CA2825679A1 - A power plant, an application of such a power plant and a method of operating such a power plant - Google Patents

A power plant, an application of such a power plant and a method of operating such a power plant Download PDF

Info

Publication number
CA2825679A1
CA2825679A1 CA2825679A CA2825679A CA2825679A1 CA 2825679 A1 CA2825679 A1 CA 2825679A1 CA 2825679 A CA2825679 A CA 2825679A CA 2825679 A CA2825679 A CA 2825679A CA 2825679 A1 CA2825679 A1 CA 2825679A1
Authority
CA
Canada
Prior art keywords
power plant
generator
electric motor
electric
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2825679A
Other languages
French (fr)
Other versions
CA2825679C (en
Inventor
Wolfram Grieser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters Deutschland GmbH
Original Assignee
Eurocopter Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurocopter Deutschland GmbH filed Critical Eurocopter Deutschland GmbH
Publication of CA2825679A1 publication Critical patent/CA2825679A1/en
Application granted granted Critical
Publication of CA2825679C publication Critical patent/CA2825679C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

The invention relates to a mobile power plant having an engine together with a main gearbox (5) and a free wheel assembly (4) suitable for driving a rotary wing (7) by means of the main gearbox (5) and further having an electric motor-generator (10), wherein the power plant includes an accessory gear box (12), an additional freewheel assembly (11) and a pump (8), said electric motor-generator (10) being mechanically connected in series via said additional freewheel assembly (12) to said main gearbox (5) in order to be capable of being driven by said main gearbox (5) and said electric motor-generator (10) being connected to said pump (8) in order to be capable of driving said pump (8). The invention relates as well to an application of such a mobile power plant and to a method of operating the mobile power plant.

