CA2841582A1 - Travelling boom for rock bolting machine and apparatus - Google Patents

Travelling boom for rock bolting machine and apparatus Download PDF

Info

Publication number
CA2841582A1
CA2841582A1 CA2841582A CA2841582A CA2841582A1 CA 2841582 A1 CA2841582 A1 CA 2841582A1 CA 2841582 A CA2841582 A CA 2841582A CA 2841582 A CA2841582 A CA 2841582A CA 2841582 A1 CA2841582 A1 CA 2841582A1
Authority
CA
Canada
Prior art keywords
rock
boom
bolt
drill
bolting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2841582A
Other languages
French (fr)
Inventor
Travis Vogel
Mitch Stilborn
Michael Pletz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRANDT ENGINEERED PRODUCTS Ltd
Original Assignee
BRANDT ENGINEERED PRODUCTS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRANDT ENGINEERED PRODUCTS Ltd filed Critical BRANDT ENGINEERED PRODUCTS Ltd
Priority to CA2841582A priority Critical patent/CA2841582A1/en
Priority to CA2875511A priority patent/CA2875511C/en
Priority to CA2875483A priority patent/CA2875483C/en
Priority to CA2875510A priority patent/CA2875510A1/en
Priority to US14/582,939 priority patent/US20150218945A1/en
Priority to US14/582,950 priority patent/US20150218946A1/en
Priority to US14/582,962 priority patent/US9506345B2/en
Publication of CA2841582A1 publication Critical patent/CA2841582A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • E21D20/003Machines for drilling anchor holes and setting anchor bolts

Description

TRAVELLING BOOM FOR ROCK BOLTING MACHINE AND APPARATUS
The present invention relates to a rock bolting machine used to drill a bolt hole and install a rock bolt in a roof of an underground space that includes a vehicle and more particularly to a rock bolting apparatus that uses a travelling boom to support a rock bolting apparatus.
BACKGROUND
Rock bolts are installed in the roofs of mines, tunnels and other underground spaces for securing the roof of the mine in place and preventing the roof from collapsing when the mine is in use and workers may be in the mine. First, a bolt hole is drilled in the mine roof and then a rock bolt is secured in the drilled bolt hole.
It is common for the rock bolts to be installed by using a vehicle with a rock bolting apparatus attached to a boom. The rock bolting apparatus can be raised or lowered using the boom so that the rock bolting apparatus can come into contact with the roof of the mine to drill a bolt hole and install a rock bolt in the drill bolt hole. The purpose of the boom is to position the rock bolting apparatus well out in front of the vehicle so that the vehicle and the operator of the vehicle can remain under a portion of the mine roof that has already been rock bolted and secured.

However, because the underground spaces where the rock bolts are being installed are often narrow and tight, it is often hard to maneuver a vehicle through these underground spaces. While having a boom extending far out in front of the vehicle with a rock bolting apparatus attached to the end of the boom is useful to allow the vehicle to remain under a portion of the mine roof that has already been bolted while a rock bolt is being installed, this long boom can make it even more difficult to maneuver the vehicle around underground and in other confined spaces.
DESCRIPTION OF THE DRAWINGS
A preferred embodiment of the present invention is described below with reference to the accompanying drawings, in which:
FIG. 1 is a perspective view of a rock bolting machine;
FIG. 2 is a front view of the rock bolting machine of FIG. 1;
FIG. 3 is a side view of the rock bolting machine of FIG. 1;
FIG. 4 is a close up view of a distal end of a boom on the rock bolting machine;
FIG. 5 is close up view of the distal end of the rock bolting machine with the distal end of the boom moved to an operating position;
FIG. 6 is a side view of the rock bolting machine in a transport position;

