CA2831302A1 - Radiant tube - Google Patents

Radiant tube Download PDF

Info

Publication number
CA2831302A1
CA2831302A1 CA2831302A CA2831302A CA2831302A1 CA 2831302 A1 CA2831302 A1 CA 2831302A1 CA 2831302 A CA2831302 A CA 2831302A CA 2831302 A CA2831302 A CA 2831302A CA 2831302 A1 CA2831302 A1 CA 2831302A1
Authority
CA
Canada
Prior art keywords
tube
bent
straight
wall thickness
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2831302A
Other languages
French (fr)
Inventor
Makoto Hineno
Nobuyuki Sakamoto
Hiroaki Okano
Shigeki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Publication of CA2831302A1 publication Critical patent/CA2831302A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • C01B33/10757Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/006Air heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/12Arrangements for connecting heaters to circulation pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D99/0035Heating indirectly through a radiant surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)

Abstract

A radiant tube made of refractory metal is provided with at least one bent tube (3A (3C)) which connect straight tubes (2A, 2B (2C, 2D)). Combustion air from a burner (5) is fed through one of the straight tubes (2A, 2B (2C, 2D)), and the radiant tube is characterized by using a cast product with an external diameter of 150 - 210 mm and a thickness of 3 - 8 mm at least as the bent tube (3A (3C)) closest to the burner (5).

Description

RADIANT TUBE
TECHNICAL FIELD
[0001] The present invention relates to a radiant tube formed of cast metal tubes and including at least one bent tube and a pair of straight tubes connected to the opposed ends of the bent tube, with combustion gas from a burner being fed through one of the pair of straight tubes.
BACKGROUND ART
[0002] As prior-art document information relating to a radiant tube of the above-noted type, Patent Document 1 identified below is known. This Patent Document 1 discloses a radiant tube including neck portions provided at two open ends of the bent tube, the neck portions extending straight for a predetermined length. It is described that with the above configuration, the compressive stress on the side of the bent tube and the compressive stress on the side of he straight tube act uniformly to the welded portions between the bent tube and the straight tubes, so that there is realized uniform distribution of the stress due to thermal expansion occurring at the welded portions, thus providing high resistance against formation of crack at the welded portions.

PRIOR ART DOCUMENT
PATE NT DOCUMENT
[0003] Patent Document 1: Japanese Unexamined Patent Application Publication No. 10-227420 (paragraph 0007, paragraphs 0015-16, Fig.1).
SUMMARY OF THE INVENTION
OBJECT TO BE ACHIEVED BY INVENTION
[0004] However, with the radiant tube disclosed in Patent Document 1, its bent tube is divided into a large-diameter portion disposed on the outer circumferential side relative to an arcuate center axis of the bent tube and a small-diameter portion disposed on the inner circumferential side relative to the center axis and these large-diameter portion and the small-diameter portion are welded together in opposition to each other. Therefore, aside from the problem at the welded portions between the bent tube and the straight tube, there was possibility that a crack due to thermal expansion or the like can occur at the two welded portions extending along the axis of the bent tube.
[0005] In view of the problem provided by the conventional radiant tube exemplified above, the object of the present invention is to provide a radiant tube which has high resistance against severe heat condition imposed by combustion gas fed from a burner, thus being usable for a longer period of time.
MEANS FOR ACHIEVING THE OBJECT
[0006] According to the present invention, a radiant tube formed of a heat resistant metal and including at least one bent tube which connects a pair of straight tubes to each other, with combustion gas from a burner being fed through one of the pair of straight tubes;
wherein at least as the bent tube located closest to the burner, there is employed a cast body having an outer diameter ranging from 150 to 210 mm and a wall thickness ranging from 3 to 8 mm.
[0007] With the radiant tube having the above-described characterizing feature, as the bent tube located closest to the burner, thus being subject to the severest heat condition, there is employed a cast body having a wall thickness ranging from 3 to 8 mm. Therefore, in comparison with e.g. a bent tube obtained by welding end-to-end tubular bodies formed by pressing of a plate material, the wall thickness of the tube is more uniform, and no stress concentration occurs which would otherwise occur at the welded portions extending along the longitudinal direction of the bent tube. Therefore, there will hardly occur e.g. a heat-crack due to sharp temperature rise or sharp temperature drop caused by the combustion gas of the burner. Consequently, there has been obtained a radiant tube which has high heat resistance and which can be used for a longer period of time.
[0008] Moreover, since the thickness of the cast body is reduced to the range from 3 to 8 mm, there is realized enhanced density of the metallographic structure due to increase in the cooling rate at the time of casting. Accordingly, with enhancement in the heat resistance and heat-shock resistance of the bent tube subject to the severest heat condition as being located closest to the burner, there is realized a radiant tube that can be used for an even longer period of time.
[0009] Further, the reduction of wall thickness at the portion of the bent tube subject to the severest heat condition facilitates deformation in response to stress application. As a result, the heat stress can be absorbed more easily and heat crack due to sharp temperature rise due to the combustion gas from the burner will occur less likely.
[0010] Furthermore, the wall thickness reduction of the bent tube located closest to the burner provides increase in the rate of temperature rise due to the combustion gas from the burner as well as decrease in the temperature drop along the direction of wall thickness. Therefore, the fuel consumption amount too can be reduced in comparison with the conventional configuration.
Also, as the wall thickness reduction of the bent tube located closest to the burner provides weight reduction of the radiant tube as a whole, the labor required for its replacement has been reduced as well.
[0011] According to a further characterizing feature of the present invention, the bent tube has a smaller wall thickness at its portion near the connection to the straight tube than the remaining portion thereof.
[0012] The portion of the bent tube connected to the straight tube is especially vulnerable to insufficient strength when it is used due to e.g. the structural weakness on account of being located near the tube end and embrittlement of its material under the influence of the heat received at the time of welding. With the inventive arrangement described above, however, since the wall thickness of the portion near the connection is reduced relative to the remaining portion of the bent tube, the density of the metallographic structure is particularly enhanced due to increase in the cooling rate at the time of casting. As a result, there is ensured durability as good as that of the general portion of the bent tube other than its connection-vicinity portion, for the severe heat condition imposed by the combustion gas.

