CA2802907C - Aerodynamic skirt resilient member - Google Patents

Aerodynamic skirt resilient member Download PDF

Info

Publication number
CA2802907C
CA2802907C CA2802907A CA2802907A CA2802907C CA 2802907 C CA2802907 C CA 2802907C CA 2802907 A CA2802907 A CA 2802907A CA 2802907 A CA2802907 A CA 2802907A CA 2802907 C CA2802907 C CA 2802907C
Authority
CA
Canada
Prior art keywords
skirt
trailer
resilient
aerodynamic
strut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2802907A
Other languages
French (fr)
Other versions
CA2802907A1 (en
Inventor
Mathieu Boivin
Philippe Desjardins
Mathieu Desjardins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transtex Inc
Original Assignee
Transtex Composite Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transtex Composite Inc filed Critical Transtex Composite Inc
Priority claimed from CA2668323A external-priority patent/CA2668323C/en
Publication of CA2802907A1 publication Critical patent/CA2802907A1/en
Application granted granted Critical
Publication of CA2802907C publication Critical patent/CA2802907C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

A resilient strut adapted to secure an aerodynamic skirt to a trailer is provided, the aerodynamic skirt comprising a skirt panel including a front portion and a rear portion adapted to be substantially longitudinally mounted to the trailer, the skirt panel being adapted to move away from the aerodynamic configuration when contacting a foreign object and to recover its aerodynamic configuration thereafter, the resilient strut includes a shape variation adapted to change the mechanical strength thereof and also adapted to sustain an elastic deformation allowing the resilient strut to bend when a load is applied to the resilient strut when the skirt panel moves away from the aerodynamic configuration and to self-recover its original shape when the load is removed A kit of resilient struts, a method thereof and a trailer equipped with same are also provided.

Description

2 AERODYNAMIC SKIRT RESILIENT MEMBER
3
4 FIELD OF THE INVENTION

[0001] This invention relates to aerodynamic trailer skirts adapted to be mounted 6 on trailers to improve the aerodynamic efficiency of the trailer. The present invention 7 more precisely relates to resilient members for supporting aerodynamic trailer skirts.

[0002] Road tractors are used to pull road trailers on roads to transport cargo.
11 Aerodynamic apparatuses are installed on the road tractor and/or on the road trailer in 12 order to reduce the aerodynamic air drag and improve fuel efficiency.

13 [0003] Trailer skirts made of rigid materials are installed on both sides of a road 14 trailer to help manage the flow of air around and underneath the trailer.
Brackets, also made of rigid material, are affixed to the trailer to secure the skirts positioned thereto.
16 These skirts are secured to the bottom portion of the trailer, or on the sides of the 17 trailer's floor, to ensure proper positioning when the vehicle is moving.

18 [0004] People who are familiar with the trucking industry know that trailers are 19 subject to hazardous road conditions. The skirts, because of their position under the trailer's floor and their proximity with the road, are significantly vulnerable and might 21 easily enter in contact with surrounding obstacles. The brackets holding the skirts, when 22 put under significant stress, plastically bend and/or break to effect the skirts' position in 23 respect to the road trailer thus reducing the efficiency of the skirts.
Moreover, the skirt 24 itself might bend and/or break if they contact a foreign object. This also increases the operation cost and the maintenance time that is required.

1 [0005] The shape of the skirts, and their respective positions on the road trailer, 2 have a significant effect on the aerodynamics efficiency of the road trailer.

3 [0006] Therefore, there exists a need in the art for an improved aerodynamic skirt 4 assembly over the existing art. There is a need in the art for such a resilient skirt assembly that can be easily installed and economically manufactured.

8 [0007] It is one aspect of the present invention to alleviate one or more of the 9 drawbacks of the background art by addressing one or more of the existing needs in the art.

11 [0008] Accordingly, embodiments of this invention provides an improved trailer 12 skirt over the prior art.

13 [0009] An embodiment of the invention provides a skirt assembly adapted to be 14 installed on a road trailer to reduce the aerodynamic drag produced by the movement of the road trailer when pulled by a tractor.

16 [0010] One embodiment of the invention provides a resilient skirt assembly that is 17 adapted to bend when it contacts a foreign object and recovers its original position and 18 shape thereafter.

19 [0011] One other embodiment of the invention provides a resilient skirt assembly that can be easily installed and economically manufactured.

21 [0012] Another embodiment of the invention provides a skirt panel adapted to be 22 installed on a road trailer with a rear edge disposed next to the forwardmost road trailer 23 rear wheel to keep a gap therebetween to a minimum. The skirt panel being adapted to 24 forwardly extend next to the road trailer support 1 [0013] Another embodiment of the invention provides a skirt assembly made of 2 composite materials offering a significant range of elastic deformation.

3 [0014] Another embodiment of the invention provides a resilient strut adapted to 4 secure a skirt panel to a road trailer, the strut being made of a resilient material adapted to sustain significant deformation and adapted to resiliently regain its original position.

6 [0015] Another aspect of one or more embodiments of the invention provides 7 strut supports made of non-metallic material.

8 [0016] One embodiment of the invention provides a trailer skirt that is sized and 9 designed to allow a temporary deflection of, inter alia, a bottom portion of the skirt panel.

11 [0017] A further embodiment of the invention provides a fastening system for 12 easily securing the skirt panel to the trailer; the fastening system uses a limited number 13 of parts to reduce the assembly time and the weight added to the trailer.

14 [0018] A further embodiment of the invention provides a skirt assembly comprising a plurality of support angles adapted to secure the skirt panel to the road 16 trailer.

17 [0019] According to a further embodiment, support angles made of composite 18 material is provided.

19 [0020] An embodiment of the present invention provides a resilient strut shaped in one piece.

21 [0021] According to another embodiment of the present invention is provided a 22 resilient strut made of composite materials.

23 [0022] Another embodiment of the present invention provides a resilient strut 24 having a constant section.

1 [0023] A further embodiment provides a resilient strut adapted to be connected to 2 the skirt panel at an angle.

3 [0024] One additional embodiment of the present invention provides an opening 4 in the skirt panel adapted to allow access to a fuel tank located underneath the road trailer, the opening being adapted to be optionally provided with a door.

