9 259.0 120.2 1059.0 9 45.5 0 109.0 866.0 Sodium Potassium Magnesium Calcium Day Excretion Excretion Excretion Excretion (mg/day) (mg/day) (mg/day) (mg/day) 1 33.5 280.1 141.2 554.9 2 70.5 906.5 342.1 1663.4 3 12.1 239.6 112.1 691.2 4 114.8 728.7 292.6 2005.6 5 21.5 394.4 149.1 1134.1 6 32.8 453.3 182.2 1351.7 Day Sodium Potassium Magnesium Calcium Excretion Excretion Excretion Excretion (mg/day) (mg/day) (mg/day) (mg/day) 7 151.5 680.2 289.2 2003.1 8 44.9 289.4 120.2 1059.0 9 45.5 259.0 109.0 866.0 Table 11: Changes in Fecal Metal Excretion Over Control (mg/day) for Subjects Administered 7.5 grams of H-CLP Daily (Group A) Day A Sodium A Potassium A Magnesium A
Calcium Excretion Excretion Excretion Excretion (mg/day) (mg/day) (mg/day) (mg/day) 1 22.5 313.6 130.3 742.7 2 62.7 147.1 -17.5 147.2 3 348.6 1188.1 127.1 758.0 4 473.0 1554.0 -17.7 -130.4 362.1 981.7 2.2 -71.2 6 365.3 1182.3 27.3 105.2 7 531.6 1223.3 -22.4 -445.6 8 524.5 1763.4 159.6 728.3 9 298.0 1104.9 72.6 247.9 5 Table 12: Changes in Fecal Metal Excretion Over Control (mg/day) for Subjects Administered 15 grams of H-CLP Daily (Group B) Day A Sodium A Potassium A Magnesium A
Calcium Excretion Excretion Excretion Excretion (mg/day) (mg/day) (mg/day) (mg/day) 1 -16.2 254.2 78.2 390.3 2 70.4 222.2 -102.2 -541.3 3 338.5 1442.6 66.9 240.5 4 565.9 1195.0 -96.9 -829.6 5 1032.2 2531.8 78.3 167.6 6 1158.3 1744.8 49.9 -29.0 7 1003.5 1422.0 -26.5 -519.2 8 1103.0 1555.7 103.5 342.3 9 808.2 1888.7 108.3 350.8 Table 13: Changes in Fecal Metal Excretion Over Control (mg/day) for Subjects Administered 25 grams of H-CLP Daily (Group D) Day A Sodium A Potassium A Magnesium A Calcium Excretion Excretion Excretion Excretion (mg/day) (mg/day) (mg/day) (mg/day) 1 86.9 302.9 80.3 470.6 2 779.8 347.7 -142.0 -693.1 3 723.5 1314.9 13.6 46.8 4 1947.1 2956.3 -38.3 -593.6 1763.2 3644.0 43.7 -63.5 6 1905.8 4872.7 130.0 617.3 7 2489.5 4631.2 34.0 -248.4 8 2529.0 3631.2 191.9 598.6 9 1641.6 2248.8 84.5 189.6 5 [00729] For each treatment group the amount of Na and K excreted in the feces increased between days 1 to 4 and then became fairly constant on days 5 to 9.
The net change from the control group in the average daily fecal sodium and potassium content for days 5-9 was determined for each treatment group and shown in Table 14.
Table 14. Change in Daily Average of Fecal Sodium and Potassium Excretion and Serum Potassium Compared to Control for Days 5-9 Na K Serum K
Dose (g) Dose Administration (mg/day) (mg/day) (mmol/L) 7.5 With meals 417 1228 -0.5 With meals 981 1825 -0.5 15 One hour prior to meals 1034 1749 -0.8 With meals 2046 3668 -1.5 [00730] The administration of HCLP results in a dose dependent increase in the fecal excretion of sodium and potassium.

[00731] Serum potassium levels were also evaluated daily. The change in average serum potassium for the treatment groups from the average for the control group on Days 5 to 9 values are shown in Table 15. Serum potassium decreased from control values in all treatment groups.
[00732] Measures of acidosis included total serum bicarbonate and urine phosphate.
The average change from control in these parameters for Days 5-9 are shown in Table 15.
Table 15. Average Change from Control in Acidosis Parameters for Days 5-9 Time of Urine pH Urine Fecal Administration Total serum CO2 Phosphate Phosphate Dose (g) (mmol/L) (mg/day) (mg/day) 7.5 With meal -1.3 -2.3 255 -181 (fed) With meal -1.21 -4.4 341 -365 15 One hour prior -0.78 -363 (fasted) to meal -4.4 389 With meal -0.79 -8.8 341 -305 [00733] For all doses of HCLP there was an apparent acidosis as measured by these 1 o parameters. The decrease from control in total serum bicarbonate and serum phosphate were dose dependent.
[00734] Administration of HCLP led to an increase in fecal weight in a dose dependent manner as shown in Table 16. This increase in fecal weight was not associated with diarrhea but is expected to be due to water entrapped in the superabsorbent polymer.
15 Table 16. Average Change from Control in Fecal Weight for Days 5-9 Dose (g) Time of Administration Fecal Wt (g) 7.5 With meal 121 15 With meal 173 15 One hr prior to meal 162 25 With meal 360 [00735] Administration of HCLP led to a decrease in serum phosphate, a dose dependent increase in fecal excretion of sodium and potassium and a dose dependent increase in fecal weight.
20 [00736] Administration of HCLP also caused acidosis.

Example 13 [00737] An open-label, multiple-dose clinical trial was conducted in 34 human end-stage renal disease (ESRD) patients. The study evaluated the effect of administration of H-CLP, for example, a cross-linked polyacrylic acid polymer with less than 5000 ppm sodium (e.g., 153 ppm sodium), less than 20 ppm heavy metals, less than 1000 ppm residual monomer (e.g., 40 ppm residual monomer), less than 20% insoluble polymer (e.g., 3%
insoluble polymer), and with loss on drying of less than 5% of its weight (e.g., loss on drying of 1% of its weight) with or without varying doses of CaCO3 (as CaCO3 or Tums ) on (1) fecal excretion of sodium, calcium, magnesium, potassium, iron, copper, zinc, and phosphorous; (2) measures of acidosis including [total] serum bicarbonate, urine pH and urine phosphorous excretion; (3) serum potassium levels; and (4) fecal weight.
For all outcomes, treated groups were compared to baseline or to a control group.
[00738] This was a three-stage study. The primary endpoint for Stage 1 was sodium and potassium removal in the stool compared between the baseline and treatment periods.
The primary endpoint for Stage 2 was to demonstrate the ability of CaCO3 and/or other alkali, such as magnesium oxide, to maintain serum bicarbonate levels in a range between 18 and 27 mEq/dL. Secondary endpoints included: change in stool weight compared between baseline and treatment periods (Stage 1) or trends in stool weight (Stage 2);
changes in fecal levels of calcium, magnesium, iron, copper, zinc and phosphorous compared between baseline and treatment periods (Stage 1) or trends in these parameters (Stage 2); fluid consumed and excreted between baseline and treatment periods (Stage 1) or trends in these parameters (Stage 2); net sodium, magnesium, calcium, potassium, iron and phosphorus balance (Stage 2); safety and tolerability based upon review of vital signs, clinical safety labs and adverse events and change in intradialytic weight gain, intradialytic hypotension, and blood pressure compared between baseline and treatments periods (Stage 1) or trends in these parameters (Stage 2). In Stage 3, the daily fecal levels of sodium and potassium were determined for one control and two treatment groups.
Total serum bicarbonate and urine phosphorus were evaluated for all stages.
[00739] This study included six treatment groups and one control group. The six groups were treated with H-CLP and varying amount of CaCO3 (administered as TUMS
or CaCO3) as an acid neutralizing base. The 8g or 15 g doses of H-CLP were divided into four parts (qid) in Stages 1 and 2 and administered one hour before each of four meals. In Stage 3, th 8 g doses of H-CLP were divided into two parts and administered one hour before morning and evening meals. TUMS was either given with the H-CLP or immediately after the meal. The doses of H-CLP and CaCO3 ( as CaCO3 or TUMS ) are shown in Table 15. In groups 1 to 3, there was a baseline period of 3 days prior to the planned dosing period of 9 days. For treatment groups 2 and 3, the average change from baseline on days 7-12 were determined and compared to baseline parameters (average days 1 to 3). For group 1, dosing was terminated after 5 days of dosing because the subjects developed serum acidosis. For this group the average parameters for days 7-8 were compared to the baseline period of days 1-3, . In Stage 2, the same patients as in group 2 were dosed a second time as group 4, administering H-CLP for 14 days. The baseline period from group 2 was used for the comparison of the average parameters for Group 4 days 4 to 14 compared to baseline. Groups 5 to 7 were dosed for 14 days with no baseline period. Group 7 was a control group in which no H-CLP was administered. For groups 5 and 6, the change from control (group 7) for the average of days 4 to 14 was determined.In groups 2 to 4, the patients were dosed with H-CLP and TUMS (the base CaCO3 active ingredient), which was given to maintain serum bicarbonate levels by neutralizing the acid (protons) released from H-CLP. These patients were administered H-CLP and TUMS
as follows: Group 2 was administered 7.5 g H-CLP one hour before meals and varying amounts of TUMS after meals as needed to maintain serum bicarbonate levels within clinically acceptable levels; Group 3 was administered 15 g H-CLP one hour before meals and and TUMS after each meal at doses that would neutralize up to 50% of the acid administered as H-CLP if H-CLP released all its carboxylate protons (0.5 equivalents); and Group 4 was administered 15 g H-CLP and 1.1 equivalent TUMS one hour before each meal (Table 17). Thus, the amount of CaCO3 administered varied from zero to that which would theoretically neutralize 100% of protons shed by the dose of H-CLP
administered to the subject (0 to 100% of the mEq of carboxyl groups administered with the H-CLP).
Groups 5 and 6 received 8g H-CLP and 0.72 equivalents of TUMS either one hour beforethe meal (Group 5) or one hour after the meal (Group 6). Group 7 was a control group that was not administered H-CLP or TUMS . The seven dose groups are shown in Table 17. Subjects remained in a clinical research unit for the duration of the study.