[00131 According to a still further characterizing feature of the present invention, the radiant tube comprises a plurality of said bent tubes, all of which comprise the cast bodies having the wall thickness ranging from 3 to 8 mm.
[0014] Conceivably, only the bent tube that is located closest to the burner may comprise a cast body having the wall thickness ranging from 3 to 8 mm. With the above inventive arrangement, however, all of a plurality of bent tubes comprise cast bodies having the wall thickness ranging from 3 to 8 mm. With this, there is obtained a radiant tube which has even higher reliability in its heat resistance and which can be used for an even longer period of time.
Moreover, as the arrangement allows even further weight reduction of the radiant tube as a whole, the labor required for its replacement operation can be even further reduced.
[0015] According to a still further characterizing feature of the present invention, the straight tube has a wall thickness of 7 mm or less.
[0016] With the reduction of wall thickness of the straight tube, in addition to the wall thickness reduction of the bent tube, as proposed in the above arrangement, in comparison with an arrangement of the straight tube alone having a relatively large wall thickness, there can be ensured higher strength at the connection portion between the bent tube and the straight tube.

F

[0017] According to a still further characterizing feature of the present invention, the straight tube has a smaller wall thickness at its portion near the connection to the bent tube than the remaining portion thereof.
[0018] The portion of the straight tube connected to the bent tube is especially vulnerable to insufficient strength when it is used due to e.g. the structural weakness on account of being located near the tube end or embrittlement of its material under the influence of the heat received at the time of welding. With the inventive arrangement described above, however, since the wall thickness of the portion near the connection is reduced relative to the remaining portion of the straight tube, the density of the metallographic structure is particularly enhanced due to increase in the cooling rate at the time of casting. As a result, there is ensured durability as good as that of the general portion of the straight tube other than its connection-vicinity portion, for the severe heat condition imposed by the combustion gas.
[0019] According to a still further characterizing feature of the present invention, the straight tube comprises a cast bodies having a greater wall thickness than that of the bent tube.
[0020] With the above-described arrangement, in comparison with an arrangement using a straight tube having substantially same wall thickness as the bent tube, it becomes easier to obtain a radiant tube which has an even higher heat resistance and which can be used for an even longer period of time.
BRIEF DESCRIPTION OF THE DRAWING
[0021] [Fig. 1] is a partially cutaway side view schematically showing a radiant tube relating to the present invention.
MODE OF EMBODYING THE INVENTION
[0022] Next, one embodiment of the present invention will be described with reference to the accompanying drawing. It is understood, however, that the scope of the present invention is not to be limited by the following description or the illustration, but that the invention may be embodied in any modified manner as long as such modification does not deviate from the essential concept thereof.
[0023] A radiant tube 1 shown in Fig. 1 includes four laterally oriented straight tubes 2A, 2B, 2C, 2D juxtaposed with an equal vertical spacing therebetween, with the respective vertically adjacent straight tubes 2 pairs being connected via total three bent tubes 3A, 3B, 3C, so that the assembly as a whole forms a laterally oriented W-shape.

