CA2795753A1 - Novel galactoside inhibitor of galectins - Google Patents

Novel galactoside inhibitor of galectins Download PDF

Info

Publication number
CA2795753A1
CA2795753A1 CA2795753A CA2795753A CA2795753A1 CA 2795753 A1 CA2795753 A1 CA 2795753A1 CA 2795753 A CA2795753 A CA 2795753A CA 2795753 A CA2795753 A CA 2795753A CA 2795753 A1 CA2795753 A1 CA 2795753A1
Authority
CA
Canada
Prior art keywords
galectin
level
pulmonary fibrosis
compound
human subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2795753A
Other languages
French (fr)
Inventor
Neil Henderson
Tariq Sethi
Alison Mackinnon
Hakon Leffler
Ulf Nilsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Galecto Biotech AB
Original Assignee
University of Edinburgh
Galecto Biotech AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Edinburgh, Galecto Biotech AB filed Critical University of Edinburgh
Priority to CA2795753A priority Critical patent/CA2795753A1/en
Priority to ES13785446T priority patent/ES2817888T3/en
Priority to CN201380057194.2A priority patent/CN104755088A/en
Priority to IN2573DEN2015 priority patent/IN2015DN02573A/en
Priority to CA2884802A priority patent/CA2884802A1/en
Priority to PCT/EP2013/072691 priority patent/WO2014067986A1/en
Priority to EP13785446.9A priority patent/EP2914269B1/en
Priority to JP2015538502A priority patent/JP2015535233A/en
Priority to EP17183955.8A priority patent/EP3278805A1/en
Publication of CA2795753A1 publication Critical patent/CA2795753A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/056Triazole or tetrazole radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system

Abstract

The present invention relates to a compound of the general formula (I):
(see formula I) The compound of formula (I) is suitable for treating pulmonary fibrosis, such as Idiopathic pulmonary fibrosis in a mammal. Furthermore the present invention concerns a method of monitoring development or progression of pulmonary fibrosis in a human subject, a method of monitoring or predicting exacerbation of symptoms in a human subject with pulmonary fibrosis as well as a method for treatment of pulmonary fibrosis, such as Idiopathic pulmonary fibrosis in a human subject having a galectin-3 level indicative of pulmonary fibrosis or exacerbation of symptoms.

Description

NOVEL GALACTOSIDE INHIBITOR OF GALECTINS
Technical field The present invention relates to novel compounds, the use of said compounds as medicament and for the manufacture of a medicament for the treatment of pulmonary fibro-sis, such as Idiopathic pulmonary fibrosis in mammals. The invention also relates to phar-maceutical compositions comprising said novel compounds. The present invention also re-lates to a method of monitoring development or progression of pulmonary fibrosis as well as a method of monitoring or predicting exacerbation of symptoms.
Background Art Idiopathic pulmonary fibrosis (IPF) represents a massive worldwide health burden.
It is a chronic condition of unknown etiology in which repeated acute lung injury causes progressive fibrosis resulting in destruction of lung architecture, deteriorating lung function with consequent respiratory failure and death. Although idiopathic pulmonary fibrosis (IPF) is the archetypal and most common cause of lung fibrosis, numerous respiratory diseases can progress to pulmonary fibrosis, and this usually signifies a worse prognosis. The me-dian time to death from diagnosis is 2.5 years and the incidence and prevalence of IPF con-tinues to rise. It remains one of the few respiratory conditions for which there are no effec-tive therapies, and there are no reliable biomarkers to predict disease progression. The mechanisms resulting in pulmonary fibrosis are unclear but centre around aberrant wound healing as a consequence of repetitive epithelial injury from an as yet unknown cause. IPF
is characterized by fibroblastic foci containing fibroblasts/ myofibroblasts which show in-creased activation response to fibrogenic cytokines such as transforming growth factor-131 (TGF-131). Given the non-responsiveness of many cases of IPF to current anti-inflammatory treatments the myofibroblasts within fibroblastic foci represent a potential novel therapeutic target. There is a big unmet need for drugs for treatment of Idiopathic pulmonary fibrosis.
The bleomycin model of pulmonary fibrosis is the best characterized rodent model and is the industry standard model. It causes oxidant-mediated DNA damage and induces initial lung inflammation followed by progressive fibrosis over 2 ¨ 4 weeks.
When admin-istered during the later phase of the injury the anti-fibrotic potential of novel compounds can be assessed.
2 Galectin inhibitors, in particular Gal-3 inhibitors have been described by the some of the present inventors in earlier published patent applications. None of these galectin inhibi-tors have been tested in a bleomycin model. Some of the prior art galectin inhibitors have the following general formulas HO OH
R". R' X 10 0 Rix Rvo Rv oRvit Rffi as described in WO/2005/113568, and R11--Y HO oF1 \
NN õ
'N HO
as described in WO/2005/113569, in which RI can be a D-galactose, and X
OH
as described in WO/2010/126435.
Furthermore there is a big need for bio-markers for making it less complicated to perform clinical trials in patients with pulmonary fibrosis. No biomarkers exist that are suit-able for detection of patients with pulmonary fibrosis or specifically idiopathic pulmonary fibrosis. Similarly, no biomarkers are suitable for prediction of the prognosis for patients with pulmonary fibrosis, for identification of patients with mild or aggressive forms of the disease, for identification of patients with ongoing or preeminent exacerbations, and for tracking the development of the patient's disease level. This makes it very complicated and costly to perform clinical trials of novel treatments in these patients.
3 Summary of the Disclosure Galectin-3 is a 13-galactoside binding lectin that is highly expressed in fibrotic tissue of diverse etiologies. The role of galectin-3 in bleomycin and TGF-131-induced lung fibro-sis in mice is examined, and its relevance in human IPF is established.