Description

"A power plant, an application of such a power plant and a method of operating such a power plant"
The invention relates to a mobile power plant with the features of the preamble of claim 1, the application of such a mobile power plant with the features of the preamble of claim 9 and a method of operating the mobile power plant with the features of the preamble of claim 12. The invention lies in the technical field of mobile power plants of helicopters.
A helicopter is conventionally provided with a rotary wing for providing it with lift and propulsion and with an anti-torque tail rotor for countering the torque exerted by the rotary wing on the fuselage of the helicopter. Furthermore, a helicopter features energy supply systems, e.g. electric, hydraulic, compressors for air-con systems, ... driven by a drive system of the helicopter.
Some of said energy supply systems, e.g. hydraulics, are required to be driven by a rotor drive system to keep them operational also in case of loss of all engines/ autorotation, see FAR and CS
27/29.691 and 695. At least bigger helicopters are required by FAR
and CS 29,671c to have means to check full availability of the flight controls in their entire range prior to take-off. The transfer of the mechanical rotational power from the engine to the drive system -e.g. a main gear box (MGB) - is done via a free wheel mechanism.
This allows free rotation of the drive system and rotor, e.g. for autorotation, should the engine fail, see FAR and CS 27/29.691 and 695.
In order to drive the rotary wing, and where appropriate the anti-torque rotor, the helicopter has a power plant.
The power plant implements one or more engines. It should be understood that throughout this specification, the term "engine"
applies equally well to turbine engines or to piston engines. The term "engine" is to be contrasted with the term "electric motor", where the term "electric motor" designates a motor driven by electricity, preferably a so-called "brushless" motor for example.
The document US 2011121127 Al discloses a power plant having a single engine together with both a main gearbox (MGB) suitable for driving the rotary wing of a helicopter and a tail gearbox (TGB) suitable for driving an anti-torque rotor of a helicopter. The power plant also includes a first electric motor mechanically connected to said MGB in order to be capable of driving said MGB, and a second electric motor mechanically connected to said TGB in order to be capable of driving said tail gearbox.
An object of the present invention is to propose a mobile power plant for the demand for further electrical/hydraulical energy - at least for specific elements/parts. It is a further object of the present invention to propose an application of said mobile power plant for the demand for further electrical energy during the production life of helicopters at least for specific elements/ parts of a flight mission. It is a still further object of the present invention to propose a method of operating the mobile power plant with or without engine.
A solution is provided with a mobile power plant with the features of claim 1 of the invention. A further solution for an application of said mobile power plant is provided with the features of claim 9 of the invention. A still further solution for a method of operating said mobile power plant is provided with the features of claim 12 of the invention.
According to the invention a mobile power plant has an engine together with a main gearbox and a free wheel assembly suitable for driving a rotary wing by means of the main gearbox.
The power plant further has an electric motor-generator. The main gearbox includes an accessory gear box, an additional freewheel assembly and a pump as specific elements/parts, said electric motor-generator being mechanically connected in series via said additional freewheel assembly to said main gearbox. Said electric motor-generator is driven by said main gearbox and said electric motor-generator is connected to said pump in order to drive said pump. The inventive mobile power plant provides advantages in terms of weight, costs, volume and the inventive mobile power plant provides for other than electric on-board energy. The same energy supply source of the inventive power plant can be driven by the accessory gear box of the inventive power plant during flight and by the electric motor on ground. The dual use of the electric motor on ground, used also as an additional generator during flight is a further redundancy/diversification of the electric system of the inventive power plant. The inventive power plant allows transfer of ground power to the electric motor-generator and consequently to onboard energy consumers even if the rotor is not turning thus allowing the use of electrical ground power, e. g. for maintenance, ground and pre-flight test purpose and as well for engine start.
Correspondingly hydraulic power might be supplied via ground power for direct supply of onboard hydraulic consumers. For bigger helicopters, i. e. helicopters with more than 3 tons, the inventive power plant improves on-board independent power sources, e. g.
electric, hydraulic, pneumatic, air-con,... for ground operation. For said bigger helicopters the inventive power plant further allows use of an electric motor pump/auxiliary pressure supply to pressurise at least one hydraulic circuit to support pre-flight test of the flight controls. For smaller helicopters, i. e. helicopters with less than 3 tons, the inventive power plant allows on-board use of any electrical engine starter motor(s) as generators as long as the engine(s) are operative by using the battery(s), which are used for engine start up as emergency power source in case of loss of all engines/autorotation. The inventive power plant features an auxiliary power unit for electrical ground power - if available - for pre-flight test and engine start or in cases where ground power is not available, an on-board battery of the inventive power plant is used for pre-flight test and engine start.
According to a preferred embodiment of the invention an electric engine's starter motor-generator is provided, said electric engine's starter motor-generator being connected to said engine.