[0024] The radiant tube 1 is supported to a furnace wall 10 of a heating furnace such as a drying furnace, a sintering furnace, etc. via the uppermost straight tube 2A and the lowermost straight tube 2D. To the terminal free ends of these straight tubes 2A, 2D, there are connected burners 5 via heat reservoirs 4 formed of ceramic honeycomb bodies having high heat recovery efficiency.
[0025] These burners 5 are composed of regenerative type burners in which the fuel consumption required for burner combustion can be reduced, in such manner that e.g. when the burner 5 connected to the uppermost straight tube 2A is operated for combustion, exhaust gas is discharged through the lowermost straight tube 2D while exhaust heat is collected by the lower heat reservoir 4, and when the combustion is switched to the burner 5 connected to the lowermost straight tube 2D, the combustive air is preheated using the exhaust heat collected by the lowermost heat reservoir 4.
[0026] By operating the switch valve 6 provided between the combustive air fun 7 for supplying the combustive air and each burners 5, it is possible to switch over between a state (indicated by the solid line) where the combustive air is burned by the burner 5 connected to the uppermost straight tube 2A, and exhaust gas is discharged through the lowermost straight tube 2D while exhaust heat is collected by the heat reservoir 4 connected to the lowermost straight tube 2D
and a further state (indicated by the broken line) where the combustive air is burned by the burner 5 connected to the lowermost straight tube 2D, and its exhaust heat is collected by the heat reservoir 4 connected to the uppermost straight tube 2A.
The exhaust gas past each heat reservoir 4 can be discharged into the atmosphere via the switch valve 6 and an exhaust gas treating device (not shown), etc.
[0027] Each and every one of the four straight tubes 2A, 2B, 2C, 2D and the three bent tubes 3A, 3B, 3C has an outer diameter of 180 mm and is formed of cast steel (an example of cast body formed of a heat resistant metal) containing 20-wt.% of chrome and 30 to 50 wt.% of nickel.
The connection between the straight tube 2 and the bent tube 3 is realized by means of welding these from the outer circumferential faces thereof, with placing the respective end faces thereof in abutment with each other.
[0028] Among the three bent tubes 3A, 3B, 3C, the first bent tube 3A and the third bent tube 3C located closest to the burners 5 each comprises a thin-walled cast body having a wall thickness ranging from 3 to 8 mm.
The second bent tube 3B located relatively distant from the burner 5 and the four straight tubes 2A, 2B, 2C, 2D each comprises a cast body having a wall thickness of 5 mm or 10 mm.