FIG. 7 is a top view of the rock bolting machine in a transport position;
FIG, 8 is a side view of the rock bolting machine in an operating position;
and FIG. 9 is a top view of the rock bolting machine in an operating position.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
FIG. 1 illustrates a rock bolting machine 10 that is used to travel in a mine or other underground space and install rock bolts in the roof of the underground space.
The rock bolting machine 10 can comprise a vehicle 20 and a rock bolting apparatus 50 connected to the vehicle 20 by a boom 30. The boom 30 can be attached to a rock bolting apparatus 50 so that the boom 30 positions the rock bolting apparatus 50 out in front of the vehicle 20. An operator can maneuver the rock bolting machine 10 so that the rock bolting apparatus 50 is positioned under a spot on the roof of the underground chamber where a rock bolt is going to be installed and then the rock bolting apparatus 50 can be placed against the roof of the underground space using the boom 30 and the rock bolting apparatus 50 used to first drill a bolt hole for the rock bolt and then install a rock bolt in the drilled bolt hole. By using the boom 30 to position the rock bolting apparatus 50 well out in front of the vehicle 10, the vehicle 10 can be operated under a portion of the roof in the underground space that has already been rock bolted.
The vehicle 10 can have a pair of rear wheels 12, a pair of front wheel 14 and an engine 15 so that the vehicle 10 is self-propelled. A cab 16 can be provided on the vehicle 10 so that an operator can sit in the cab 16 and operate the rock bolting machine 10. In one aspect, the vehicle 10 can be hydraulic powered to drive the rear wheels 12, the front wheels 14 or both the rear wheels 12 and the front wheels 14. The hydraulics can also be used to operate the boom 30 and the rock bolting apparatus 50.
FIGS. 2 and 3 illustrate the rock bolting apparatus 50 attached to a distal end 34 of the boom 30 that can be used to both drill a bolt hole and then install a rock bolt in the bolt hole. The rock bolting apparatus 50 can include a pick mast 110 and a drill bolt mast 130. Referring to FIGS. 1-3, the pick mast 110 can operatively connected to the distal end 34 of the boom 30 and can contain a pick 112 that can be extended out of a top of a pick guide 114. The head of the pick 112 can form a point for engaging a roof of an underground space. In one aspect, the extension and retraction of the pick 112 out at of the pick guide 114 can be driven by a hydraulic cylinder.
The drill bolt mast 130 can be pivotally connected by a pivot point 132 to the pick mast 110 so that the drill bolt mast 130 can be rotated around this pivot point 132 while the pick mast 110 remains stationary. An actuator 134 can be positioned between the pick mast 110 and the drill bolt mast 130 to rotate the drill bolt mast 130 around the pivot point 132. In one aspect, the actuator 134 can be a hydraulic cylinder.
The drill bolt mast 130 can have a frame 135 with a top plate 136 and a nub extending upwards above the top plate 136. The nub 138 can be forcibly retracted downwards toward the top plate 136 and is connected to a switch to stop the boom 30 from continuing to move the rock bolt apparatus 50 after the nub 138 has been depressed.
In this manner, when the nub 138 is depressed the rock bolt apparatus 50 and specifically the top plate 136 of the drill bolt mast 130 is against the roof of the underground space.
The drill bolt mast 130 can include a drilling portion 140 and a bolting portion 160. The drilling portion 140 is used to first drill a bolt hole in the roof of the underground space.
When the bolt hole has been drilled, the drill bolt mast 130 can then be rotated around the pivot point 132 until the bolting portion 160 lines up with the bolt hole and the bolting portion 160 used to install a rock bolt in the bolt hole.
The drilling portion 140 can have a drill guide frame 142 that can be moved vertically relative to the frame 135 of the drill mast 130 as well as guide a drill rod 144 that can be moved vertically relative to the drill guide frame 142 as the drill rod 144 is rotated and moved upwards relative to the drill guide frame 142. The drill guide frame 142 can extend vertically and be movable so that a top end of the drill guide frame 142 can be positioned against the top plate 136 of the drill bolt mast 130 or moved downwards to create a space between the top of the drill guide frame 142 and bottom of the top panel 136.
A foot plate 146 can be provided on the bottom of the drill guide frame 142 to protect the elements of the drilling portion 140 from being damaged if the bottom of the drilling portion 140 accidentally comes into contact with the floor of the underground chamber while the rock bolting apparatus 50 is being maneuvered into place.
The drilling portion 140 can both rotate the drill rod 144 and move the drill rod 144 upwards relative to the drill guide frame 142 and the frame 135 of the drill bolt mast 130 to drill a bolt hole where the rock bolt will be installed.
The bolting portion 160 of the rock bolting apparatus 50 is used to fasten a rock bolt 164 into the bolt hole that has been created by the drilling portion 140. The bolting portion 160 can have a bolting guide frame 162 that allows a bolting assembly 170 to move vertically along bolting guide frame 162. The bolting guide frame 162 can extend vertically and be movable vertically relative to the frame 135 of the drill bolt mast 130 so that a top end of the bolting guide frame 162 can be positioned against the top plate 136 of the drill bolt mast 130 or moved downwards to create a space between the top of the bolting guide frame 162 and bottom of the top panel 136 of the drill bolt mast 130.
A foot plate 166 can be provided on the bottom of the bolting guide frame 162 to protect the elements of the bolting portion 160 from being damaged if the bottom of the bolting portion 160 accidentally comes into contact with the floor of the underground space while the rock bolting apparatus 50 is being maneuvered into place.