Studies with galec-tin-3 are described in MacKinnon et al., "Regulation of TGF-131 driven lung fibrosis by ga-lectin-3", Am. J. Respir. Crit. Care Med. 185: 537-546 (2012, originally available online on November 17, 2011). In particular, it is shown that galectin-3 inhibition may represent a novel therapeutic strategy for treatment of lung fibrosis. A novel compound has been tested and shown to be an inhibitor of galectin-3, in particular, this compound blocked TGF-(3-induced 13-catenin activation in vitro and attenuated the late stage progression of lung fibro-sis following bleomycin in vivo.
Accordingly, provided is a compound of the general formula (I):
HO OH
OH
N
HO H
N
N
In a further aspect, provided is a composition, particularly, a pharmaceutical compo-sition comprising the compound of formula (I) and optionally a pharmaceutically acceptable additive, such as carrier or excipient.
The compound of formula (I) is suitable for use in a method for treating pulmonary fibrosis, such as Idiopathic pulmonary fibrosis in a mammal. Typically, such mammal is a human subject.
Moreover, in a still further aspect provided is a method for treatment of pulmonary fibrosis, such as Idiopathic pulmonary fibrosis comprising administering to a mammal in need thereof a therapeutically effective amount of the compound of formula (I).
4 In another aspect, provided is a process of preparing a compound of formula I
com-prising the step of reacting bis-(3-deoxy-3-azido-3-D-ga1actopyranosy1) sulfane with 3-fluorophenylacetylene and an amine, such as triethylamine, optionally in the presence of a catalyst, such as Cu(I), in a solvent, such as N,N-dimethylformamide (DMF), resulting in the compound of formula I.
Moreover, the present inventors have discovered that concentrations of the human protein galectin-3 in body fluids or tissues of a human subject can be used to for instance predict or monitor disease progression or therapeutic efficacy in human subjects with pul-monary fibrosis.
Measurement of galectin-3 levels in lung tissue, broncho-alveolar lavage (BAL) flu-id, blood, serum or plasma can be used to identify patients with lung fibrosis and to assess the severity of the disease. Longitudinal studies of the levels of galectin-3 in lung tissue, broncho-alveolar lavage fluid, blood, serum or plasma can be used to predict exacerbations and to follow the development of the disease. Hence, measurement of galectin-3 levels in lung tissue, broncho-alveolar lavage fluid, blood, serum or plasma before, during and after completion of a treatment for pulmonary fibrosis can be used to assess the effect of such treatment.
The results of the present inventors demonstrate that serum galectin-3 levels may help distinguish patients with usual interstitial pneumonia (UIP) from patients with non-specific interstitial pneumonia (NS1P) and identify patients undergoing an acute exacerba-tion.
In a further aspect the present invention relates to a method of diagnosing pulmo-nary fibrosis in a human subject comprising a) measuring a galectin-3 level (e.g. concentra-tion) in a body sample from the human subject using a suitable test method, b) comparing the galectin-3 level to a predetermined reference level, and c) determining whether the ga-lectin-3 level is indicative of diagnosing the subject with pulmonary fibrosis.
In a still further aspect the present invention relates to a method of predicting the prognosis pulmonary fibrosis in a human subject comprising a) measuring a galectin-3 level (e.g. concentration) in a body sample from the human subject using a suitable test method, and b) determining whether the galectin-3 level is indicative of a poor prognosis or not for the human subject.

In a further aspect the present invention relates to a method of monitoring develop-ment or progression of pulmonary fibrosis in a human subject, comprising a) measuring a galectin-3 level in a body sample from the subject at least two times with sufficient inter-val(s) to measure a clinically relevant change, b) comparing the galectin-3 level to a prede-
5 termined reference level, and repeating steps a) and b) one or more times to monitor the development or progression of pulmonary fibrosis in the human subject.
In a still further aspect the present invention relates to a method of monitoring or predicting exacerbation of symptoms in a human subject with pulmonary fibrosis compris-ing a) measuring a galectin-3 level (e.g. concentration) in a body sample from the human subject using a suitable test method, b) comparing the galectin-3 level to a predetermined reference level, and c) determine the presence or absence of a galectin-3 level indicative of the development or progression of exacerbation of symptoms..
In a further aspect the present invention relates to a method for treatment of pulmo-nary fibrosis, such as Idiopathic pulmonary fibrosis, in a human subject having a galectin-3 level indicative of pulmonary fibrosis or exacerbation of symptoms comprising administer-ing to a human subject a therapeutically effective amount of a galectin-3 inhibitor.
Any one of the above methods can include the step of transmitting, displaying, stor-ing, or printing; or outputting to a user interface device, a computer readable storage me-dium, a local computer system or a remote computer system, information related to the like-lihood of developing pulmonary fibrosis in the subject or for characterization of the degree of severity of the pulmonary fibrosis in said subject.
Detailed Description In a broad aspect, provided is a compound of the general formula (I):
6 HO OH
NN OH
= N HO 196-197'7j OH
N"
F
(I) The compound of formula (I) has the chemical name (IUPAC) bis (3-deoxy-3-(3-fluoropheny1-1H-1,2,3-triazol-1-y1)-p-D-galactopyranosyl) sulfane, and as used herein is intended to cover the compound of formula (I) in any possible form, such as solid or liquid, a salt, a solvate, or in free form.
Typically, the compound of formula (I) is bis (3-deoxy-3-(3-fluoropheny1-1H-1,2,3-triazol-1-y1)-0-D-galactopyranosy1) sulfane as the free form. In a further embodiment the compound of formula (I) is bis (3-deoxy-3-(3-fluoropheny1-1H-1,2,3-triazol-1-y1)-3-D-galactopyranosyl) sulfane as the free form without any solvate, such as anhydrated.
In a still further embodiment, the compound of formula (I) is useful for treating pulmonary fibrosis, and therefore is suitable for use as a medicament.
