CA2848891C - Valve system and method for monitoring a valve actuator in the valve system based on data collected by a rotary encoder - Google Patents

Valve system and method for monitoring a valve actuator in the valve system based on data collected by a rotary encoder Download PDF

Info

Publication number
CA2848891C
CA2848891C CA2848891A CA2848891A CA2848891C CA 2848891 C CA2848891 C CA 2848891C CA 2848891 A CA2848891 A CA 2848891A CA 2848891 A CA2848891 A CA 2848891A CA 2848891 C CA2848891 C CA 2848891C
Authority
CA
Canada
Prior art keywords
data
sensor
sensors
wheel
valve system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2848891A
Other languages
French (fr)
Other versions
CA2848891A1 (en
Inventor
William T. Dolenti
Byron A. Fleury
Daniel J. Morris
William C. Hooss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowserve Pte Ltd
Original Assignee
Flowserve Management Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowserve Management Co filed Critical Flowserve Management Co
Priority to CA2848891A priority Critical patent/CA2848891C/en
Priority claimed from CA2649647A external-priority patent/CA2649647C/en
Publication of CA2848891A1 publication Critical patent/CA2848891A1/en
Application granted granted Critical
Publication of CA2848891C publication Critical patent/CA2848891C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/04Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means using levers; using cams; using gearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A novel method for diagnosing problems with a valve actuator or other rotary equipment. Frequency analysis is performed upon speed, position, torque, thrust, or vibration data. Speed or position data may be provided by a rotary encoder.

Description

Valve System and Method for Monitoring a Valve Actuator in the Valve System Based on Data Collected by a Rotary Encoder This is a divisional of CA 2,649,647.
TECHNICAL MELD
The invention relates generally to analysis of valve actuators and rotary position encoders, and more particularly to performing frequency analysis of valve actuators and to rotaryposition encoders with a built-in-self-test. =
BACKGROUND
In many applications, it is necessary to measure the position of a rotary shaft of a rotational device. However, rotational devices are often complex and have parts that are difficult to access. Furthermore, rotational devices are often integrated into industrial processes where the cost of stopping the process to repair the rotational device often far exceeds the cost of the rotational device. Rotary valves, for example, often are critical to industrial processes,and repair of some parts of the valves require shutting down the process. A need exists to identify precisely the position of a rotary shaft and objects driven by the rotary shaft, such as a valve stem. A need also exists to identify any wearing . parts in a rotational device, such as a valve, so that preventative maintenance can be performed at scheduled shutdowns, or so that the rotational device can be operated in such a way as to keep the device operational until the next scheduled shutdown. A
need exists for a device capable of both determining the position of a rotary shaft as well as identifying the severity and location of problems within the rotational device to which the rotary shaft is connected.
One approach to diagnosing rotating devices has employed frequencyanalysis.
Cyclic data may be analyzed with a Fourier Transform (FT) algorithm to transform the data from a time domain to a frequency domain. One attempt to apply FT.to motor operated valves involved measuring the current flowing to the motor, applying FT to the motor data, and then using peaks in the frequency spectrum to diagnose problems in the drive train of the valve actuator. However, this approach does not measure the rotational speed of a shaft nor does it determine the position of a rotary shaft. A motor current-= measuring device also does not integrate into a device capable of determining the position of a rotary shaft. =
One approach to measuring the position of a rotary member involves a rotary = encoder. Rotary encoders include incremental and absolute encoders.
Incremental
- 2 -encoders are used to measure the rotational change of a shaft. A basic incremental encoder includes a disk with a large number of radial painted lines. A
photodiode or other sensor generates an electrical pulse whenever a painted line is sensed. A
computer, or other processor, tracks the pulses to determine the position of the disk and, in turn, the position of the shaft to which the disk is attached. With incremental encoders, if power is lost to the computer, the position information is lost when power is restored.
Previous incremental encoders for valve actuators have included a speed sensor, but the speed sensor and resulting data have not been used for frequency analysis.
Absolute encoders do not require a power supply to maintain position information.
Absolute encoders produce a unique digital code for each distinct angle of a rotary shaft.
Absolute encoders can be a single wheel with a complex pattern machined into the wheel.
The single wheel is attached to the shaft in question and numerous distinct angular positions can be identified by the patterns on the wheel. However, such wheels are only useful where a shaft will undergo only a single rotation.
Another version of the absolute encoder utilizes multiple wheels with concentric , rings on each of the wheels, where each ring provides 1-bit of position data. The multi-wheel version allows the measured shaft to undergo numerous rotations and still track the position and number of rotations of the shaft. The presence of more wheels allows tracking of more shaft rotation or determination of more positions for a single rotation.
However, multi-wheel absolute encoders are often delicate and less reliable.
It would be desirable to have a multi-wheel absolute encoder that is reliable and operable to generate speed data for use in frequency analysis.
One attempt to solve this problem utilizes either 6 or 7 wheels. Each wheel provides 3-bits of data. However, only 2-bits of Gray code are generated as position data via v-bit processing. This increases the reliability of the absolute encoder.
However, duplicate sensors are not used. Additionally, a speed sensor is not integrated into the absolute encoder and speed data is not generated for use in frequency analysis.
DISCLOSURE OF INVENTION
One embodiment of the invention includes rotary encoder for use with a rotary device. The rotary encoder comprises one or more encoding wheels, each of the one or more encoding wheels comprising at least one coding section operable to encode a
-3 -position of the rotary device. Also included is at least one double set of sensors operable to monitor the at least one coding section.
Another embodiment of the invention includes a valve actuator comprising an absolute encoder and a drive train adapted to drive the absolute encoder. The absolute encoder comprising at least one encoder disk, a plurality of sensors operable to read the at least one encoder disk, a speed sensor operable to generate speed data; at least one duplicate sensor for each of the plurality of sensors and the speed sensor.
Yet another embodiment of the invention includes a method of analyzing a valve actuator including a sensor. The method comprises generating data from the sensor and performing frequency domain analysis on the data.
A particular embodiment of the invention includes a method of analyzing a rotating device that rotates between two position limits. The method comprises operably coupling a rotary position encoder to a shaft of the rotating device, where the rotary position encoder includes a speed indicator. The method includes generating speed data with the speed sensor and performing frequency analysis on the speed data.
According to another embodiment of the invention, there is provided a valve system comprising: a valve actuator; a rotary position encoder coupled to the valve actuator, the valve actuator and the rotary position encoder having a plurality of sensors adapted to generate data, the rotary position encoder having a timing mechanism, the timing mechanism including a timing wheel having a plurality of timing marks equally spaced in a concentric pattern around the timing wheel, wherein each sensor of the plurality of sensors comprises a double set of redundant timer sensors for monitoring the plurality of timing marks of the timing wheel, the double set of redundant timer sensors comprising a first sensor positioned on a first side of the timing wheel and a second sensor positioned on a second, opposing side of the timing wheel, the first sensor and the second sensor each comprising an emitter and a detector, the detector positioned adjacent the emitter, wherein the plurality of sensors and the timing mechanism generate the data, the data related to one or more components of the valve actuator, the data comprising at least one of rotational speed data, position data, torque data, thrust data, and - 3a -vibration data; and a processor, in communication with the plurality of sensors and the timing mechanism, for converting the data into a frequency domain utilizing a Fourier transform.
According to another embodiment of the invention, there is provided a method of analyzing a valve actuator including a sensor, the method comprising:
providing the valve system as described herein; generating data from the plurality of sensors; and performing frequency domain analysis on the data.
The features, advantages, and alternative aspects of the present invention will be apparent to those skilled in the art from a consideration of the following detailed description taken in combination with the accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:
FIG. 1 illustrates the wheels of one embodiment of a rotary encoder;
FIG. 2 illustrates a fully-assembled version of the embodiment of FIG. 1;
FIG. 3 illustrates a partially-assembled version of the embodiment of FIG. 1;
FIG. 4 illustrates a top-view of the embodiment of FIG. 3;
FIG. 5 illustrates the wheels of a particular embodiment of a rotary encoder;
FIG. 6 illustrates a representative clean diagnosis in the frequency domain;
FIG. 7 illustrates a representative problematic diagnosis in the frequency domain;
FIG. 8 illustrates data resolution with 128 samples;