The bolting portion 160 can both rotate the rock bolt 164 and move the rock bolt 164 upwards relative to the bolting guide frame 162 and the frame 135 of the drill bolt mast 130 to insert the rock bolt 164 in the bolt hole drilled by the drilling portion 140 of the drill bolt mast 130. Typically, the rock bolt 164 is first moved upwards into the drilled bolt hole and then only rotated by the bolting portion 160 when the rock bolt 164 has been inserted all the way into the bolt hole to secure the rock bolt 164 in the bolt hole.
In operation, the rock bolting apparatus 50 can be positioned against the roof of the underground space. Once in place against the roof of the underground space, the pick 112 in the pick mast 110 can be used to hold the rock bolting apparatus 50 against the roof while the rock bolting apparatus 50 is being used to drill a bolt hole and install a rock bolt 164 in the bolt hole by extending the pick 110 out of the top of the pick guide 114 and forcing it into the roof of the underground space. By engaging the roof in this manner, the extended pick 110 can hold the rock bolting apparatus 50 in place and prevent it from shifting its position on the roof while the bolt hole is being drilled and the rock bolt 164 is being installed in the drilled bolt hole.
Once the rock bolting apparatus 50 is secured in position using the pick 112, the drilling portion 140 on the drill bolt mast 130 can be used to drill a bolt hole. The drilling rod 144 can be rotated and forced upwards to bore the bolt hole in the roof of the underground space.
When the bolt hole has been drilled by the drilling portion 140. the drill rod 144 can be retracted from the bolt hole it is has drilled and the bolting portion 160 can then be used to install a rock bolt 164 in the bolt hole. The drill bolt mast 130 can be pivoted around pivot point 132 using actuator 134 while the pick 112 keeps the rock bolting apparatus 50 in the same position relative to the roof. When the drill bolt mast 130 has pivoted so that the rock bolt 164 is positioned under the bolt hole, the pivoting of the drill bolt mast 130 can be stopped and the drilling portion 160 of the rock bolting apparatus 50 can be used to install the rock bolt 164 in the bolt hole.
With the rock bolt 164 positioned under the bolt hole, the bolting portion 160 can move the rock bolt 164 upwards to insert it in the drilled bolt hole. Once the rock bolt 164 is inserted into the bolt hole, the rock bolt 164 can be torqued secure it in the bolt hole.
Referring again to FIG. 1, the boom 30 can be attached to the vehicle 20 at a proximal end 32 of the boom 30 and to the rock bolting apparatus 50 at the distal end 34.
The boom 30 can be formed of a number of telescoping sections 31 so the boom 30 can be telescopically extended or retracted, allowing the length of the boom 30 to be increased or decreased. The proximal end 32 of the boom 30 can also be attached to the vehicle 10 in so that that the proximal end of the boom 30 can move relative to the vehicle 10 in addition to allowing the boom 30 to be pivoted from side to side and up and down.
FIGS. 4 and 5 illustrates views of the distal end 32 of the boom 30. The distal end 32 of the boom 30 can include a connection frame 302 that houses a boom motor 304, such as a hydraulic motor, attached to a connection panel 306. The boom motor 304 is operative to rotate the connection panel 306 relative to the connection frame 203. The distal end 32 of the boom 30 can be attached at a pivot point 308 to the connection panel 306. By using the boom motor 304 to rotate the connection panel 306 relative to the connection frame 302, the boom 30 can be pivoted from side to side relative to the vehicle 20.
By having the distal end 32 of the boom 30 attached to the pivot point 308 on the connection plate 306, the boom 30 can be pivoted upwards and downwards relative to the connection frame 302. An actuator 310, such as hydraulic cylinder, can he provided between the connection plate 306 and the boom 30 to pivot the boom 30 upwards and downwards around the pivot point 308.
The connection frame 302 can be attached to a track 320 having a distal end 322 and a proximate end 324 so that the connection frame 302 and therefore the distal end 32 of the boom 30 can move relative to the vehicle 20. Brackets 330 can be provided on the connection frame 302 that are slidably attachable to a pair of rails 332 on the track 320 so that the connection frame 302 can slidably move along the track 320.
A rack 340 can be provided running along the length of the track 320 that meshes with a pinion 342 attached to the connection frame 302. A pinion motor 344 can be provided to rotate the pinion 342. In this manner, the pinion motor 344 can be used to rotate the pinion 342 which will mesh with the rack 340 and thereby move the connection frame 302 along the track 320.
Stop brackets 350 can be positioned at the distal end 322 of the track 320 to stop the connection frame 302 when it reaches the distal end 322 of the track 320.
Referring again to FIG. 1, the cab 16 of the vehicle 20 can be offset to one side of the vehicle 20 to allow space for the track 320 to be positioned running alongside the cab 16 and allowing the track 320 to be positioned closer to a center line of the vehicle 20.
Positioning the cab 16 so that the track 320 can run along beside the cab 16 also allows the distal end 32 of the boom 30 to be moved rearward behind the front of the cab 16 and beside the cab 16, further decreasing the overall length of the rock bolting machine 10 when it is in a transport position.
The track 320 can be positioned on the vehicle 10 so that the distal end 322 of the track 320 is positioned alongside of the cab 16 and behind a front of the cab 16.
The proximate end 324 of the track 320 can be positioned on the vehicle 10 so that when the connection frame 302 is moved to the proximate end 324 of the track 320, the connection frame 302 will be positioned over a spot between the front wheels 14 of the vehicle 10 so that the weight of the boom 30 and rock bolting apparatus 50 applied to the vehicle 20 at the distal end 32 of the boom 30 is applied downwards between the front wheels 14.