6 [0025] Another additional embodiment of the present invention provides a skirt 7 panel composed of a plurality of skirt panel modules, at least one panel module being 8 adapted to be removed or pivoted about a hinged mechanism to allow access under the 9 road trailer.

[0026] Another embodiment of the present invention provides a substantially 11 progressive curvature on the forward portion of the skirt panel.

12 [0027] One other embodiment of the invention provides a method of installing a 13 skirt assembly on a road trailer comprising installing fastening a portion of a skirt panel 14 substantially on the edge of a road trailer floor and securing a forwardmost portion of the skirt panel at a predetermined position on the trailer to define the shape of the skirt 16 panel.

17 [0028] Another embodiment of the invention provides a radius on the skirt panel 18 adapted to mate the shape of the road trailer wheel to reduce the air gap therebetween.
19 [0029] One other embodiment of the invention provides a skirt panel extension adapted to selectively reduce the gap between the road trailer wheels and the skirt 21 panel when the road trailer wheels, disposed on a moveable trailer buggy, are 22 longitudinally moved about the road trailer to change the load distribution of the road 23 trailer.

24 [0030] Another embodiment of the present invention provides an aerodynamic skirt adapted to be mounted to a trailer, the aerodynamic skirt comprising a skirt panel 26 defining a front portion and a rear portion, the front portion being adapted to be 1 proximally mounted toward a center of the trailer, the rear portion being adapted to be 2 substantially longitudinally mounted to the trailer.

3 [0031] One other embodiment of the present invention provides a method of 4 installing a skirt assembly on a trailer, the method comprising securing upper supports to the trailer, securing a skirt panel to the upper supports, and securing struts between 6 the trailer and the skirt panel.

7 [0032] An embodiment of the present invention provides a skirt assembly kit 8 comprising a skirt panel adapted to be disposed on a trailer to route air about the road 9 trailer, a plurality of upper supports adapted to secure the skirt panel to the road trailer and a plurality of struts adapted to secure the skirt panel to the road trailer.

11 [0033] One additional embodiment of the invention provides A resilient strut 12 adapted to secure an aerodynamic skirt to a trailer, the aerodynamic skirt being adapted 13 to be substantially longitudinally mounted to the trailer, the aerodynamic skirt comprising 14 a skirt panel including a front portion and a rear portion, the front portion being adapted to be mounted toward a forward portion of the trailer and the rear portion being adapted 16 to be mounted toward a rear portion of the trailer in a configuration reducing air drag 17 about the trailer, the skirt panel being adapted to move away from the configuration 18 reducing air drag about the trailer when contacting a foreign object and to recover the 19 configuration reducing air drag about the trailer thereafter, the resilient strut being adapted to sustain an elastic deformation when a load is applied to the resilient strut 21 when the skirt panel moves away from the configuration improving air routing about the 22 trailer and to self-recover the resilient strut original shape when the load is removed, the 23 resilient strut including an uneven longitudinal shape adapted to change a stiffness of 24 the resilient strut.

[0034] Another embodiment of the present invention provides a resilient 26 aerodynamic skirt assembly adapted to be mounted on a trailer, said skirt assembly 27 comprising first and second resilient skirts for reducing aerodynamic drag, one for 28 mounting proximate each longitudinal side of the trailer, wherein each said resilient skirt 29 is elastically deformable, such that each said skirt is configured to sustain temporary
5 1 deformation from an original position as a result of encountering an object without 2 breaking, and thereafter recover the original position when unloaded, wherein each said 3 skirt includes a rearward portion and a forward portion, the rearward portions of the 4 respective skirts configured to be generally parallel to one another when attached to the trailer; a plurality of non-metallic resilient supports for each said resilient skirt, wherein
6 each said resilient support is attachable to the respective resilient skirt, wherein the
7 resilient supports being adapted to sustain an elastic deformation when a load is applied
8 to the resilient strut when the skirt panel moves away from the original position and to
9 self-recover the original position when the load is removed, the resilient support including a shape defined therein adapted to influence the stiffness of the resilient 11 support.

12 [0035] A further embodiment of the present invention provides a An aerodynamic 13 skirt assembly adapted to be mounted to an underside of a trailer and reduce air drag 14 by the trailer, the aerodynamic skirt assembly comprising a skirt panel including a front portion and a rear portion, said skirt panel being adapted to be mounted to the 16 underside of the trailer along the length of a trailer; a plurality of resilient struts, at least 17 some of the plurality of resilient struts including a first end adapted to be mounted to the 18 trailer; and a second end adapted to be secured to the skirt panel, the skirt panel being 19 characterized in that it can sustain substantial elastic deformation when impacted by a foreign object and to return substantially to a skirt panel original position before being 21 elastically deformed when the skirt panel is no longer being impacted by the foreign 22 object; the resilient strut being characterized in that it includes a shape variation 23 adapted to effect the flexibility of the resilient strut while the resilient strut can sustain 24 substantial elastic deformation when the skirt panel is under stress by a foreign object and to return substantially to a resilient strut original position before being elastically 26 deformed when the skirt panel is no longer under stress by the foreign object.

27 [0036] Other embodiments and further scope of applicability of the present 28 invention will become apparent from the detailed description given hereinafter.
29 However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration 1 only, since various changes and modifications within the spirit and scope of the 2 invention will become apparent to those skilled in the art from this detailed description.
3 [0037] Additional and/or alternative advantages and salient features of the 4 invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, disclose preferred embodiments of the 6 invention.