In the above, the languages "distant" and "closest" refer to the amounts of distance from the burner 5 in the passageway of flame or combustion gas generated from the burner 5 and moving inside the radiant tube 1.
[0029] In this way, as a thin-walled cast body having a wall thickness ranging from 3 to 8 mm is employed as the bent tube 3 located closest to the burner 5, there can be obtained a radiant burner 1 having high heat resistance and usable for an extended period of time.
A possible reason for the above is as follows. With a bent tube formed integrally by casting, in comparison with e.g. a bent tube obtained by welding end faces of the right and left tubular bodies along the axial direction of the tube, each tubular body being obtained by pressing of a plate material, the former bent tube has a more uniform wall thickness and there occurs no local stress concentration that would otherwise occur at the welded portions extending along the longitudinal direction of the bent tube, so that heat crack or the like due to sharp temperature rise or sharp temperature drop caused by combustion gas from the burner will occur less likely.
[0030] Further, as the wall thickness of the cast body is reduced to the range from 3 to 8 mm, there is realized enhanced density of the metallographic structure due to increase in the cooling rate at the time of casting, whereby the heat resistance and heat-shock resistance are enhanced.
Moreover, the reduction of wall thickness facilitates deformation in response to stress application. As a result, the heat stress can be absorbed more easily and heat crack due to sharp temperature rise due to the combustion gas from the burner too will occur less likely.
[0031] Furthermore, the wall thickness reduction of the bent tube 3 located closest to the burner 3 provides increase in the rate of temperature rise due to the combustion gas from the burner as well as decrease in the temperature drop along the direction of wall thickness. Therefore, the fuel consumption amount too can be reduced in comparison with the conventional configuration.
Also, since the weight reduction of the radiant tube as a whole, the labor required for its replacement has been reduced as well.
[0032] The four straight tubes 2A, 2B, 2C, 2D constituting the radiant tube 1 are manufactured with using the centrifugal casting technique.
On the other hand, all of the three bent tubes 3A, 3B, 3C are manufactured with using the suction casting technique in which a negative pressure is formed by means of e.g. a vacuum pump inside the cavity after introduction of molten metal therein. Therefore, even with the realization of wall thickness reduction, there occurs no shrinkage cavities or shrinkage looseness which generally tends to occur at the time of solidification of molten metal, so that there are obtained bent tubes having favorable surface conditions.
Incidentally, for the purpose of further wall thickness reduction for instance, wall thickness reduction may be implemented with the straight tubes too with using the suction casting technique.
[0033] Incidentally, the outer diameter of the four laterally oriented straight tubes 2A, 2B, 2C, 2D and the three bent tubes 3A, 3B, 3C together constituting the radiant tube 1 is not limited to 180 mm, but can range from 150 to 210 mm.

If the wall thickness is confined within this range, there can be readily obtained the advantageous effect due to the setting of wall thickness to 3 to 8 mm for the bent tubes 3A, 3B, 3C.
Example 1 [0034] Table 1 below shows results of analysis via simulation of various properties respecting heat stress imposed on the third bent tube 3C when the radiant tube 1 shown in Fig. 1 is actually used.
In this simulation, in simulating its use as the regenerative type arrangement, combustion gas was fed alternatively from the respective burners for a predetermined period and combustions were effected thereby.
[00351 As shown in Table 1, with varying in many ways the wall thicknesses of the respective bent tubes 3 and the respective straight tubes 2, the relationships between these thicknesses and the various properties about the heat stress imposed on the third bent tube 3C after combustion gas was fed alternatively from the respective burners 5 for the predetermined period, were obtained.
The numerical values given to the bent tube wall thickness shown in the table were applied to all of the three bent tubes 3A, 3B, 3C and similarly, the numerical values of the wall thickness of straight tube were applied to all of the four straight tubes 2A, 2B, 2C, 2D.
[0036] As the material for casting, KHR-48N was employed. KHR-48N is defined as an austenitric super-heat-resistant alloy having acid resistance up to 1200 C
and good creep rupture strength and contains 27 wt.% of chrome, 47 wt.% of nickel and 5 wt.% of tungsten.
[0037]
[Table 1]
No. bent tube straight maximum 0.2% proof evaluation wall tube wall stress stress of bent thickness thickness (MPa) tube material (mm) (mm) (MPa/1000 C) 1 3 5 48.6 135 0 2 5 5 44.9 128 0 3 7 5 47.2 115 0 4 10 5 50.1 87 x 5 10 53.3 120 0 6 6 10 50.3 128 0 7 7 10 51.9 115 0 8 8 10 53.5 102 0 9 10 10 56.1 87 x 13 10 57.4 78 X
5 [0038] From the determination results of 0.2% proof stress (MPa) of the bent tube material at 1000 C shown in Table 1 above, the following observations can be made.
By setting the wall thickness of the bent tube 3 to 8 mm or less, it is possible to ensure values greater than 100 MPa. Further, the values of 7 mm or 10 less are better than the values of 8 mm or less and the values of 6 mm or less are even better. And, the smaller the wall thickness, the higher the values tend to be.
Further, respecting the determination results of the maximum stress too, there is the tendency of being able to ensure numeric values of 55 MPa or less by setting the wall thickness of the bent tube 3 to 8 mm or less.
[0039] Incidentally, it is understood that the respective tendencies described above can be seen basically throughout in both of the cases of the wall thickness of the straight tube 2 portion being 5 mm and 10 mm and the tendencies are not much affected by the wall thickness of the straight tube 2.
However, in the case of setting the wall thickness of straight tube to 5 mm, as far as the determination values of the 0.2% proof stress of the bent tube are concerned, radiant tubes whose straight tubes have greater wall thickness than those of their bent tubes tend to show higher numeric values.
Example 2 [0040] In this Example 2, as materials other than KHR-48N, Alloy 230 and KHR-35H were employed. And, like Example 1 above, various properties about the heat stress imposed on the third bent tube 3C when the radiant tube 1 shown in Fig. 1 is actually used were analyzed via simulation.