The movement of the distal end 32 of the boom 30 relative to the vehicle 20 allows the rock drill machine 10 to be placed in a transport position for when the rock drill machine is being driven somewhere and an operating position for when the rock drill machine 10 is being used to install a rock bolt in the roof of a underground space.
FIGS. 6 and 7 illustrates the rock bolting machine 10 in the transport position. In the transport position, the boom 30 is telescopically retracted to its most retracted and shortest length and the distal end 32 of the boom 30 is moved to the distal end 322 of the track 320.
Referring to FIGS. 4 and 5, the actuator 310 can be used to pivot the boom 30 substantially parallel to a ground surface and the boom motor 304 can be used to pivot the boom 30 so that it extends straight ahead of the vehicle 20. The pinion motor 344 can be used to rotate the pinion 342 along the rack 340 until the connection frame 302 is moved to the distal end 322 of the track 320.
Referring again to FIG. 6 and 7, with the boom 30 placed in the transport position, the distal end 32 of the boom 30 is placed alongside the cab 16 and behind the front of the cab 16 while the boom 30 is telescopically retracted to its shortest length.
This can cause the rock bolting machine 10 to be much more maneuverable by reducing the overall length of the rock bolting machine 10 while in this transport position.
Fig. 8 shows the rock bolting machine 10 in the operating position and being used to install a rock bolt. The distal end 32 of the boom 30 can be moved so that it is positioned at the proximate end 324 of the track 320 with the distal end 32 of the boom 30 and the connection frame 302 positioned over the front wheels 14. In the operating position, the boom 30 can be telescopically extended to its desired length and the boom 30 pivoted upwards if required to reach a roof of the underground space.
FIG. 9 shows a top view of the rock bolting machine 10 with the boom 30 in an operating position. The boom 30 is telescopically extended and the distal end 32 of the boom 30 and the connection frame 302 are moved to the proximate end 324 of the track 320. In addition to the boom 30 being pivotal upwards and downwards around the distal end 32 the boom 30 can be pivoted from side to side.
The foregoing is considered as illustrative only of the principles of the invention.
Further, since numerous changes and modifications will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all such suitable changes or modifications in structure or operation which may be resorted to are intended to fall within the scope of the claimed invention.
CA2841582A 2014-02-04 2014-02-04 Travelling boom for rock bolting machine and apparatus Abandoned CA2841582A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2841582A CA2841582A1 (en) 2014-02-04 2014-02-04 Travelling boom for rock bolting machine and apparatus
CA2875511A CA2875511C (en) 2014-02-04 2014-12-22 Rock bolting machine and apparatus
CA2875483A CA2875483C (en) 2014-02-04 2014-12-22 Method of operating a rock bolting machine
CA2875510A CA2875510A1 (en) 2014-02-04 2014-12-22 Travelling boom for rock bolting machine and apparatus
US14/582,939 US20150218945A1 (en) 2014-02-04 2014-12-24 Rock bolting machine and apparatus
US14/582,950 US20150218946A1 (en) 2014-02-04 2014-12-24 Travelling boom for rock bolting machine and apparatus
US14/582,962 US9506345B2 (en) 2014-02-04 2014-12-24 Method of operating a rock bolting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2841582A CA2841582A1 (en) 2014-02-04 2014-02-04 Travelling boom for rock bolting machine and apparatus