9 [0038] Referring now to the drawings which form a part of this original disclosure:
[0039] Figure 1 is a perspective view of a road tractor and a road trailer with a 11 skirt assembly secured thereto;

12 [0040] Figure 2 is a left elevational view of the road tractor of Figure 1;
13 [0041] Figure 3 is a bottom plan view of the road tractor of Figure 1;

14 [0042] Figure 4 is a left-front perspective view of a portion of a floor section of the road trailer of Figure 1;

16 [0043] Figure 5 is a top plan view of a portion of the floor section of Figure 4;
17 [0044] Figure 6 is a right elevational section view of a portion of the road trailer 18 and the skirt assembly of Figure 1;

19 [0045] Figure 7 is a rear elevational section view of a portion of the road trailer and the skirt assembly of Figure 1;

21 [0046] Figure 8 is a rear elevational view of a portion of the securing mechanism 22 of the skirt to the road trailer's floor;

23 [0047] Figure 9 is a section view of a portion of the road trailer's floor with the 24 securing mechanism attached thereto;

1 [0048] Figure 10 is a rear elevational section view of a portion of the skirt's 2 securing mechanism;

3 [0049] Figure 11 is a rear elevational section view of a portion of the skirt's 4 securing mechanism;

[0050] Figure 12 is a rear elevational section view of an alternate embodiment of 6 a portion of the skirt' securing assembly;

7 [0051] Figure 13 is a rear elevational section view of an alternate embodiment of 8 a portion of the skirt' securing assembly of Figure 12 when deflected;

9 [0052] Figure 14 is a perspective view of a road tractor and a road trailer with a skirt assembly secured thereto and a skirt panel module in the opened position; and 11 [0053] Figure 15 is a left-front perspective view of a portion of a floor section of 12 the road trailer of Figure 14.

[0054] A preferred embodiment of the present invention is described bellow with 16 reference to the drawings.

17 [0055] Figures 1, 2 and 3 illustrate a road tractor 10 with a road trailer 18 attached thereto equipped with a pair of skirt assemblies 30, installed on each side of 19 the road trailer 20, adapted to deflect and direct the airflow around the road trailer 20.
Each skirt assembly 30 includes a skirt panel 32, adapted to be disposed on the side of 21 the road trailer 20, and a plurality of securing members adapted to secure the skirt 22 panel 32 to the road trailer 20. The securing members are not illustrated on Figures 1, 2 23 and 3 and will be discussed in more details later in this specification.
Once installed on 24 the road trailer 20, the skirt assembly 30 helps channel the flow of air around the road trailer 20 to reduce the air drag of the vehic'e when the road trailer 20 moves on the 26 road, pulled by the road tractor 10.

1 [0056] The skirt assembly 30 of the present embodiment is mostly located under 2 the road trailer 20, between the wheels 12 of the road tractor 10 and the wheels 26 of 3 the road trailer 20. The skirt panels 32 can alternatively extend forward up to the trailer 4 supports 14 of the road trailer, and be secured thereto, thus preventing complex skirt panel 32 arrangements through the trailer supports 14. The skirt panels 32 are 6 substantially vertically positioned on each side of the road trailer 20 with a clearance 7 with the ground by illustratively about 15-25 centimeters (about 6 to 10 inches). The air 8 management around the trailer 20 provided by the skirt assembly 30 reduces the air 9 drag created by the road trailer 20 by directing the flow of air around the road trailer 20.
The flow of air would otherwise turbulently move around and below the road trailer 20 to 11 create substantial air drag. The airflow management around the road trailer 20 provided 12 by the skirt assembly 30 helps maintain laminar airflow around the road trailer 20 that 13 helps diminish fuel consumption of the road tractor 10. The skirt assembly 30 also 14 improves the safety of the vehicle by providing a barrier that can significantly prevent foreign objects to get under the road trailer 20.

16 [0057] The skirt panel 32 can also be used to display advertising thereon.
Each 17 skirt panel 32 provides additional display area in addition to the road trailer's wall 22.
18 [0058] As illustrated, the skirt panel 32 is shaped with an optional progressive 19 height from the forwardmost portion 34. The skirt panels 32 can alternatively also be installed at an angle, in respect to the vertical, on the road trailer 20 to change the 21 airflow pattern around the road trailer 20 and more precisely adjust the aerodynamics to 22 a specific vehicle shape.

23 [0059] It can be appreciated from Figure 3 that each skirt panel 32 is installed 24 directly on the side of the road trailer 20 and, when seen from above, have a front portion 34 that progressively proximally leans toward the center 24 of the road trailer 20.
26 The recessed front portion 34 of the skirt panel 32 improves the collection of the 27 turbulent airflow generated by the road tractor 10 thus improving the aerodynamic 28 efficiency of the skirt assembly 30. Additional explanation about the shape of the skirt 29 panel 32 will be provided in further details below.

1 [0060] Figure 4 is a perspective image of the skirt assembly 30 installed on the 2 left side of a road trailer 20 from which is only illustrated a series of frame members 23 3 forming a portion of the road trailer floor frame 22. A series of angle supports 40 are 4 secured to the trailer to secure the juxtaposed skirt panel 32 thereto. The angle supports 40 could be omitted altogether and the skirt panel could alternatively be 6 attached directly to the road trailer 20 without deviating from the scope of the present 7 application. The rear portion 36 of the skirt panel 32 is preferably positioned on the edge 8 of the road trailer's wall 28. It is also encompassed by the present invention that the 9 skirt panel 32 be installed a little in recess about the side of the road trailer 20 to avoid winches, lights, toolbox or ladders located on the side/edge of the road trailer 20. In 11 contrast, it can be appreciated that the front portion 34 of the skirt panel 32 is 12 progressively positioned and secured toward the center 24 of the road trailer 20. The 13 skirt panel 32 is secured adjacent to the frame 22 with a series of angle supports 40 14 secured to both the frame members 23 and the skirt panel 32. Lower, the skirt panel 32 is secured to the road trailer 20 with a series of intervening resilient struts 42 also 16 secured to both the frame members 23 and the skirt panel 32. Additional details about 17 the angle supports 40 and the resilient struts 42 are provided later in reference with 18 Figure 7 through Figure 11.

19 [0061] Still referring to Figure 4, it can be appreciated that the upper series of holes 35 disposed on a top portion of the skirt panel 32 is used to fasten the skirt panel 21 32 to respective angle supports 40 that, themselves, are secured to frame members 23 22 of the road trailer 20. A number of connection points between the skirt panel 32 and the 23 road trailer 20 are used to ensure the skirt panel 32 is well secured to the road trailer 20 24 and will not vibrate or deflect (some deflection can be acceptable under certain conditions) during operation. The series of holes 35 disposed on a lower portion of the 26 skirt panel 32 are adapted to fasten to an end of each resilient strut 42.
Similarly, the 27 other end of the resilient strut 42 is connected to the frame members 23 of the road 28 trailer 20 via a fastener mechanism that will be discussed below in details.