According to a further preferred embodiment of the invention said pump is a hydraulic pump, air-conditioning (air-con) compressor, etc.. The hydraulic pump of the inventive power plant allows use as a ground/pre-flight test pump or as emergency back-up pump. The hydraulic pumps, air-con systems coupled to the accessory gear box allow operation while the rotary wing is not turning.
According to a further preferred embodiment of the invention said electric motor-generator is provided with electric supply lines for collecting electric power from a ground supply or delivering electric power to electric consumers onboard the helicopter.
According to a further preferred embodiment of the invention said pump is provided with hydraulic supply lines for delivering hydraulic power to hydraulic consumers onboard the helicopter.
Said hydraulic power is provided in support of the electric motor-generator.
According to a further preferred embodiment of the invention said accessory gear box is provided with a power outlet, said additional freewheel assembly and said electric motor-generator being mounted to said power outlet. The inventive power plant provides for a 'reserve' drive outlet allowing in case of a later demand - after an original development - on-board energy, e.g.
introduction of an air-con.
5 According to a further preferred embodiment of the invention said engine, the free wheel assembly and the main gearbox are mechanically connected in series.
According to a further preferred embodiment of the invention said electric motor-generator is connected to a battery and/or electric onboard consumers.
According to a preferred embodiment of the invention the inventive mobile power plant is applied to a helicopter.
In addition to providing a mobile power plant, the invention also provides a helicopter provided both with a rotary wing and with an anti-torque rotor, and also with a power plant, the power plant being provided with a main gearbox driving the rotary wing and a tail gearbox driving the anti-torque rotor.
According to a further preferred embodiment of the invention the additional freewheel assembly and the electric motor generator are installed in a position of a hydraulic pump removed from an outlet of the accessory gear box. The hydraulic pump is shifted as much as needed and is reinstalled in an adjacent position allowing connection to the electric motor generator. Hydraulic pump and electric motor generator use a common mechanical accessory gear box drive.
According to a preferred embodiment of the invention a method of operating the inventive mobile power plant comprises the following steps: - providing a battery and/or external electric (ground) supply, - supplying electric power from said battery and/or external electric (ground) supply to said electric motor generator, -driving said pump by means of said electric motor generator, and -driving onboard hydraulic consumers by means of said pump.
According to a further preferred embodiment of the invention a method of operating the inventive mobile power plant comprises the following steps: - driving the rotary wing, said electric motor generator and said pump by means of said main gearbox, -supplying electric power from said driven electric motor generator to the battery and/or electric onboard consumers, and - driving onboard hydraulic consumers by means of said pump.
According to a preferred embodiment of the invention a method of operating the inventive mobile power plant comprises the following steps: - driving said electric motor generator and said pump by means of said autorotating rotary wing via said main gear box, accessory gear box and additional freewheel assembly, -supplying preferably electric power from said driven electric motor generator to the battery and/or electric onboard consumers, and -supplying hydraulic power from said driven pump to onboard hydraulic consumers.
A method of operating the inventive mobile power plant comprises the following steps:- providing a hydraulic ground supply, and supplying hydraulic power from said hydraulic ground supply to onboard hydraulic consumers.
The invention and its advantages appear in greater detail from the following description of embodiments given by way of illustration and with reference to the accompanying figures, in which:
Figure 1 is a diagram showing a power plant in a first operating mode according to the invention, Figure 2 is a diagram showing the power plant in a second operating mode according to the invention, Figure 3 is a diagram showing the power plant in a third operating mode according to the invention, and Figure 4 is a diagram showing the power plant in a fourth operating mode.
According to Fig. 1 a mobile power plant of a helicopter (not shown) is provided with an engine 1. Said engine 1 is connected to an electric engine's starter motor/generator 2. The engine 1 is connected in series via an axle 3 and a free-wheel assembly 4 to a main gear box 5. The main gearbox 5 drives a rotary wing 7 at its output 6. During ground and pre-flight test operation the electric engine's starter motor/generator 2 is supplied by electric (ground) power or a battery (not shown). During ground and pre-flight test operation the electric engine's starter motor/generator 2 is operated as an electric motor.
At a further output of the main gearbox 5 is provided respectively in series an accessory gear box 12, an additional freewheel assembly 11, an electric motor-generator 10 and a pump 8, e. g. a hydraulic pump. Said pump 8 provides hydraulic pressure to onboard hydraulic consumers 13, such as an air-con compressor, .... Towards one side said electric motor-generator 10 is mechanically connected by means of a drive shaft 9 via said additional freewheel assembly 11 to said main gearbox 5. Towards another side said electric motor-generator 7 is connected by means of said drive shaft 9 to said pump 8 for driving said pump 8. The capability of the electric motor-generator 10 is restricted from 10%
to 90% of the power transmittable by the additional freewheel assembly 11 in order to keep restricted the volume of the electric motor-generator 10.