WO 2007/123533 =
4 FIG. 9 illustrates the data used in FIG. 8 prior to performing a Fourier Transform (FT) on the data;
FIG. 10 illustrates data resolution with 256 samples;
FIG. 11 illustrates the data used in FIG. 10 prior to performing a FT on the data;
FIG. 12 illustrates data resolution with 512 samples;
FIG. 13 illustrates the data used in FIG. 12 prior to performing a FT on the data;
FIG. 14 illustrates data resolution with 1024 samples;
FIG. 15 is a table indicating the accuracy of some embodiments of the present invention;
FIG. 16 is an example of frequency domain data obtained at 26 rotation per minute (rpm);
FIG. 17 is another example of frequency domain data obtained at 26 rpm;
FIG. 18 is an example of frequency domain data obtained at 18 rpm; and FIG. 19 is another example of frequency domain data obtained at 18 rpm.
= BEST MODE(S) FOR CARRYING OUT THE INVENTION
The present invention may be used with any valve actuator or other rotary equipment, such as equipment that rotates between two positions. A particular = embodiment of the present invention utilizes a rotary encoder with an integrated speed sensor. The speed sensor is operable to generate speed data for frequency analysis. The present invention also may use another type of sensor able to generate data transformable into the frequency domain. The frequency analysis may, in turn, be used to diagnose any problems with the valve actuator or other rotary equipment. In one embodiment, the rotary encoder is an absolute encoder with duplicate sensor pairs.
In the Figures, like numerals represent like elements. FIG. 1 illustrates one embodiment of a rotary encoder of the present invention. Rotary encoder 1 represents a particular embodiment of an absolute encoder. The terms "wheel" or "wheels"
without a modifier such as "input," "timing," or "encoding" may apply to input wheel 10, timing wheel 20, and encoding wheels 30 through 110. The phrase "encoding wheel" or "encoding wheels" applies to encoding wheels 30 through 110.
Bottom mounting rack 130 is secured to bottom board 120 via bolts 132.
Bolts 132 may also be rivets, screws, clamps, clips, adhesives, weld points, a snap-fit junction, or any other connection means known in the art. Bolts 132 may also be placed at =
- 5 -any location. For example, when bolt 132 is a clamp, bottom mounting rack 130 may extend to the edge of bottom board 120 and bolt 132 may be located at that edge.
Alternatively, when bolt132 is an adhesive, the adhesive may be spread. across any surface of bottom mounting rack 130 that is in contact with bottom board 120.
Bottom board 120 can include a semiconductor substrate where electrical components, such as a processor 150 and sensor 160, may be integrated with each other.
The circuits connecting processor 150 and sensor 160 are not shown. However, rather than integrating the circuits into bottom board 120, the circuits can be positioned external = to bottom board 120. For example, holes can be drilled in bottom board 120 to correspond with the inputs and outputs of sensors 160 and the inputs and outputs of processor 150.
The insulated wires can be interconnected between the sensors 160 and the processor 150.
= Additionally, if circuitry is positioned external to bottom board 120, it may be desirable to ' incorporate bottom mounting rack 130 into bottom board 120.
Rotary encoder 1 also can include top mounting rack 140 and top board 170, = shown in FIGS. 2 through 4. The same description regarding bottom board 120 and bottom mounting rack 130 apply to top mounting rack 140 and top board 170. Top board 170 can also be a semiconductor substrate. However, any circuitry may be external to top board 170, as well. Top mounting rack 140 also may be integrated-within top .
board 170. Top. mounting rack 140 can be secured to bottom mounting rack 130 with =
bolts 132. Securing nut 122 is attached to bottom board 120. Top board 170 is secured to bottom board 120 via screw 172 and securing nut 122, as shown in FIG. 2.
Rotary = encoder 1 may be secured to another device via mounting bolts 124. The configurations described with respect to bolts 132 also may apply to securing nuts 122, screws 172, and mounting bolts 124. As shown in FIGS. 3 and 4, top mounting rack 140 may be a single piece of material. This allows the embodiment of top mounting rack 140, shown in FIGS. 3 and 4, to thermally expand in a even manner. The same applies for bottom mounting rack 130. In an alternative embodiment, top mounting rack 140 and bottom mounting rack 130 may each be made of multiple pieces.
Additionally, the rotary encoder 1 is not limited to any particular shape.
Rotary encoder 1 may be circular, rectangular, or specifically shaped for a certain device or application. Also, the terms "top" and "bottom" are used herein only to facilitate description of rotary encoder 1. Thus, rotary encoder 1 may be used in any orientation.

= .
- 6 -In the particular-example of FIGS. 1-4, the input wheel 10 includes teeth 12 on gear 11. Input wheel 10 also includes aperture 14, Which may be used with sensors to = provide a me-ars for tracking the number of rotations of input wheel 10.
Locking cap 16 is attached to input wheel 10. As shown in FIG. 3, when locking cap 16 is in place, any 5 movement of input wheel 10 is restrained by the contact of locking cap 16 with top mounting bracket 140. Locking cap 16 may be included whenever rotary encoder 1 is to =
= be handled or shipped, and then removed once an input shaft is ready to, engage rotary encoder 1.
Timing wheel 20 includes gear 21 and pinion 25. Gear 21 includes teeth 22.
10 Pinion 25 includes teeth 26. Timing wheel 20 also contains timing slits 28. In this embodiment, timing slits 28 are designed as holes that extend from the top surface of gear 21 to the bottom surface of gear 21 and timing slits 28 are designed as arcuate sections that appear as rectangular. However, it is understood that these elements may be of any shape. Timing slits 28 may also be paint lines, embedded magnets, or any other = 15 structure capable of being detected. Timing slits 28 also may not be present and, instead, other devices may perform the function of timing slits 28. For example, the teeth on = gear 21 may be made from a ferrous compound and include a sufficient number to correspond to the desired timing marks. A magnetic pick up placed close to the gear 21 can sense each tooth 22 that rotates proximate to the magnetic pick up. Timing wheel 20 20 represents just one embodiment of a timing mechanism that maybe used with the present invention. =
Timing wheel 20 also includes coding sections 24, which in the present embodiment are designed as arcuate holes extending from the top surface of pinion 25 through the bottom of gear 21. FIG. 1 illustrates coding sections 24 as terminating in 25 straight edges in-line with rays extending radially from the center of timing wheel 20.
Coding sections 24 may also be arcuate sections that end in concave edges similar to the concave edges of gaps 134 and gaps 144. Coding sections 24 are shown as dividing inner ring 27 of timing wheel 20 into eighths. However, coding sections 24 may be designed to = divide inner ring 27 into half, quarter, sixteenths, or any other 1/2n fraction.
=
30 In the illustrated embodiment of FIG. 1, encoding wheel 30 includes gear 31, which includes teeth 32 and pinion 35, which includes teeth 36. Encoding wheel 30 has an inner ring 37, which contains coding section 34, and an outer ring 39, which contains . coding section 38. Coding sections 34 and 38 extend from the top surface of encoding ' 68483-57D1
- 7 -wheel 30 to the bottom surface of wheel 30. Coding section 38 has a continuous .arcuate shape that= occupies one-half of outer ring 39. Coding section 34 includes two different arcuate sections, section 34a and section 34b, which each occupy one-quarter of the inner ring and are equally spaced from each other. Section 34a begins at the same radial ray as =5 coding section 38. Section 34b begins at the same radial ray where coding section 38 terminates. Coding sections may be asymmetrical, as shown in FIG. 1, or symmetrical, such as the coding sections of FIG. 5. Asymmetrical orientation of the coding sections may facilitate placement of redundant sensors on bottom board 120 in locations that will not be blocked by non-coding section portions of the encoding wheels. =
Encoding wheel 40 includes gear 41, which includes teeth 42, and a pinion, which includes teeth (not shown). The pinion is mounted on the underside of encoding wheel 40 = and is not shown in the Figures. Encoding wheel 40 has an inner ring 47, which contains coding section 44, and an outer ring 49, which contains coding section 48.
Coding =
sections 44 and 48 extend from the top surface of encoding wheel 40 to the bottom surface of wheel 40. Coding section 48 includes a continuous arcuate section that occupies one-half of outer ring 49. Coding section 44 is divided into two arcuate sections, section 44a and section 44b, each of which occupy one-quarter of the inner ring and are equally spaced from each other. Section 44a begins at the same radial ray as coding section 48.
Section 44b begins at the same radial ray where section 38 terminates.
In the present embodiment, encoding wheels 50, 70, 90, and 110 are identical to = encoding wheel 30, and encoding wheels 60, 80, and 100 are identical to encoding wheel 40. However, it is not necessary that any of the encoding wheels be identical to any other encoding wheel. When the terms "inner ring" or "inner rings" are used, reference is made to the inner rings 37 and 47 of encoding wheels 30 and 40, as well as to the corresponding inner rings of each of the encoding wheels 50 through 110. Only the inner rings of timing wheel 20 and encoding wheels 30 and 40 are actually numbered in FIG. 1. When the terms "outer ring" or "outer rings" are used, reference is =
made to the outer rings 39 and 49 of encoding wheels 30 and 40, as well as to the corresponding outer rings of each of the encoding wheels 50 through 110. Only the = 30 outer rings of encoding wheels 30 and 40 are actually numbered in FIG. 1. When the =
terms "coding section" or "coding sections" are used, reference is made to the coding sections 24, 34, 38, 44 and 48 of the timing wheel 20 and encoding wheels 30 and 40, as well as to the corresponding coding sections of each of the encoding wheels 50 =
= through 110. Only the coding sections of timing wheel 20 and encoding wheels 30 =
and 40 are actually numbered in FIG. 1. Additionally, timing =

. 68483-57D1
- 8 -marks 28 may be viewed as "coding sections." The data generated by timing marks 28 may be used for both position and/or speed determination. Likewise, the data generated by the other coding sections may be used for both position and/or speed determination.
= Gear 11 of input wheel 10 meshes with pinion 25 of timing wheel 20. Gear 21 of timing wheel 20 meshes with gear 31 of encoding wheel 30. Pinion 35 of encoding wheel 30 meshes with gear 41 of encoding wheel 40. A pinion of encoding wheel 40 meshes = = with a first intermediate pinion. The first intermediate pinion meshes with a gear of encoding wheel 50. A pinion of encoding wheel 50 meshes with a gear of encoding wheel 60. A pinion of encoding wheel 60 meshes with a second intermediate pinion 180. Second intermediate pinion 180 meshes with a gear of encoding wheel 70. A pinion of encoding wheel 70 meshes with = a gear of encoding wheel 80. A pinion of encoding wheel 80 meshes with a third intermediate pinion. Third intermediate pinion meshes with a gear of encoding wheel 90. A
pinion of encoding wheel 90 meshes with a gear of encoding wheel 100. A pinion of encoding wheel 100 = meshes with a fourth intermediate pinion. The fourth intermediate pinion meshes with a gear of encoding wheel 110.
As can be seen in FIG. 3, the gears of input wheel 10 and encoding wheels 40, 60, = 80, and 100 are in the same plane as the pinions of timing wheel 20 and encoding wheels 30, 50, 70, 90, and 110. The pinions of encoding wheels 40, 60, 80, and 100 are in the same plane as the gears of timing wheel 20 and encoding wheels 30, 50, 70, 90, and 110.
Light splashguards (not illustrated) may protrude from bottom mounting rack arid top mounting rack 140. The splashguard is disposed in partial or complete concentric = ring in between the inner and outer rings. For example, with encoding wheel 30, the splashguard is disposed between inner ring 37 and outer ring 39. The splashguard can be = designed to have varying heights depending upon the distance between the bottom surface of the tinting wheel 20 and encoding wheels 30 through 110, on the one hand, and the bottom mounting rack 130. The splashguard provides a light barrier between sensors 160.
= = The splashguard may include concentric rings built into the bottom_mounting rack 130, built into the ericoding wheels and timing wheel 20, or built into bottom board 120 and top board 170. Alternatively, barriers could be formed around the sensors 160 individually, or around the detectors 162 and the emitters 164. The splashguards may be concentric rings = of ridges, walls, or any other structure capable of preventing.crosstalk between different sensors 160.
=