Table 17: H-CLP and CaCO3 Dosing Details Stage Group Number H-CLP Administration of Baseline Duration of Dose CaCO3 ( as CaCO (days) of Dosing Subjects (g/day) or TUMS )1' 2 (days) 1 1 5 15 None 3 5 (3.75g qid) 2 4 8 After meals as 3 9 (2g qid) needed to maintain serum bicarbonate within clically acceptable limits.
Average of 0.25 eq., (range 0.12 to 0.44 eq) a 3 6 15 Up to 0.5 3 9 (3.75g equivalentes, taken qid) after meals as needed to maintain serum bicarbonate levels within clinically acceptable limits.
Average of 0.5 eq after meals 2 4 4 8 1.1 eq, one hour 0 14 (2g qid) before meals 3 5 5 8 0.7 eq, one hour 0 14 (2g qid) before meals 6 5 8 0.7 eq, after meals 0 14 (2g qid) 7 5 0 None 0 14 'After each of four meals 20ne equivalent = mEq of CaCO3 base equal to the total equivalents of carboxyl groups in the administered H-CLP
[00740] H-CLP was prepared according to Examples 1 and 3. The H-CLP
polymer was milled to break up the bead structure and reduce the particle size. The milled H-CLP
was then filled into capsules. In Stage 3, H-CLP and CaCO3 were filled into capsules.
Capsules were administered with water 2 to 4 times a day for a total of 5 to 14 days, depending upon the dose group. Doses were given within ten minutes of the scheduled time for each subject. For Groups 1-3, the patients were dosed starting on Day 4, after a 3-day baseline period. Subjects in Groups 4-8 did not undergo a baseline period, and dosing started on Day 1.
[00741] Diet was controlled with all subjects having identical meals and the same meals served in a repeating three day schedule. All meals and snacks from each of these 3 days, representing one subject's diet, were homogenized and the sodium, potassium, calcium, phosphorus, iron, copper, zinc and magnesium content determined. All meals provided to the subjects were arranged by the dietician in consultation with the subjects' 1 o nephrologists. The subjects were requested to consume all of their meals. The total daily weight of uneaten food was recorded. Uneaten food in excess of 10% was analyzed for electrolyte content.
[00742] Subjects fasted for at least eight hours at screening and four hours at admission prior to the collection of blood and urine samples for clinical laboratory tests.
Fasting was not required prior to urine and blood samples taken during the study. Water ad libitum was allowed during the periods of fasting. Clinic staff monitored and recorded ingestion of the meals served during the study and any beverages (including water consumed).
[00743] Stool weight, fecal electrolytes and fluid balance were determined throughout the in-patient period. Serum samples were collected daily for serum chemistry and the concentration of sodium, potassium, magnesium, calcium, and phosphorus determined. All urine specimens were collected and volume measured. An aliquot of an afternoon sample was analyzed for pH. Urine samples were pooled for each 24-hour period and an aliquot of the pooled sample was sent for sodium, potassium, calcium, magnesium and phosphorus analysis.
[00744] All feces eliminated after consumption of the first controlled meal were collected as individual samples in tared collection containers. The color and consistency of the stool were noted. The stool samples were weighed, then frozen and stored at or below -20 C. All fecal collections were submitted for analysis of sodium, calcium, magnesium, potassium, phosphorous, iron, zinc and copper levels by ICP. Fecal weights for all samples eliminated in each 24-hour period were added together to determine the total fecal weight per day.

[00745] Weight and fluid removal were recorded during each of the 3 weekly dialysis sessions.
[00746] Daily fecal and urine weight, urine pH, and daily fecal and urine content and concentrations of sodium, calcium, magnesium, potassium and phosphorus (plus copper, iron and zinc only in the stool) were determined. Serum concentrations of sodium, potassium, magnesium, calcium, phosphorus, and carbon dioxide were determined for each subject and each treatment group. Daily fluid balance (fluid intake ¨ output) was calculated for each patient and each group. Daily net balance of sodium, magnesium, calcium, potassium and phosphorus were calculated for each subject based on the analysis of diet, urine and stool samples.
[00747] Daily parameters were compared for each H-CLP dose group and the control group or baseline.
[00748] Intradialytic weight loss (pre-dialysis body weight minus post-dialysis body weight), intradialytic weight gain (IWG) from one dialysis session to the next and fluid removal during each dialysis session were determined for each subject and group.
Table 18: Change from Baseline (or Control for Groups 5 and 6) in Metal Excretion and Acidosis Parameters per Gram of H-CLP in Humans with ESRD
Fecal Na Fecal K Total serum Eq of Base Timing of CaCO3 mg/day/ mg/day bicarbonate Urine P
Group Administeredl administrationl g /g mmol/L/g mg/day/g 1 Immediately after 0 meal 107 86 -0.54 2 Average of Immediately after 0.24 meal 71 112 -0.40 3 Average of Immediately after 0.51 meal 94 116 -0.39 5 Immediately after 0.7 meal 59 57 -0.38 -0.39 4 1hr before meal 1.1 with H-CLP 22 61 0.15 -CaCO3 administered as CaCO3 or Tums [00749] As shown in Table 18, administration of H-CLP without base increased fecal excretion of sodium and potassium over baseline levels. However, acidosis was also observed as shown by the decrease in serum bicarbonate levels. Co-administration of base eliminated acidosis at approximately 0.75 equivalents of base as shown by the total serum bicarbonate going from negative to positive and urinary phosphorus excretion going from positive to negative at this level of base administration. At all levels of base administration, a clinically relevant fecal excretion of potassium was maintained. Above 0.75 equivalents of base, the amount of sodium excreted dropped substantially. Co-administration of less than about one equivalent of base (e.g., from about 0.7 to about 0.8 equivalents, for example, about 0.75 equivalents) was approximately acid-neutral, while still promoting excretion of substantial amounts of both sodium and potassium over baseline levels.
Example 14 [00750] The study was conducted with twelve rats housed in individual Techniplast Metabolic Cage Systems, allowing daily collection of urine and feces with daily measurement of food and water intake. Doses of the Renvela , a phosphate binder, in humans were mimicked. Thus, based on Nephrol Dial Transplant 1998; 13:2303-2310 by Goldberg, et al, for the Renvela diet, 800 g of LabDiet 5012 were blended with thirty 800 mg tablets of Renvela , at an approximate dose of 1g/rat/day. This diet was fed during the first 6 day period of the study. For the second period of the study, diets were made in the same fashion except that 40 g of HCLP (5% of the diet) was substituted for 40 g of the LabDiet 5012. For the third period of the study, the phosphate binder was removed and all rats were fed a diet of 760 g LabDiet 5012 blended with 40 g HCLP (5% of the diet).
[00751] Daily urine and feces collections were weighed and samples were digested by placing the fecal or urine samples into trace metal grade concentrated sulfuric acid and heating to boiling. Trace metal grade concentrated nitric acid was then added in small aliquots until the organic matter was completely oxidized and the solutions were clear. Na, K, Mg, Ca, and P content were measured by ICP-AES. This allowed following the changes in fecal and urinary levels of these ions. The first three days on diet with HCLP alone were were used for equilibration and statistical comparisons were only performed on samples collected on the fourth day or later on that diet.

Table 19. Net Change in Daily Fecal Sodium, Fecal Potassium, Urinary Phosphorous and Fecal Fluid in Rats Co-Administered HCLP and Renvela Groups A Fecal A Fecal A
Urinary A Fecal Sodium Potassium Phosphorus Mass(g/day) (mg/day) (mg/day) (mg/day) HCLP 35.7 90.2 28.5 3.4 Renvela 2.2 9.3 -15.5 12.1 Renvela + H-CLP 42.8 100.5 4.0 10.1 [00752] Changes in fecal sodium and potassium excretion levels and urinary phosphorus values over control (rats on rat chow and no polymer) were calculated and are shown in Table 19 (i.e., control fecal sodium and potassium and control urinary phosphorus excretion levels were subtracted from fecal sodium and potassium and urinary 1 o phosphorus levels in treatment groups). Changes in fecal mass over control (rats on rat chow and no polymer) were calculated and are shown in Table 19 (e.g., control fecal mass was subtracted from fecal mass in treatment groups). Simultaneous administration of HCLP
with the phosphate binder, Renvela did not alter the ability of HCLP to increase fecal mass and to increase sodium and potassium in the feces.
Example 15 [00753] This clinical trial, an open-label, non-randomized, multiple-dose study, was conducted in a single cohort of 5 human ESRD patients all currently taking Renvela and on dialysis. A 5-day baseline period was followed by 7 days of dosing. All patients were dosed with a total of 15 g crosslinked polyacrylate polymer (H-CLP) per day.
The dose was administered (following a 5-day baseline period) as 3.75 g given four times daily for a total of 7 days. Patients remained in the clinical research unit for the duration of the study.
[00754] The objectives of this clinical trial included determination of: the safety and tolerability of CLP; the effects of CLP on sodium, calcium, magnesium, potassium and phosphorus excretion in stool; the effects of CLP on fecal weight; the ability of calcium carbonate to control serum bicarbonate levels when co-administered with CLP;
and the effects of CLP on blood pressure, symptomatic intradialytic hypotension, 6 minutes walk test and subjective thirst levels.
[00755] The primary endpoint was the change in fecal sodium content.
The secondary endpoints included changes in: fecal sodium, potassium, calcium, magnesium, and phosphorus content; stool weight; vital signs and clinical safety labs;
incidence and severity of adverse events; intradialytic weight gain; blood pressure before, during and after dialysis (including 24h and 44h ambulatory blood pressure and manual measurements);
serum bicarbonate levels; and 6 minutes walk test.
Table 20: H-CLP and CaCO3 Dosing Details Cohort Number H-CLP CaCO3 Timing Baseline Duration of Dose Dose of Dosing (days) of Dosing Patients (g/day) (days) 1 5 15 8 grams One hour 5 7 (3.75g (0.75 before qid) equivalents, breakfast, administered lunch and with H- dinner, CLP) and evening snack [00756] H-CLP was administered with water for a total of 7 days.
Doses were given within 10 minutes of the scheduled time.
[00757] The H-CLP polymer, prepared as described in Examples 1 and 3, was milled to break up the bead structure and reduce the particle size. The milled H-CLP
was then filled into capsules with calcium carbonate; 0.7 g CLP and 0.27 g calcium carbonate per capsule (0.75 equivalents).
[00758] A standardized diet was served. The menu for Days 2-6 were identical to that on Days 9-13. The subjects were requested to consume all of their meals.
Estimated weight and content of any uneaten food was recorded.
[00759] Subjects were required to fast for at least eight hours at screening and four hours at admission prior to the collection of blood and urine samples for clinical laboratory tests. Fasting was not required prior to urine and blood samples taken during the study.
Water ad libitum was allowed during the periods of fasting. Clinic staff monitored and recorded ingestion of the meals served during the study and any beverages, including water consumed.
[00760] Stool weight, fecal and urinary metal balance, serum chemistries and fluid balance were determined throughout the study.