The electric engine's starter motor/generator 2 and the electric motor-generator 10 are part of into an electric grid (not shown) with electric consumers, such as the battery, onboard the helicopter.
An external hydraulic (ground) power 14 is connected to the onboard hydraulic consumers 13 parallel to the pump 8 for supply in support of the electric motor-generator 10 (s. Fig. 4).
Method of operating the power plant On ground and during pre-flight test operation of the helicopter the engine 1, the main gear box 5 and the rotary wing 7 are stopped. The electric motor-generator 10 is supplied by external electric (ground) power or by battery to drive the electric motor-generator 10 and the pump 8 via the drive shaft 9. During ground and pre-flight test operation the electric motor-generator 10 is operated as a motor driving the pump 8. Said pump 8 provides hydraulic pressure to said onboard hydraulic consumers 13. While the electric motor-generator 10 is driven by the external electric (ground) power or by battery, the drive shaft 9 is separated from the accessory gear box 12 and the main gearbox 5 by the freewheel 11 and consequently the main rotor 7 is not driven.
According to Fig. 2 during flight operation of the helicopter the running engine 1 drives the electric motor-generator 10 as an electric generator via the main gearbox 5, the accessory gear box 12 and the additional freewheel assembly 11, respectively connected by the axle 3. The rotary wing 7 is driven via the main gearbox 5 and the output 6. The main gearbox 5 and the electric motor-generator 10 drive as well directly and mechanically the pump 8 coupled via the drive shaft 9. During flight operation the driven electric motor-generator 10 feeds any electric on board consumers, e. g. the battery, while the driven pump 8 provides energy to its respective hydraulic consumers 13, e. g. an air con-compressor. The electric engine's starter motor/generator 2 is driven by the engine 1 and feeds the helicopter's electric on board consumers.
The electric motor-generator 10 is provided with a control for electrical balance with the electric engine's starter motor/generator 2 and for separation from the onboard electric grid.
According to Fig. 3 during flight, autorotation operation of the helicopter with a non operating engine 1 ¨ due to a technical problem ¨ the rotary wing 7 drives the electric motor-generator 10 as an electric generator via the main gearbox 5, the accessory gear box 12 and the additional freewheel assembly 11, respectively connected by the axle 3. The rotary wing 7 is driven by the airstream while the helicopter is descending. The electric motor-generator 10 drives as well directly and mechanically the pump 8 coupled via the drive shaft 9. During autorotation operation the driven electric motor-generator 10 feeds any electric on board consumers, e. g. the battery, while the driven pump 8 provides energy to its respective hydraulic consumers 13, e. g. an air con-compressor.
According to Fig. 4, alternatively, on ground and during pre-flight test operation with stalled engine 1, stalled main gear box 5 and stalled rotary wing 7 of the helicopter, the onboard hydraulic consumers 13 are supplied directly by external hydraulic (ground) power 14 to provide hydraulic pressure to said onboard hydraulic consumers 13.
Application of the power plant For an existing helicopter with a hydraulic pump at the power outlet (not shown) of the accessory gear box 12, said hydraulic pump is to be removed from the power outlet. An additional freewheel assembly 12 and an electric motor generator 10 are installed in the hydraulic pump's former position. The hydraulic pump is to be shifted as much as needed and is to be reinstalled in 5 an adjacent position allowing connection to the electric motor generator 10. Hydraulic pump and electric motor generator use a common mechanical drive of the accessory gear box 12.

