CA2802656A1 - Methyl isobutyl carbinol mixture and methods of using the same - Google Patents

Methyl isobutyl carbinol mixture and methods of using the same Download PDF

Info

Publication number
CA2802656A1
CA2802656A1 CA 2802656 CA2802656A CA2802656A1 CA 2802656 A1 CA2802656 A1 CA 2802656A1 CA 2802656 CA2802656 CA 2802656 CA 2802656 A CA2802656 A CA 2802656A CA 2802656 A1 CA2802656 A1 CA 2802656A1
Authority
CA
Canada
Prior art keywords
mibc
weight percent
mixture comprises
beneficiation
mibc mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2802656
Other languages
French (fr)
Inventor
Bo L. Tran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Nalco Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Co LLC filed Critical Nalco Co LLC
Publication of CA2802656A1 publication Critical patent/CA2802656A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention is directed towards methods and compositions for separating materials are provided. The present invention provides a method of separating a first material from a second material such as mixing the first material and the second material in a slurry with a beneficiation composition. The beneficiation composition can comprise methyl isobutyl carbinol mixture derived from a methyl isobutyl ketone and/or methyl isobutyl carbinol manufacturing process. Additionally air bubbles can be provided in the slurry to form bubble-particle aggregates with the first material and the bubble-particle aggregates can be allowed to be separated from the second material.

Description

METHYL ISOBUTYL CARBINOL MIXTURE AND METHODS OF USING THE
SAME
Cross-Reference to Related Applications This Application is a continuation in part of co-pending US Patent Application 11/764,461 filed on June 18, 2007, Statement Regarding Federally Sponsored Research or Development Not Applicable.
Background of the Invention The present invention relates generally to beneficiation technologies.
More specifically, the present invention relates to beneficiation compositions and methods of using the same.
Beneficiation is a method of separating useful matter from waste.
Commonly, beneficiation uses the difference in the hydrophobicity of the respective components. During this process, the mineral ore is comminuted to a certain small size and slurried with water. The slurry is introduced into a flotation apparatus purged with air. The air bubbles formed preferentially attach to the hydrophobic particles of the slurry, making them float to the top of the apparatus. The floated particles are collected, dewatered, and accumulated as a sellable final product. The hydrophilic particles tend to migrate to the bottom of the contact vessel from where they can be removed as tailings and processed into waste impoundments. In other processes, such as reverse flotation, the sellable final product may migrate to the bottom.