[00761]
Serum samples were collected daily for serum chemistries and for determination of the concentration of sodium, potassium, magnesium, calcium, phosphorus.
Hematology and urinalysis were done on Days 1,7, and 14 (discharge).
[00762]
All urine was collected, the volume measured, and then specimens pooled for each 24 hour period. Each 24 hours sample was then analyzed for sodium, potassium, calcium, magnesium and phosphorus. The morning urine specimen was checked daily for pH within 5 minute of micturition.
[00763]
All feces eliminated were collected as individual samples in tared collection containers. The color and consistency of the stool were noted, the sample weighed, then frozen and stored at or below -20 C. All fecal collections were submitted for analysis of sodium, calcium, magnesium, potassium, and phosphorous levels. Fecal weights for all samples eliminated in each 24-hour period were added together to determine the total fecal weight per day.
[00764]
Daily fecal and urine weight, urine pH, and daily fecal and urine content and concentrations of sodium, calcium, magnesium, potassium and phosphorus and serum concentrations of sodium, potassium, magnesium, calcium, phosphorus, and carbon dioxide were determined for each subject and each treatment group. Daily fluid balance (fluid intake - output) was calculated for each patient and each group. For each parameter the daily average for the treatment period was compared to the baseline period.
Table 21: Increased Metal Excretion (mg/day) and Serum Total CO2 Content in Humans with ESRD on Renvela Therapy and Co-Administered 15 g H-CLP and 8 g CaCO3 (0.75 equivalents) Daily A Serum Total Renvela A Fecal Sodium A Fecal Potassium CO2 Content (g/day) (mg/day) (mg/day) (mmol/L) 0 107.1 76.0 -5.7 1.6 120.5 64.1 -6.0 2.4 75.3 82.9 -2.8 4.8 31.6 42.4 -3.4 Example 16 [00765]
The objectives of this open-label, randomized, multiple-dose clinical trial of 24 normal, healthy human volunteer subjects included determination of the effects of four different dosing regimens on the safety and tolerability of H-CLP; the effects of H-CLP on fecal and urinary excretion of sodium, calcium, magnesium, potassium, and phosphorous, and the effects of H-CLP on stool weight.
[00766] The primary endpoint was the change in fecal sodium content.
The secondary endpoints included changes in fecal and urine sodium, potassium, calcium, magnesium, and phosphorus content; changes in stool weight; change in vital signs and clinical safety labs;
incidence and severity of adverse events; and serum bicarbonate levels.
[00767] Six subjects were randomly assigned to one of four cohorts (Table 22). A 5-day baseline period was followed by 7 days of dosing. All subjects were dosed with a total of 15 g crosslinked polyacrylate polymer (H-CLP) and 7.8 g of CaCO3 per day.
Subjects in Cohort 1 were given H-CLP once daily (QD), those in Cohort 2 were given H-CLP
twice daily (BID), subjects in Cohort 3 were given H-CLP three times daily (TID), and subjects in Cohort 4 were given H-CLP four times daily (QID). Subjects remained in the clinical research unit for the duration of the study.
[00768] H-CLP was prepared according to Examples 1 and 3, for example, a cross-linked polyacrylic acid polymer with less than 5000 ppm sodium (e.g., 16- ppm sodium), less than 20 ppm heavy metals, less than 1000 ppm residual monomer (e.g., 4 ppm residual monomer), less than 20% insoluble polymer (e.g., 4% insoluble polymer), and with loss on drying of less than 5% of its weight (e.g., loss on drying of 3% of its weight) The H-CLP
polymer was milled to break up the bead structure and reduce the particle size. The milled H-CLP was mixed with the CaCO3 and then filled into capsules with 0.7 g of polymer per capsule. H-CLP was administered with water for a total of 7 days. Doses were given to subjects within 10 minutes of the scheduled time.
[00769] A standardized diet was served. The menu for Days 2-6 were identical to that on Days 9-13. The subjects were requested to consume all of their meals.
Estimated weight and content of any uneaten food was recorded.
[00770] Subjects fasted for at least eight hours at screening and four hours at admission prior to the collection of blood and urine samples for clinical laboratory tests.
Fasting was not required prior to urine and blood samples taken during the study. Water ad libitum was allowed during the periods of fasting. Clinic staff monitored and recorded ingestion of the meals served during the study and any beverages, including water consumed.

[00771] Stool weight, fecal and urinary electrolyte balance, serum chemistries and fluid balance were determined throughout the study.
[00772] Serum samples were collected daily for serum chemistries and for the concentration of sodium, potassium, magnesium, calcium, phosphorus and bicarbonate determined. Hematology and urinalysis were performed on samples from Days 1, 7 and 14.
[00773] Each subject's urine was collected and pooled for each 24-hour period. The total volume was measured and a sample analyzed for sodium, potassium, calcium, magnesium and phosphorus. The morning urine specimen was checked daily for pH
within 5 minutes of micturition.
[00774] Feces eliminated on Days 2 (start of baseline period) through 14 was collected as individual samples in tared collection containers. The color and consistency of the stool samples were noted, the sample weighed, then frozen and stored at or below -20 C. All fecal collections were submitted for analysis of sodium, calcium, magnesium, potassium, and phosphorous levels. Fecal weights for all samples eliminated in each 24-hour period were added together to determine the total fecal weight per subject per day.
[00775] Daily fecal and urine weight, urine pH, and daily fecal and urine content and concentrations of sodium, calcium, magnesium, potassium and phosphorus and serum concentrations of sodium, potassium, magnesium, calcium, phosphorus, and carbon dioxide were determined for each subject and each treatment group (see Table 23).
Daily fluid balance (fluid intake ¨ output) was calculated for each subject and each group.
[00776] Average daily parameters for each H-CLP dose group for days 10-13 were compared for the baseline period and treatment period (days 3-6).
Table 22: H-CLP and CaCO3 Dosing Details Cohort Number H-CLP H-CLP CaCO3 Timing of Duration of Dose Dose Dose Dosing of Dosing Subjects (g/day) Regimen (days) 1 6 15 15g QD 8g Immediately 7 before bedtime 2 6 15 7.5g BID 8g One hour 7 before breakfast and dinner 3 6 15 5g TID 8g One hour 7 before Cohort Number H-CLP H-CLP CaCO3 Timing of Duration of Dose Dose Dose Dosing of Dosing Subjects (g/day) Regimen (days) breakfast, lunch and dinner 4 6 15 3.75g QID 8g One hour 7 before breakfast, lunch and dinner, and immediately before bedtime Table 23: Change from Baseline in Fecal Excretion of Sodium and Potassium and Urinary pH in Normal Humans Co-Administered 15 g H-CLP and 0.75 Equivalents of CaCO3 Base Number of A Serum Divided Potassium Doses per A Fecal Sodium A Fecal Potassium (mmol/L) A
Day (mg/day/g H-CLP) (mg/day/g H-CLP) in Urinary pH
1 36.0 117.6 -0.2 -0.4 2 39.3 119.0 -0.3 -0.8 3 44.6 147.5 -0.7 -0.3 4 43.0 93.4 -0.4 -0.4 [00777] There is no significant difference in the change from baseline average daily fecal excretion of sodium or potassium or the average daily change from baseline in serum potassium due to administration of the daily dose of H-CLP and CaCO3 as one to four divided doses. There is also no significant difference in acidosis parameters due to dividing the daily dose.
Example 17 [00778] This example demonstrates the treatment of heart failure patients with a cross-linked polyelectrolyte polymer such as a crosslinked cation-binding polymer comprising hormones that comprise carboxylic acid groups (e.g., crosslinked polyacrylic acid polymer such as H-CLP).

A. Overview of Study and Results [00779] A double-blind, randomized, parallel group, placebo controlled clinical study was conducted in 111 heart failure patients (NYHA Classification III or IV) with chronic kidney disease (estimated glomerular filtration rate < 60 mUmin/1.73 m2) and serum potassium value between 4.3-5.1 mEq/L at screening (see also, e.g., section B
below). The study evaluated the effect of H-CLP with 0.75 equivalents of CaCO3 versus placebo in preventing clinically significant hyperkalemia and improving symptoms of fluid overload in patients with heart failure and renal insufficiency impairment (e.g., renal impairment with glomerular filtration rate (GFR) < 60 mUmin/1.73 m2) who are on recommended heart failure therapies (e.g., ACE inhibitor or Angiotensin Receptor Blocker and a Beta Blocker) and had a clinical indication for addition of spironolactone. The study incorporated a Screening Period, Baseline Visit, and an 8-week fixed dose Treatment Period of 15 g of H-CLP with 0.75 Eq CaCO3 or Placebo. Patients were enrolled in a 1:1 allocation to H-CLP
(Cohort 1) or Placebo (Cohort 2) treatment groups. Patients received 15 g/day of H-CLP
with 0.75 equivalents of CaCO3 (n=59) or placebo (n=52) in capsules given as twice daily dosing of 15 capsules for eight weeks. H-CLP was prepared as described in Examples 1 and 3, for example, a cross-linked polyacrylic acid polymer with less than 5000 ppm sodium (e.g., 335 ppm sodium), less than 20 ppm heavy metals, less than 1000 ppm residual monomer (e.g., 36 ppm residual monomer), less than 20% insoluble polymer (e.g., 4%
insoluble polymer), and with loss on drying of less than 5% of its weight (e.g., loss on drying of 2% of its weight), or for example, a cross-linked polyacrylic acid polymer with less than 5000 ppm sodium (e.g., 300 ppm sodium), less than 20 ppm heavy metals, less than 1000 ppm residual monomer (e.g., 14 ppm residual monomer), less than 20%
insoluble polymer (e.g., 7% insoluble polymer), and with loss on drying of less than 5%
of its weight (e.g., loss on drying of 2% of its weight). If a patient was unable to comply with taking 15 capsules BID, the investigator was permitted to alter the dosing regimen to allow the patient to take fewer capsules more frequently throughout the day to maintain the total dose of 30 capsules per day. Patients were clinically indicated to receive spironolactone treatment and were placed on spironolactone (25 mg/day) at the Baseline Visit (see also, e.g., section B
below). An evaluation of spironolactone dosing occurred at the end of week 4 where the dose was increased for some patients, if clinically indicated, from 25 to 50 mg/day. Serum chemistry, clinical signs and symptoms of heart failure, urinary electrolytes, thirst evaluation and other assessments were evaluated throughout the study.
Assessments which evaluated signs and symptoms of heart failure included the New York Heart Association Class, changes in dyspnea as assessed by the patient's response to a single question using responses on a Likert scale ranging from "much worse" to "much better," the six minute walk test and a patient reported outcome (Kansas City Cardiomyopathy Questionnaire).
Signs and symptoms of heart failure are directly associated with fluid overload status (see, e.g., www.nhlbi.nih.gov/health/health-topics/topics/hf/signs.html). Clinical signs of fluid overload may be measured, for example, by chest x-ray, jugular vein preseure, dyspnea scale, and/or edema. Fluid status was also evaluated by total body weight and extremity edema.
[00780] The New York Heart Association Classification is shown in Table 24.
Table 24: New York Heart Association Classification of Heart Failure Patients Class I No limitation of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, dyspnea (shortness of breath), or angina pain.
(mild) Class II Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in fatigue, palpitation, dyspnea, or angina pain.
(mild) Class III Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes fatigue, palpitation, dyspnea, or angina pain.
(moderate) Class IV Unable to carry out any physical activity without discomfort. Symptoms of cardiac insufficiency at rest. If any physical activity is undertaken, discomfort is increased.
(severe) [00781] The change New York Heart Associate Class for each of the patients was evaluated at baseline and after 8 weeks of treatment (see also, e.g., section F below). The percent of patients in each class is shown in Table 25. Also shown are the percent of patients who improved at least one class from baseline.
Table 25: New York Heart Associate Class at Baseline and After 8 Weeks of Treatment Baseline After 8 Weeks of Treatment NYHA H-CLP+0.75 Eq H-CLP+0.75 Eq Placebo Placebo Class CaCO3 CaCO3 Patients with at least one class improvement 48.8% 17.4%
from baseline [00782] Dyspnea was evaluated using a quantitate patient self-assessment of breathing status compared to baseline with answers on a 7-point Likert scale ranging from "much worse" to "much better" (see also, e.g., section F below). The percent of patients who reported moderately or markedly better breathing status on H-CLP or placebo is shown in Table 26. Also shown in Table 26 is the performance of patients in the 6-minute walk test. Patients reported greater improvements in dyspnea and were able to walk farther when on H-CLP compared to placebo.
[00783] The six-minute walk test is a well-accepted measure of heart failure status, with patients able to walk shorter and shorter distances as heart failure progresses. The distance walked in six minute time period is measured in meters.
Table 26: Change from Baseline in Dyspnea at Exertion and Distance Walked in the 6-Minute Walk Test at Study Week 8 H-CLP Placebo CaCO3 Dyspnea at Exertion: % of Patients Moderately or 36.6 21.7 Markedly Better Compared to Baseline 6 Minute Walk Test 39.3 19.7 (change from baseline, meters) [00784] The Kansas City Cardiomyopathy Questionnaire (KCCQ) is a disease-specific instrument for measuring health related quality of life in patients with congestive heart failure (see also, e.g., section F below). KCCQ is a valid, reliable and responsive health status measure for patients with congestive heart failure and may serve as a clinically meaningful outcome in cardiovascular research, patient management and quality assessment.
(see, e.g., Green et al., 2000, J Am Coll Cardiol 35:1245-1255). The scale for each of the quality of life parameters is 0 to 100, with 100 being the best quality of life. The KCCQ
results from this study are shown in Table 27.
Table 27. KCCQ Parameters at 8 Weeks Compared to Baseline (Mean Change from Baseline) KCCP H-Parameter CLP Placebo Physical Limitation 17.1 10.6 Symptom Frequency 22.1 16.9 Quality of Life 15.0 8.5 Social Limitations 20.1 14.7 Overall Summary 18.3 12.5 Clinical Summary 18.8 13.6 [00785] Fluid status was directly evaluated by measuring changes in body weight and absence of extremity edema (see also, e.g., section F below). Changes in body weight and absence of extremity edema throughout the 8 week study are shown in Table 28.
Body weights decreased for the H-CLP treated group while they increased for the placebo group at all time points. More patients in the H-CLP group than placebo group had an absence of extremity edema at 2 to 8 weeks of treatment.
Table 28. Change from Baseline in Body Weight and Percent of Patients with Absence of Extremity Edema Absence of Extremity Body Weight (kg) Edema (%) Week H-CLP Placebo H-CLP Placebo 1 -0.71 0.11 32.1 38.5 2 -0.83 0.29 40.4 35.3 4 -0.68 0.11 55.3 47.9 8 -0.73 0.14 70.7 58.7 [00786] Mean serum CO2 was measured throughout the study as a measure of acid/base status (e.g., acid/base balance). As shown in Table 29, there was no significant change from baseline, or significant difference between the H-CLP and placebo groups, in total serum CO2, showing that the addition of 0.75 equivalents of base as CaCO3 to the H-CLP prevented a change in acid/base status (see also, e.g., section G below).