WO 2007/123533=
- 9 -The meshing of input wheel 10, timing wheel 20, and encoding wheels 30 through 110 is illustrated in the FIGS. .1-4 as being in a serpentine configuration.
However, that configuration may be varied to meet different encoder designs. For example, when it is desirable to shape rotary encoder 1 as a circle, then the wheels may be arranged in a spiral configuration. Various shapes of rotary encoder 1 and numerous configurations of the wheels are possible. FIG. 5 illustrates an alternatively U-shaped configuration of the wheels within a similar rotary encoder shape.
Rotary encoder 1 may also be designed in a tiered structure. Input wheel 10, timing wheel 20, and encoding wheels 30 through 110 are shown in FIGS 1-4 as being disposed in a single level. Alternatively, rotary encoder 1 may be designed to include wheels on multiple levels. In FIG. 1, each wheel is uniquely secured to the bottom mounting rack 130. However, multiple wheels could be mounted onto a single axle. In one embodiment, encoding wheels 60 and 70, encoding wheels 50 and 80, encoding wheels 40 and 90, and encoding wheels 30 and 100, respectively, could be disposed on the same axle. Timing wheel 20 and encoding wheel 110 could be disposed on the same axle.
For an even narrower rotary encoder, wheels 40, 50, 80, and 90 could be disposed on the same axle and encoding wheels 30, 60, 70, 100, and 110 could be disposed on the same axle. It is understood that a number of configurations and combinations are possible.
Input wheel 10, timing wheel 20, and encoding wheels 30 through 110 are shown as spur gears. However, the wheels may also be worm gears, bevel gears, herringbone, hypoid, annular, rack and pinion, and helical gears. Rotary encoder 1 illustrates an embodiment where the encoding wheels have a fixed rotation. Alternatively, a rack and pinion system could be implemented where timing wheel 20 and encoding wheels through 110 do not have a fixed rotation.
Referring to the particular embodiment shown in FIGS. 1-4, the inner and outer rings of different encoding wheels are positioned at the same distance from the center of the wheels. For example, inner ring 37 and coding section 34 are the same distance from the center of wheel 30 as inner ring 47 and coding section 44 are from the center of wheel 40, even though wheel 40 has a larger diameter. Therefore, the number of teeth 42 and teeth 36 can determine the speed reduction of wheel 40 from wheel 30. The same applies for the other wheels. However, it is not necessary that the coding sections of the different encoding wheels be equally radially located.

WO 2007/123533 =PCT/US2006/015416
- 10 -The speed of input wheel 10 is determined by the speed of the rotary device to be monitored. For example, in the present embodiment, timing wheel 20 turns approximately 1.34 times faster than input wheel 10. Encoding wheel 30 turns at the same speed as timing wheel 20. Encoding wheel 40 turns at a quarter the speed of encoding wheel 30.
Encoding wheel 50 turns at a quarter of the speed of encoding wheel 40, which turns at a sixteenth of the speed of encoding wheel 30.= The same can apply to the other encoding wheels such that encoding wheel 110 turns at a quarter of the speed of encoding wheel 100, which turns at 1/65,536th of the speed of encoding wheel 30. In some scenarios, encoding wheel 30 will rotate, but not enough to cause rotation of encoding wheel 110. In alternative embodiments, additional encoding wheels can be added to rotary encoder 1. The speed of the additional encoding wheels may be calculated as 1/4n of encoding wheel 30 (counting encoding wheel 30 as n=0, encoding wheel 40 as n=1, . . .
encoding wheel 110 as n=8, etc.). Particular embodiments of the invention may include one encoding wheel with a small number of bits for the highest speed wheel, but allow increasing higher numbers of bits per wheel as the relative encoding wheel speed decreases as the wheel train grows.
There may be situations where it is desirable to vary the number of teeth from wheel to wheel. For example, where encoding wheels 40 and 60 do not have the same number of teeth. Additionally, in conjunction with varying the number of teeth on a gear, = 20 the radial position of a coding section can be varied relative to another wheel to create a speed reduction or increase.
The wheels may be made of any number of materials. A few representative examples are steels, stainless steels, aluminum, other metals, ceramics, plastics, glass, and plastics capped with metal. Any material known in the art for gears may be used. All of the wheels may be made of the same composition, or compositions may vary between the wheels.
As shown with reference to encoding wheel 80, sensor 160 includes detectors and emitters 164. Detectors 162 and emitters 164 are built into bottom board 120.
Gaps 134 are built into bottom mounting rack 130 to prevent obscuring detectors 162 and emitters 164. With regard to emitters 164 and detectors 162, these can be fabricated within the bottom board 120 via semiconductor manufacturing techniques, mounting the emitters 164 and detectors 162 on the bottom board 120, and inserting the emitters 164 and detectors 162 through holes in bottom board 120. It is understood that any other =

approach for securing emitters 164 and detectors 162 to bottom board 120 is also encompassed by the present invention. Gaps 144 ( FIG. 4) are built into top mounting rack 140 and have the same function gaps 134. Although not shown, rotary encoder 1 also can include sensors, including emitters and detectors, which are built into the bottom surface of top board 170. For each detector 162 built into bottohi board 120, an emitter can be disposed directly overhead. For each emitter 164 built into bottom board 120, a detector can be placed directly overhead.
Gaps 144 in top mounting rack 140, shown in FIG. 4, prevent any blocking of emitters and detectors by the top mounting rack 140. The sensors, detectors, and emitters located on the.bottom surface of top board 170 are typically identical to sensors 160, emitters 164, and detectors 162 that are located directly overhead. As such, for ease of discussion herein, any corresponding components located on top board 170 that are substantially similar from components located on bottom board 120, although not shown in the figures, will be referred to herein as 'top board"
components (e.g., top board sensors, top board emitters, top board detectors, etc.).
The illustrated embodiment includes sensors 160, 161, 163, and 165. Sensors correspond to the inner rings of timing wheel 20 and encoding wheels 30 through 110. Sensors 163 and 165 correspond to the outer rings of the encoding wheels 30 through 110. Corresponding top board sensoreare placed directly above sensors 160, 161, 163 and 165, respectively. Sensors 163 and 165 may be placed approximately 90 radial degrees apart. In encoding wheels 30, 60, 70, 100, and 110, sensor 161 may bisects the angle between sensors 163 and 165. In encoding wheels 40, 50, 80, and 90, sensors 161 and 163 may be approximately 45 radial degrees apart, and sensors 161 and 165 may be approximately 135 radial degrees apart. Sensors 161, 163, 165, and 169 are only numbered with respect to encoding wheels 80 and 100 and timing wheel 20.
Each sensor 161, 163, and 165 includes an emitter 164 and detector 162. Each top board sensor includes a top board emitter and a top board detector.
Sensor 160 and a corresponding top board sensor, emitter 164 and a corresponding top board emitter, and detector 162 and a corresponding top board detector, may be described as a set of sensor pairs or as a double set of sensors. The same applies to the specific forms of sensors 160 (i.e., sensors 161, 163, 165, 169, and corresponding top board sensors).
Instead of viewing emitter 164 and detector 162 as one pair, and a corresponding top board emitter and top board detector as an opposing second pair, the emitter 164 and a corresponding top board detector may be viewed as one pair, and a top board emitter and the detector 162 may be viewed as a parallel second pair. The second pair, however viewed, can provide duplicate sensing. This redundancy enables rotary encoder 1 to be highly fault tolerant.
For example, if one such pair should fail, rotary encoder 1 would stiH be operational. The encoder may also operate with a variety of sensors activated, depending upon which, if any, sensor or sensor components may have failed.
In a particular embodiment, the location of an emitter 164 and detector 162 of a sensor 160 is that location that gives the sensor 160 (and a corresponding top board sensor) the widest and most symmetric possible placement tolerance. The locations at which the code value changes for a sensor leaves as much room in the clockwise (CVV) as in the counter-dock wise (CCVV) direction before the bit value will change again. This approach is illustrated in FIG 1. In a particular embodiment, this results in asymmetrical sensor placements with corresponding asymmetry in code change points.
In an alternative embodiment, an emitter 164 may be offset with respect to a detector 162. The resulling first and offset decoded values could then be compared to ensure that the arithmetic difference between the two values is the same. If the arithmetic difference is not identical, then the problem could be located by the self-test discussed below.
In either embodiment, as long as the placement is within the bounds of the v-bit anti-backlash logic and within the bounds of the allowable mechanical tolerances of the components, the resuking codes will be identical.
In an alternative embodiment, sensors 161, 163, and 165 could each have a single emitter and the corresponding top board sensors could each have a corresponding single detector without any redundancy.
The various sensors are associated with timing marks 28. Sensor 169, shown in FIG.
1, includes at least one emitter 164 and at least one detector 162. A
corresponding top board sensor located on top board 170 is placed directly above sensor 169 and includes at least one top board emitter and at least one top board detector.
In a particular embodiment, the corresponding sensors located on the bottom 120 and top board 170, respectively can be activated one wheel at a time.
Alternatively, all or some of the wheels can be activated at one time. The bottom of each wheel is typically activated first, followed by the top side of each wheel. In a particular embodiment, individual emitters of sensors 160 and corresponding top board sensor may be activated. The various sensors 169 and corresponding top board sensors for monitoring timing marks 28 are activated continuously, as discussed in more detail below. With regard to encoding wheels 30 through 110, the emitters 164 of sensors 161, -1'3-163, and 165 can be activated. If rotary encoder 1 is in the position shown in FIG. 1, then the top board detectors of the top board sensors each receive a signal from the corresponding emitters 164. However, rotary encoder 1 could be positioned such that only the top board detectors of the top board sensors, or none of these sensors, receive a signal. No matter the position rotary encoder 1, detectors 162 will receive a signal when emitters 164 are activated. In a particular embodiment, emitters 164 and detectors 162 are capable of direct communication both vertically and side-to-side. Therefore, when three emitters 164 are activated, three detectors 162 shall receive a signal and three top board detectors may receive a signal if an opening in the encoder wheel (L e., and encoding section) is located between an emitter 164 and a top board detector. Therefore, 6-bits of data are generated.
In the same fashion, when the top board emitters located on top board 170 are activated, 6-bits of data are generated. The top board detectors of the same sensors are activated, as well as, detectors 162 of sensors 161, 163, and 165 on the bottom side of rotary encoder 1. Sensors 161, 163, and 165 of encoding wheel 30 may be activated.
Then, the top board sensors of encoding wheel 30 may be activated. This pattem of alternate sensor activation can continue relative to encoding wheels 40 through 110.
With regards to timing wheel 20, sensors 161 and a corresponding top board sensor can be activated as described with respect to encoding wheels 30 through 110 above.
In a particular embodiment, the emitters of sensors 169 and a corresponding top board sensor are continuously activated. In the embodiment shown in FIG. 2, the top board sensor includes two emitters and sensor 169 includes two detectors. In a particular embodiment, all of the other sensors each have both an emitter and a detector. In a particular embodiment, only one emitter of sensor 169 is activated at a time.
First detector 162a and second detector 162b can be positioned so that when a timing mark 28 is present over first detector 162a, a timing mark 28 is not present over second detector 162b. This is illustrated in FIG. 1, where detector 162a and optional emitter 164 are visible, but detector 162b is not visible.
Aftematively, sensors 169 and a corresponding top board sensor could each have both an emitter and detector, and the direct side-to-side transmission feature could be disabled. That feature could be disabled by using a different type of sensor or by placing a barrier around the edges of the detector 162 and a corresponding top board detector and/or emitter 164 and a corresponding top board emitter.