To facilitate beneficiation, several types of conventional reagents are used such as frothers, collectors, promoters and conditioners. Nevertheless, these reagents can be expensive thereby reducing the cost-effectiveness of the beneficiation processes.
Thus it is clear that there is clear utility in novel methods and compositions for the facilitating beneficiation. The art described in this section is not intended to constitute an admission that any patent, publication or other information referred to herein is "Prior Art" with respect to this invention, unless specifically designated as such. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 CFR
1.56(a) exists.
Brief Summary of the Invention At least one embodiment of the invention is directed towards a method of separating a first material from a second material. The method comprises:
Mixing the first material and the second material in a slurry with a beneficiation composition, wherein the beneficiation composition comprises an MIBC mixture and at least one C10 to C18 ketone. Air bubbles may be provided in the slurry to form bubble-particle aggregates with the first material; and allowing the bubble-particle aggregates to be separated from the second material.
At least one embodiment of the invention is directed towards a method of separating a first material from a second material, the method comprising:
Mixing the first material and the second material in a slurry with a beneficiation composition derived from the manufacture of methyl isobutyl ketone or methyl isobutyl carbinol, wherein the beneficiation composition comprises one or more components selected from a group consisting of diisobutyl carbinol and diisobutyl carbinol isomers and combinations thereof, and wherein the beneflciation composition comprises one or more ketone ranging from C10 to C18.
Detailed Description of the Invention The following definitions are provided to determine how terms used in this application, and in particular how the claims, are to be construed. The organization of the definitions is for convenience only and is not intended to limit any of the definitions to any particular category.
"Beneficiation" means separating useful matter from waste, particularly hydrophobic substances from hydrophilic substances. Suitable processes for accomplishing this include, but are not limited to, flotation, reverse flotation and similar technologies.
"MIBC mixture" means co-products generated from MIBK and/or MIBC
manufacturing processes.
"By-Products" means by-products derived from biodiesel manufacturing processes, and/or transesterification reactions involving triglycerides.
"Off-Spec Material" means products from biodiesel manufacturing processes and/or transesterification reactions that do not meet industry quality standards because they are bottoms of processes, contaminated, by-products, and/or generated from process wash out. The off-spec material can comprise the same components as the by-products. In some instances, the off-spec material is mixed with the by-products.
"Green Collector" means one or more components selected from a group consisting of nonionic surfactants of low FMB numbers, naturally occurring lipids, modified lipids, hydrophobic polymers and combinations thereof.
"Green" means environmentally friendly, biodegradable, and/or non-toxic chemistry.
In the event that the above definitions or a description stated elsewhere in this application is inconsistent with a meaning (explicit or implicit) which is commonly used, in a dictionary, or stated in a source incorporated by reference into this application, the application and the claim terms in particular are understood to be construed according to the definition or description in this application, and not according to the common definition, dictionary definition, or the definition that was incorporated by reference. In light of the above, in the event that a term can only be understood if it is construed by a dictionary, if the term is defined by the Kirk-Othmer Encyclopedia of Chemical Technology, 5th Edition, (2005), (Published by Wiley, John & Sons, Inc.) this definition shall control how the term is to be defined in the claims.
Flotation processes are one of the most widely used methods of separating the valuable material from valueless material present. For example, in a flotation process, the fine particles are dispersed in water or other suitable solution and small air bubbles are introduced to the slurry so that hydrophobic particles can be selectively collected on the surface of the air bubbles and exit the slurry (e.g. by rising to the surface) while hydrophilic particles are left behind. The hydrophilic particles can also sink to the bottom of the slurry to be collected as sludge.
The MIBC mixture can be used to separate materials, for example, in any suitable flotation process. It should be appreciated that the desired final products can rise to the surface during flotation and/or sink to the bottom, such as in reverse flotation processes. For example, during silica flotation processes, the desired product can sink to the bottom of the slurry and the waste product can rise to the top of the slurry.
The present invention provides a method of separating a first material from a second material. In one embodiment the method can comprise mixing the first In one embodiment, the MIBC mixture contains MIBC, alcohols, and ketones.
In another embodiment, the MIBC mixture can be derived from the manufacture of methyl isobutyl ketone (MIBK) and/or MIBC. The MIBC mixture is co-produced in the manufacturing process.
The MIBC mixture comprises about 50 to about 90 weight percent of MIBC, about 5 to about 25 weight percent of alcohols and about 5 to about 25 weight percent of ketones in - additional embodiments.
In an embodiment, the alcohols comprise one or more components selected from a group consisting of diisobutyl carbinol and diisobutyl carbinol isomers and combinations thereof.
In an embodiment, the ketones comprise one or more components selected from a group consisting of diisobutyl ketone, diisobutyl ketone isomers and 3,3,5 trimethylcyclohexanone and combinations thereof.
In an embodiment, the MIBC mixture can be blended with existing beneficiation compositions to improve effectiveness.
In another embodiment, the present invention provides a method of separating hydrophobic and hydrophilic particles in an aqueous slurry. For example, the method can comprise adding a beneficiation composition to the aqueous slurry to stabilize the bubble formation. The beneficiation composition can comprise a MIBC
mixture derived from the manufacturing of MIBK and/or MIBC. The hydrophobic particles attach onto the surface of the stabilized air bubbles, forming bubble-particle aggregates that can float to the surface of the aqueous slurry.
The present invention provides an effective methods of separating two or more materials.
The present invention also provides compositions used to stabilize air bubbles in flotation processes resulting in improved results.
The present invention relates generally to beneficiation technologies.