[00411 In this example too, with varying in many ways the wall thicknesses of the respective bent tubes 3 and the respective straight tubes 2, the relationships between these thicknesses and the various properties about the heat stress imposed on the third bent tube 3C after combustion gas was fed alternatively from the respective burners 5 for the predetermined period, were obtained.
[0042] Table 2 shows the results of Alloy 230 (containing 22 wt.% chrome, 57 wt.% nickel, 2 wt.% molybdenium and 14 wt.% tungsten). Table 3 shows the results of KHR-35H (containing 25 wt.% chrome and 35 wt.% nickel).
[0043] [Table 2]
No. bent tube straight maximum 0.2% proof evaluation wall tube wall stress stress of bent thickness thickness (MPa) tube material (mm) (mm) (MPa/1000 C) 1 5 5 26.3 87 0 2 10 10 32.9 65 X

[0044] [Table 3]
No. bent tube straight maximum 0.2% proof evaluation wall tube wall stress stress of bent thickness thickness (MPa) tube material (mm) (mm) (MPa/1000 C) 1 5 5 33.9 100 0 2 10 10 42.4 86 [0045] From the determination results of 0.2% proof stress (MPa) of the bent tube materials at 1000 C shown in Table 2 and Table 3 above, with the materials other than KHR-48N too, higher values were obtained with smaller wall thicknesses of the bent tube 3.
Further, respecting the determination results of the maximum stress too, there is observed a similar tendency of being able to obtain smaller values with smaller wall thicknesses of the bent tube 3.
[0046] Incidentally, the mark " x " employed in the respective tables above representing evaluation result indicates that there occurred crack or deformation especially around the bent tube to such a level to impair the function of the radiant tube as a heating means.

[0047] (About the Analysis Method) In the analyses of the various properties relating to heat stress imposed on the third bent tube 3c conducted in Example 1 and Example 2, a software:
"Solid Works Simulation"produced by Solid Works Corp. was used and as its model type, there was employed a linear isotropic elasticity model with two burner-heat introducing side ends (the right ends of the straight tubes 2A, 2D in Fig. 1) being completely restricted to the wall face of the furnace.
[0048] Referring to the size conditions of the radiant tube 1 as the target of analysis, there were set the width (the length from the base end of the straight tube 2A, 2D restricted to the wall face to the curved leading end of the bent tube 3A, 3C) : 2276 mm x height (the length from the upper face of the uppermost straight tube 2A to the lower face of the lowermost tube 2D): 1087 mm; and the outer diameter of the tube was set as 187 mm for all of the straight tubes 2A, 2B, 2C, 2D and the three bent tubes 3A, 3B, 3C.
The various properties of the respective steel materials employed in the analyses are shown in Table 4 below.

[00491 [Table 41 steel type KHR-48N Alloy 230 KHR-35H
failure criterion max von Mises max von max von Mises stress Mises stress stress elastic modulus 105,000 MPa 72,200 MPa 93,000 MPa Poisson's ratio 0.3 0.3 0.3 mass density 8200 kg/m3 8970 kg/m3 8050 kg/m3 coefficient of 1.6e-005/ C 1.61e-005/t 1.8e-005fC
thermal expansion [0050] Incidentally, the mutually welded portions of the bent tube and the straight tube (the area extending for 10 to 30 mm from respective end faces in abutment at the time of welding) are portions where shortage of strength tends to occur more easily during use, due to structural strength shortage on account of being located near the tube end face and embrittlement of material due to heat applied thereto during the welding operation. Therefore, for these welded portions, in order to ensure sufficient resistance against the severe heat condition from combustion gas, these portions are formed even thinner, specifically from to 2 mm thinner than the remaining portions.