=

=
Sensor 169 and a corresponding top board sensor may also include other emitters and =
=
detectors. For example, FIG. 2 illustrates an emitter 164 in sensor 169 that would correspond to a top board detector in a top board sensor. Emitter 164 may be placed at a sufficient distance away from first detector 162a such that first detector 162a doet not receive a light signal when emitter 164 is activated.
In an altemative embodiment, emitters 164, a first top board emitter, and second top board emitter may be alternately activated.
Sensors 160 and Its corresponding top board sensor provide three levels of redundancy. First, if any one of emitters 164, and detectors 162 should fail, sensors 160 and correeponding top board components will still be operational. For example, should emitter 164 of sensor 161 of encoding wheel 80 fail, then sensor 161 will still be operational because a top board emitter of a corresponding top board sensor is still capable of communicating with detector 162 of sensor 161.
=
= The second level of redundancy comes from a built-in-self-test function.
Placing a .
detector 162 adjacent to an emitter 164 provides a self-test. Even if there is not a 'clear light path because of the position of an encoding wheel, detector 162 will receive a signal when emitter 164 is activated. If detector 162 has not received a signal, then either or both emitter 164 and detector 162 (or the accompanying circuitry and processing) are malfunctioning. Once an encoding wheel has moved to a position where there is a clear light path, then if detector 162 is not receiving a signal, it is likely emitter 164 is malfunctioning. The viability of the corresponding top board detector and emitter 164 can be determined by activating the corresponding top board emitter. Similar logic applies if detector 164, an adjacent top board detector, or a corresponding top board emitter starts malfunctioning, instead of emitter 164.
Processor 15Q will take into account any failed components, such as an emitter 164 or a detector 162, when determining what position is identified by sensors 160 and corresponding top board sensors. For example, if detector 162 of sensor 163 adjacent to encoding wheel 80 should fail, then processor 150 can compensate for the fact that sensors 163 will not sense a blocked light path at the same point in the rotation of encoding wheel 80. Alternatively, using the same example, if the detector 162 is not receiving a signal, detector 162 can be tested by adjacent emitter 164 to determine if = the detector 162 is operational. A top board emitter may be tested by an adjacent top board detector to determine whether the top board emitter is the source of the problem. If the adjacent top board emitter and detector 162 are operational and the top board emitter is transmitting, but detector 162 is not receiving the transmission, then the outer ring of encoding wheel 80 is blocking the light path between the top board emitter and detector 162. Also, if detector 162 has failed, then processor 150 may evaluate the positions of encoding wheels 30 through 70, = 68483-57D1 and 90 through 110, to determine whether outer ring 89 is in fact blocking the malfunctioning detector 162.
A third redundancy may be provided by any of the sensors 160 and corresponding top board sensors by utilizing Viterbi decoding. For example, either the output of sensor 163 or sensor 165 may be utilized to generate a Viterbi bit (v-bit).
If a sensor 160 is not operated upon to produce a v-bit, then the sensor 160 is utilized to produce a data-bit. In a particular embodiment, sensors 165 are utilized to generate the v-bit. The Viterbi decoding algorithm is a forward error correction technique. The v-bit provides redundant data that may be used to precisely decode the positions of the other 2-bits. In this embodiment, sensors 161 can provide 1-bit of data and sensors 163 can provide the second-bit of data. By using a v-bit, the angular offset of signals generated by sensors 161 and sensors 163 can be as much as +I- 22.5 degrees from the optimal position without causing a coding error.
Therefore, even if a signal is received with an offset, the true position of the wheel will still be indicated. The v-bit on one encoding wheel also clarifies the true position of an adjacent encoding wheel. For example, the v-bit of encoding wheel 30 helps clarify the true position of encoding wheel 40.
Viterbi decoding is not the only decoding algorithm that encoding wheels 30 through 110 may be designed to implement. Other suitable algorithms for use with the present invention include, for example, sequential decoding, Reed-Solomon coding, and turbo coding.
Another alternative to Viterbi decoding is gear counting.
In rotary encoder 1, sensors 165 that generate the v-bits are offset from sensors 161 and 163. Alternatively, sensor 165 can be arranged inline with a data-bit producing sensor 163 or 161. FIG. 5 illustrates an embodiment of an absolute encoder (rotary encoder 2) where the v-bit sensor 2165 is positioned inline with a data-bit sensor 2161 and is offset from a data-bit sensor 2163. As seen with reference to timing wheel 2020, the v-bit sensor 2165 may also be positioned to sense coding section 2034 on the inner ring 2027. V-bit sensors 2165 may be positioned to sense the inner rings of any or all of encoding wheels 2030 through 2110.
Therefore, sensors 161 or sensors 2161 could also be a v-bit.
Rotary encoder 2, shown in FIG. 5, operates similarly to rotary encoder 1, except for a few differences. Input wheel 2010 has a different number of teeth. Coding section 2024 divides inner ring 2027 in half rather than in quarters.
Additionally, a = - 16 -sensor 2165 is included in the same concentric ring as sensor 2161. Timing wheel 2020 includes a pinion 2025, on either side of which is an intermediate pinion 2180.
Encoding wheel 2030 includes gear 2031, having teeth, and pinion 2035, having teeth. Encoding wheel 2030 has an inner ring 2037, which contains coding 5 section 2034, and an outer ring 2039, which contains coding section 2038.
Coding sections 2034 and 2038 extend from the top surface of encoding wheel 2030 to the bottom surface of wheel 2030. Coding section 2038 is shown as a continuous arcuate section that = occupies one-half of outer ring 2039. Coding section 2034 includes two different arcuate sections, section 2034a and section 2034b, each of which are shown occupying one-1 0 quarter of the inner ring and being equally spaced from each other. The middle of = = section 2034a is inline with the middle of coding section 2038. Section 2034b occupies the space directly opposite section 2034a.
Encoding wheel 2040 includes gear 2041, having teeth, and pinion 2045, 'having teeth'. Pinion 2045 is mounted on the underside of encoding wheel 2040. In 15 the embodiment of FIG. 5, pinion 2045 is visible through encoding wheel 2040. Encoding = wheel 2040 has coding sections 2044 and 2048, similar to encoding wheel 2030. For purposes of description, only the coding sections of bluing wheel 2020 and encoding wheels 2030 and 2040 are labeled in FIG. 5.
= = Encoding wheels 2050, 2070, 2090, and 2110 can be identical to encoding 20 wheel 2030. Encoding wheels 2060, 2080, and 2100 can be identical to encoding =
wheel 2040. The terms "inner ring," "inner rings," "outer ring,"
"outer rings," "coding =
= ' section," and "coding sections" are used to describe rotary encoder 2 in the same fashion =
as used with reference to rotary encoder 1.
Input wheel 2010 meshes with intermediate pinion 2180, which in turn meshes 25 with pinion 2025 of timing wheel 2020. Pinion 2025 meshes with intermediate = pinion 2180, which in turn meshes with gear 2031 of encoding wheel 2030.
Pinion 2035 of encoding wheel 30 meshes with gear 2041 of encoding wheel 2040, and so on through encoding =wheel 2110. Encoding wheels 2030 through 2110 mesh in a similar manner as = encoding wheels 30 through 110.
= 30 In the present embodiment, the teeth of input wheel 2010 and the gears of encoding wheels 2030, 2050, 2070, 2090, and 2110 can be configured to lie in the same . plane as the pinions of timing wheel 2020 and encoding wheels 2040, 2060, 2080, and =