In a further aspect, provided is a compound of formula (I) for use in a method for treating pulmonary fibrosis, such as Idiopathic pulmonary fibrosis in a mammal. Such a mammal is typically a human subject, preferably a human subject diagnosed with IPF.
In a still further aspect, provided is a method for treatment of pulmonary fibrosis, such as Idiopathic pulmonary fibrosis comprising administering to a mammal a therapeuti-cally effective amount of a compound of formula (I).
When the compounds and pharmaceutical compositions herein disclosed are used for the above treatment, a therapeutically effective amount of at least one compound is ad-ministered to a mammal in need of said treatment.
The term "treatment- and -treating" as used herein means the management and care of a patient for the purpose of combating a condition, such as a disease or a disorder. The term is intended to include the full spectrum of treatments for a given condition from which
7 the patient is suffering, such as administration of the active compound to alleviate the symp-toms or complications, to delay the progression of the disease, disorder or condition, to al-leviate or relief the symptoms and complications, and/or to cure or eliminate the disease, disorder or condition as well as to prevent the condition, wherein prevention is to be under-stood as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of the active compounds to prevent the onset of the symptoms or complications. The treatment may either be performed in an acute or in a chronic way. The patient to be treated is preferably a mammal;
in particular a human being, but it may also include animals, such as dogs, cats, cows, sheep and pigs.
The term "a therapeutically effective amount" of a compound of formula (I) of the present invention as used herein means an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a given disease and its complications.
An amount ade-quate to accomplish this is defined as "therapeutically effective amount".
Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. It will be understood that determining an appropriate dos-age may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix, which is all within the ordinary skills of a trained phy-sician or veterinary.
In a still further aspect the present invention relates to a pharmaceutical composition comprising the compound of formula (I) and optionally a pharmaceutically acceptable addi-tive, such as a carrier or an excipient.
As used herein -pharmaceutically acceptable additive- is intended without limitation to include carriers, excipients, diluents, adjuvant, colorings, aroma, preservatives etc. that the skilled person would consider using when formulating a compound of the present inven-tion in order to make a pharmaceutical composition.
The adjuvants, diluents, excipients and/or carriers that may be used in the composi-tion of the invention must be pharmaceutically acceptable in the sense of being compatible with the compound of formula (I) and the other ingredients of the pharmaceutical composi-tion, and not deleterious to the recipient thereof. It is preferred that the compositions shall not contain any material that may cause an adverse reaction, such as an allergic reaction.
The adjuvants, diluents, excipients and carriers that may be used in the pharmaceutical composition of the invention are well known to a person within the art.
8 As mentioned above, the compositions and particularly pharmaceutical composi-tions as herein disclosed may, in addition to the compounds herein disclosed, further com-prise at least one pharmaceutically acceptable adjuvant, diluent, excipient and/or carrier. In some embodiments, the pharmaceutical compositions comprise from 1 to 99 weight % of said at least one pharmaceutically acceptable adjuvant, diluent, excipient and/or carrier and from 1 to 99 weight % of a compound as herein disclosed. The combined amount of the active ingredient and of the pharmaceutically acceptable adjuvant, diluent, excipient and/or carrier may not constitute more than 100% by weight of the composition, particularly the pharmaceutical composition.
In some embodiments, only one compound as herein disclosed is used for the pur-poses discussed above.
In some embodiments, two or more of the compound as herein disclosed are used in combination for the purposes discussed above.
The composition, particularly pharmaceutical composition comprising a compound set forth herein may be adapted for oral, intravenous, topical, intraperitoneal, nasal, buccal, sublingual, or subcutaneous administration, or for administration via the respiratory tract in the form of, for example, an aerosol or an air-suspended fine powder.
Therefore, the phar-maceutical composition may be in the form of, for example, tablets, capsules, powders, na-noparticles, crystals, amorphous substances, solutions, transdermal patches or suppositories.
Thus, in a still further aspect provided is a composition, particularly a pharmaceuti-cal composition for intrapulmonary administration. Typically, such composition is delivered by a nebulizer or inhaler, preferably a nebulizer.
The following characteristics are required for the delivery device: It should be able to provide a specific dose accurately and repeatedly. It should be able to provide 2 or more different dose levels, for instance through repeated dosing or by adjusting the dose provide to the patient. The device should ensure that the drug is delivered to the bronchiolar space or preferably to the bronchiolar and the alveolar space of the lung preferably uniformly over the lung tissue. Hence, the device should generate aerosols or dry powder of an adequately small size to ensure this delivery, while not delivering particles so small that they are im-mediately exhaled and thus not remaining in the lung tissue.
Inhalation nebulizers deliver therapeutically effective amounts of pharmaceuticals by forming an aerosol which includes particles of a size that can easily be inhaled. The aer-
9 osol can be used, for example, by a patient within the bounds of an inhalation therapy, whereby the therapeutically effective pharmaceutical or drug reaches the patient's respira-tory tract upon inhalation.
A variety of inhalation nebulizers are known. EP 0 170 715 Al uses a compressed gas flow to form an aerosol. A nozzle is arranged as an aerosol generator in an atomizer chamber of the inhalation nebulizer and has two suction ducts arranged adjacent a com-pressed-gas channel. When compressed air flows through the compressed-gas channel, the liquid to be nebulized is drawn in through the suction ducts from a liquid storage container.
EP 0 432 992 A discloses a nebulizer comprising an aerosol generator having a liq-uid storage container, a perforate membrane and a vibrator. The vibrator is operable to vi-brate the membrane such that it dispenses an aerosol from a liquid through holes provided in the membrane.