29 [0062] A curved portion 38 is defined on the rear portion 36 of the skirt panel 32 and preferably corresponds to the exterior shape of the adjacent wheel 26 of the road 1 trailer 20. In so doing, it is possible to install the skirt panel 32 close to the wheel 26 2 without risking any contact therebetween. The skirt panel 32 should be installed as 3 close as possible to the road trailer wheels 26 to maximize its efficiency.
It is preferable 4 to leave a distance between the wheel 26 of the road trailer 20 and the skirt panel 32 to avoid any risk of interference therebetween.

6 [0063] The wheels 26 of a road trailer 20 are commonly adapted to be 7 longitudinally adjustable to distribute the mass of the road trailer 20 in a desired fashion.
8 The adjustment of the position of the axels of a road trailer 20 is desirable, for instance, 9 when a heavy load is carried or during thaw and freeze periods. In this respect, and to avoid reinstalling the skirt panel 32 in various positions on the road trailer 20, it might be 11 desirable to install the skirt panel 32 in respect with the forwardmost possible position of 12 the axels of the road trailer 20. That would prevent to remove and reposition the skirt 13 panel 32 when the trolley's 16 position is modified.

14 [0064] The road trailer wheels 26 are mounted on a road trailer buggy 16 adapted to move the wheels 26 along a portion of the road trailer's length to distribute 16 the weight of the road trailer 20 in a desired fashion. The skirt assembly 30 is preferably 17 permanently secured to the road trailer 20 taking in consideration the forwardmost 18 position of the trailer buggy 16. The gap between the skirt panel 32 and the road trailer's 19 wheels 26 is however increased when the trailer buggy 16 is move toward the rear of the road trailer 20 thus likely reducing the aerodynamic efficiency of the skirt assembly 21 30. The present invention provides a skirt panel extension module 33 adapted to reduce 22 the gap between the skirt panel 32 and the ,':gad trailer's wheels 26 to prevent any 23 aerodynamic efficiency reduction. The skirt panel extension modules 33 are secured to 24 the road trailer in a similar fashion. The skirt panel extension module 33 can be provided in various lengths to fill gaps of various sizes. They can also be provided as 26 skirt panel extension modules 33 kit. An alternate embodiment provides a sliding skirt 27 panel extension 33 that is permanently secured to the road trailer 20 and extendable to 28 the desired length when the trailer buggy 16 is moved.

'9 'I

1 [0065] A skirt panel extension 33, illustrated on Figure 6, can alternatively be 2 added between the skirt panel 32 and the wheels 26 when the axles of the road trailer 3 20 are located in a rearward position leaving an increased distance therebetween to 4 improve the aerodynamic efficiency of the skirt assembly 30. A reasonable distance between the skirt panel 32 and the wheels 26 could be between about 15 centimeters 6 and about 30 centimeters although a shorter distance, or even a superposition of the 7 skirt panel 32 (or skirt panel module(s) 33) over the wheel 26, can be achieved.

8 [0066] Figure 5 is a top elevational view of the road trailer frame 22. As 9 mentioned above, it can be appreciated from Figure 5 that the skirt panel 32 is disposed inwardly on the forward portion of the road trailer 20 and is progressively located on the 11 edge of the road trailer's wall 28 toward the rear end of the road trailer 20. A departure 12 angle support 60 and a cooperating forward angle support 64 are secured to the road 13 trailer to correctly locate the skirt panel 32 on the road trailer 20. The departure angle 14 support 60 and the forward angle support 64 are installed on the trailer 20 prior to install the skirt panel 32. The rear portion 36 of the skirt panel 32 is secured to the road trailer 16 20 up to the departure angle support 60 and then the skirt panel 32 is bent to reach the 17 forward angle support 64 and secured thereto. That bent locates the skirt panel 32 to 18 the road trailer 20 and defines the shape of the skirt panel 32 with the desired 19 progressive proximal bent. The remaining angle supports 62 and resilient struts 42 are installed thereafter to further secure the assembly.

21 [0067] The rear portion 36 of the skirt panel 32 is intended to be secured to the 22 road trailer to leave only a minimum gap with the road trailer wheels 26 to improve the 23 aerodynamic efficiency of the skirt assembly 30. The skirt panel 32 extends to the front 24 of the road trailer 20 and defines a curve portion on its front portion 34.
A long skirt 32 appears to be more efficient than a shorter skirt panel 32 and should therefore extend 26 as far as possible to the front of the road trailer 20. However, for reasons of complexity, 27 the front portion 34 of the skirt panel 32 is likely to stop at the trailer supports 14. It is 28 nonetheless encompassed by the present invention that the skirt panel 32 alternatively 29 extends in front of the trailer supports 14. The lowermost portion of the front portion 34 of the skirt panel 32 is provided with a radius thereof as it is best seen in Figure 6.

1 [0068] In an embodiment of the invention adapted to fit a standard 16.1 meters 2 (53 feet) road trailer 20 the forward end of the departure angle support 60 is located at a 3 distance di from the forward end of the skirt panel 32. A forward angle support 64 is 4 secured to the frame at a distance d2 from the side edge of the road trailer 20. Distance di is about between 1.5 meter and 3 meters, preferably about between 2 meters and 6 2.5 meters and most preferably about between 2.1 meters and 2.4 meters.
Distance d2 7 is about between 0.20 meter and 0.40 meter, preferably about between 0.25 meter and 8 0.35 meter and most preferably about 0.27 meter and 0.32 meters. More precisely, 9 distance d, is preferably about 2.29 meters and distance d2 is preferably about 0.31 meter in a preferred embodiment. Corresponding angle supports 40 and resilient struts 11 42 are installed to further secure the skirt panel 32 at the desired position.