Table 29. Total Serum CO2 over the 8 Week Study Week H-CLP Placebo 0 25.7 26.5 1 23.9 26.1 2 23.4 26.2 4 25.0 25.2 25.2 25.1 8 24.8 26.2 [00787] Multiple endpoints of patient signs and symptoms of heart failure (e.g., fluid retention, dypsnea (shortness of breath), NYHA class) and fluid status (e.g., body weight) 5 exhibited improvement with administration of H-CLP with 0.75 equivalents of base for eight weeks without a change in acid/base status.
[00788] In summary, treatment with H-CLP with 0.75 equivalents of base for eight weeks resulted in significant and clinically meaningful improvement of signs and symptoms in NYHA class III/IV heart failure patients. The data shows reduction of body weight, improvement in subjective symptoms (dyspnea) and quality of life (Kansas City Cardiomyopathy Questionnaire scores), and improvements in objective measures of physical function (6 Minute Walk Test) and clinical signs and symptoms (NYHA
Classification; extremity edema). The concordance of these positive effects across multiple endpoints suggests the usefulness of H-CLP with 0.75 equivalents of base for the treatment of symptoms of heart failure while preserving a neutral acid/base status.
[00789] Further in summary, use of H-CLP with base is an effective treatement of heart failure, including for the removal of sodium and fluid (e.g., water) in patients with heart failure. Such patients include those concurrently treated with guideline therapy including with diuretics. Such treatment results in clinical meaningful improvement in function and symptoms as measured by body weight reduction, NYHA class improvement, dypsnea improvement, six minute walk test improvement, and/or improvements in KCCQ
in patients with heart failure. Use of H-CLP with base as described herein may provide sodium and fluid removal independent of the kidneys, and accordingly, is useful alone or in combination with other agents (e.g., ACE inhibitors, angiotensin II blockers, diuretics, beta blockers, aldosterone antagonists such as spironolactone, and/or digoxin) for treating patients with heart failure.
B. Additional Description of Study Design [00790] A double-blind, randomized, parallel, placebo controlled Phase 2 study examined the effect of H-CLP versus placebo in preventing clinically significant hyperkalemia and improving symptoms of fluid overload in patients with HF and renal insufficiency. The study was conducted in accordance with the principles described in the Declaration of Helsinki (1964) up to and including the Seoul revision (2008).
A common clinical protocol was approved for each investigational site (located in Armenia, Georgia, and Moldova) by the appropriate Ethics Committee and all subjects provided written informed consent prior to participation.
[00791] Major inclusion criteria included age over 18 years with NYHA Class III or IV HF and chronic kidney disease (CKD) Stage 3 or 4 [estimated glomerular filtration rate (eGFR) < 60 mUmin/1.73 m2]; not receiving indicated spironolactone therapy based on degree of HF; a recent hospitalization for HF (within 1-6 months); at least two signs of current fluid overload [jugular venous pressure (JVP) > 8 cm; peripheral edema or ascites;
pulmonary congestion on chest X-ray; pulmonary rales on auscultation]; ongoing stable treatment with a beta-blocker in addition to an angiotensin converting enzyme inhibitor (ACEI) or an angiotensin receptor blocker (ARB); a screening serum K+ value of 4.3 -5.1 mEq/L, and a serum NT-proBNP level > 1000 pg/mL. Exclusion criteria included concomitant use of sodium bicarbonate, antacids containing magnesium or calcium, polystyrene sulfonate; any cardiovascular, renal, hepatic, endocrine, neurological or other disease or condition that made the patients study participation unsafe;
history of clinically significant GI pathology; severe, uncontrolled hypertension; use of aldosterone antagonist in the last 30 days or of K+ sparing medications or K+ supplements; liver transaminases > 3 times ULN; serum creatinine value of > 3 mg/dL; uncorrected primary severe valvular disease, known obstructive or restrictive cardiomyopathy, or uncontrolled arrhythmias;
coronary-artery bypass graft or percutaneous cardiac interventions within 3 months; heart transplant recipient; myocardial infarction, transient ischemic attack, stroke, or acute coronary syndrome within 1 month; current dialysis patient or kidney transplant recipient or need for such during the study.