US Patent No. 5,918,593 relates to ultrasonic nebulizers generating an aerosol by interaction between an amount of liquid and a piezo electric element. Droplets of various sizes are expelled from a surface of a liquid bulk when vibrational energy is transferred from the piezo element to the liquid. The droplets thus generated are filtered in an atomizer chamber since oversized droplets have to be removed from the droplets expelled from the surface in order to generate an aerosol for inhalation by a patient. This nebulizer is repre-sentative of continuously operating inhalation nebulizers, in which the aerosol generator produces an aerosol not only during inhalation but also while the patient exhales. The aero-sol produced by the aerosol generator is actually inhaled by the patient only in the inhala-tion phase, while any aerosol produced at other times is lost.
Dry powder inhalers, such as metered dose medicament inhalers are well known for dispensing medicament to the lungs of a patient. Some previous inhalers have comprised a pressurized aerosol dispensing container, wherein the aerosols contain gas propellants in which the powdered medicament is suspended. Upon actuation, the aerosol contents are expelled, through a metering valve, and into the lungs of the patient.
Several types of non-aerosol, breath actuated dry powder inhalers have therefore been provided. For example, U.S. Patent No. 5,503,144 to Baconõ shows a breath-actuated dry-powder inhaler. The device includes a dry powder reservoir for containing a dry pow-dered medicament, a metering chamber for removal of the powdered medicament from the reservoir in discrete amounts, and an air inlet for entraining the removed powdered me-dicament through a mouthpiece upon patient inhalation.
U.S. Patent No. 5,458,135 discloses a method and apparatus for producing an aero-solized dose of a medicament for subsequent inhalation by a patient. The method comprises 5 first dispersing a preselected amount of the medicament in a predetermined volume of gas, usually air. The dispersion may be formed from a liquid or a dry powder. The method relies on flowing substantially the entire aerosolized dose into a chamber that is initially filled with air and open through a mouthpiece to the ambient. After the aerosolized medicament has been transferred to the chamber, the patient will inhale the entire dose in a single breath.
10 US 6,065,472 discloses a powder inhalation device comprising a housing containing a pharmacologically active compound, a conduit with an outlet extending into the housing through which a user can inhale to create an airflow through the conduit, a dosing unit for delivering a dose of the compound to the conduit and baffles arranged within the said con-duit to aid disintegration of powder agglomerates entrained in said airflow.
Regardless of whether an aerosol or non-aerosol inhaler is used, it is of utmost im-portance that particles of the dispensed dry powder medicament be small enough to ensure the adequate penetration of the medicament into the bronchial region of a patient's lungs during inhalation. However, because the dry powder medicament is composed of very small particles, and often provided in a composition including a carrier such as lactose, non-defined agglomerates or aggregates of the medicament form at random prior to being dis-pensed. It has therefore been found preferably to provide breath-actuated dry powder inhal-ers with means for breaking down the agglomerates of medicament or medicament and car-rier before inhalation of the medicament.
The composition and particularly pharmaceutical composition may optionally com-prise two or more compounds of the present invention. The composition may also be used together with other medicaments within the art for the treatment of related disorders.
The typical dosages of the compounds set forth herein vary within a wide range and depend on many factors, such as the route of administration, the requirement of the individ-ual in need of treatment, the individual's body weight, age and general condition.
The compound of formula (I) may be prepared as described in the experimental sec-tion below.
Accordingly, provided is a process of preparing a compound of formula I
compris-ing the step of reacting bis-(3-deoxy-3-azido-3-D-galactopyranosyl) sulfane with 3-
11 fluorophenylacetylene and an amine, such as triethylamine, optionally in the presence of a catalyst, such as Cu(I), in a solvent, such as N,N-dimethylformamide (DMF), resulting in the compound of formula I. In a particular embodiment, provided is a process of preparing a compound of formula I comprising the steps as described in the scheme 1 in the experimen-tal section. Moreover, the present invention relates to a compound of formula (I) obtainable by the step of reacting bis-(3-deoxy-3-azido-3-D-ga1actopyranosy1) sulfane with 3-fluorophenylacetylene and an amine, such as triethylamine, optionally in the presence of a catalyst, such as Cu(I), in a solvent, such as N,N-dimethylformamide (DMF), resulting in the compound of formula I, such as obtainable by the steps as described in the scheme 1 in the experimental section.
The present invention also relates to a method of diagnosing pulmonary fibrosis in a human subject comprising a) measuring a galectin-3 level in a body sample from the human subject using a suitable test method, b) comparing the galectin-3 level to a predetermined reference level, and c) determining whether the galectin-3 level is indicative of diagnosing the subject with pulmonary fibrosis. Such galectin-3 level is typically the galectin-3 concen-tration measured in ng/ml in a body sample such as body fluid, e.g. blood, plasma, or se-rum.
The term "a predetermined reference level- as used herein means a galectin-3 level which is determined through analysis of a large group of human subject which are not suf-fering from pulmonary fibrosis. Such determination of the predetermined reference level have been investigated in several publications, such as US20120220671 and MacKinnon et al., -Regulation of TGF-131 driven lung fibrosis by galectin-3-, Am. J.
Respir. Crit. Care Med. 185: 537-546, Journal of the American College of Cardiology Vol. xx, No.
x. 2012, Ho et al., title: "Galectin-3, a Marker of Cardiac Fibrosis, Predicts Incident Heart Failure in the Community" and Clin Res Cardiol (2010) 99:323-328, Lok et al., title:
"Prognostic val-ue of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study-. Base on the studies the levels have been determined to be within a concentration range from about 10.0 ng/mL to about 25.0 ng/mL galectin-3. In some popu-lations said range may be from about 13.0 ng/mL to about 19.2 ng/mL galectin-3.
The indicative level is the level of galectin-3, which to the person skilled in the art, such as a physician, provides such person with a tool to set a diagnosis.
Typically, the in-dicative level of galectin-3 is at least 22 ng/ml. In a further embodiment the indicative level
12 of galectin-3 is at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml.