More specifically, the present invention relates to beneficiation compositions and methods of using said beneficiation composition.
The present invention provides a beneficiation compositions comprising co-products from MIBK and/or MIBC manufacturing processes. The co-products can comprise mixtures of MIBC and other alcohols and ketones. The alcohols and ketones contain primarily from nine to twenty carbon atoms.
The MIBC mixture of the present invention surprisingly improves recovery of beneficiation technologies, for example, flotation processes. The MIBC
mixture can be used to supplement or replace conventional beneficiation compositions used in flotation processes.
Generally, MIBK is produced from acetone. The first step involves the aldol condensation to form diacetone alcohol. The diacetone is then dehydrated to form mesityl oxide. In the last step the mesityl oxide is hydrogenated to MIBK.
Theoretical yield is about 89%. Varying amounts of MIBC mixtures are co-produced. MIBC is generally produced by the hydrogenation of MIBK.
MIBK is used primarily as a solvent in the coating industry. MIBC is used primarily as a lube oil additive. MIBC is also widely used as a frother in flotation processes recovering minerals. MIBC stabilizes the bubbles allowing the hydrophobic minerals to attach themselves to the bubbles. However, MIBC cost has escalated recently due to the high cost of petroleum hydrocarbons. The present invention offers an economical alternative that is effective for a variety of beneficiation technologies.
In one embodiment, the MIBC mixture from MIBK manufacturing can -comprise of MIBC, other alcohols and ketones. The alcohols and ketones can include diisobutyl carbinol, diisobutyl ketone, and 3,3,5 trimethylcyclohexanone, and their isomers.
The above composition suggests that the MIBC mixture can make a perfect flotation reagent. In flotation lab tests the MIBC mixture was effective in stabilizing air bubbles.
In an alternative embodiment, the MIBC mixtures can further be mixed with additives to supplement and/or improve the separation properties of the beneficiation compositions. Such additives can include other flotation reagents. Other flotation reagents include but are not limited to, light hydrocarbon oils, petroleum ethers, fatty acid methyl esters, fatty acids, c4-c20 alcohols, c4-c20 aldehydes, c4-c20 esters, phosphate, sulfate, sulfonate, amine salt, xanthates, hydrophobic polymers, and combinations thereof.
The hydrophobic polymers can include, for example, polymethylhydrosiloxanes, polysilanes, polyethylene derivatives, and hydrocarbon polymers generated by both ring-opening metathesis and methalocene catalyzed polymerization.
The light hydrocarbon oils include diesel oil, kerosene, gasoline, petroleum distillate, turpentine, naphtanic oils, etc.
In a further embodiment, the present invention provides methods of stabilizing the bubbles in certain beneficiation processes. For example, the beneficiation composition comprising the MIBC mixture can be useful in beneficiation of the following materials including, but not limited to coal, sand and gravel, phosphates, diamonds, precious metals, and other mineral ores or man-made matter. In alternative embodiments, the beneficiation composition can be used in processes to increase the bubble stability, particularly in applications such as flotation resulting in the beneficiation of coal, sand and gravel, phosphates, diamonds, precious metals, and other mineral ores or man-made matter. The beneficiation composition can also be used in conjunction with other suitable frothers, flotation collectors and promoters.
An additional embodiment of the present invention provides a method of separating a first material from a second material. For example, the method can comprise mixing the first material and the second material in a slurry with a beneficiation composition. The beneficiation composition can comprise MIBC mixtures derived from a MIBK or MIBC manufacturing process. Air bubbles can be provided in the slurry to form bubble-particle aggregates with the first material; the bubble-particle aggregates can then be separated from the second material. The beneficiation composition can further include other frothers, promoter, and/or collector mixed with the MIBC
mixture.
The present invention additionally provides a method of separating hydrophobic and hydrophilic particles in an aqueous slurry. For example, the method can comprise adding a beneficiation composition to the aqueous slurry to increase the stability of the bubbles. The beneficiation composition can comprise MIBC mixtures derived from a MIBK or MIBC manufacturing process. The aqueous slurry can be mixed with the MIBC mixtures. Air bubbles can be provided to the aqueous slurry so that the hydrophobic particles collect on the surface of the air bubbles forming bubble-particle aggregates. The bubble-particle aggregates can be allowed to float to the surface of the aqueous slurry to be separated from the hydrophilic particles.
The materials to be separated can have any suitable size. By example and not limitation, the materials can range from 2 mm to 0.04 mm in size. The slurry can contain up to 50% solids. Any suitable mechanical or chemical forces can be used to bring the slurry particles in contact with the beneficiation compositions of the present invention. The floated product and the non-floated tailings can be collected from the present methods.
Some prior art methods and/or compositions relevant to beneficiation include US Patents 5,316,664, 3,675,773, and 4,208,487. The instant invention differs from these in a number of ways. In at least one embodiment the beneficiation method excludes the use of C9 ketones. In at least one embodiment the beneficiation method excludes the use of ketones having 9 or fewer carbon atoms. In at least one embodiment the beneficiation method excludes the presence of 2,6,8 trimethy1-4-nonanone.
EXAMPLES
The foregoing may be better understood by reference to the following examples, which are presented for purposes of illustration and are not intended to limit the scope of the invention.
In example 1 the beneficiation composition of the present invention comprises a blend of the MIBC mixtures and 1-propene hydroformylation product.
The 1-propene hydroformylation product is a mixture of the C4 ยจ C18 alcohols, aldehydes, =
and esters, and is generally used as a frother in flotation operations. The beneficiation composition is prepared from about 30% by weight of the MIBC mixtures and 70%
by weight of 1-propene hydroformylation product. It was compared against another flotation reagent consisting of 30% by weight of MIBC and 70% by weight of 1-propene hydroformylation product.
A sample of coal slurry from a coal preparation plant was floated in the laboratory using a Denver flotation machine. The tests were designed to determine the utility of the MIBC mixture blended with a 1-propene hydroformylation product.
The collector used was diesel. The MIBC mixture was the obtained from the manufacture of MIBK and MIBC.