12 [0069] A left side elevational view schematically illustrating, on Figure 6, the 13 overall size of the skirt panel 32. Length d3 of the skirt panel 32 is about between 5 14 meters and 9 meters, preferably about between 6 meters and 8 meters and most preferably about between 6.5 meters and 7.5 meters. The height d4 of the skirt panel 32 16 is about between 0.5 meter and 1 meter, preferably about between 0.6 meter and 0.9 17 meter and most preferably about between 0.7 meter and 0.8 meter. And the 18 forwardmost height d5 of the skirt panel 32 is about between 0.3 meter and 0.7 meter, 19 preferably about between 0.4 meter and 0.6 meter and most preferably about between 0.45 meter and 0.5 meter. More precisely, distance d4 is preferably about 0.76 meter 21 and distance d5 is preferably about 0.48 meter in a preferred embodiment.

22 [0070] Alternate embodiments providing a skirt assembly sized and designed to 23 fit road trailers of different lengths can be inferred from the dimensions discussed 24 above. For instance, a skirt assembly can be designed to fit a 14.6 meters (48 feet) road trailer 20 or any other road trailer 20 sizes and lengths.

26 [0071] In one embodiment, the skirt panel 32 is made of composite material.
27 Recommended multilayer composite material, fiber reinforced polypropylene, a 28 combination of a polypropylene component and woven component or reinforced 29 thermoplastic manufactured by Transtex Composites Inc. is used in the present 1 embodiment. The composite material forming the skirt panel 32 of the illustrative 2 example is shaped in a planar material adapted to allow skirt panel 32 to bend when the 3 skirt panel 32 is pushed toward the center of the road trailer 20 (proximally) when, for 4 instance, contacting an obstacle or having a force applied thereon. The skirt panel 32 bends, allowing a significant displacement of the bottom portion of the skirt panel 32, 6 and is adapted to retrieve its original position when the force is removed from the skirt 7 panel 32. As further illustrated in Figure 6, the skirt panel 32 is provided with a series of 8 holes 35 used to connect the sk'rt panel 32 to the road trailer 20. The series of holes 35 9 disposed on the upper portion of the skirt panel 32 is used to connect the skirt panel 32 to the frame 22 of the trailer 20 whereas, in a similar fashion, the series of holes 35 11 disposed on the bottom portion of the skirt panel 32 is used to connect the skirt panel 32 12 to the skirt connecting portion 48 of the resilient strut 42. The resilient strut 42 is 13 connected to the frame member 23 of the trailer via the trailer connecting portion 46 of 14 the resilient strut 42. The skirt connecting portion 48 and the trailer connecting portion 46 are provided with respec ive sates of 35 to receive fasteners therein. The 16 holes 35 can be factory pre--drilled or can he drilled during installation to ensure desired 17 customization. Rivets or bolts are placed in the holes 35 to secure the skirt panel 32 to 18 the trailer frame 22 or the support .ssembl,'. Other appropriate fastening mechanism 19 variations well known in the art are encompassed by the present disclosure and can be used without departing from the scope of the r invention.

21 [0072] An opening 70 is defined in the skirt panel 32 to allow access to an 22 optional fuel tank disposed on the road trailer 20 to fuel an onboard generator or 23 freezer. Such a fuel tank is commonly disposed under the floor 22 of the road trailer 20 24 and is most likely hidden by the skirt assembly 30. The opening is sized, designed and located on the skirt panel 32 to allow access to the fuel tank. A door (not illustrated) can 26 optionally be added to close the opening 70.

27 [0073] Turning now to Figure 7 where is illustrated a plurality of resilient struts 42 28 and angles support 40 secured between the frame 22 and the skirt panel 32.
The rear 29 elevational view shows that the front portion 34 of the skirt panel 32 is proximally recessed from the left lateral side of the trailer 20 by, illustratively, about 30 centimeters.

1 It can also be appreciated that the skirt panel 32 is held to the road trailer frame 22 via 2 the series of angled support 40 on its upper portion. The trailer connecting portion 46 of 3 the resilient strut 42 is connected to the frame member 23 at an angle a,, which is an 4 angle of about 45 in the present illustrative embodiment and could be different without departing from the present description.

6 [0074] In one embodiment, the resilient strut 42 has a rectangular section and is 7 made of composite material. Recommended multilayer composite material, or 8 reinforced thermoplastic manufactured by Transtex Composites Inc is used in the 9 present embodiment. The composite material forming the resilient struts 42 of the illustrative example is shaped in a rectangular section to allow the resilient strut 42 to 11 bend when the skirt panel 32 is pushed toward the center of the road trailer 20 12 (proximally) when, for instance, contacting an obstacle or having a force applied 13 thereon. The resilient strut 42 bends, allowiE ig a significant displacement of the bottom 14 portion of the skirt panel 32, is adapted to retrieve its original position when the force is removed from the skirt panel 32. The resilient strut 42 is preferably made of a one-piece 16 material where both ends are slightly angled 44 to evenly contact the skirt panel 32 and 17 the road trailer frame member 23. In so doing, no additional intervening parts are 18 required between the resilient strut 42 and both the skirt panel 32 and the road trailer 19 frame member 23.

[0075] The resilient struts 42 of the present embodiment is about 4 millimeters 21 thick and can reach a radius of 20 centimeters without going into plastic deformation or 22 breaking. Generally, the thinner the resilient strut 42 is, the shorter will be its maximum 23 radius of curvature. A lateral proximal displacement of about 60 centimeters of the 24 bottom portion of the skirt panel 32 is possible. The lower portion of the skirt panel 32 can even reach, under certain circumstances, a position parallel with the trailer 20 floor.
26 The skirt assembly 30 and the skirt panel 32 will recover their original positions when 27 the force causing the bending is removed. Further, the bending of the resilient struts 42 28 provides energy absorption in case of impact from another vehicle for example. It can 29 be noted that a distal displacement of the skirt panel 32 is possible. A
distal 1 displacement of the skirt panel 32 will occur when a properly directed force is applied to 2 the skirt panel 32 to bend the skirt panel 32.