[0051] Further, when the radiant tube 1 is put to an actual use, as a means for receiving the mechanical load, in many cases, adjacent bent tubes or a portion of a bent tube and a portion of a straight tube will be supported to each other via an interconnecting piece provided separately. In such case, in the bent tube and the straight tube, supported portions thereof to be welded to the interconnecting piece are formed locally thick (e.g. about 10 mm). As specific examples of the supported portions, they are the portions in the base ends of the bent tubes 3A, 3C
shown in Fig. 1 which portions are in vertical opposition to each other, the lower face of the base end portion on the lower side of the bent tube 3B, the upper face portion of the nearest straight tube 2D, etc.
[0052] It is understood that the values given to the wall thicknesses of the bent tubes and the straight tubes defined in the appended claims and recited in the detailed disclosure are to be applied to the general portions thereof other than these welded portions and the supported portions.
interconnecting a plurality of tubular portions for such purposes as adjusting the extending direction of the pipe, branching from a single tube into a plurality of tubes or converging a plurality of pipes into a single pipe and has a bent curved portion or a bent portion to such ends. Thus, it is understood that the bent tube as used in the present invention is not limited to the U-shaped pipe illustrated in Fig. 1, but is inclusive also of joint pipes having any desired shapes.
[0054] [Other Embodiments]
<1> All of the bent tubes 3A, 3B, 3C, including the second bent tube 3B
relatively distant from the burner 5, can be formed as thin-walled cast bodies having a wall thickness ranging from 3 to 8 mm.
[0055] <2> When the invention is used not as the regenerative type burner 5, but as a non-regenerative type in which combustion gas is fed invariably from the burner 5 connected to the uppermost straight tube 2, only the first bent tube located closest to this constantly used burner 5 may be formed as a thin-walled cast body having a wall thickness ranging from 3 to 8 mm. Alternatively, however, all of the bent tubes 3A, 3B, 3C can be formed as thin-walled cast bodies having a wall thickness ranging from 3 to 8 mm.
[0056] <3> The shape of the radiant tube 1 is not limited to the W-shape described above, but can be a trident shape.
[0057] <4> The numbers of the bent tubes and the straight tubes together constituting the radiant tube 1 are not limited to those exemplified above. As long as there is provided at least one bent tube as a part of its configuration, the radiant tube can be configured as e.g. U-shaped radiant tube including a pair of straight tubes and only one bent tube interconnecting the pair of straight tubes.
Industrial Applicability [0058] The present invention may be used as a technique relating to a radiant tube formed of a heat resistant metal and including at least one bent tube for interconnecting a pair of straight tubes, and a combustion gas from a burner is fed through one of the pair of straight tubes.
Description of Reference Numerals [0059] 2 straight tubes (2A, 28, 2C, 2D) 3 bent tubes (3A, 3C) 5 burners

Claims (6)

1. A radiant tube formed of a heat resistant metal and including at least one bent tube which connects a pair of straight tubes to each other, with combustion gas from a burner being fed through one of the pair of straight tubes;
wherein at least as the bent tube located closest to the burner, there is employed a cast body having an outer diameter ranging from 150 to 210 mm and a wall thickness ranging from 3 to 8 mm.
2. The radiant tube according to claim 1, wherein the bent tube has a smaller wall thickness at its portion near the connection to the straight tube than the remaining portion thereof.
3. The radiant tube according to claim 1 or 2, wherein the radiant tube comprises a plurality of said bent tubes, all of which comprise the cast bodies having the wall thickness ranging from 3 to 8 mm.
4. The radiant tube according to any one of claims 1-3, wherein the straight tube has a wall thickness of 7 mm or less.
5. The radiant tube according to any one of claims 1-4, wherein the straight tube has a smaller wall thickness at its portion near the connection to the bent tube than the remaining portion thereof.
6. The radiant tube according to any one of claims 1-5, wherein the straight tube comprises a cast body having a greater wall thickness than that of the bent tube.
CA2831302A 2011-03-31 2012-03-28 Radiant tube Abandoned CA2831302A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011079964 2011-03-31
JP2011-079964 2011-03-31
PCT/JP2012/058158 WO2012133539A1 (en) 2011-03-31 2012-03-28 Radiant tube

Publications (1)

Publication Number Publication Date
CA2831302A1 true CA2831302A1 (en) 2012-10-04

Family

ID=46931247

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2831302A Abandoned CA2831302A1 (en) 2011-03-31 2012-03-28 Radiant tube

Country Status (6)