Diesel collector, 0.567 lb/ton solids Frother MIBC and 1-propene MIBC mixture and 1-hydroformylation propene product hydroformylation product Lb/ton Conc. Combustible Conc. Combustible solids Ash Recovery Ash (%) Recovery (%) (%) (%) 0.326 5.1 78.4 5.7 79.6 0.326 6.1 78.5 5.7 79.0 The above data shows combustible recovery improved when utilizing the MIBC
mixture.

The MIBC mixture was used in place of MIBC at a coal flotation process facility in which the recovery of fine coal noticeably increased from about 85% to 89%
with the use of the claimed invention.
While this invention may be embodied in many different forms, there described in detail herein specific preferred embodiments of the invention.
The present disclosure is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated. All patents, patent applications, scientific papers, and any other referenced materials mentioned herein are incorporated by reference in their entirety. Furthermore, the invention encompasses any possible combination of some or all of the various embodiments described herein and incorporated herein. In addition the invention encompasses any possible combination that also specifically excludes any one or some of the various embodiments described herein and incorporated herein.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the claims where the term "comprising" means "including, but not limited to".
Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.
All ranges and parameters disclosed herein are understood to encompass any and all subranges subsumed therein, and every number between the endpoints. For example, a stated range of "1 to 10" should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more, (e.g.
1 to 6.1), and ending with a maximum value of 10 or less, (e.g. 2.3 to 9.4, 3 to 8, 4 to 7), and finally to each number 1, 2, 3, 4, 5, 6, 7, 8,9, and 10 contained within the range.

This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.

Claims (19)