3 [0076] Figures 8 and 9 depict with more details the connection mechanism 4 between the resilient struts 42 and the trailer frame members 23. One of the resilient strut 42 ends is juxtaposed on the lower surface of the road trailer frame 22.
A set of 6 holes, identified with holes axes 54, are used to fasten two clamps 50, one on each side 7 of the frame member 23 with fasteners 52, to secure the resilient strut 42 to the road 8 trailer frame 22. The clamps 50 are illustratively made of a shaped stainless steel plate 9 material to prevent corrosion.

[0077] Figure 10 illustrates the connection between the resilient strut 42 and the 11 skirt panel 32. The end of the resilient strut 42 is positioned to the surface of the skirt 12 panel 32 and secured thereto. Any types of fasteners 56 can be used to fasten both 13 parts together. Rivets are preferably used although a bolt could also fit into the holes 54 14 performed in the skirt panel 32 and the resilient strut 42, and illustrated with hole axes 54 to secure the assembly. Glue or resin could alternatively be applied between the 16 resilient strut 42 and the skirt panel 32 to secure the resilient strut 42 and the skirt panel 17 32 together and is also encompassed by the present invention.

18 [0078] Figure 11 shows the assembly between the upper portion of the skirt 19 panel 32 and one of the angled supports 40. The angle support 40 is disposed next to the edge of the road trailer 20 to position the exterior surface of the skirt panel 32 21 significantly co-planar with the lateral wall of the road trailer 20.
Again, any types of 22 fasteners can be used to fasten both parts together. Rivets are preferably used but a 23 bolt could also fit into the holes 54 in the skirt panel 32 and the angled support 40 to 24 secure the assembly. Here again, glue or resin could alternatively be applied between the angle support 40 and the skirt panel 32 to permanently secure the angle support 40 26 and the skirt panel 32 together.

27 [0079] Figure 12 and Figure 13 illustrate an alternate embodiment where the 28 resilient strut 42 is fixed to the trailer frame 22 and the skirt panel 32 differently. Instead 29 of installing the resilient strut 42 with both ends slightly angled to mate with the skirt 1 panel 32, both ends of the resilient strut 42 are further angled to contact the skirt panel 2 32 from the opposite side. This alternate layout assembly reduces the stress on the 3 resilient strut 42, when the skirt panel 32 is deflected, for instance, under a force F, by 4 expending the radius of curvature of the resilient strut 42 throughout the resilient strut 42 ergo significantly reducing local stress points in the resilient strut 42.

6 [0080] In another unillustrated embodiment, the section of the resilient strut 42 7 has a shape adapted to increase its stiffness. A "U" shaped resilient strut 42 can be 8 manufactured. Alternatively, an embossed portion on a planar shaped resilient strut 42 9 can also be manufactured. Preferably the selected shape should prevent dirt and road debris to keep stuck on the resilient strut 42. The shape can also be uneven along the 11 length of the resilient strut 42 to provide an uneven flex to the resilient strut 42.

12 [0081] As would be appreciated by those skilled in the art, in view of the present 13 specification, the nature of the material used to build the skirt panel 32 and the resilient 14 strut 42 can vary. These materials are also contemplated to fall within the scope of the invention if they lead to the flexibility and resilience required to build a resilient skirt 16 assembly 30.

17 [0082] Turning now to Figure 14 and Figure 15, illustrating the road tractor 10 18 and the road trailer 20. In this embodiment the skirt panel 32 is constructed with a 19 plurality of skirt panel modules 80. A pivotable skirt panel module 86 is adapted to be pivoted about hinges 84 to give access under the road trailer 20. A support member 82 21 is also provided to maintain the pivoted skirt panel module 86 in its opened position.
22 The support member 82 being composed of a suspension means and a damper means.
23 [0083] While the invention has been described in connection with what is 24 presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments and 26 elements, but, to the contrary, is intended to cover various modifications, combinations 27 of features, equivalent arrangements, and equivalent elements included within the spirit 28 and scope of the appended claims. Furthermore, the dimensions of features of various 29 components that may appear on the drawings are not meant to be limiting, and the size 1 of the components therein can vary from the size that may be portrayed in the figures 2 herein. Thus, it is intended that the present invention covers the modifications and 3 variations of the invention, provided they come within the scope of the appended claims 4 and their equivalents.

Claims (38)