Furthermore, the present invention relates to a method of predicting a prognosis of pulmonary fibrosis in a human subject comprising a) measuring a galectin-3 level (e.g. con-centration) in a body sample from the human subject using a suitable test method, and b) determining whether the galectin-3 level is indicative of a poor prognosis or not for the hu-man subject.
The indicative level is the level of galectin-3, which to the person skilled in the art, such as a physician, provides such person with a tool to predict the prognosis of the subject.
Typically, the indicative level of galectin-3 is at least 22 ng/ml. In a further embodiment the indicative level of galectin-3 is at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml.
As the tracking of the development of the human subject's disease level is desired, it is of great importance to develop a method of monitoring the development, such as im-provement or deterioration, or progression of pulmonary fibrosis, e.g. IPF. It is generally very complicated and costly to perform clinical trials of novel treatments in these patients.
Accordingly, the present invention relates to a method of monitoring development or progression of pulmonary fibrosis in a human subject, comprising a) measuring a galectin-3 level in a body sample from the subject at least two times with sufficient interval(s) to measure a clinically relevant change, b) comparing the galectin-3 level to a predetermined reference level, and repeating steps a) and b) one or more times to monitor the development or progression of pulmonary fibrosis in the human subject.
Whether a change is clinically relevant will be determined by a person skilled in the art, in particular a physician. The time period between two measurements (that is the suffi-cient interval) is independently selected from 2 weeks to 2 years. In individual embodi-ments such time period between two measurements is selected from 2 weeks, 4 weeks, 1 month, 2 months, 3 months 6 months, I year, or 2 years.
When the indicative level of galectin-3 is below 22 ng/ml treatment of pulmonary fibrosis may be stopped, adjusted or put on hold. This is typically determined by the physi-cian.
When the indicative level of galectin-3 is at least 22 ng/ml treatment of pulmonary fibrosis may be initiated or increased. This is typically determined by the physician. In fur-
13 ther embodiments the galectin-3 level is at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, or at least 70 ng/ml. In another embodiment the subject has a galectin-3 blood concentration determined to be within a target range. Typ-ically, such target range is from 10 ng/ml to 70 ng/ml. In a selected or treated human sub-ject, the blood concentration of galectin-3 may be determined to be above a minimum threshold, below a maximum threshold or within a target range defined by a minimum and a maximum threshold. The minimum threshold may be, for example, more than 10 ng/ml;
between 10 and 15 ng/ml; between 15 and 20 ng/ml; between 20 and 25 ng/ml;
between 25 and 30 ng/ml; or be more than 30 ng/ml. The maximum threshold may be, for example, below 70 ng/ml; below 60 ng/ml; below 40 ng/ml; between 30 and 40 ng/ml;
between 25 and 30 ng/ml; between 20 and 25 ng/ml; or between 15 and 20 ng/ml.
In a further aspect the present invention relates to a method of monitoring or predict-ing exacerbation of symptoms in a human subject with pulmonary fibrosis comprising a) measuring a galectin-3 level (e.g. concentration) in a body sample from the human subject using a suitable test method, b) comparing the galectin-3 level to a predetermined reference level, b) determine the presence or absence of a galectin-3 level indicative of the develop-ment or progression of exacerbation of symptoms, and if deemed necessary c) repeating steps a) and b) to monitor or predict the development or progression of the exacerbation of symptoms in the human subject.
When the indicative level of galectin-3 is at least 22 ng/ml treatment of pulmonary fibrosis may be initiated or increased or it may be decided to monitor the patient more closely to counter the effect of the ongoing or eminent exacerbation, if possible. This is typ-ically determined by the physician. In further embodiments the galectin-3 level is at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, or at least 70 ng/ml. In another embodiment the subject has a galectin-3 blood concentration de-termined to be within a target range. Typically, such target range is from 10 ng/ml to 70 ng/ml. In a selected or treated human subject, the blood concentration of galectin-3 may be determined to be above a minimum threshold, below a maximum threshold or within a tar-get range defined by a minimum and a maximum threshold. The minimum threshold may be, for example, more than 10 ng/ml; between 10 and 15 ng/ml; between 15 and 20 ng/ml;
between 20 and 25 ng/ml; between 25 and 30 ng/ml; or be more than 30 ng/ml.
The maxi-mum threshold may be, for example, below 70 ng/ml; below 60 ng/ml; below 40 ng/ml;
14 between 30 and 40 ng/ml; between 25 and 30 ng/ml; between 20 and 25 ng/ml; or between
15 and 20 ng/ml.
As it is desired to prevent or reduce exacerbation of symptoms such prophylactic treatment should be initiated in good time before the level of galectin-3 reaches 70 ng/ml, thus it is preferred to initiate or increase prophylactic treatment of exacerbation of symp-toms at a galectin level of least 50 ng/ml, such as at least 60 ng/ml, e.g. at least 70 ng/ml.
Typically, the pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF).
In a further embodiment the human subject is diagnosed with mild, moderate or ag-gressive forms of pulmonary fibrosis according to the level of galectin-3.
Multimarker analysis can be used to improve the accuracy of diagnosis and monitor-ing. Expression of markers, such as MMP7 and perDLCO has been linked with pulmonary fibrosis (Am J Respir Crit Care Med 185;2012:A6241) When measuring the levels of the above markers, corrections for age, gender and concomitant morbidity may be incorporated to improve the accuracy of diagnosis.
Thus, in a further embodiment in step a) further bio-markers are measured which markers are relevant for pulmonary fibrosis, including markers linked to Galectin-3 levels, leading to a more accurate diagnosis, prognosis, and/or monitoring. Typically, such bio-markers are selected from MMP7, perDLCO, KL-6, SP-A, MMP-7, CCL-18, IL13, CC-chemokines, IL 10, IL 1 receptor antagonist, CCL2, Calgranulin B (S100A9 or MRP14), macrophage migration inhibitory factor (MIF), pro-collagen, or pro-collagen 3 or the pres-ence and frequency of certain cell types in the body sample, such as fibrocytes and T-cell subpopulations.