.
2100. The pinions of encoding wheels 2030, 2050, 2070, 2090, and 2110 can be disposed in the same plane as the gears of encoding wheels 2040, 2060, 2080, and 2100.
= Referring to rotary encoder 1, sensors 160 and corresponding top board sensors provide an indication of the absolute position of the input shaft that tums input wheel 10. As illustrated, rotary encoder 1 is an 18-bit absolute encoder. Therefore, rotary encoder '1 is capable of indicating 262,144 positions. Of course, not all of the positions need to be used. Rotary encoder 1 can be scaled up or down by adding or deleting wheels and sensors to or from the end of the train.
Three sensors 160 (and corresponding top board sensors) may be supplied per wheel. Alternatively, only one or two sensors.sets 160 may be provided per wheel or at the last wheel in the chain, so long as the sensors are positioned to act as the next higher order bits in the coded value. Rotary encoder 1 may also only have a single encoding wheel that serves both as the source for speed and position data. Rotary encoder 1 may also only have a single position encoding wheel and a separate speed sensing mechanism, such as a timing wheel. Additionally, each of the encoding wheels may have any number of coding sections and corresponding sensors 160. Rotary encoder 1 may be any = 15 encoder design that utilizes sensors 160.
As discussed above, sensors 160 and the corresponding top board sensors are able to communicate when a coding section is disposed between the sensors, thereby providing a dear = light path. In sensors 160, detectors 162 output a logic 0 value when a signal is received and output a logic 1 value when a signal is not received. Similarly, in the top board sensors, the top board detectors output a logic 0 value when a signal is received and output a logic 1 value when a signal is not received. Therefore, when a coding section is located between sensor 160 and a corresponding top board sensor, when the emitter 164 is activated, processor 150 receives two individual logic inputs: One input from the top board detector, which senses position, and one input from detector 162, which conducts a setf-test Once emitter 164 is deactivated and the top board emitter Is activated, then processor 150 receives 2 individual logic inputs: one logic input from detector 162 sensing position and a logic input from the corresponding top board detector conducting a self-test.
If an inner or outer ring blocks communication between sensor 160 and the corresponding top board sensor, then processor 150 will receive a logic 0 input representing an bit value in the position code and a logic 1 input, representing a success test of an emitter associated cwith this bit position. For example, when emitter 164 is activated, the top board detector will be blocked from receiving a signal and will transmit logic 1. Detector 162 will still receive a signal by direct side-to-side transmission and, therefore, transmit logic 0 to processor 150.

- 1.8 -When processor 150 receives logic 0 signals from a top board detector and an opposing emitter 164 is activated, then processor 150 recognizes that a coding section must be present. The same result is achieved when a top board emitter is activated and a detector 162 sends logic 0 signals. The=present embodiment uses 0 and logic 0 signals; however, 0 and 5 volts, 1 and 5 volts, or any other common sensor signals or combinations thereof may be used.
Additionally, detector 162 and the corresponding top board detector may be designed such that logic 0 is generated whenever a light signal is not received and 0 volts are generated whenever a light signal is received. In such an embodiment, processor 150 would receive an indication of a coding section between sensors 160 and the corresponding top board sensor when 0 volts are received from the top board detector and emitter 164 is activated.
In a particular embodiment, the self-test of an adjacent detector 162 by an emitter 164 is conducted by direct transmission from the side of emitter 164 to detector 162. For example, detector 162 can be located 0.5 mm from emitter 164. Alternatively, sensors incapable of direct side-to-side transmission may be used. In such an embodiment, a self-test can be conducted via reflectance. For example, when a coding section is present between sensor 160 and the corresponding top board sensor, and emitter 164 is activated, only the top board detector would receive a signal. When the top board emitter is activated, only detector 162 would receive the signal. This would allow both emitter 164 = and the top board emitter to be activated at the same time. When a coding section is not present, such that light would be blocked between sensor 160 and the corresponding top board sensor, detector 162 and the corresponding top board detector can be adapted to receive reflected light signals. In that scenario, when emitter 164 is activated, light can be reflected off the bottom surface of an inner or outer ring. Detector 162 can receive a portion of the reflected light. Detector 162 can be designed to transmit logic 0 if any light is received. Detector 162 can be designed to transmit a voltage comparable to the intensity of the light received. Therefore, when a coding section is present, then detector 162 can receive a relatively high intensity direct light signal from the top board emitter located directly above detector 162. VVhen a coding section is not present, then detector 162 can receive a relatively low intensity reflected light signal from adjacent emitter 164.
In another embodiment, coding sections may be painted on the wheels, rather than relying on cut-out sections of the wheels. In such an embodiment, no communication occurs between sensor 160 and the corresponding top board sensor. Instead, detector 162 receives reflected light from emitter 164. The same applies to the top board detector and top board emitter.
For example, if the wheels are non-reflective (e.g., painted black) and the coding sections are reflective (e.g., painted white), or vice versa, then the top board detector will produce one voltage when light reflects off of the coding sections and a different voltage when light reflects off of a non-coding section. Additionally, sensor 160 and the top board sensor may be located on the same side of an encoding wheel.
Sensor 160 and the corresponding top board sensor have been described with respect to optical sensors. However, it is understood that numerous other sensors may be used with the invention. Without limitation, other suitable examples of sensors include magnetic sensors, Hall effect sensors, and electrical contacts. Any type of sensing known in the art for incremental and absolute encoders may be used with the present invention. Coding sections may also include any material or configuration that is compatible with the selected sensor.
Processor 150 may also be designed to generate alarms. If a detector 162, emitter 164, detector 162a, detector 162b, or corresponding top board components should fail, processor 150 can provide set off an alarm. Varying alarms can be provided for different levels of failure priority. In extreme situations, processor 150 can be designed to force the shutdown of the valve actuator or other rotary equipment monitored by rotary encoder 1. Alarms may be expressed in numerous ways, such as, for example, visual alarms (such as a flashing light or a LCD message on the control panel of a valve actuator or at a control station) audible alarms, or written warnings.
In sensor 160 and the corresponding top board sensor, if emitter 164, the corresponding top board emitter, detector 162, and the corresponding top board detector are not functioning properly, then the data-bit or v-bit generated will be declared invalid. Invalid bit values may be judged for their impact on the performance of the valve actuator or other rotary equipment monitored by rotary encoder 1 based upon the decoded value of the failed bit and the stroke time. Invalid bit values may also be evaluated based upon the number of bits that have failed.
=The stroke time for a valve actuator is the time it takes for a valve to go from an open position to a closed position, or vice-versa. The stroke time for other rotary equipment is the time it takes for the rotary equipment to go from a first position to a second position. For example, for an industrial reel, the stroke time is the time it takes for the reel to go from fully wound to fully unwound. When stroke time is large, a single bit only corresponds to a small percentage of the overall stroke time. Therefore, a single bit failure is not likely critical and providing an alarm or warning, short of forcing a machine shutdown, may be sufficient for such an application. If the stroke time is short, a single bit , 68483-57D1 failure may indicate a large deviation between actual position and the position indicated by the rotary encoder 1. Therefore, for short stroke times, a single bit failure may be sufficient to force the shutdown of the rotary equipment in addition to providing an alarm or warning. The importance of a bit failure can depend upon what portion of the stroke time may be represented by the bit failure for a given application. In a particular embodiment, the user may be able to configure the allowable threshold for loss of accuracy, below which the BIST
feature would merely provide an alarm or waming, but beyond which the BIST feature would force a safe machine shutdown and also provide an alarm or warning.
For rotary equipment that does not have a predetermined first and second position, the stroke time may not be fixed. Examples of such rotary equipment include the flywheel of an engine or the main shaft of a turbine. A rotary encoder of the present invention may be used with any type of rotary equipment as well.
As mentioned previously, if both detector 162 and the top board detector of sensor 160 and the corresponding top board sensor are verified as operational by self-tests, but detector 162 is not receiving a signal whereas the top board detector is receiving a signal, then == a check of the positions of the other wheels can be used to confirm the position of the wheel in question. In that scenario, the data-bits generated by sensor 160 and the top board sensor are in fact valid, but half of sensors 160 and the top board sensors are blocked by an inner or outer ring. The viterbi logic operations can yield the identical position code from either the primary or the redundant sensor set (i.e., emitter 164 or detector 162). It is understood that the terms "primary" and "secondary" or "redundant" are arbitrary.
Alternatively, sensor 160 and the top board sensor may be fully functioning, but a different component of rotary encoder 1 has failed. For example, if one of the teeth on an=
encoding wheel shears away, the current position indicated by sensor 160 and the top board sensor may not match the position anticipated based upon previous data provided by sensor 160 and the top board sensor. Therefore, while sensor 160 and the top board sensor are working properly, they are not indicating a correct position. Processor 150 or some other processor may provide correction for this error and generate an alarm. For example, if encoding wheel 60 should lose a tooth 62 from gear 61, encoding wheel 60 may begin to miss positions during each revolution. Therefore, the valve position indicated by all of the encoding wheels will no longer correspond precisely to valve position. It will appear as if the valve has jumped to another position. In one embodiment, processor 150 can search for discontinuities in the valve =