What is claimed is:
1. A resilient strut adapted to secure an aerodynamic skirt to a trailer, the aerodynamic skirt being adapted to be substantially longitudinally mounted to the trailer, the aerodynamic skirt comprising a skirt panel including a front portion and a rear portion, the front portion being adapted to be mounted toward a forward portion of the trailer and the rear portion being adapted to be mounted toward a rear portion of the trailer in a configuration reducing air drag about the trailer, the skirt panel being adapted to move away from the configuration reducing air drag about the trailer when contacting a foreign object and to recover the configuration reducing air drag about the trailer thereafter, the resilient strut being adapted to sustain an elastic deformation when a load is applied to the resilient strut when the skirt panel moves away from the configuration reducing air drag about the trailer and to self-recover the resilient strut original shape when the load is removed, the resilient strut including a longitudinal shape variation adapted to change a mechanical strength of the resilient strut and influence a stiffness of the resilient strut.
2. The resilient strut of claim 1, wherein the resilient strut defines a "U" shaped section.
3. The resilient strut of claim 1, wherein the resilient strut has a substantially rectangular section including a concave portion adapted to increase the stiffness of the resilient strut.
4. The resilient strut of claim 3, wherein the concave portion is uneven along the resilient strut.
5. The resilient strut of claim 1, wherein the resilient strut includes an embossed portion thereon.
6. The resilient strut of claim 1, wherein the resilient strut is made of a continuous member.
7. The resilient strut of claim 1, wherein the trailer connecting portion and the skirt connecting portion are angularly extending from respective ends of the intermediate portion.
8. The resilient strut of claim 1, wherein the resilient strut includes two opposite parallel wall portions thereof.
9. The resilient strut of claim 1, wherein the resilient strut includes a composite material.
10. The resilient strut of claim 1, wherein the resilient strut is adapted to sustain the load applied thereon without bending until the resilient strut buckles when a stronger load is applied thereon.
11. A resilient aerodynamic skirt assembly adapted to be mounted on a trailer, said skirt assembly comprising:
first and second resilient skirts for reducing aerodynamic drag, one for mounting proximate each longitudinal side of the trailer, wherein each said resilient skirt is elastically deformable, such that each said skirt is configured to sustain temporary deformation from an original position as a result of encountering an object without breaking, and thereafter recover the original position when unloaded, wherein each said skirt includes a rearward portion and a forward portion, the rearward portions of the respective skirts configured to be generally parallel to one another when attached to the trailer;
a plurality of non-metallic resilient supports for each said resilient skirt, wherein each said resilient support is attachable to the respective resilient skirt, wherein the resilient supports being adapted to sustain an elastic deformation when a load is applied to the resilient strut when the skirt panel moves away from the original position and to self-recover the original position when the load is removed, the resilient support including a shape defined therein adapted to influence the stiffness of the resilient support.
12. The resilient aerodynamic skirt assembly of claim 11, wherein the resilient support defines a "U" shaped section.
13. The resilient aerodynamic skirt assembly of claim 11, wherein the resilient support has a substantially rectangular section including a concave portion adapted to increase the stiffness of the resilient strut.
14. The resilient aerodynamic skirt assembly of claim 13, wherein the concave portion is uneven along the resilient support.
15. The resilient aerodynamic skirt assembly of claim 11, wherein the resilient support includes an embossed portion thereon.
16. The resilient aerodynamic skirt assembly of claim 11, wherein the resilient support is made of a continuous member.
17. An aerodynamic skirt assembly adapted to be mounted to an underside of a trailer and reduce air drag by the trailer, the aerodynamic skirt assembly comprising:
a skirt panel including a front portion and a rear portion, said skirt panel being adapted to be mounted to the underside of the trailer along the length of a trailer;
a plurality of resilient struts, at least some of the plurality of resilient struts including a first end adapted to be mounted to the trailer; and a second end adapted to be secured to the skirt panel, the skirt panel being characterized in that the skirt panel can sustain substantial elastic deformation when impacted by a foreign object and to return substantially to a skirt panel original position before being elastically deformed when the skirt panel is no longer being impacted by the foreign object;
the resilient strut being characterized in that the resilient strut_includes a shape variation adapted to effect the flexibility of the resilient strut while the resilient strut can sustain substantial elastic deformation when the skirt panel is under stress by a foreign object and to return substantially to a resilient strut original position before being elastically deformed when the skirt panel is no longer under stress by the foreign object.
18. The aerodynamic skirt assembly of claim 17, wherein the skirt panel comprises composite material.
19. The aerodynamic skirt assembly of claim 17, wherein the skirt panel comprises fiber reinforced polypropylene.
20. The aerodynamic skirt assembly of claim 17, wherein the skirt panel comprises a polypropylene component and a woven component.
21. An aerodynamic skirt assembly comprising:
a pair of skirt panels each adapted to be mounted to respective longitudinal sides of a trailer, each skirt panel including a front portion and a rear portion, the front portion being adapted to be mounted toward a forward portion of the trailer and the rear portion being adapted to be mounted toward a rear portion of the trailer in an original skirt panel aerodynamic configuration adapted to reduce air drag about the trailer when the trailer is in movement, and each skirt panel being adapted to independently move away from the original skirt panel aerodynamic configuration as a consequence of an external force caused by a physical contact between the skirt panel and an object not associated with the aerodynamic skirt assembly and the trailer to a visibly altered position detrimental to the air drag reduction obtained when the skirt panel is in the original skirt panel aerodynamic configuration, and to self-recover the original skirt panel aerodynamic configuration when the skirt panel is not in physical contact anymore with the object, for regaining the air drag reduction obtained when the skirt panel is in the original skirt panel aerodynamic configuration, and a plurality of struts associated with each skirt panel and adapted to secure the skirt panel to the trailer, each strut comprising a skirt connecting portion, adapted to be secured to the skirt panel, and a trailer connecting portion, adapted to be secured to the trailer, each strut being flexible to accommodate relative movements between the skirt connecting portion and the trailer connecting portion thereof, each strut being adapted to sustain a substantial reversible elastic deformation from an original strut configuration when a force is applied thereon by the skirt panel moving away from the original skirt panel aerodynamic configuration as a result of an external force, and to self-recover the original strut configuration when the skirt panel is not sustaining the external force anymore, each strut being constructed with a material allowing a substantial elastic deformation thereof without recording substantial plastic deformation thereof, which allows the strut to move away from the original strut configuration and support the skirt panel away from the skirt panel aerodynamic configuration in the visibly altered position detrimental to the air drag reduction obtained when the skirt panel is in the original skirt panel aerodynamic configuration, and to self-recover the original strut configuration when the skirt panel is not sustaining the external force anymore, for recovering the air 21.1 drag reduction obtained when the skirt panel is in the original skirt panel aerodynamic configuration.
22. The aerodynamic skirt assembly of claim 21, wherein the skirt panels are adapted to bend to allow a significant transversal displacement of a bottom portion of the skirt panels.
23. The aerodynamic skirt assembly of claim 22, wherein the transversal displacement of the bottom portion of the skirt panels can reach about 60 centimeters.
24. The aerodynamic skirt assembly of any one of claims 21 to claim 23, wherein each strut is generally adapted to bend between the skirt connecting portion and the trailer connecting portion.
25. The aerodynamic skirt assembly of any one of claims 21 to claim 24, wherein the skirt assembly includes composite materials offering a significant range of elastic deformation.
26. The aerodynamic skirt assembly of any one of claims 21 to claim 25, wherein each strut includes multilayer composite material.
27. The aerodynamic skirt assembly of any one of claims 21 to claim 26, wherein each strut includes fiber reinforced polypropylene.
28. The aerodynamic skirt assembly of any one of claims 21 to claim 27, wherein each strut includes fiber-reinforced polypropylene.
29. The aerodynamic skirt assembly of any one of claims 21 to claim 28, wherein each strut includes a combination of a polypropylene component and woven component.
30. The aerodynamic skirt assembly of any one of claims 21 to claim 29, wherein each strut includes reinforced thermoplastic material.
31. The aerodynamic skirt assembly of any one of claims 21 to claim 30, wherein the skirt panels and each strut are made of similar material.
32. The aerodynamic skirt assembly of any one of claims 21 to claim 31, wherein each strut includes a portion thereof that has a wall thickness of about 4 millimeters.