The term -a body sample" as used herein means a sample obtained and isolated from a human subject. The body sample may be obtained by various known means, such as by biopsy tools, such as a needle biopsy tool or a bronchoscope, or by using a syringe.
In a further embodiment the body sample is selected from blood, serum, plasma, broncho-alveolar lavage fluid, and lung tissue.
As explained below several suitable test methods exists and such test methods are typically selected from an immunoassay, an immunohistochemical assay, a colorimetric assay, a turbidimetric assay, and flow cytometry.
In a further aspect the present invention relates to a method for treatment of pulmo-nary fibrosis, such as Idiopathic pulmonary fibrosis in a human subject having a galectin-3 level indicative of pulmonary fibrosis or exacerbation of symptoms comprising administer-ing to a human subject a therapeutically effective amount of a galectin-3 inhibitor. In a par-ticular embodiment the galectin-3 inhibitor is selected from the compound of formula (I).
In an embodiment the indicative level of galectin-3 is at least 22 ng/ml, such as at 5 least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml.
In a further embodiment an additional step of monitoring the subject's galectin-3 blood level after the therapy is initiated. In particular such monitoring is made in accor-dance with the invention as described herein.
10 The present invention provides methods for identification and evaluation of patients with pulmonary fibrosis by measuring the levels of markers such as galectin-3, optionally in combination with one or more other markers. Many methods for detecting of a protein of interest, with or without quantitation, are well known and can be used in the practice of the present invention. Such test methods are termed -a suitable test method-herein and several 15 useful methods of testing are described below.
Examples of such assays are described below and can include, for example, immu-noassays, chromatographic methods, and mass spectroscopy. Such assays can be performed on any biological sample including, among others, blood, plasma, and serum.
Accordingly, multiple assays can be used to detect galectin-3, and samples can be analyzed from one or more sources.
Markers can be detected or quantified in a sample with the help of one or more sepa-ration methods. For example, suitable separation methods may include a mass spectrometry method, such as electrospray ionization mass spectrometry (ESI-MS), ESI-MS/MS, ESI-MS/(MS)n (n is an integer greater than zero), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), surface-enhanced laser desorp-tion/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), desorption/ionization on silicon (DIOS), secondary ion mass spectrometry (SIMS), quadrupole time-of-flight (Q-TOF), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), APCI-MS/MS, APCI-(MS) or atmospheric pressure photoionization mass spectrometry (APPI-MS), APPI-MS/MS, and APPI-(MS) Other mass spectrometry methods may include, inter alia, quadrupole, fourier transform mass spectrometry (FTMS) and ion trap.
Spectrometric techniques that can also be used include resonance spectroscopy and optical spectroscopy.
16 Other suitable separation methods include chemical extraction partitioning, column chromatography, ion exchange chromatography, hydrophobic (reverse phase) liquid chro-matography, isoelectric focusing, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), or other chro-matographic techniques, such as thin-layer, gas or liquid chromatography, or any combina-tion thereof. In one embodiment, the biological sample to be assayed may be fractionated prior to application of the separation method.
Markers can may be detected or quantified by methods that do not require physical separation of the markers themselves. For example, nuclear magnetic resonance (NMR) spectroscopy may be used to resolve a profile of a marker from a complex mixture of mole-cules.
A marker in a sample also may be detected or quantified, for example, by combining the marker with a binding moiety capable of specifically binding the marker.
The binding moiety may include, for example, a member of a ligand-receptor pair, i.e., a pair of mole-cules capable of having a specific binding interaction. The binding moiety may also include, for example, a member of a specific binding pair, such as antibody-antigen, enzyme-substrate, nucleic acid-nucleic acid, protein-nucleic acid, protein-protein, or other specific binding pairs known in the art. Binding proteins may be designed which have enhanced affinity for a target. Optionally, the binding moiety may be linked with a detectable label, such as an enzymatic, fluorescent, radioactive, phosphorescent or colored particle label. The labeled complex may be detected, e.g., visually or with the aid of a spectrophotometer or other detector, or may be quantified.
Galectin-3 levels can be quantitated by performing an immunoassay. A galectin-immunoassay involves contacting a sample from a subject to be tested with an appropriate antibody under conditions such that immunospecific binding can occur if galectin-3 is pre-sent, and detecting or measuring the amount of any immunospecific binding by the anti-body. Any suitable immunoassay can be used, including, without limitation, competitive and non-competitive assay systems using techniques such as Western blots, radioimmuno-assays, immunohistochemistry, ELISA (enzyme linked immunosorbent assay), "sandwich"
immunoassays, immunoprecipitation assays, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays and protein A immunoassays.
17 In a "sandwich" assay, two molecules ("binding moieties") such as monoclonal anti-bodies that specifically bind to non-overlapping sites (epitopes) on galectin-3 are used. Typ-ically, one binding moiety is immobilized on a solid surface where it binds with and cap-tures galectin-3. This first binding moiety is therefore also referred to as the capture binding moiety. A second binding moiety is detectably labeled, for example, with a fluorophore, enzyme, or colored particle, such that binding of the second binding moiety to the galectin-3-complex indicates that galectin-3 has been captured. The intensity of the signal is propor-tional to the concentration of galectin-3 in the sample. The second binding moiety is there-fore also referred to as the detection binding moiety or label binding moiety.
A binding moiety can be any type of molecule, as long as it specifically binds to a portion of the N-terminus of galectin-3. In a preferred embodiment, the binding moieties used are mono-clonal anti-galectin-3 antibodies, i.e., monoclonals raised against or otherwise selected to bind to separate portions of galectin-3.