List of references 1 engine 2 electric engine's starter motor/generator 3 axle 4 free-wheel assembly 5 main gearbox 6 output 7 rotary wing 8 pump 9 drive shaft 10 electric motor generator 11 additional freewheel assembly 12 accessory gear box 13 onboard hydraulic consumer 14 external hydraulic (ground) power

Claims (15)

1. A mobile power plant having an engine (1) together with a main gearbox (5) and a free wheel assembly (4) suitable for driving a rotary wing (7) by means of the main gearbox (5) and further having an electric motor-generator (10), wherein supplemental to the main gearbox (5) there is provided an accessory gear box (12), an additional freewheel assembly (11) and a pump (8), said electric motor-generator (10) being on a first side mechanically connected in series via said additional freewheel assembly (11) and said accessory gear box (12) to said main gear box (5) in order to be capable of being driven by said main gear box (5) and said electric motor-generator (10) being mechanically connected on a second side to said pump (8).
2. The power plant according to claim 1, wherein an electric engine's starter motor-generator (2) is provided, said electric engine's starter motor-generator (2) being connected to said engine (1).
3. The power plant according to claim 1, wherein said pump (8) is a hydraulic pump, air-con compressor, etc..
4. The power plant according to claim 1, wherein said electric motor-generator (10) is provided with electric supply lines.
5. The power plant according to claim 1, wherein said pump (8) is provided with hydraulic supply lines.
6. The power plant according to claim 1, wherein said accessory gear box (12) is provided with a power outlet, said additional freewheel assembly (11) and said electric motor-generator (10) being mounted to said power outlet.
7. The power plant according to claim 1, wherein said engine (1), the free wheel assembly (4) and the main gearbox (5) are mechanically connected in series.
8. The power plant according to claim 1, wherein said electric motor-generator (10) is connected to a battery and/or electric onboard consumers.
9. An application of the mobile power plant according to any of the preceding claims to a helicopter.
10. The application according to claim 9, wherein the additional freewheel assembly (11) and the electric motor generator (10) are installed in a position of a hydraulic pump removed from an outlet of the accessory gear box (12), while the hydraulic pump is shifted and is reinstalled in an adjacent position allowing connection to the electric motor generator (10).
11. The application according to claim 10, wherein the hydraulic pump (8) and electric motor generator (10) use a common drive shaft (9) to the mechanical accessory gear box (12).
12. A method of operating onboard a helicopter the mobile power plant according to any of the claims 1 to 8 with the following steps:
- providing electric power to said electric motor generator (10), - driving said pump (8) by means of said electric motor generator (10), and, - driving onboard hydraulic consumers (13) by means of said pump (8).
13. The method of operating the power plant according to claim 12, characterized by:
- providing the electric power to said electric motor generator (10), from the battery and/or external electric (ground) supply.
14. The method of operating the power plant according to claim 12, characterized by:
- driving said electric motor generator (10) by means of said auto-rotating rotary wing (7) via said main gear box (5).
15. The method of operating the power plant according to claim 14 characterized by:
- supplying electric power from said driven electric motor generator (10) to the battery and/or electric onboard consumers.
CA2825679A 2012-11-22 2013-08-30 A power plant, an application of such a power plant and a method of operating such a power plant Active CA2825679C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12400049.8 2012-11-22
EP20120400049 EP2735507B1 (en) 2012-11-22 2012-11-22 A mobile power plant, an application of such a power plant and a method of operating such a power plant

Publications (2)

Publication Number Publication Date
CA2825679A1 true CA2825679A1 (en) 2014-05-22
CA2825679C CA2825679C (en) 2015-09-22

Family

ID=47709789

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2825679A Active CA2825679C (en) 2012-11-22 2013-08-30 A power plant, an application of such a power plant and a method of operating such a power plant

Country Status (3)

Country Link
US (1) US9511872B2 (en)
EP (1) EP2735507B1 (en)
CA (1) CA2825679C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104443391B (en) * 2014-12-04 2016-05-18 吉林大学 Adsorbable multifunction micro flight instruments
CN104802991A (en) * 2015-04-10 2015-07-29 南京航空航天大学 Micro single board type UAV (unmanned aerial vehicle) system with suction function and control method thereof
CN105151289A (en) * 2015-10-08 2015-12-16 黎建军 Four-rotor aircraft capable of absorbing objects based on vacuum
GB201602710D0 (en) * 2016-02-16 2016-03-30 Rolls Royce Cabin blower system
US10969035B2 (en) 2016-03-03 2021-04-06 Woodward, Inc. Redundant vehicle control systems
US9849044B1 (en) 2017-01-30 2017-12-26 SkyRyse, Inc. Vehicle system and method for providing services
US10531994B2 (en) 2017-01-30 2020-01-14 SkyRyse, Inc. Safety system for aerial vehicles and method of operation
WO2018193522A1 (en) * 2017-04-18 2018-10-25 インダストリーネットワーク株式会社 Propeller aircraft
EP3658456A4 (en) 2017-07-27 2021-04-21 Skyryse, Inc. System and method for situational awareness, vehicle control, and/or contingency planning
GB2567158A (en) * 2017-10-03 2019-04-10 J And M Ferranti Tech Limited Power generation and drive system
CN108750128B (en) * 2018-05-18 2020-07-03 沈阳无距科技有限公司 Helicopter control method and device, helicopter and readable storage medium
US11420742B2 (en) * 2019-02-13 2022-08-23 Tetherkraft Technologies, Llc Unmanned aerial vehicle driven by pressurized content
FR3106570B1 (en) * 2020-01-23 2024-02-16 Airbus Helicopters rotary wing aircraft equipped with a transmission system equipped with an emergency electric motor.
US11408340B2 (en) * 2020-05-15 2022-08-09 Pratt & Whitney Canada Corp. Twin-engine system with electric drive