position indicated by the positions of the encoding wheels. Alternatively or additionally, timing wheel 20 may be utilized as an incremental encoder to verify the position of the encoding wheels.
Processor 150 (or any other suitable processor) can then recalculate valve position, taking into account the error introduced by encoding wheel 60. Processor 150 could also generate an alarm and/or instigate a safe-shutdown if the failure is of a serious magnitude.
Any failure of rotary encoder 1 that results in a discontinuous indication of valve position may be identified by processor 150, or by any other processor in communication with processor 150.
Sensor 160 and the corresponding top board sensor have been described herein as containing both an emitter and a detector, respectively. Alternatively, sensor 160 can be configured to only have an emitter and the top board sensor can be configured to only have a detector. In other embodiments, the top board sensor may not be present in rotary encoder 1. FIG.
2 shows sensor 160 as having multiple emitters and detectors. Sensor 169 includes an emitter 164, a first detector 162a, and a second detector 162b. Although .not shown, the top board sensor may include a corresponding top board detector, a first top board emitter, and a second top board emitter. Second detector 162b and the second top board emitter may be used to verify the data from first detector 162a and the first top board emitter, or to effectively double the data output generated by sensor 169 and the corresponding top board sensor. Sensors 160 may include any number of emitters, detectors, and/or both. Sensors 160 and the top board sensors may be utilized With any rotary encoder to provide fault tolerant speed and position data.
FIGS. 1-5 illustrate an absolute encoder where each of the encoding wheels has only an inner ring and an outer ring. However, each of the encoding wheels may have any number rings, without limitation. For example, each encoding wheel could have 3, 4, 5, or 6 rings. At least one sensor 160 and at least one top board sensor could be provided for each ring.
Therefore, the number of rings would determine the number of data-bits that could be generated per encoding wheel.
The number of rings per encoding wheel is governed by the size of the encoding wheel and the width of the coding sections needed to allow sensor 160 and the corresponding top board sensor to communicate with each other. Additionally, a sufficient gap between rings should be provided to limit the crosstalk between sensors on the same side.
For example, a gap is provided to keep a detector 162 of a sensor 161 from registering a signal from an emitter 164 of a sensor 163. However, other techniques other than gaps, such as use of the 68.483-5701 splashguard discussed above, may be used to limit crosstalk and allow for smaller encoding wheel diameters.
Any number of encoding wheels may be added to the encoders of the present invention. For example, rotary encoder 1 can provide position data for a common speed valve actuator with a stroke time of an hour. Adding more encoding wheels would provide more data-bits and increase the stroke time that may be handled by rotary encoder 1. Of course, rotary encoder 1 may also be used with valve actuators and other rotary equipment that has a stroke time of less than an hour. Rotary encoder 1 may also have less encoding wheels than those shown in FIGS. 14.
Additionally, the rotary encoder 1 may be a single wheel absolute encoder or single wheel incremental encoder. In those embodiments, sensor 160 and the corresponding top board sensor may indude mukiple emitters and detectors, thereby providing built-in-self-test and fault tolerant operation. Therefore, a set of sensors 160 and corresponding top board sensors may be monitoring multiple coding sections, such as timing marks 28 or coding section 34, or a set of sensors 160 and corresponding top board sensors may be monitoring a single coding section, such as coding section 38.
Additionally, timing wheel 20 may be used as an incremental encoder in conjunction with the absolute encoding functions of the remainder of rotary encoder 1. For example, a particular incremental encoder embodiment may be scaled such that the incremental pulse rate exactly matches the count rate of the absolute portion of the encoder. This way, the incremental encoder could be used to obtain position data while the actuator is operating. When the motor stops, the final incremental count, added to the absolute position code at the start of motoring, should exactly match the new absolute coded position.
If the position indicated by timing wheel 20 (also functioning as an incremental encoder) differs from the position indicated by the encoding wheels, then a self-test of sensor 160 and the corresponding top board sensor may be performed. If a self-test confirms that all sensors 160 and the corresponding top board sensors are functioning properly, then it is likely that an encoding wheel is not tracking properly. Therefore, alarms or wamings may be generated.
In a particular embodiment, in that scenario, a rotary encoder may rely on the incremental encoder until the rotary encoder is repaired.
Rotary encoders 1 and 2 are designed to use gray coding; however, binary coding may be used as well. The use of v-bits and duplicate sensors provides that rotary =
encoders 1 and 2 will never differ by more than one Least Significant Bit [LSB], thereby increasing the user's confidence in the reliability of the encoder values.
The present invention may be used with any number of rotary devices that rotate between two positions, such as, for example, a valve actuator, door opener, or a reel. In a typical valve actuator, an electric motor may drive the valve via a set of gears. The output shaft of the motor may be directly coupled to a worm. The worm may drive a worm-gear assembly that, in tum, drives a drive sleeve or shaft, which in tum raises and lowers or turns a valve stem.
A second shaft may also be driven by the worm-gear assembly in order to drive input wheel 10 of rotary encoder 1. Alternatively, the valve actuator may use a different gear set or the electric motor output shaft may be directly coupled to the valve stem without an intermediate gear set = There are numerous ways known in the art of connecting rotary position encoders to rotating devices that can be used with the present invention but which will not be discussed herein. In a preferred embodiment, rotary encoders 1 and 2 may be used to perform diagnostics on rotary equipment, such as valve actuators. With respect to the diagnostic function, rotary encoder 1 will be used as an illustrative example. However, other encoders of the present invention, such as rotary encoder 2, could also be used. Additionally, a timing wheel 20 could be incorporated into any rotary encoder. Timing wheel 20 could be the encoding wheel of an incremental encoder or of i single-wheel absolute encoder. For example, timing marks 28 may also be used for position encoding of an absolute encoder. Altematively, as illustrated in FIG. 1, timing wheel 20 may also include encoding sections separate from timing marks 28. In another embodiment, timing marks 28 may be a part of a larger encoding pattem, such as, for example, the encoding pattem of a single wheel absolute encoder. In a particular embodiment, timing wheel 20 may be an incremental encoder separate from or in conjunction with other encoding wheels. In that embodiment, timing marks 28 not only are used to generate speed data but also generate incremental position data. Timing marks 28, like the coding sections, may take any form or structure necessary to work with sensor 160 and the corresponding top board sensor.
Timing marks 28 may be holes, lines, embedded magnets, engravings, or any other structure known in the art for use with an absolute or incremental encoder.
Timing wheels 20 and 2020 are illustrated with thirty-two timing marks 28 and timing marks 2028 respectively. However, timing wheels 20 and 2020 may have any number of timing marks 28.