Such assay procedures can be referred to as two-site immunometric assay methods, "sandwich" methods or (when antibodies are the binders) "sandwich immunoassays." As is known in the art, the capture and detection antibodies can be contacted with the test sample simultaneously or sequentially. Sequential methods can be accomplished by incubating the capture antibody with the sample, and adding the labeled detection antibody at a predeter-mined time thereafter (sometimes referred to as the "forward" method).
Alternatively, the labeled detection antibody can be incubated with the sample first and then the sample can be exposed to the capture antibody (sometimes referred to as the "reverse"
method). After any necessary incubation(s), which may be of short duration, to complete the assay, the la-bel is measured. Such assays may be implemented in many specific formats known to those of skill in the art, including through use of various high throughput clinical laboratory ana-lyzers or with a point of care or home testing device.
In one embodiment, a lateral flow device may be used in the sandwich format wherein the presence of galectin-3 above a baseline sensitivity level in a biological sample will permit formation of a sandwich interaction upstream of or at the capture zone in the lateral flow assay. See, for example, U.S. Pat. No. 6,485,982. The capture zone may contain capture binding moieties such as antibody molecules, suitable for capturing galectin-3, or immobilized avidin or the like for capture of a biotinylated complex. See, for example, U.S.
Pat. No. 6,319,676. The device may also incorporate a luminescent label suitable for cap-
18 ture in the capture zone, the concentration of galectin-3 being proportional to the intensity of the signal at the capture site. Suitable labels include fluorescent labels immobilized on polystyrene microspheres. Colored particles also may be used.
Other assay formats that may be used in the methods of the invention include, but are not limited to, flow-through devices. See, for example, U.S. Pat. No.
4,632,901. In a flow-through assay, one binding moiety (for example, an antibody) is immobilized to a de-fined area on a membrane surface. This membrane is then overlaid on an absorbent layer that acts as a reservoir to pump sample volume through the device. Following immobiliza-tion, the remaining protein-binding sites on the membrane are blocked to minimize non-specific interactions. In operation, a biological sample is added to the membrane and filters through the matrix, allowing any analyte specific to the antibody in the sample to bind to the immobilized antibody. In a second step, a labeled secondary antibody may be added or released that reacts with captured marker to complete the sandwich.
Alternatively, the sec-ondary antibody can be mixed with the sample and added in a single step. If galectin-3 is present, a colored spot develops on the surface of the membrane.
The most common enzyme immunoassay is the "Enzyme-Linked Immunosorbent Assay (ELISA)." ELISA is a technique for detecting and measuring the concentration of an antigen using a labeled (e.g., enzyme-linked) form of the antibody. There are different forms of ELISA, which are well known to those skilled in the art. Standard ELISA tech-niques are described in "Methods in Immunodiagnosis". 2nd Edition, Rose and Bigazzi, eds.
John Wiley & Sons, 1980; Campbell et al., "Methods and Immunology", W. A.
Benjamin, Inc., 1964; and Oellerich. M. (1984), J. Clin. Chem. Clin. Biochem. 22:895-904. A pre-ferred enzyme-linked immunosorbent assay kit (ELISA) for detecting galectin-3 is com-mercially available (BG Medicine, Waltham, Mass.).
In a "sandwich ELISA," an antibody (e.g., anti-galectin-3) is linked to a solid phase (i.e., a microtiter plate) and exposed to a biological sample containing antigen (e.g., galec-tin-3). The solid phase is then washed to remove unbound antigen. A labeled antibody (e.g., enzyme linked) is then bound to the bound-antigen (if present) forming an antibody-antigen-antibody sandwich. Examples of enzymes that can be linked to the antibody are alkaline phosphatase, horseradish peroxidase, luciferase, urease, and .beta.-galactosidase.
The enzyme linked antibody reacts with a substrate to generate a colored reaction product that can be measured. Any of the immunoassays described herein suitable for use with the
19 kits and methods of the present invention can also use any binding moiety in the place of an antibody.
A detailed review of immunological assay design, theory and protocols can be found in numerous texts in the art, including Butt, W. R., Practical Immunology, ed.
Marcel Dek-ker, New York (1984) and Harlow et al. Antibodies, A Laboratory Approach, ed.
Cold Spring Harbor Laboratory (1988).
In general, immunoassay design considerations include preparation of antibodies (e.g., monoclonal or polyclonal antibodies) having sufficiently high binding specificity for the target to form a complex that can be distinguished reliably from products of nonspecific interactions. As used herein, the term "antibody" is understood to mean binding proteins, for example, antibodies or other proteins comprising an immunoglobulin variable region-like binding domain, having the appropriate binding affinities and specificities for the target.
The higher the antibody binding specificity, the lower the target concentration that can be detected. As used herein, the terms "specific binding" or "binding specifically" are under-stood to mean that the binding moiety, for example, a binding protein, has a binding affinity for the target of greater than about 105 M-1, more preferably greater than about 107 Mi.
Antibodies to an isolated target marker which are useful in assays for detecting heart failure in an individual may be generated using standard immunological procedures well known and described in the art. See, for example Practical Immunology, supra.
Briefly, an isolated marker is used to raise antibodies in a xenogeneic host, such as a mouse, goat or other suitable mammal. The marker is combined with a suitable adjuvant capable of en-hancing antibody production in the host, and is injected into the host, for example, by in-traperitoneal administration. Any adjuvant suitable for stimulating the host's immune re-sponse may be used. A commonly used adjuvant is Freund's complete adjuvant (an emul-sion comprising killed and dried microbial cells and available from, for example, Calbio-chem Corp., San Diego, or Gibco, Grand Island, N.Y.). Where multiple antigen injections are desired, the subsequent injections may comprise the antigen in combination with an incomplete adjuvant (e.g., cell-free emulsion). Polyclonal antibodies may be isolated from the antibody-producing host by extracting serum containing antibodies to the protein of interest. Monoclonal antibodies may be produced by isolating host cells that produce the desired antibody, fusing these cells with myeloma cells using standard procedures known in the immunology art, and screening for hybrid cells (hybridomas) that react specifically with the target and have the desired binding affinity.