[00792] The study incorporated a screening period, baseline visit, and an 8-week fixed dose treatment period during which patients were randomized at the baseline visit to 15 g/day of H-CLP (with 7-8 g of CaCO3) or identical placebo capsules containing microcrystalline methyl cellulose, a white powder similar in appearance to H-CLP.
Spironolactone was initiated at 25 mg/day and if the serum K+ was < 5.1 mEq/L, the dose was increased to 50 mg/day at the Week 4 visit. Doses of ACEI and ARB were not to be changed during the study. A central laboratory was utilized for laboratory assessments.
Serum chemistry, clinical status, and HF assessments were monitored throughout the study a mean of every 1-2 weeks. Single 6 minute walk tests (6MWT) were performed using standard techniques at baseline, and Weeks 4 and 8 (see, e.g., Bittner et al., 1993, JAMA
270:1702-7). Evaluation of subjective dyspnea level using a 7-point Likert Scale, and the Kansas City Cardiomyopathy Questionnaire (KCCQ) were evaluated at baseline, and Weeks 4, and 8 (see, e.g., Teerlink, 2003, Am Heart J 145:S26-33; Spertus et al., 2005, Am Heart J150:707-15).
C. Additional Description of Study Endpoints [00793] A primary endpoint in the study was the change in serum K+
from baseline to end of study (or last observation). Several secondary endpoints focused on measures of congestion and functional capacity including changes in 6MWT, NYHA functional class, KCCQ, physician assessment of exertional dyspnea and patient-reported dyspnea level (7-point Likert Scale) (see, section A above). Additional exploratory endpoints included incidence of serum K+ elevation > 5.5 mEq/L; achieving the target 50 mg spironolactone dose; HF-related hospitalization; systolic and diastolic blood pressure (BP);
body weight;
and NT-proBNP levels.
D. Additional Description of Statistical Analysis [00794] An analysis plan was prepared prior to study unblinding or performance of statistical analyses. Formal power/sample size calculations were not performed for a Phase 2 study and 100 patients were targeted for enrollment. Primary analyses were performed on the intent to treat (ITT) population, and end of study results for non-completers were excluded. Sensitivity analyses were performed for primary and secondary endpoints using a last observation carried forward approach which included Week 8/End of Study results for non-completers. Categorical data were evaluated using the chi-square test for homogeneity of proportions. Continuous or ordinal data were analyzed with repeated measures analysis of covariance (RM-ANCOVA) using change from baseline values to compare the H-CLP
and placebo treatments. Using this model, a restricted maximum likelihood approach was used to estimate and compare mean profiles among the two treatment groups, assuming an unstructured covariance matrix. Corrections for multiplicity were not performed for a Phase 2 study and a p-value < 0.05 was considered statistically significant.
Statistical testing was not performed for a Phase 2 study for any of the non-efficacy variables. No clinically important differences in baseline characteristics were observed between treatment groups with the exception of a gender imbalance as shown in Table 30.
Table 30. Baseline Characteristics Characteristic H-CLP Placebo CaCO3 (N=52) (N=59) Age (yrs) Mean SD (Range) 68 8 (51-84) 70 10 (49-86) Male gender, n (%) 71 (71.2) 40 (55.8) Comorbidities, (%) Hypertension 78.0 92.3 Coronary artery disease 67.8 75.0 Chronic obstructive pulmonary 11.9 7.7 disease 23.7 30.8 Diabetes mellitus 20.3 25.0 Atrial fibrillation NYHA Functional Class, n (%) II 0(0.0) 2(3.8) III 52 (88.1) 45 (86.5) IV 7(11.9) 5(9.6) KCCQ Overall Summary Score Mean SD (Range) 37.3 16.1 38.1 17.1 (6.3-84.9) (3.9-78.6) Vital Signs [Mean SD (Range)]
Weight (kg) 75.6 13.6 75.0 16.6 (45.4-109.6) (40.9-119.1) Systolic blood pressure (mmHg) 129.1 14.1 132.6 15.7 (100-160) (100-165) Diastolic blood pressure (mmHg) 79.4 8.5 (60-100) 80.7 8.5 (70-100) Heart rate (beats/min) 74.9 10.1 77.0 14.0 (53-102) (58-139) Laboratory Measurements [Mean SD (Range)]
Blood urea nitrogen (mg/di) 25.2 12.8 (13-72) 25.5 10.4 (12-56) Serum creatinine (mg/di) 1.7 0.6 (0.7-3.2) 1.6 0.6 (0.9-3.3) eGFR (ml/min/1.73 m2) 45.0 14.2 44.9 17.3 (19.2-75.3) (11.3-95.9) Serum sodium (mg/di) 140.2 2.8 141.4 2.5 (132-144) (137-149) Serum potassium (mg/di) 4.73 0.4 (3.3-5.7) 4.9 0.3 (4.3-5.6) Serum bicarbonate (mmol/L) 25.7 4.4 26.5 2.9 (11.7-38.5) (17.5-34.6) NT-proBNP (mg/di) 5169.8 6181.3 4868.3 6603.7 (1085-29753) (924-35382) Hematocrit (mg/di) 39.4 4.7 40.3 5.6 (28.9-50.2) (29.4-53.7) Medication, n (%) ACE inhibitor/ARB 56 (95) 49 (94) 13-B1ocker 56 (95) 46 (89) Aldosterone antagonists 59 (100) 52 (100) Diuretics 49 (83) 48 (92) E. Results: Additional Description of Baseline Characteristics [00795] Of 223 subjects screened at 24 sites, 113 were randomized to either H-CLP
(59) or placebo (54). The most frequent reasons for screen failures were eGFR
above the 60 mL/min/1.73 m2 inclusion threshold, serum creatinine > 3 mg/dL, serum K+
outside the 4.3 - 5.1 mEq/L range, or low NT-proBNP <1,000 pg/ml. Demographic characteristics were similar between groups except that a larger percentage of males were randomized to H-CLP than to placebo (71.2% vs. 55.8%) as shown in Table 30. Clinical and laboratory variables were similar between groups. By design, all patients had advanced HF
(?1 HF
hospitalizations in the 6 months preceding randomization, baseline NYHA
functional class 3.1 0.4, presence of signs and symptoms of congestion and baseline mean NT-proBNP
values of 5028 6355 pg/mL) and CKD (average eGFR 44.9 15.7 mUmin/1.73 m2).
At study onset all patients received optimal medical HF therapy. From baseline to the end of Week 8, compliance with the study drug was excellent, as indicated by the fact that the H-CLP and placebo patients took, respectively, 96.3% and 97.2% of the prescribed capsules.
F. Additional Description of Results: Efficacy Evaluation [00796] Serum K+ was similar in the H-CLP and placebo groups at baseline and throughout the 8-week study period. The two groups were similar in terms of incidence of hyperkalemia (K+> 5.5 mEq/L), 13 (22.4%) vs. 11 (21.2%), and hyperkalemia prompting discontinuation of study drug, 6 (10.2%) vs. 5 (9.3%). At the End of Week 4, the percentages of patients eligible to increase their daily spironolactone dose to 50 mg because their serum K+ level was < 5.1 mEq/L were similar in the H-CLP and placebo groups (64.4% vs. 73.1%; p=0.327).
[00797]
Weight loss was significantly greater in the H-CLP than in the placebo group at Week 1 (-0.71 1.5 kg vs. -0.11 2.0 kg; p=0.014) and at Week 2 (-0.83 1.8 kg vs.
-0.29 2.3 kg; p=0.004) and a trend toward greater weight loss in the CLP
group continued at Weeks 4 (p=0.066) and 8 (p=0.212).
[00798] The frequency of marked or disabling exertional dyspnea by physician assessment decreased over time for the entire study population. However, fewer patients in the H-CLP group than the placebo group had this degree of dyspnea at Week 4 [10 (21.3%) vs. 5 (12.2%)] and Week 8 [14 (29.2%) vs. 12 (26.1%)]. The percentage of patients reporting "moderately or markedly better" breathing (by the 7-point Likert scale), was 21.3% in the H-CLP group and 16.7% in the placebo group (p=0.5665) at Week 4 and 36.6% and 21.7%, respectively (p=0.1266), at Week 8.
[00799]
The two groups were similar throughout the study in NT-proBNP levels.
However, at Weeks 4 and 8, fewer patients in the H-CLP group than the placebo group had NT-proBNP levels higher than 1000 pg/mL [Week 4: 43 (91.5%) vs. 48 (100 %);
p=0.039 and Week 8: 36 (87.8%) vs. 45 (97.8%); p=0.0656, respectively].
[00800]
Changes in diuretic doses during the study period were modest and similar in the two groups. During the study two H-CLP patients and one placebo subject had a HF-related hospitalization.
[00801]
The proportion of patients improving by at least one NYHA functional class from baseline to Week 8 was substantially higher in the H-CLP than in the placebo group [20 (48.8%) vs. 8 (17.4 %); p=0.0002]. At Week 4, the 6MWT distance increased from baseline by approximately 20 meters in both groups. However, the 6MWT distance from baseline to Week 8 tended to increase more in the H-CLP than in the placebo group (39.3 53.39 m vs. 19.7 39.17 m; p=0.072).
[00802] Quality of life improvement by the KCCQ Overall Score was greater in the H-CLP than in the placebo group at the end of Weeks 4 (13.53 12.23 vs. 6.40 12.3;
p=0.0050) and 8 (18.3 17.4 vs. 12.5 13.6; p=0.0624). Similar directional differences occurred in all of the individual components of the KCCQ, including social limitations, physical limitations, symptom frequency and clinical summary scores.
[00803]
For the entire cohort there were no differences in BP between groups throughout the course of the study. However among the 47 individuals with baseline systolic BP > 130 mmHg (not a pre-specified categorization), both systolic and diastolic BP
were significantly lower at Week 8 in the H-CLP than in the placebo group [-12.6 vs. -6.7 mmHg (p= 0.0186) for systolic BP and -5.8 vs. -1.2 mmHg (p=0.0121) for diastolic BP].
G. Additional Description of Results: Safety Evaluation [00804]
Adverse events reported for the H-CLP and Placebo groups are shown in Table 31.
Table 31. Summary of Total, Cardiac, and Gastrointestinal Adverse Events MeDRA SOC 15 g H-CLP Placebo Preferred Term CaCO3 (N=52) (N=59) Total Number of Patients with Adverse Events 21 (35.6%) 16 (30.8%) Cardiac disorders Total 3 (5.1%) 3 (5.8%) Atrial fibrillation 1 (1.7%) 1 (1.9%) Cardiac failure 1 (1.7%) 0 (0/0%) Cardiac failure acute 1 (1.7%) 1 (1.9%) Cardiac failure congestive 0 (0.0%) 1 (1.9%) Gastrointestinal disorders Total 14(23.7%) 7(13.5%) Abdominal discomfort 7 (11.9%) 2 (3.8%) Abdominal distention 3 (5.1%) 1 (1.9%) Abdominal pain 1 (1.7%) 0 (0.0%) Abdominal pain (upper) 0 (0.0%) 1 (1.9%) Constipation 1 (1.7%) 0 (0.0%) Diarrhea 0 (0.0%) 1 (1.9%) Nausea 3 (5.1%) 0 (0.0%) Vomiting 1 (1.7%) 3 (5.8%) [00805]
Most gastrointestinal disturbances were transient and mild to moderate.
Only four patients, all in the H-CLP group, experienced adverse events leading to study discontinuation (constipation; nausea and vomiting; nausea, bloating and loss of appetite;
generalized weakness, bloating and loss of appetite). There were no clinically relevant changes in serum Na+, calcium, magnesium or phosphorus. In the H-CLP group, mean serum bicarbonate level decreased about 2-3 mmol/L from baseline to the end of Week 2 but mean values remained in the normal range and returned to pre-treatment levels by the end of Week 4. Measures of renal function [blood urea nitrogen (BUN), serum creatinine and eGFR] did not change significantly from baseline to the end of Week 8 in either the CLP or Placebo group.
[00806] Four deaths, all in the H-CLP group, occurred during the study. Each death was judged by the investigator to be definitely unrelated to the study drug.
The first death occurred suddenly at Week 3 in a 70 year old NYHA class IV male with ischemic HF, LVEF = 20%, atrial fibrillation and eGFR= 46 mUmin/1.73 m2. He was seen by the investigator two weeks before the event and was clinically stable with no ECG
or laboratory changes.
[00807] The second death occurred at Week 4 in a 60 year old NYHA class III
diabetic male with ischemic HF, LVEF = 20%, previous pulmonary embolism, and eGFR =
48 mUmin/1.73 m2. The patient was seen by the investigator two days before he developed an acute HF decompensation complicated by impaired consciousness and hypoxia.
[00808] The third death occurred at Week 6 in a 63 year old NYHA
class III male with ischemic HF. Two weeks before death the patient had refused hospitalization recommended on the basis of worsening fluid overload and progressive renal impairment, as indicated by a drop in eGFR from 48 to 20 mL/min/1.73 m2.
[00809] The fourth death occurred at Week 6 in a 67 year old NYHA
class IV male with non-ischemic HF, atrial fibrillation and eGFR = 36 mUmin/1.73 m2 who complained of abdominal distension and loss of appetite associated with a metabolic acidosis in the absence of renal function changes three days before the patient stopped taking study drug.
The patient was hospitalized three days after study drug discontinuation due to worsening dyspnea, hydrothorax, ascites, and marked acidosis and died three days later.
H. Additional Description: Discussion Summary [00810] An exemplary study treating subjects by administering a cross-linked polyelectrolyte polymer, such as a cross-linked polyacrylate polymer (e.g., H-CLP and base such as 0.75 equivalents of base) was conducted. A Phase 2, double-blind, randomized, parallel group, placebo controlled study was designed to explore, for example, the effects of H-CLP and base versus placebo on serum K+ concentration and fluid overload in HF
patients with renal impairment who are on the guideline recommended combination of an ACE inhibitor or ARB, a Beta Blocker and diuretics and have a clinical indication for the addition of spironolactone (for a description of such drugs and their effects, see, e.g., Pitt et DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:
NOTE POUR LE TOME / VOLUME NOTE:

Claims (188)