Publications (1)

Publication Number Publication Date
CA2841582A1 true CA2841582A1 (en) 2015-08-04

Family

ID=53836931

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2841582A Abandoned CA2841582A1 (en) 2014-02-04 2014-02-04 Travelling boom for rock bolting machine and apparatus

Country Status (1)

Country Link
CA (1) CA2841582A1 (en)

Similar Documents

Publication Publication Date Title
US20150218946A1 (en) Travelling boom for rock bolting machine and apparatus
US10844664B2 (en) Gantry and quick connect mechanism for interchanging drilling and bolting assemblies and method of interchanging bolting assemblies
AU2015330126B2 (en) Device for the installation of rock bolts and cutting apparatus
US3576218A (en) Combined earth boring and post driving apparatus
US20100012340A1 (en) Drilling car for close spaces
US20120247836A1 (en) Mining machine with booms providing enhanced rib access
US20110062768A1 (en) Mining Machine and Method of Mining
US4199299A (en) Material handling apparatus for use in a mine
US3995905A (en) Method and apparatus for roof bolting and transferring mined material
DE112013005362B4 (en) The horizontal directional drilling
US8534385B2 (en) Steering head
CA2841506A1 (en) Rock bolting machine and apparatus
US7350876B2 (en) Combination panline and utility drilling or bolting unit
CN109630013B (en) Hydraulic rock drilling trolley
US3893520A (en) Canopy assembly for a dual boom drill
CA2841582A1 (en) Travelling boom for rock bolting machine and apparatus
RU2312965C2 (en) Construction machine
US9810024B2 (en) Drill system
US20100200258A1 (en) Tool wrench assembly
US9181752B2 (en) Steering head
JP5390113B2 (en) Work vehicle
US3851481A (en) Multi-purpose vehicle for use underground
CA1111806A (en) Material handling apparatus for use in a mine
EP0025811B1 (en) Material handling vehicle for use in a mine
USRE28707E (en) Multi-purpose vehicle for use underground

Legal Events

Date Code Title Description
FZDE Dead

Effective date: 20160826