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1422328A (en) * 1964-11-13 1965-12-24 Sud Aviation Improvements in power transmission mechanisms and their applications, particularly in helicopters
US5271295A (en) * 1990-12-12 1993-12-21 Aerospatiale Societe Nationale Industrielle Mechanism for transmitting power between a driving shaft and two assemblies to be driven
US6371882B1 (en) * 1999-12-17 2002-04-16 Caterpillar Inc. Control system and method for a multiple range continuously variable transmission using mechanical clutches
US7296767B2 (en) * 2005-05-31 2007-11-20 Sikorsky Aircraft Corporation Variable speed transmission for a rotary wing aircraft
DE202008002249U1 (en) * 2008-02-18 2008-04-17 Dill, Hans-Dieter Aircraft with an internal combustion engine and an electric drive motor
US8281680B2 (en) * 2009-06-08 2012-10-09 Aeon Motor Co., Ltd. Power-augmenting transmission structure for an electric car
FR2952907B1 (en) 2009-11-26 2011-12-09 Eurocopter France MOTOR INSTALLATION, HELICOPTER COMPRISING SUCH A MOTOR INSTALLATION, AND METHOD IMPLEMENTED BY THIS MOTOR INSTALLATION
FR2962404B1 (en) * 2010-07-08 2012-07-20 Eurocopter France ELECTRICAL ARCHITECTURE FOR AN AIRCRAFT WITH A HYBRID MOTORIZED TURNING SAIL
FR2998542B1 (en) * 2012-11-26 2015-07-17 Eurocopter France METHOD AND AIRCRAFT WITH ROTARY WING WITH THREE ENGINES
FR3023989B1 (en) * 2014-07-17 2016-08-26 Airbus Helicopters ELECTRIC ARCHITECTURE OF AN AIRCRAFT, AIRCRAFT AND METHOD USED

Also Published As

Publication number Publication date
US9511872B2 (en) 2016-12-06
EP2735507A1 (en) 2014-05-28
CA2825679C (en) 2015-09-22
EP2735507B1 (en) 2015-05-20
US20140140871A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
CA2825679C (en) A power plant, an application of such a power plant and a method of operating such a power plant
US10301011B2 (en) Electrified rotorcraft
EP3241753B1 (en) Optionally hybrid power system
EP3002435B1 (en) Accessory drive system for a gas turbine engine
US9873518B2 (en) Electrical architecture for an aircraft, an aircraft, and a method of using it
US10759280B2 (en) Hybrid electric power drive system for a rotorcraft
US10040566B2 (en) Hybrid contingency power drive system
KR102447272B1 (en) Architecture for a propulsion system of a helicopter including a hybrid turboshaft engine and a system for reactivating said hybrid turboshaft engine
KR101313851B1 (en) An electrical architecture for a rotary wing aircraft with a hybrid power plant
US9242726B2 (en) Method for powering autonomous drive motors for an aircraft
EP2636596B1 (en) Engine starting system for rotorcraft in flight
EP2267288A2 (en) Lightweight start system for a gas turbine engine
US20140203739A1 (en) Aircraft comprising a distributed electric power unit with free wheels
US20170174355A1 (en) Tail rotor drive systems
RU2702945C2 (en) Detachable gas turbine engine reactivation unit, power plant architecture of multimotor helicopter equipped with such unit and corresponding helicopter
CN103569352B (en) For producing the method for hydraulic power, the application of hybrid power control unit and drive system in aircraft
RU2672219C2 (en) Hydraulic device for emergency starting a turbine engine, propulsion system of a multi-engine helicopter provided with such device, and corresponding helicopter
US9227725B2 (en) Aircraft including an electric starter-generator for the or each turbojet, an undercarriage fitted with an electric motor for taxiing, an electricity converter, and an electricity distribution unit connecting the electricity converter to the starter-generator and the electric motor
US11585232B2 (en) Electrical system for aircraft
EP2407660B1 (en) Auxiliary hydraulic power generation system
CN112055683A (en) Propulsion system for helicopter
JP2017512699A (en) Aircraft transmission assembly and helicopter
US20200017206A1 (en) Tail rotor system including an electric motor
JP2000079898A (en) Helicopter