- 2.4 -With respect to frequency analysis, a particular embodiment of performing frequency analysis (also referred to herein as frequency domain analysis) on speed data is initially discussed below, followed by discussion of non-speed data embodiments.
Additionally, for purposes of illustration, the timing wheel 20 or timing marks 28 of timing wheel 20 are often referred to herein as the source of the speed data. In other embodiments, any type of speed sensor, with or without a rotary position encoder may be used for diagnostics frequency analysis).
Additionally, the discussion regarding frequency analysis of speed data is.equally applicable to other data embodiments. Other data embodiments can include, for example, torque data, position data, thrust data, acoustic noise data, current data, voltage data, motor power data, motor volt-ampere reactives data, and vibration data. Numerous types of data and types of sensors may be utilized in frequency analysis, as are known in the art. The invention covers any type of data that may be generated via sensors and a valve actuator or other rotary equipment.
Although the following discussion involves rotary encoder 1, it is understood that the same discussion applies to rotary encoder 2. Timing marks 28 on timing wheel 20 may be used to generate speed data. Sensor 169 and the corresponding top board sensor can record the length of time each one of the timing marks 28 is presented before the sensors. This dwell time can then be used to precisely determine the speed of rotary devices such as valve actuators. The speed data may be used to determine the speed of an input shaft driving input wheel 10. Often the input shaft will, in tum, be attached to other rotary equipment, such as the worm gear of a valve actuator. Therefore, timing marks 28 may be used to determine the speed of other rotary equipment, such as a worm gear.
In a particular embodiment, timing marks 28 are configured as equally spaced and equally sized holes in timing wheel 20. However, any of the previously discussed coding section embodiments and =sensor embodiments apply as well to the embodiments of timing marks 28 and sensors 169 and the corresponding top board sensor embodiments, respectively.
=
The speed data generated by timing marks 28 may be operated on with a FT to convert the speed data from a time domain to a frequency domain. However, any type of speed sensor may be used to generate the speed data for conversion to frequency data.
=
FT expects signal samples to occur at regularly spaced time intervals.
However, because the dwell time values for the speed signals in this invention may not be constant, a means may be employed to allow the FT to yield useful information.
By choosing a sufficiently large number of data points, the vast majority of which are taken while the machine is operating at steady state, the average dwell time of the large data set may be used as the 'regular' dwell time [td] for each data sample. This 'regular' dwell time can be used to scale the frequency scale of the resulting FT. (fn (Hz) = 1/(td *# samples).
When the frequency data is properly scaled, the data provides an operator with sufficient information to determine variations in speed that could be associated with known rotating speeds of the various components of the drive train, and could indicate existing or looming problems in the drive train of a valve actuator or other rotary equipment. For example, a baseline frequency vs amplitude chart or graph could be created and saved when the equipment is new. Later, new frequency vs amplitude charts or graphs could be created and compared to the saved baseline chart or graph. If a peak corresponding to a operating frequency of a given component should appear at a frequency or amplitude different than that previously measured, then it becomes apparent that the component associated with that frequency is behaving differently than when new, which would usually indicate wear and possible failure or pending failure.
Therefore, the appropriate maintenance can be performed at a convenient time prior to failure of the component. =
Additionally, FT analysis could be scheduled to run automatically in the processor 150, which would be programmed or configured such that a change in the amplitude of a peak beyond a = configured threshold could be used to generate an automatic alarm or warning or force a safe shutdown of the machine. Any methods of properly scaling frequency data, as known in the art, can be used.
Examples of frequency domain analysis are included in the FIGS 6-8. FIG. 6 shows an example of a clean diagnosis in the frequency domain for a valve actuator or a "good"
drivetrain. FIG. 6 illustrates a peak at 45.9 Hz; however, the peak, measuring 0.1% relative to the operating speed of the actuator (magnitude 100% at 26rpm, or 0.43Hz) is not of a sufficient magnitude to warrant concem. FIG. 7 shows an example of a valve actuator generating several deviant signals in the frequency domain or a "bad" drivetrain. The frequency of the deviant signal may be used to identify the drive train component having a problem. In FIG. 7, a worm shaft or worm gear is out of tolerance. For example, the peak at 26.1 Hz indicates a problem.
However, the peaks at 52.5 Hz and 78.6 Hz are harmonics of the 26.1 Hz peak.
Processor 150 or the processor that performs the FT may be designed to automatically generate the appropriate markers for peaks that are significant (e.g., above a certain threshold). For example, the processor may include a program designed to match currently generated peaks with the amplitude and frequency of previously generated peaks. In that embodiment, if the processor is unable to identify a peak, then such failure can serve as a warning to an operator of a potential problem. Altematively, the data in the frequency domain may be.manually correlated with parts of a drive train of the valve actuator.
An operator can be trained to identify and understand the relevance of different peaks. For example, if rotary encoder 1 is present in a valve actuator, then timing wheel 20 and sensor 169 and the corresponding top board sensor may be used to identify the speed of a drive train component.
In a particular embodiment, the input shaft that drives input wheel 10 is, in turn, driven by a worm gear. Therefore, the speed sensor may be used to determine the speed, and hence the frequency, of the worm gear. Then, based upon gear ratios, the frequencies of the other drive train components may be calculated. The component frequencies and any harmonics could then be identified on a graphical representation of the data in the freqUency domain. On the other hand, if a speed sensor is not present in the valve actuator, but actual motor shaft speed is 'known, then that information may be used to generate component frequencies.
Various types of electrical or magnetic measurements of the actual speed of the motor can be employed, thus further enhancing the diagnostic capability of the system as a whole. In most cases, factory =
personnel would perform the above manual identification. Therefore, end-users can be provided with pre-labeled sample frequency domain graphs and correlations.
=
In a particular embodiment, the build information for an actuator (gear ratios, motor speed, teeth per gear, balls per bearing, etc.) may be downloaded for storage in an electronics package of the actuator. M on-board CPU may then refer to the stored information and deduce which part of the drive is causing the variation. A plot of the FT
can be displayed directly on a LCD screen of the actuator, or the data array can be downloaded to an operator's asset management system for analysis or to a service technician's laptop or PDA for transmission to the home office for detailed analysis.
Programming for collecting data and/or performing frequency analysis may be stored in firmware, software, hardware, or any other means known in the art.
For example, frequency analysis programming may be stored in the firmware of a valve actuator.
Additionally, an operator may identify peaks in the frequency domain simply by comparing a current analysis with a previous analysis. The previous analysis may be an analysis conducted at the factory. However, there may be situations where it is desirable = PCT/US2006/015416 I
or necessary to identify peaks in the frequency domain independent of any previous analysis. For example, in the design stage of a new valve actuator, an engineer may want , to perform frequency analysis on a new prototype to ensure that no life-shortening vibrations, resonances and/or harmonics are inherent in the design of the prototype.
$ Alternatively, frequency analysis may be used as a post-assembly pre-shipment inspection tool do determine if some part of the mechanical drive train has been fabricated with a physical defect.
A processor built into the rotary encoder, or built into or associated with the valve actuator or other rotary equipment, can perform the FT. A display, printer, or other output device may be incorporated into the valve actuator for displaying the results in a chart or graphical form. Alternatively, the speed data generated by timing marks 28 can be sent to a remote computer, such as an operator's PC, to perform FT upon the speed data and display it in more user friendly formats, or transmit the data or FT to technicians that may be located on or off site.
Providing more samples can result in finer frequency resolution after application of the FT to the speed data. More samples may be provided by increasing the length of time that samples are taken or by increasing the sampling rate. FIGS. 8 through 15 illustrate graphs generated by data taken at 17 samples per second. FIG. 8 illustrates the frequency analysis resolution of a valve actuator with a total of 128 samples. FIG. 9 illustrates the speed data of FIG. 8 prior to performing a FT on the speed data. FIG. 10 illustrates the frequency analysis resolution of a valve actuator with a total of 256 samples.
FIG. 11 illustrates the speed data of FIG. 10 prior to performing a FT on the speed data. FIG. 12 illustrates the frequency analysis resolution of a valve actuator with a total of 512 samples.
FIG. 13 illustrates the speed data of FIG. 12 prior to performing a FT on the speed data.
FIG. 14 illustrates the frequency analysis resolution of a valve actuator with a total of 1024 samples. As can be seen, the resolution of the frequency analysis improves with an increasing number of samples.
Any type of frequency analysis known in the art may be used with the present invention. In the particular embodiment being described, FT was performed on speed data using a number of samples equaling 2n, where n is any whole number. Therefore, the total number of samples equals, for example, 128, 256, 512, 1024, 2048, 4096, 8192, etc.
Therefore, if 3500 samples are taken, only 2048 of the samples may be used in the FT. In other embodiments, FT may be performed upon samples that do not precisely equal 2. =

WO 2007/123533 = = PCT/US2006/015416 However, in those embodiments, leakage may become a concern. Techniques are known in the art for addressing leakage.
Additionally, in a particular embodiment, the FT utilizes samples that are taken at steady-state. Therefore, timing wheel 20 is turned at a relatively constant velocity. When rotary encoder 1 is incorporated within an electrically-driven valve actuator, timing wheel 20 will accelerate and decelerate during a period of time. The speed data generated during acceleration and deceleration data can be truncated, averaged, or windowed prior to performing FT. Transient frequency analysis is known in the art and may be applied, in lieu of truncating the data.
Truncation of the speed data may be performed by an algorithm designed to analyze the speed data prior to FT processing in order to remove any acceleration or deceleration data. Alternatively, speed data can be truncated to make the number of samples compatible with the FT 21) requirement.
FT, as the phrase is used herein, encompasses a wide range of algorithms, including fast Fourier transforms. FT, as used herein, covers four general families of Fourier Transforms: continuous Fourier transforms, Fourier series, discrete-time Fourier transform, and discrete Fourier transform. There are also FT algorithms designed to handle approximations and non-uniform data. The discrete Fourier transform is most commonly used for digital signal processing. The phrase FT as used herein encompasses any algorithm compatible with the data generated.
The stroke timerepresents the maximum time during which samples may be taken.
For example, with a valve actuator, the time it takes for a valve to move from open to closed positions, or vice-versa, is the maximum amount time during which speed data may be gathered. A valve may only be partially moved and, therefore, only a fraction of the stroke time may be available for speed data sampling. One exemplary way to increase the number of generated speed data samples includes increasing the sampling rate.
Sampling rate is governed by the speed of timing wheel 20 and the number of timing marks 28.
Rotary encoder 1 and 2 are capable of sampling rates much higher than 17 samples per second.
Yet another way to increase the number of generated data samples includes collecting data over multiple stroke times. Each new data set can be linked with the existing data collection until the sample count is sufficiently high to allow operation on it with FT. Once the data set is full, any new data samples can replace the oldest data .=

I
samples, thus maintaining the freshest data set for analysis. Speed or position data may be stored, such as in a data table, for near real time or later frequency domain analysis.
FIG. 15 provides a table of the possible sampling rates and the resulting total number of samples that may be used for frequency analysis. In FIG. 15, the Incremental Pulse Frequency equals the sampling rate in Hz. The speed DS is the drive speed of the drive sleeve (DS) of a valve actuator. However, the speed DS could correlate to a rotary component of any device. The Bevel Set Speed Multiplier represents the speed increase resulting from the gear connecting the DS to the input shaft that drives input wheel 10.
Input wheel 10 speed multiplier represents the increase in speed resulting from the gear ratio between gear 11 of input wheel 10 and pinion 25 of timing wheel 20.
An example of a rotary component of a rotary device is a drive sleeve of a valve actuator. An input shaft could interconnect via a bevel set the drive sleeve to input wheel 10. Any manner of connections known in the art may be utilized to drive input wheel 10. As one possible example of data sampling, if the drive sleeve is timing at 200 rpm, and if the bevel set results in an approximate 4.8:1 speed increase, then the input shaft would be turning at 960 rpm. Therefore, input wheel 10 would be turning at 960 rpm. Input wheel 10 drives timing wheel 20. If a 51/38 spur increaser is utilized, then timing wheel 20 turns at approximately 1288 rpm. 1288 rpm divided by 60 equals the rotations per second of timing wheel 20. The exemplary timing wheel 20, as illustrated in FIG. 1, has 32 timing marks. However, should only 16 timing marks be utilized, then the rotations per second multiplied by the number of timing marks produces a sampling rate (Incremental Pulse Frequency) of 343 samples per second. In the same scenario, if timing wheel 20 has 32 timing marks, then the sampling rate is approximately 678 samples per second. The Nyquist frequency is half the sampling rate. The sampling rate multiplied by the stroke time, in seconds, equals the total number of samples that may be collected during a single, full stroke.
FIG. 15 illustrates the interplay of stroke time and sampling rate in calculating the accuracy of the frequency analysis. One alternative, if only short speed data runs are available, is to link together the short runs prior to performing FT on the data to increase the frequency resolution.
FIG. 15 was constructed using a Nanning Window to prevent distortions in the resulting frequency values caused by discontinuities in the speed signal at the start and end of the data set. Other possible windows include rectangular, Blackman, Hamming, Kaiser, Exponential, and Flat Top. However, any window known in the art may be used to evaluate the speed data. It is also known in the art how to perform frequency analysis without the use of windows. Any approach known in the art for performing frequency analysis may be used with the present invention.
Frequency data may be evaluated on a case-by-case basis to determine what the peak locations and magnitude suggest with respect to a valve actuator.
Alternatively, the frequency analysis may be compared to known frequency analysis signatures to determine the health of a valve actuator or other rotary equipment.
FIGS. 16 through 19 illustrate representative frequency analysis that may be used for comparisons. FIGS. 18 and 19 illustrate speed variations that generally vary depending upon the rotary speed of the valve actuator or other rotary device.
The data for FIGS. 16 and 17 were generated on an actuator that was operating at 26 rotations per minute (rpm) steady state. The data for FIGS. 18 and 19 were generated on an actuator that was operating at 18 rpm steady state. FIGS. 16 and 19, and FIGS. 17 and 18, respectively, utilize the same encoder pinion adapter. FIG. 16 has significant peaks at 45.4 Hz and 91.1 Hz. The significant peaks of FIG. 19 are much more pronounced and numerous. Multiple problems within a valve actuator, or other rotary equipment, may harmonize to appear as a single peak in the frequency domain. Frequency analysis at , different operating speeds can unmask potential problems that hide within a single peak at one speed, but show up as multiple peaks at other speeds.
The rotary encoder of the present invention has been described as a multi-wheel absolute encoder. The rotary encoder may also be a single wheel absolute encoder, or an incremental encoder. For example, timing wheel 20 could be integrated into the same wheel as input wheel 10. Input wheel 10 could then function as an incremental encoder, as well as a timing wheel. Furthermore, the coding sections of encoding wheels through 110 can be integrated into the input wheel 10, as is known in the art.
Input wheel 10 can then function as a single wheel absolute encoder. Input wheel 10 may designed to mate with the end of an input shaft or, alternatively, input wheel 10 may be mounted around an input shaft, such as in the longitudinal center of the input shaft.
However, input wheel 10 may be mounted at any point along the length of an input shaft.
Previously, the frequency analysis has been discussed relative to speed data.
An additional data embodiment includes torque data. In valve actuators where torque is measured, the oscillations in torque may be transformed into the frequency domain.