1. A method of separating a first material from a second material, the method comprising: Mixing the first material and the second material in a slurry with a beneficiation composition, wherein the beneficiation composition comprises an MIBC
mixture and the MIBC mixture contains at least one C10 to C18 ketone.
2. The method of claim 1 where air bubbles are provided in the slurry to form bubble-particle aggregates with the first material; and allowing the bubble-particle aggregates to be separated from the second material.
3. The method of claim 1, wherein the MIBC mixture comprises MIBC, 2,6,8-trimethyl-4-nonanone, and one or more components selected from a group consisting of 2,6-dimethyl-4-heptanol, 2,6-dimethyl-4-heptanone, 3,3,5-trimethyl-1-1 cyclohexanone,
4,6-dimethyl-2-heptanone, 4,6-dimethyl-2-heptanol, and combinations thereof.
4. The method of claim 2, wherein the MIBC mixture is blended with one or more components selected from a group consisting of light hydrocarbon oils, petroleum ethers, fatty acids methyl esters, fatty acids, c4-c20 alcohols, c4-c20 aldehydes, c4-c20 esters, phosphate, sulfate, sulfonate, amine salt, xanthates, hydrophobic polymers, and combinations thereof.
5. The method of claim 3 wherein the MIBC mixture comprises about 50 to about 90 weight percent of MIBC.
6. The method of claim 5 wherein the MIBC mixture comprises about 5 to about 25 weight percent of C9 alcohols.
7. The method of claim 5 wherein the MIBC mixture comprises about 5 to about 25 weight percent of C9 ketones.
8. The method of claim 1 wherein the beneficiation composition is comprised of a MIBC mixture derived from a MIBK and/or MIBC manufacturing process.
9. The method of claim 5 wherein the MIBC mixture comprises about 5 to about 50 weight percent of C9 to C18 ketones.
10. The method of claim 5 wherein the MIBC mixture comprises about 5 to about 50 weight percent of C9 to C18 alcohols.
11. The method of claim 8, wherein the MIBC mixture comprises MIBC and one or more components selected from a group consisting of 2,6-dimethyl-4-heptanol, 2,6-dimethyl-4-heptanone, 3,3,5-trimethyl-1-1cyclohexanone, 4,6-dimethyl-2-heptanone, 4,6-dimethyl-2-heptanol, 2,6,8-trimethyl-4-nonanone, and combinations thereof.
12. The method of claim 8, wherein the MIBC mixture is blended with one or more components selected from a group consisting of light hydrocarbon oils, petroleum ethers, fatty acid methyl esters, fatty acids, c4-c20 alcohols, c4-c20 aldehydes, c4-c20 esters, phosphate, sulfate, sulfonate, amine salt, xanthates, hydrophobic polymers and combinations thereof.
13. The method of claim 11, wherein the MIBC mixture comprises about 50 to about 90 weight percent of MIBC.
14. The method of claim 13, wherein the MIBC mixture comprises about 5 to about 50 weight percent of C9 to C18 alcohols.
15. The method of claim 13, wherein the MIBC mixture comprises about 5 to about
16 50 weight percent of C9 to C18 ketones.
16. The method of claim 13 wherein the MIBC mixture comprises about 5 to about 25 weight percent of C9 ketones.
17. The method of claim 13 wherein the MIBC mixture comprises about 5 to about 25 weight percent of C9 alcohols.
18. A method of separating a first material from a second material, the method comprising: Mixing the first material and the second material in a slurry with a beneficiation composition derived from the manufacture of methyl isobutyl ketone or methyl isobutyl carbinol, wherein the beneficiation composition comprises one or more components selected from a group consisting of diisobutyl carbinol and diisobutyl carbinol isomers and combinations thereof, and wherein the beneficiation composition comprises one or more ketone ranging from C10 to C18.
19. A method of separating a first material from a second material, the method comprising: Mixing the first material and the second material in a slurry with a beneficiation composition, wherein the beneficiation composition comprises at least one C10 to C18 ketone.
CA 2802656 2012-01-19 2013-01-18 Methyl isobutyl carbinol mixture and methods of using the same Abandoned CA2802656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201213133538A 2012-01-19 2012-01-19
USNO.13/353,825 2012-01-19

Publications (1)

Publication Number Publication Date
CA2802656A1 true CA2802656A1 (en) 2013-07-19

Family

ID=48794331

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2802656 Abandoned CA2802656A1 (en) 2012-01-19 2013-01-18 Methyl isobutyl carbinol mixture and methods of using the same

Country Status (1)

Country Link
CA (1) CA2802656A1 (en)

Similar Documents

Publication Publication Date Title
US8302778B2 (en) Methyl isobutyl carbinol mixture and methods of using same
RU2679765C2 (en) Method of improving collector performance during pulp separation by froth floatation (versions)
US8955685B2 (en) Glycerides and fatty acid mixtures and methods of using same
US7624878B2 (en) Fatty acid by-products and methods of using same
CA2642908C (en) Fatty acid by-products and methods of using same
US7837891B2 (en) Fatty acid by-products and methods of using same
CA2802656A1 (en) Methyl isobutyl carbinol mixture and methods of using the same
US8925730B2 (en) Methods and compositions of beneficiation

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20171220

FZDE Dead

Effective date: 20200911