Country Link
US (1) US20140053826A1 (en)
JP (1) JPWO2012133539A1 (en)
KR (1) KR20140045350A (en)
CN (1) CN103429958A (en)
CA (1) CA2831302A1 (en)
WO (1) WO2012133539A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111457A1 (en) 2013-01-17 2014-07-24 Janssen Pharmaceutica Nv Novel substituted pyrido-piperazinone derivatives as gamma secretase modulators
CN103747546A (en) * 2014-01-17 2014-04-23 华能无锡电热器材有限公司 U-shaped electric heating tube

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US489827A (en) * 1893-01-10 Loco moti ve-boiler
US984652A (en) * 1910-02-12 1911-02-21 Locomotive Superheater Co Method of making u-shaped pipe-bends.
JPS60169255U (en) * 1984-04-16 1985-11-09 新日本製鐵株式会社 Radiant tube support structure
US4878480A (en) * 1988-07-26 1989-11-07 Gas Research Institute Radiant tube fired with two bidirectional burners
JP2941825B2 (en) * 1988-12-01 1999-08-30 カンタール・アクチボラグ Radiator tube of iron-chromium-aluminum type alloy and method of manufacturing the same
JP3049513B2 (en) * 1991-03-22 2000-06-05 株式会社クボタ Heat resistant alloy for radiant tube
JP2765353B2 (en) * 1992-03-06 1998-06-11 住友金属工業株式会社 Combustion method in radiant tube type heating device
JP2719267B2 (en) * 1992-04-13 1998-02-25 株式会社クボタ Manufacturing method of straight pipe part of radiant tube
JP2003065503A (en) * 2001-08-21 2003-03-05 Osaka Gas Co Ltd Radiant tube
WO2004076920A1 (en) * 2003-02-25 2004-09-10 Nippon Furnace Kogyo Kaisha Ltd. Alternate combustion type regenerative radiant tube burner apparatus
US20100044023A1 (en) * 2008-08-21 2010-02-25 Andres Alberto Canales Heat exchanger systems & fabrication methods
CN101724744B (en) * 2009-12-18 2011-07-06 孙立彬 Double-P type radiant tube and manufacture method thereof
US8733619B2 (en) * 2010-06-25 2014-05-27 Arcelormittal Investigacion Y Desarrollo, S.L. Nickel-base radiant tube and method for making the same
CN103649664B (en) * 2011-02-14 2017-08-15 马西米亚诺·比松 Radiation tubular element for factory etc.

Also Published As

Publication number Publication date
CN103429958A (en) 2013-12-04
JPWO2012133539A1 (en) 2014-07-28
US20140053826A1 (en) 2014-02-27
WO2012133539A1 (en) 2012-10-04
KR20140045350A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
EP0224345A1 (en) Valve seat insert and cylinder head with the valve seat insert
EP2080951A1 (en) Boiler water wall panel
CN104114920B (en) High temperature gate valve
KR102545826B1 (en) Cooling elements for a metallurgical furnace, and method of manufacturing same
CN1965190A (en) Corrosion-resistant exterior alloy for composite tubes
CA2831302A1 (en) Radiant tube
JP4308288B2 (en) Outlet structure of melting furnace and repair method
WO2018049497A1 (en) Vermicular cast iron alloy and internal combustion engine head
US4399985A (en) Metallurgical lance
RU2012126744A (en) Tungsten Carbide Inserts for Gas Turbine Heat Pipe and Method
CS221976B2 (en) Water cooled slipper
JP6438283B2 (en) Precast block structure
JPH074634A (en) Fire grate of refuse incinerator
US6843821B2 (en) Filtering candles comprising a sintered filtering tube
JPH08247671A (en) Heat accumulation body for regenerative burner
JP4117819B2 (en) Air nozzle for radiant tube combustion
JPH07103419B2 (en) Low skid mark Skid button for walking beam furnace
CN205191632U (en) Chain line&#39;s independent vault structure is hanged in match of top combustion stove circular arc
CN213208656U (en) High-strength high-heat-resistance burner brick
GB2101724A (en) Metallurgical lance
US11898251B2 (en) Snout for use in a hot dip coating line
CN210399986U (en) Combustion device for copper smelting anode furnace
KR100858981B1 (en) High performance burner nozzle for the coal fired super critical pressure boiler
CN212430898U (en) Boiler high temperature area soot blower head sleeve pipe
CN110088550B (en) Spray gun tube

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20140307

FZDE Discontinued

Effective date: 20161107