What is claimed is:
1. A composition comprising:
a. a crosslinked cation-binding polymer comprising monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.025 mol.% to about 0.34 mol.% of crosslinker; and b. a base, wherein said monomers are acrylic acid or salts thereof, wherein said polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
2. A composition comprising:
a. a crosslinked cation-binding polymer comprising monomers that comprise carboxylic acid groups, wherein said polymer is crosslinked with about 0.025 mol.% to about 0.34 mol.% of crosslinker; and b. a base, wherein said monomers are acrylic acid or salts thereof, wherein said polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
3. The composition of claim 1 or claim 2, wherein said base is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of base per equivalent of carboxylic acid groups in said polymer.
4. The composition of claim 1 or claim 2, wherein said base is present in an amount sufficient to provide from about 0.7 equivalents to about 0.8 equivalents of base per equivalent of carboxylic acid groups in said polymer
5. The composition of claim 1 or claim 2, wherein said base is present in an amount sufficient to provide about 0.75 equivalents of base per equivalent of carboxylic acid groups in said polymer.
6. The composition of claim 1 or claim 2, wherein said crosslinker is selected from the group consisting of triallylamine and 1,1,1-trimethylolpropane triacrylate (TMPTA).
7. The composition of claim 1 or claim 2, wherein said crosslinker is TMPTA.
8. The composition of claim 1 or claim 2, wherein the polymer is crosslinked with about 0.025 mol.% to about 0.17 mol.% of crosslinker per mole of monomers.
9. The composition of claim 1 or claim 2, wherein said base is a pharmaceutically acceptable base, a salt thereof, or a combination thereof
10. The composition of claim 1 or claim 2, wherein said base is selected from the group consisting of: an alkali metal hydroxide, an alkali metal acetate, an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal oxide, an alkaline earth metal hydroxide, an alkaline earth metal acetate, an alkaline earth metal carbonate, an alkaline earth metal bicarbonate, an alkaline earth metal oxide, an organic base, choline, lysine, arginine, histidine, an acetate, a butyrate, a propionate, a lactate, a succinate, a citrate, an isocitrate, a fumarate, a malate, a malonate, an oxaloacetate, a pyruvate, a phosphate, a carbonate, a bicarbonate, a benzoate, an oxide, an oxalate, a hydroxide, an amine, a hydrogen citrate, calcium bicarbonate, calcium carbonate, calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium bicarbonate, aluminum carbonate, aluminum hydroxide, sodium bicarbonate, potassium citrate, and combinations thereof
11. The composition of claim 10, wherein said base is calcium carbonate.
12. The composition of claim 1 or claim 2, wherein said composition has an in vitro saline binding capacity of at least 20 times its weight.
13. The composition of claim 1 or claim 2, wherein said composition has an in vitro saline binding capacity of at least 30 times its weight.
14. The composition of claim 1 or claim 2, wherein said composition has an in vitro saline binding capacity of at least 40 times its weight.
15. The composition of claim 1 or claim 2, wherein said polymer comprises less than about 500 ppm of any one of: sodium, potassium, magnesium or calcium.
16. The composition of claim 1 or claim 2, wherein no less than about 70%
of said polymer has a particle size of about 212 microns to about 500 microns.
17. The composition of claim 1 or claim 2, wherein no less than about 70%
of said polymer has a particle size of about 75 microns or less.
18. The composition of claim 1, wherein no less than about 70% of said base has a particle size of about 212 microns to about 500 microns.
19. The composition of claim 1, wherein no less than about 70% of said base has a particle size of about 75 microns or less.
20. The composition of claim 16, wherein no less than about 70% of said base has a particle size of about 212 microns to about 500 microns.
21. The composition of claim 17, wherein no less than about 70% of said base has a particle size of about 75 microns or less.
22. A composition comprising:
a. a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups; and b. a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
23. A composition comprising:
a. a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups; and b. a base, wherein no less than about 70% of the polymer has a particle size of about 212 microns to about 500 microns, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
24. The composition of claim 22 or claim 23, wherein said base is present in an amount sufficient to provide from about 0.5 equivalents to about 0.85 equivalents of base per equivalent of carboxylic acid groups in said polymer.
25. The composition of claim 22 or claim 23, wherein said base is present in an amount from about 0.7 equivalents to about 0.8 equivalents of base per equivalent of carboxylic acid groups in said polymer.
26. The composition of claim 22 or claim 23, wherein said base is present in an amount sufficient to provide about 0.75 equivalents of base per equivalent of carboxylic acid groups in said polymer.
27. The composition of claim 22 or claim 23, wherein said composition has an in vitro saline absorption capacity of at least 20 times its weight.
28. The composition of claim 22 or claim 23, wherein said composition has an in vitro saline absorption capacity of at least 30 times its weight.
29. The composition of claim 22 or claim 23, wherein said composition has an in vitro saline absorption capacity of at least 40 times its weight.
30. The composition of claim 22 or claim 23, wherein said polymer is crosslinked with a crosslinker selected from the group consisting of diethelyeneglycol diacrylate (diacryl glycerol), triallylamine, tetraallyloxyethane, allylmethacrylate, 1,1,1-trimethylolpropane triacrylate (TMPTA), and divinyl benzene, and divinyl glycol.
31. The composition of claim30, wherein with the crosslinker is TMPTA.
32. The composition of claim 22 or claim 23, wherein said polymer comprises less than about 500 ppm of any one of: sodium, potassium, magnesium or calcium.
33. A composition comprising:
a. a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups; and b. a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
34. A composition comprising:
a. a crosslinked cation-binding polymer comprising monomers comprising carboxylic acid groups; and b. a base, wherein no less than about 70% of said polymer has a particle size of 75 microns or less, wherein the monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide from about 0.2 equivalents to about 0.95 equivalents of base per equivalent of carboxylic acid groups in said polymer.
35. The composition of claim 33 or claim 34, wherein said composition has an in vitro saline binding capacity of at least 20 times its weight.
36. The composition of claim 33 or claim 34, wherein said composition has an in vitro saline binding capacity of at least 30 times its weight.
37. The composition of claim 33 or claim 34, wherein said composition has an in vitro saline binding capacity of at least 40 times its weight.
38. The composition of claim 33 or claim 34, wherein said polymer comprises less than about 500 ppm of any one of: sodium, potassium, magnesium, or calcium.
39. The composition of claim 33 or claim 34, wherein said base comprises calcium carbonate.
40. The composition of claim 33 or claim 34, wherein no less than about 80%
of said base has a particle size of 75 microns or less.
41. A composition comprising:
a. polycarbophil; and b. a base, wherein wherein the polymer comprises less than about 20,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil.
42. A composition comprising:
a. polycarbophil; and b. a base, wherein wherein the polymer comprises less than about 50,000 ppm of non-hydrogen cations, and wherein said base is not sodium bicarbonate and is present in an amount sufficient to provide about 0.2 to 0.95 equivalents of base per equivalent of carboxylic acid groups in said polycarbophil.
43. The composition of claim 41 or claim 42, wherein said base is a calcium base.
44. The composition of claim 41 or claim 42, wherein the calcium base comprises calcium carbonate.
45. The composition of claim 41 or claim 42, wherein said composition has an in vitro saline binding capacity of at least 20 times its weight.
46. The composition of claim 41 or claim 42, wherein said composition has an in vitro saline binding capacity of at least 30 times its weight.
47. The composition of claim 41 or claim 42, wherein said composition has an in vitro saline binding capacity of at least 40 times its weight.
48. The composition of claim 41 or claim 42, wherein said polycarbophil comprises less than about 500 ppm of any one of: sodium, potassium, magnesium, or calcium.
49. A dosage form comprising the composition of any of claims 1 to 48.
50. A dosage form comprising:
a. a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups; and b. a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm or less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide about 0.75 equivalents of base per equivalent of carboxylic acid groups in said polymer.
51. A dosage form comprising:
a. a crosslinked cation-binding polymer comprising a crosslinker and monomers that comprise carboxylic acid groups; and b. a base, wherein said monomers are acrylic acid or salts thereof, wherein the polymer comprises less than about 50,000 ppm or less than about 20,000 ppm of non-hydrogen cations, and wherein said base is present in an amount sufficient to provide about 0.25 equivalents of base per equivalent of carboxylic acid groups in said polymer.
52. The dosage form of claim 50 or claim 51, wherein said base is selected from the group consisting of an alkali metal hydroxide, an alkali metal acetate, an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal oxide, an alkaline earth metal hydroxide, an alkaline earth metal acetate, an alkaline earth metal carbonate, an alkaline earth metal bicarbonate, an alkaline earth metal oxide, an organic base, choline, lysine, arginine, histidine, an acetate, a butyrate, a propionate, a lactate, a succinate, a citrate, an isocitrate, a fumarate, a malate, a malonate, an oxaloacetate, a pyruvate, a phosphate, a carbonate, a bicarbonate, a benzoate, an oxide, an oxalate, a hydroxide, an amine, a hydrogen citrate, calcium bicarbonate, calcium carbonate, calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium bicarbonate, aluminum carbonate, aluminum hydroxide, sodium bicarbonate, potassium citrate, and combinations thereof
53. The dosage form of claim 50 or claim 51, wherein said base is calcium carbonate.
54. The dosage form of claim 50 or claim 51, wherein the crosslinker is TMPTA.
55. The dosage form of claim 50 or claim 51, wherein the polymer comprises 5,000 ppm or more of at least one non-hydrogen cation.
56. The dosage form of claim 50 or claim 51, wherein no less than about 70%
of the polymer has a particle size of about 212 microns to about 500 microns.
57. The dosage form of claim 50 or claim 51, wherein no less than about 70%
of the polymer has a particle size of about 75 microns or less.
58. The dosage form of claim 50 or claim 51 further comprising:
c. one or more pharmaceutically acceptable excipient.
59. The dosage form of claim 50 or claim 51, wherein said dosage form is a tablet, a chewable tablet, a capsule, a suspension, an oral suspension, a powder, a gel block, a gel pack, a confection, a chocolate bar, a flavored bar, or a sachet.
60. The dosage form of claim 50 or claim 51, wherein the dosage form is a sachet comprising from about 1 g to about 30 g of the polymer.
61. The dosage form of claim 50 or claim 51, wherein the dosage form is a sachet comprising from about 4 g to about 15 g of the polymer.
62. The dosage form of claim 50 or claim 51, wherein the dosage form is a sachet comprising from about 8 g to about 15 g of the polymer
63. The dosage form of claim 50 or claim 51, wherein the dosage form is a sachet comprising about 8 g of the polymer.
64. The dosage form of claim 50 or claim 51, wherein the dosage form is a capsule comprising from about 0.1 g to about 1 g of the polymer.
65. The dosage form of claim 50 or claim 51, wherein the dosage form is a capsule comprising from about 0.25 g to about 0.75 g of the polymer.
66. The dosage form of claim 50 or claim 51, wherein the dosage form is a capsule comprising about 0.5 g of the polymer.
67. The dosage form of claim 50 or claim 51, wherein the dosage form is a tablet comprising from about 0.1 g to about 1.0 g of the polymer.
68. The dosage form of claim 50 or claim 51, wherein the dosage form is a tablet comprising from about 0.3 g to about 0.8 g of the polymer.
69. The dosage form of claim 50 or claim 51, wherein the dosage form is a sachet, flavored bar, gel block, gel pack, or powder comprising from about 2 g to about 30 g of the polymer.
70. The dosage form of claim 50 or claim 51, wherein the dosage form is a sachet, flavored bar, gel block, gel pack, or powder comprising from about 4 g to about 20 g of the polymer.
71. The dosage form of claim 50 or claim 51, wherein the dosage form is a sachet, flavored bar, gel block, gel pack, or powder comprising from about 4 g to about 8 g of the polymer.
72. The dosage form of claim 50 or claim 51, wherein the dosage form is a suspension comprising from about 0.04 g of the polymer per mL of suspension to about 1 g of the polymer per mL of suspension.
73. The dosage form of claim 50 or claim 51, wherein the dosage form is a suspension comprising from about 0.1 g of the polymer per mL of suspension to about 0.8 g of the polymer per mL of suspension.
74. The dosage form of claim 50 or claim 51, wherein the dosage form is a suspension comprising from about 0.3 g of the polymer per mL of suspension.
75. The dosage form of claim 50 or claim 51, wherein the dosage form is a suspension comprising from about 1 g to about 30 g of the polymer.
76. The dosage form of any of claims 72 to 75, wherein said suspension is an oral suspension.
77. The dosage form comprising the composition of claim 49 or 50 and one or more additional agent.
78. The dosage form of claim 77, wherein said one or more additional agent is known to increase serum potassium.
79. The dosage form of claim 77, wherein said one or more additional agent is selected from the group consisting of: a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II
receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, trandolapril, candesartan, eprosartan, irbesartan, losartan, valsartan, telmisartan, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, nadolol, propranolol, sotalol, timolol, canrenone, aliskiren, aldosterone synthesis inhibitors, VAP antagonists, amiloride, triamterine, a potassium supplement, heparin, a low molecular weight heparin, a non-steriodal anti-inflammatory drug, ketoconazole, trimethoprim, pentamide, a potassium sparing diuretic, amiloride, triamterene, and combinations thereof
80. A method of treating heart failure in a subject in need thereof, said method comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
81. A method of treating heart failure in a subject in need thereof, said method comprising:
a. identifying a subject as having heart failure; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
82. The method of claim 80 or 81 further comprising:
a. before administering said composition, determining one or more of: a baseline level of one or more ions in said subject, a baseline total body weight associated with said subject, a baseline total body water level associated with said subject, a baseline total extracellular water level associated with said subject, and a baseline total intracellular water level associated with said subject; and b. after administering said composition, determining one or more of: a second level of one or more ions in said subject, a second total body weight associated with said subject, a second total body water level associated with said subject, a second total extracellular water level associated with said subject, and a second total intracellular water level associated with said subject, wherein said second level is substantially lower than said baseline level.
83. The method of claim 82, wherein said one or more ions are selected from the group consisting of: sodium, potassium, calcium, lithium, and magnesium.
84. The method of claim 80 or 81, wherein an acid/base balance associated with said subject does not significantly change within about 1 day of administration of the composition.
85. The method of claim 80 or 81, wherein a blood pressure level associated with said subject after administration of the composition is substantially lower than a baseline blood pressure level associated with said subject before administration of the composition.
86. The method of claim 85, wherein said blood pressure level is one or more of: a systolic blood pressure level, a diastolic blood pressure level, and a mean arterial pressure level.
87. The method of claim 80 or 81, wherein a symptom of fluid overload associated with said subject, determined after administration of the composition, is reduced compared to a baseline level determined before administration of the composition.
88. The method of claim 87, wherein said symptom is one or more of:
difficulty breathing when lying down, difficulty breathing with normal physical activity, ascites, fatigue, shortness of breath, increased body weight, peripheral edema, and pulmonary edema.
89. The method of claim 80 or 81, wherein said subject is on concomitant diuretic therapy.
90. The method of claim 89, wherein said diuretic therapy is reduced or discontinued after administration of the composition.
91. The method of claim 80 or 81 further comprising co-administering to said subject an agent known to increase serum potassium levels.
92. The method of claim 91, wherein said agent is one or more of: a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE
inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, trandolapril, candesartan, eprosartan, irbesartan, losartan, valsartan, telmisartan, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, nadolol, propranolol, sotalol, timolol, canrenone, aliskiren, aldosterone synthesis inhibitors, VAP antagonists, amiloride, triamterine, a potassium supplement, heparin, a low molecular weight heparin, a non-steriodal anti-inflammatory drug, ketoconazole, trimethoprim, pentamide, a potassium sparing diuretic, amiloride, triamterene, and combinations thereof.
93. The method of claim 91, wherein a dose of said agent is increased after administration of the composition.
94. The method of claim 80 or 81, wherein said subject is co-administered a blood pressure medication.
95. The method of claim 94, wherein a dose of said blood pressure medication is reduced after administration of the composition.
96. A method of treating end stage renal disease in a subject comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
97. A method of treating end stage renal disease in a subject comprising:
a. identifying end stage renal disease in said subject or identifying a risk that the subject will develop end stage renal disease; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
98. The method of claim 96 or 97, wherein the subject is on dialysis.
99. The method of claim 96 or 97, wherein said subject also has heart failure.
100. The method of claim 98 wherein interdialytic weight gain in a subject on dialysis is reduced after administration of the composition.
101. The method of claim 96 or 97, wherein one or more symptom of intradialytic hypotension are reduced after administration of the composition.
102. The method of claim 101 where said one or more symptom is selected from the group consisting of: vomiting, fainting, an abrupt decrease in blood pressure, seizures, dizziness, severe abdominal cramping, severe leg or arm muscular cramping, intermittent blindness, infusion, medication, and dialysis session interruption or discontinuation.
103. The method of claim 96 or 97 further comprising:
a. before administering the composition, determining a baseline level of one or more ions in said subject; and b. after administering the composition, determining a second level of said one or more ions in said subject, wherein said second level of one or more ions is substantially less than said baseline level of one or more ions.
104. The method of claim 103, wherein said one or more ions are selected from the group consisting of: sodium, potassium, calcium, lithium, magnesium, and ammonium.
105. The method of claim 96 or 97, wherein an acid/base balance associated with said subject does not significantly change within about 1 day of administration of the composition.
106. The method of claim 96 or 97 further comprising:
a. determining a baseline predialytic-to-postdialytic blood pressure drop associated with said subject before administration of the composition; and b. determining a second predialytic-to-postdialytic blood pressure drop associated with said subject after administration of the composition, wherein said second blood pressure drop is smaller than said baseline blood pressure drop.
107. A method of treating a subject having a chronic kidney disease comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
108. A method of treating a subject having a chronic kidney disease comprising:
a. identifying the subject as having a chronic kidney disease; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
109. The method of claim 107 or 108, wherein a symptom of fluid overload is reduced after administration of the composition.
110. The method of claim 109, wherein said symptom is one or more of:
difficulty breathing at rest, difficulty breathing during normal physical activity, edema, pulmonary edema, hypertension, peripheral edema, leg edema, ascites, and/or increased body weight.
111. The method of claim 107 or 108, wherein a blood pressure level associated with said subject after administration of the composition is substantially lower than a baseline blood pressure level associated with said subject before administration of the composition.
112. The method of claim 111, wherein said blood pressure level is one or more of: a systolic blood pressure level, a diastolic blood pressure level, and a mean arterial pressure level.
113. The method of claim 107 or 108, wherein a co-morbidity of chronic kidney disease is reduced or alleviated after administration of the composition.
114. The method of claim 113, wherein said co-morbidity is one or more of:
fluid overload, edema, pulmonary edema, hypertension, hyperkalemia, excess total body sodium, and uremia.
115. The method of claim 107 or 108 further comprising:

a. before administering the composition, determining one or more of: a baseline level of one or more ions in said subject, a baseline total body weight associated with said subject, a baseline total body water level associated with said subject, a baseline total extracellular water level associated with said subject, and a baseline total intracellular water level associated with said subject; and b. after administering the composition, determining one or more of: a second level of said one or more ions in said subject, a second total body weight associated with said subject, a second total body water level associated with said subject, a second total extracellular water level associated with said subject, and a second total intracellular water level associated with said subject wherein said second level is substantially less than said baseline level.
116. The method of claim 115, wherein said one or more ions are selected from the group consisting of: sodium, potassium, calcium, lithium, magnesium, and ammonium.
117. The method of claim 107 or 108, wherein an acid/base balance associated with said subject does not significantly change within about 1 day of administration of the composition.
118. The method of claim 107 or 108, wherein said subject is on concomitant dialysis treatment.
119. The method of claim 107 or 108, wherein said subject does not develop interdialytic weight gain.
120. A method of treating hypertension in a subject in need thereof, the method comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
121. A method of treating hypertension in a subject comprising:
a. identifying the subject as having, or as having a risk of developing, hypertension; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
122. The method of claim 120 or 121, wherein a blood pressure level associated with said subject after administration of the composition is substantially lower than a baseline blood pressure level associated with said subject before administration of the composition.
123. The method of claim 122, wherein said blood pressure level is one or more of: a systolic blood pressure level, a diastolic blood pressure level, and a mean arterial pressure level.
124. The method of claim 120 or 121, wherein a symptom of fluid overload associated with said subject, determined after administration of the composition, is reduced compared to a baseline level determined before administration of the composition.
125. The method of claim 124, wherein the symptom is one or more of:
difficulty breathing when lying down, ascites, fatigue, shortness of breath, increased body weight, peripheral edema, and pulmonary edema.
126. The method of claim 120 or 121, wherein said subject is on concomitant diuretic therapy.
127. The method of claim 126, wherein said diuretic therapy is reduced or discontinued after administration of the composition.
128. The method of claim 120 or 121, wherein said subject has one or more of:
salt sensitive hypertension and refractory hypertension.
129. A method of treating hyperkalemia in a subject comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
130. A method of treating hyperkalemia in a subject comprising:
a. identifying the subject as having, or as having a risk of developing, hyperkalemia; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
131. The method of claim 129 or 130 further comprising, after administering said composition, determining a potassium level in said subject, wherein said potassium level is within a normal potassium level range for said subject.
132. The method of claim 129 or 130 further comprising co-administering to said subject one or more of: mannitol, sorbitol, calcium acetate, sevelamer carbonate, sevelamer hydrochloride, a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE inhibitor, an angiotensin II
receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, trandolapril, candesartan, eprosartan, irbesartan, losartan, valsartan, telmisartan, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, nadolol, propranolol, sotalol, timolol, canrenone, aliskiren, aldosterone synthesis inhibitors, VAP antagonists, amiloride, triamterine, a potassium supplement, heparin, a low molecular weight heparin, a non-steriodal anti-inflammatory drug, ketoconazole, trimethoprim, pentamide, a potassium sparing diuretic, amiloride, triamterene, and combinations thereof
133. The method of claim 129 or 130 further comprising:
a. before administering the composition, determining a baseline level of potassium in said subject; and b. after administering the composition, determining a second level of potassium in said subject, wherein said second level of potassium is substantially less than said baseline level of potassium.
134. The method of claim 129 or 130, wherein a acid/base balance associated with said subject does not significantly change within about 1 day of administration of the composition.
135. A method of treating an high sodium level in a subject comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
136. A method of treating an high sodium level in a subject in need thereof, the method comprising:
a. identifying an elevated sodium level associated with said subject; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
137. The method of claim 135 or 136, wherein the high sodium level is not caused by dehydration.
138. The method of claim 135 or 136 further comprising co-administering to said subject an agent known to cause sodium retention.
139. The method of claim 138, wherein said agent is one or more of: estrogen containing compositions, mineralocorticoids, loop diuretics, thiazide diuretics, osmotic diuretics, lactulose, cathartics, phenytoin, lithium, Amphotericin B, demeclocycline, dopamine, ofloxacin, orlistat, ifosfamide, cyclophosphamide, hyperosmolar radiographic contrast agents, cidofovir, ethanol, foscarnet, indinavir, libenzapril, mesalazine, methoxyflurane, pimozide, rifampin, streptozotocin, tenofir, triamterene, cholchicine, and sodium supplements.
140. The method of claim 135 or 136 further comprising:
a. before administering the composition, determining a baseline total body sodium;
and b. after administering the composition, determining a second total body sodium in said subject, wherein said second total body sodium is substantially less than said baseline total body sodium.
141. A method of treating a fluid overload state in a subject in need thereof, the method comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
142. A method of treating a fluid overload state in a subject in need thereof, the method comprising:
a. identifying a fluid overload state or a risk of developing a fluid overload state in said subject; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
143. The method of claim 141 or 142, wherein said fluid overload state or said risk of developing a fluid overload state is determined by assessing one or more of:
difficulty breathing when lying down, ascites, fatigue, shortness of breath, increased body weight, peripheral edema, and pulmonary edema associated with said subject.
144. The method of claim 141 or 142, wherein said subject is on concomitant diuretic therapy.
145. The method of claim 144, wherein said diuretic therapy is reduced or discontinued after administration of the composition.
146. The method of claim 141 or 142 further comprising:
a. before step (b), determining one or more of: a baseline level of one or more ions in said subject, a baseline total body weight associated with said subject, a baseline total body water level associated with said subject, a baseline total extracellular water level associated with said subject, and a baseline total intracellular water level associated with said subject; and b. after step (b), determining one or more of: a second level of said one or more ions in said subject, a second total body weight associated with said subject, a second total body water level associated with said subject, a second total extracellular water level associated with said subject, and a second total intracellular water level associated with said subject, wherein said second level is substantially less than said baseline level.
147. The method of claim 142, wherein said one or more ions are selected from the group consisting of: sodium, potassium, calcium, lithium, and magnesium.
148. The method of claim 141 or 142, wherein an acid/base balance associated with said subject does not significantly change within about 1 day of administration of the composition.
149. A method of treating a fluid maldistribution state in a subject in need thereof, the method comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
150. A method of treating a fluid maldistribution state in a subject in need thereof, the method comprising:
a. identifying a fluid maldistribution state or a risk of developing a fluid maldistribution state in said subject; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
151. A method of treating edema in a subject in need thereof, the method comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
152. A method of treating edema in a subject in need thereof, the method comprising:
a. determining an edematous state or a risk of developing an edematous state in said subject; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
153. The method of claim 151 or 152 further comprising:
a. before administering said composition, determining one or more of: a baseline level of one or more ions in said subject, a baseline total body weight associated with said subject, a baseline total body water level associated with said subject, a baseline total extracellular water level associated with said subject, and a baseline total intracellular water level associated with said subject; and b. after administering said composition, determining one or more of: a second level of one or more ions in said subject, a second total body weight associated with said subject, a second total body water level associated with said subject, a second total extracellular water level associated with said subject, and a second total intracellular water level associated with said subject wherein said second level is substantially lower than said baseline level.
154. The method of claim 153, wherein said one or more ions are selected from the group consisting of: sodium, potassium, calcium, lithium, and magnesium.
155. The method of claim 151 or 152, wherein an acid/base balance associated with said subject does not significantly change within about 1 day of administration of the composition.
156. The method of claim 151 or 152, wherein a blood pressure level associated with said subject after administration of the composition of claim 1 is substantially lower than a baseline blood pressure level associated with said subject before administration of the composition.
157. The method of claim 156, wherein said blood pressure level is one or more of: a systolic blood pressure level, a diastolic blood pressure level, and a mean arterial pressure level.
158. The method of claim 151 or 152, wherein a symptom of edema associated with said subject, determined after administration of the composition, is reduced compared to a baseline level determined before administration of the composition.
159. The method of claim 158, wherein said symptom is one or more of:
difficulty breathing when lying down, shortness of breath, peripheral edema, and leg edema.
160. The method of claim 151 or 152, wherein said subject is on concomitant diuretic therapy.
161. The method of claim 160, wherein said diuretic therapy is reduced or discontinued after administration of the composition.
162. A method of treating ascites in a subject in need thereof, the method comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
163. A method of treating ascites in a subject in need thereof, the method comprising:
a. determining a ascitic state or a risk of developing an ascitic state in said subject;
and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
164. The method of claim 162 or 163 further comprising:

a. before administering the composition, determining a baseline potassium level associated with said subject; and b. after administering the composition, determining a second potassium level associated with said subject, wherein said second potassium level is substantially less than said baseline potassium level.
165. The method of claim 162 or 163 further comprising co-administering to said subject an agent known to increase serum potassium levels.
166. The method of claim 165, wherein said agent is one or more of: a tertiary amine, spironolactone, fluoxetine, pyridinium and its derivatives, metoprolol, quinine, loperamide, chlorpheniramine, chlorpromazine, ephedrine, amitryptyline, imipramine, loxapine, cinnarizine, amiodarone, nortriptyline, a mineralocorticosteroid, propofol, digitalis, fluoride, succinylcholine, eplerenone, an alpha-adrenergic agonist, a RAAS inhibitor, an ACE
inhibitor, an angiotensin II receptor blocker, a beta blocker, an aldosterone antagonist, benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, trandolapril, candesartan, eprosartan, irbesartan, losartan, valsartan, telmisartan, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, nadolol, propranolol, sotalol, timolol, canrenone, aliskiren, aldosterone synthesis inhibitors, VAP antagonists, amiloride, triamterine, a potassium supplement, heparin, a low molecular weight heparin, a non-steriodal anti-inflammatory drug, ketoconazole, trimethoprim, pentamide, a potassium sparing diuretic, amiloride, triamterene, and combinations thereof.
167. The method of claim 162 or 163 further comprising administering to said subject a diuretic.
168. The method of claim 167 further comprising reducing or discontinuing the administration of said diuretic after administration of the composition.
169. A method of treating nephrotic syndrome in a subject comprising administering to said subject a composition according to any of claims 1 to 48.
170. A method of treating nephrotic syndrome in a subject comprising:
a. identifying the subject as having nephrotic syndrome or a risk of developing nephrotic syndrome; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
171. The method of claim 169 or 170 further comprising:
a. before administering said composition, determining one or more of: a baseline level of one or more ions in said subject, a baseline total body weight associated with said subject, a baseline total body water level associated with said subject, a baseline total extracellular water level associated with said subject, and a baseline total intracellular water level associated with said subject; and b. after administering said composition, determining one or more of: a second level of one or more ions in said subject, a second total body weight associated with said subject, a second total body water level associated with said subject, a second total extracellular water level associated with said subject, and a second total intracellular water level associated with said subject wherein said second level is substantially lower than said baseline level.
172. The method of claim 171, wherein said one or more ions are selected from the group consisting of: sodium, potassium, calcium, lithium, and magnesium.
173. The method of claim 169 or 170, wherein an acid/base balance associated with said subject does not significantly change within about 1 day of administration of the composition.
174. The method of claim 169 or 170, wherein a blood pressure level associated with said subject after administration of the composition of claim 1 is substantially lower than a baseline blood pressure level associated with said subject before administration of the composition.
175. The method of claim 174, wherein said blood pressure level is one or more of: a systolic blood pressure level, a diastolic blood pressure level, and a mean arterial pressure level.
176. The method of claim 169 or 170, wherein a symptom of fluid overload associated with said subject, determined after administration of the composition, is reduced compared to a baseline level determined before administration of the composition.
177. The method of claim 176, wherein said symptom is one or more of:
difficulty breathing when lying down, shortness of breath, peripheral edema, and leg edema.
178. The method of claim 169 or 170, wherein said subject is on concomitant diuretic therapy.
179. The method of claim 178, wherein said diuretic therapy is reduced or discontinued after administration of the composition.
180. A method of treating interdialytic weight gain in a subject comprising administering to said subject an effective amount of the composition of any of claims 1 to 48.
181. A method of treating interdialytic weight gain in a subject, the method comprising:
a. identifying interdialytic weight gain or a risk of developing interdialytic weight gain associated with said subject; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
182. The method of claim 181, wherein said elevated risk is identified by any combination of: subject medical history, frequent episodes of blood pressure drops during dialysis, documentation of elevated IDWG between dialysis sessions, diagnosis of one or more symptoms of interdialytic weight gain in said subject, or identification of a treatment regimen for said subject that is commonly accompanied by an elevated risk of developing interdialytic weight gain.
183. A method of treating a disease or disorder in a subject in need thereof comprising administering to said subject the composition of any of claims 1 to 48.
184. A method of treating a disease or disorder in a subject comprising:
a. identifying a disease or a disorder in said subject, or identifying a risk that said subject will develop a disease or disorder; and b. administering to said subject an effective amount of the composition of any of claims 1 to 48.
185. The method of claim 183 or 184, wherein said disease or disorder is one or more of:heart failure, a renal insufficiency disease, end stage renal disease, liver cirrhosis, chronic renal insufficiency, chronic kidney disease, fluid overload, fluid maldistribution, edema, pulmonary edema, peripheral edema, lymphedema, nephrotic edema, idiopathic edema, ascites, cirrhotic ascites, interdialytic weight gain, high blood pressure, hyperkalemia, hypernatremia, abnormally high total body sodium, hypercalcemia, tumor lysis syndrome, head trauma, an adrenal disease, hyporeninemic hypoaldosteronism, hypertension, salt-sensitive hypertension, refractory hypertension, renal tubular disease, rhabdomyolysis, crush injuries, renal failure, acute tubular necrosis, insulin insufficiency, hyperkalemic periodic paralysis, hemolysis, malignant hyperthermia, pulmonary edema secondary to cardiogenic pathophysiology, pulmonary edema with non-cardiogenic origin, drowning, acute glomemlonephritis, allergic pulmonary edema, high altitude sickness, Adult Respiratory Distress Syndrome, traumatic edema, cardiogenic edema, acute hemorrhagic edema, heatstroke edema, facial edema, eyelid edema, angioedema, cerebral edema, scleral edema, nephritis, nephrosis, nephrotic syndrome, glomerulonephritis, and/or renal vein thrombosis.
186. The method of any of claims 80 to 185, wherein said composition is administered from 1 time every 3 days to about 4 times per day.
187. The method of any of claims 80 to 185, wherein said composition is administered from 1 to 4 times per day.
188. The method of any of claims 80 to 185, wherein said composition is administered from 1 to 2 times per day.
CA2863233A 2012-01-10 2012-05-21 Compositions comprising crosslinked cation-binding polymers and uses thereof Abandoned CA2863233A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2084312 2012-01-10
USPCT/US2012/020843 2012-01-10
PCT/US2012/038909 WO2013106073A1 (en) 2012-01-10 2012-05-21 Compositions comprising crosslinked cation-binding polymers and uses thereof

Publications (1)

Publication Number Publication Date
CA2863233A1 true CA2863233A1 (en) 2013-07-18

Family

ID=51565591

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2863233A Abandoned CA2863233A1 (en) 2012-01-10 2012-05-21 Compositions comprising crosslinked cation-binding polymers and uses thereof

Country Status (1)

Country Link
CA (1) CA2863233A1 (en)

Similar Documents

Publication Publication Date Title
AU2018256550B2 (en) Compositions comprising crossed linked cation-binding polymers
WO2013106073A1 (en) Compositions comprising crosslinked cation-binding polymers and uses thereof
CA2863240A1 (en) Compositions comprising crosslinked cation-binding polymers and uses thereof
WO2013106086A1 (en) Compositions comprising crosslinked cation-binding polymers and uses thereof
EP2187979B1 (en) Absorbent polymeric compositions with varying counterion content and their methods of preparation and use
AU2012205680A1 (en) Compositions comprising crosslinked cation- binding polymers and a base, uses thereof
CA2863233A1 (en) Compositions comprising crosslinked cation-binding polymers and uses thereof
WO2014015244A1 (en) Compositions comprising crosslinked cation-binding polymers

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20151218