= PCT/US2006/015416 Where the output torque delivered to a valve stem is monitored, the torque data could also be analyzed in the frequency domain. A processor incorporated in the valve actuator or remote from the valve actuator could convert the torque data into the frequency domain in any of the ways discussed above with respect to speed data, or by any technique known in $ the art. The frequencies may then be identified with drive train components and the operator provided with an indication of the health of the valve actuator.
Another data embodiment includes thrust data. By way of example, an electric motor of a valve actuator is coupled to the worm of a worm/worm-gear in the drive train.
The axial thrust of the worm is monitored to read on the torque delivered by the worm-gear. A processor incorporated in the valve actuator or remote from the valve actuator can convert the thrust data into the frequency domain similar to any of the ways discussed above with regard to speed data, or by any technique known in the art. The frequencies may then be identified with drive train components ¨ either by the operator or by a computer program. Thus a diagnosis of the valve actuator is provided.
Additionally, multiple thrust sensors may be utilized An additional data embodiment includes vibration data. For example, eight accelerometers are placed in a variety of locations in a valve actuator. All eight of the accelerometers would read on the same vibrations in the valve actuator.
However, the accelerometers closest to a given source of vibration would have more intense signals.
Viewing the vibration data from all eight sensors in the frequency domain can allow for pinpointing sources of vibration. The frequencies of the vibrations may then be correlated with drive train components. Thus, an operator may be warned of any impending problems with the valve actuator.
Any number of sensors in any of the embodiments may be utilized. For example, more than one speed sensor may be utilized. Additionally, multiple sensors of varying types may be utilized. For example, a valve actuator may include a rotary encoder, such as rotary encoder 1. The valve actuator may also include an axial thrust sensor.
Frequency analysis can be performed on the speed data generated by timing wheel 20, on the thrust data, or on both.
The rotary device or valve actuator tò be monitored by the present invention may be driven by an electric motor, hydraulic pressure, an engine, a hand wheel, or any other driving means known in the art.

Although the foregoing description contains many specifics, these are not to be construed as limiting the scope of the present invention, but merely as providing certain exemplary embodiments. Other embodiments of the invention can be devised which do not depart from the scope of the claims. The scope of the invention is, therefore, indicated and.
limited only by the appended claims. All additions, deletions, and modifications to the invention, as disclosed herein, which fall within the scope of the claims, are encompassed by the present invention.
=

Claims (21)

CLAIMS:
1. A valve system comprising:
a valve actuator;
a rotary position encoder coupled to the valve actuator, the valve actuator and the rotary position encoder having a plurality of sensors adapted to generate data, the rotary position encoder having a timing mechanism, the timing mechanism including a timing wheel having a plurality of timing marks equally spaced in a concentric pattern around the timing wheel, wherein each sensor of the plurality of sensors comprises a double set of redundant timer sensors for monitoring the plurality of timing marks of the timing wheel, the double set of redundant timer sensors comprising a first sensor positioned on a first side of the timing wheel and a second sensor positioned on a second, opposing side of the timing wheel, the first sensor and the second sensor each comprising an emitter and a detector, the detector positioned adjacent the emitter, wherein the plurality of sensors and the timing mechanism generate the data, the data related to one or more components of the valve actuator, the data comprising at least one of rotational speed data, position data, torque data, thrust data, and vibration data; and a processor, in communication with the plurality of sensors and the timing mechanism, for converting the data into a frequency domain utilizing a Fourier transform.
2. The valve system of claim 1, wherein the plurality of sensors further comprises one or more of a speed sensor, a position sensor, a torque sensor, a thrust sensor, and a vibration sensor.
3. The valve system of claim 1, wherein the plurality of sensors comprises at least one speed sensor, and the processor is adapted to receive speed data from the at least one speed sensor and perform a frequency analysis on the speed data.
4. The valve system of claim 3, wherein the at least one speed sensor is incorporated in the rotary position encoder.
5. The valve system of claim 4, wherein the rotary position encoder is an incremental encoder.
6. The valve system of claim 4, wherein the rotary position encoder is an absolute encoder.
7. The valve system of claim 6, wherein the absolute encoder comprises a single encoder disk.
8. The valve system of claim 6, wherein the absolute encoder comprises multiple encoder disks.
9. The valve system of claim 8, wherein the multiple encoder disks each comprise coding sections operable to encode multiple positions of the rotary device and wherein the absolute encoder includes at least a double set of position sensors for each of the at least one coding sections, wherein the at least one double set of position sensors are operable to monitor each of the at least one coding sections.
10. The valve system of claim 4, further comprising a handwheel operable to actuate the valve actuator and operable to actuate the rotary position encoder.
11. The valve system of claim 4, wherein the rotary position encoder is adapted for actuation by a drive train of the valve actuator.
12. The valve system of claim 11, wherein the rotary position encoder is actuated by an input shaft driven by a worm gear of the drive train.
13. The valve system of claim 4, wherein the rotary position encoder is adapted for actuation by an electric motor in the valve actuator.
14. The valve system of claim 1, wherein the plurality of sensors includes at least one torque sensor, wherein the processor is adapted to receive torque data from the at least one torque sensor and perform frequency analysis on the torque data.
15. The valve system of claim 1, wherein the plurality of sensors includes at least one axial thrust sensor, wherein the processor is adapted to receive axial thrust data from the at least one axial thrust sensor and perform frequency analysis on the axial thrust data.
16. The valve system of claim 13, wherein the plurality of sensors includes at least one accelerometer, wherein the processor is adapted to receive acceleration data from the at least one accelerometer and perform frequency analysis on the acceleration data.
17. The valve system of claim 1, wherein the rotary position encoder includes the processor.
18. The valve system of claim 1, further comprising a display adapted to communicate with the processor and display the data.
19. The valve system of claim 1, wherein the processor comprises multiple processors.
20. The valve system of claim 19, wherein at least one processor of the multiple processors is a part of the valve actuator.
21. A method of analyzing a valve actuator including a sensor, the method comprising:
providing the valve system of claim 1;
generating data from the plurality of sensors; and performing frequency domain analysis on the data.
CA2848891A 2006-04-21 2006-04-21 Valve system and method for monitoring a valve actuator in the valve system based on data collected by a rotary encoder Active CA2848891C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2848891A CA2848891C (en) 2006-04-21 2006-04-21 Valve system and method for monitoring a valve actuator in the valve system based on data collected by a rotary encoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2848891A CA2848891C (en) 2006-04-21 2006-04-21 Valve system and method for monitoring a valve actuator in the valve system based on data collected by a rotary encoder
CA2649647A CA2649647C (en) 2006-04-21 2006-04-21 Rotary encoder frequency analysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2649647A Division CA2649647C (en) 2006-04-21 2006-04-21 Rotary encoder frequency analysis

Publications (2)

Publication Number Publication Date
CA2848891A1 CA2848891A1 (en) 2007-11-01
CA2848891C true CA2848891C (en) 2016-06-21

Family

ID=50614361

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2848891A Active CA2848891C (en) 2006-04-21 2006-04-21 Valve system and method for monitoring a valve actuator in the valve system based on data collected by a rotary encoder

Country Status (1)

Country Link
CA (1) CA2848891C (en)

Also Published As

Publication number Publication date
CA2848891A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
CA2649642C (en) Rotary encoder with built-in-self-test
CA2649647C (en) Rotary encoder frequency analysis
AU2012228479B2 (en) Wear-monitoring of a gearbox in a power station
Simm et al. Laser based measurement for the monitoring of shaft misalignment
CN102007328A (en) Valve actuators having magnetic angle sensors and systems including same
EP2864750B1 (en) Method and apparatus for combining torque and angle representations
CN103698124A (en) Method for measuring gear transmission error
CA2848891C (en) Valve system and method for monitoring a valve actuator in the valve system based on data collected by a rotary encoder
CN102003975B (en) Rotary encoder with built-in self-test
CN104596774B (en) Rotary encoder frequency analysis
CN102865400B (en) Valve actuator
US11655128B2 (en) Work area indicator
Tuma Transmission and gearbox noise and vibration prediction and control
DE112006004264B4 (en) Encoder frequency analysis
Rapos Steel Gear Fault Diagnostics Using Non-Contact Magnetic Rotational Position Sensors

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20140414