21.2
33. The aerodynamic skirt assembly of any one of claims 21 to claim 32, wherein each strut is adapted to reach a radius of about 20 centimeters without going into plastic deformation or breaking
34. The aerodynamic skirt assembly of any one of claims 21 to claim 33, wherein each strut has a three dimensional shape.
35. The aerodynamic skirt assembly of any one of claims 21 to claim 34, wherein at least one of the struts defines a "U" shaped section.
36. The aerodynamic skirt assembly of any one of claims 21 to claim 35, wherein at least one of the struts defines a concave portion that is uneven along the resilient strut.
37. An aerodynamic skirt assembly kit for reducing air drag of a trailer, the aerodynamic skirt assembly kit comprising:
a pair of skirt panels respectively including a front portion and a rear portion, each of the pair of skirt panels being adapted to be mounted to a respective longitudinal side of the trailer, the front portion being adapted to be mounted toward a forward portion of the trailer and the rear portion being adapted to be mounted toward a rear portion of the trailer in an original skirt panel aerodynamic configuration adapted to reduce air drag about the trailer when the trailer is in movement, each of the skirt panels being adapted to independently move away from the original skirt panel aerodynamic configuration as a consequence of an external force caused by a physical contact between the skirt panel and an object not associated with the aerodynamic skirt assembly and the trailer to a visibly altered position detrimental to the air drag reduction obtained when the skirt panels are in the original skirt panel aerodynamic configurations, and to self-recover the original skirt panel aerodynamic configuration when the skirt panel is not in physical contact anymore with the object, for regaining the air drag reduction obtained when the skirt panel is in the original skirt panel aerodynamic configuration, a plurality of struts each comprising a skirt connecting portion and a trailer connecting portion adapted to accommodate relative movements thereof, each of the plurality of struts being adapted to sustain a substantial reversible elastic deformation 21.3 from an original strut configuration when a force is applied thereon by one of the skirt panels when moving away from its original skirt panel aerodynamic configuration as a result of an external force, and to self-recover the original strut configuration when the skirt panel is not sustaining the external force anymore, the plurality of resilient struts being constructed with a material allowing a substantial elastic deformation without recording substantial plastic deformation, which allows the plurality of struts to move away from the original strut configurations and support the skirt panels away from the skirt panel aerodynamic configurations in the visibly altered position detrimental to the air drag reduction obtained when the skirt panels are in the original skirt panel aerodynamic configurations, and to self-recover the original strut configurations when neither of the skirt panels is in physical contact with an object, for recovering the air drag reduction obtained when the skirt panels are in the original skirt panel aerodynamic configurations.
38. The aerodynamic skirt assembly kit of claim 37, further comprising supports adapted to secure an upper portion of the skirt panel to the trailer.

21.4
CA2802907A 2008-01-29 2009-01-27 Aerodynamic skirt resilient member Active CA2802907C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2421708P 2008-01-29 2008-01-29
US61/024,217 2008-01-29
CA2668323A CA2668323C (en) 2008-01-29 2009-01-27 Resilient aerodynamic trailer skirts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2668323A Division CA2668323C (en) 2008-01-29 2009-01-27 Resilient aerodynamic trailer skirts

Publications (2)

Publication Number Publication Date
CA2802907A1 CA2802907A1 (en) 2009-07-29
CA2802907C true CA2802907C (en) 2016-09-13

Family

ID=47711323

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2802907A Active CA2802907C (en) 2008-01-29 2009-01-27 Aerodynamic skirt resilient member

Country Status (1)

Country Link
CA (1) CA2802907C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550569B2 (en) 2016-02-24 2020-02-04 Wabash National, L.P. Composite floor structure and method of making the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3217311A1 (en) 2015-02-23 2016-09-01 Wabash National, L.P. Composite refrigerated truck body and method of making the same
WO2017044462A1 (en) 2015-09-08 2017-03-16 Wabash National, L.P. Joining a rail member to a composite trailer structure
WO2017044463A1 (en) 2015-09-08 2017-03-16 Wabash National, L.P. Joining a suspension assembly to a composite trailer structure
MX2016013715A (en) 2015-10-23 2017-12-20 Wabash National Lp Extruded molds and methods for manufacturing composite truck panels.
US10479419B2 (en) 2016-02-24 2019-11-19 Wabash National, L.P. Composite refrigerated semi-trailer and method of making the same
US10239566B2 (en) 2016-02-24 2019-03-26 Wabash National, L.P. Composite floor for a dry truck body
US10384728B2 (en) 2016-03-28 2019-08-20 Transtex Llc Beam connector and method of installation thereof
US10479405B2 (en) 2016-08-31 2019-11-19 Wabash National, L.P. Mounting bracket for a composite truck body floor
CA2991480A1 (en) 2017-01-11 2018-07-11 Wabash National, L.P. Mounting bracket for a truck body and method for mounting a composite truck body to a chassis
MX2022009486A (en) 2017-08-10 2022-09-05 Wabash National Lp Transverse beam for composite floor structure and method of making the same.
CA3015252C (en) 2017-08-25 2023-11-14 Wabash National, L.P. Composite floor structure with embedded hardpoint connector and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550569B2 (en) 2016-02-24 2020-02-04 Wabash National, L.P. Composite floor structure and method of making the same

Also Published As

Publication number Publication date
CA2802907A1 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
US8678474B1 (en) Self-repositioning aerodynamic skirt
CA2802907C (en) Aerodynamic skirt resilient member
US20230249762A1 (en) Aerodynamic system and adjustable fairings
US8186745B2 (en) Device for reducing vehicle aerodynamic resistance
US10343731B2 (en) Skirt system mount bracket assembly
CA3006823C (en) Rear impact guard assembly for trailers
CA2905596C (en) Modular aerodynamic skirt
US20170057563A1 (en) Landing gear aero skirt
WO2024103183A1 (en) Reinforced aerodynamic skirt

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20140117