Exemplary epitopes from the N-terminus of galectin-3 include, but are not limited to, MADNFSLHDALS (SEQ ID NO:1); MADNFSLHDALSGS (SEQ ID NO:2);
5 WGNQPAGAGG (SEQ ID NO:3); YPGAPGAYPGAPAPGV (SEQ ID NO:4);
GNPNPQGWPGA (SEQ ID NO:5); YPSSGQPSATGA (SEQ ID NO:6); YP-GQAPPGAYPGQAPPGA (SEQ ID NO:7); YPGAPAPGVYPGPPSGPGA (SEQ ID
NO:8); and YPSSGQPSATGA (SEQ ID NO:9). Other galectin-3 epitopes, including non-linear epitopes, can also be used as targets for detection by an anti-galectin-3 antibody. Ex-10 emplary antibodies are discussed in U.S. Patent Publication No.
2010/014954, the entire contents of which are incorporated herein by reference.
Antibody binding domains also may be produced biosynthetically and the amino ac-id sequence of the binding domain manipulated to enhance binding affinity with a preferred epitope on the target. Specific antibody methodologies are well understood and described in 15 the literature. A more detailed description of their preparation can be found, for example, in Practical Immunology, (supra).
In addition, genetically engineered biosynthetic antibody binding sites, also known in the art as BABS or sFv's, may be used to determine if a sample contains a marker. Meth-ods for making and using BABS comprising (i) non-covalently associated or disulfide
20 bonded synthetic VH and VL dimers, (ii) covalently linked VH-V L sin-gle chain binding sites, (iii) individual VH or VL domains, or (iv) single chain antibody binding sites are disclosed, for example, in U.S. Pat. Nos.
5,091,513; 5,132,405;
4,704,692; and 4,946,778. Furthermore, BABS having requisite specificity for the marker can be derived by phage antibody cloning from combinatorial gene libraries (see, for exam-ple, Clackson et al. Nature 352: 624-628 (1991)). Briefly, phages, each expressing on their coat surfaces BABS having immunoglobulin variable regions encoded by variable region gene sequences derived from mice pre-immunized with an isolated marker, or a fragment thereof, are screened for binding activity against the immobilized marker.
Phages which bind to the immobilized marker are harvested and the gene encoding the BABS is se-quenced. The resulting nucleic acid sequences encoding the BABS of interest then may be expressed in conventional expression systems to produce the BABS protein.
21 Further embodiments of the process are described in the experimental section here-in, and each individual process as well as each starting material constitutes embodiments that may form part of claims.
The above embodiments should be seen as referring to any one of the aspects (such as 'method for treatment', 'pharmaceutical composition', 'compound for use as a medicament', or 'compound for use in a method') described herein as well as any one of the embodiments described herein unless it is specified that an embodiment relates to a certain aspect or aspects of the present invention.
All references, including publications, patent applications and patents, cited herein are hereby incorporated by reference to the same extent as if each reference was individu-ally and specifically indicated to be incorporated by reference and was set forth in its en-tirety herein.
All headings and sub-headings are used herein for convenience only and should not be construed as limiting the invention in any way.
Any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly con-tradicted by context.
The terms -a- and -an" and -the- and similar referents as used in the context of de-scribing the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless oth-er-wise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. Unless otherwise stated, all exact values provided herein are representative of corresponding approximate values (e.g., all exact exemplary values provided with respect to a particular factor or measurement can be considered to also pro-vide a corresponding approximate measurement, modified by "about," where appropriate).
All methods described herein can be performed in any suitable order unless other-wise indicated herein or otherwise clearly contradicted by context.
The use of any and all examples, or exemplary language (e.g., -such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise indicated. No language in the specification
22 should be construed as indicating any element is essential to the practice of the invention unless as much is explicitly stated.
The citation and incorporation of patent documents herein is done for convenience only and does not reflect any view of the validity, patentability and/or enforceability of such patent documents.
The description herein of any aspect or embodiment of the invention using terms such as -comprising", -having", -including" or -containing" with reference to an element or elements is intended to provide support for a similar aspect or embodiment of the inven-tion that "consists of", -consists essentially of', or "substantially comprises" that particular element or elements, unless otherwise stated or clearly contradicted by context (e.g., a com-position described herein as comprising a particular element should be understood as also describing a composition consisting of that element, unless otherwise stated or clearly con-tradicted by context).
This invention includes all modifications and equivalents of the subject matter re-cited in the aspects or claims presented herein to the maximum extent permitted by applica-ble law.
The present invention is further illustrated by the following examples that, however, are not to be construed as limiting the scope of protection. The features disclosed in the foregoing description and in the following examples may, both separately and in any com-bination thereof, be material for realizing the invention in diverse forms thereof.
Experimental Synthesis of bis (3-deoxy-3-(3-fluoropheny1-1H-1,2,3-triazol-1-y1)13-D-galactopyranosyl) sulfane.
General Methods.
Melting points were recorded on a Kofler apparatus (Reichert) and are uncorrected.
Proton nuclear magnetic resonance (1H) spectra were recorded on a Bruker DRX
400 (400 MHz) or a Bruker ARX 300 (300 MHz) spectrometer; multiplicities are quoted as singlet (s), doublet (d), doublet of doublets (dd), triplet (t), apparent triplet (at) or apparent triplet of doublets (atd). Carbon nuclear magnetic resonance (13C) spectra were recorded on a Bruker
23 DRX 400 (100.6 MHz) spectrometer. Spectra were assigned using COSY, HMQC and DEPT experiments. All chemical shifts are quoted on the d-scale in parts per million (ppm).
Low- and high-resolution (FAB-HRMS) fast atom bombardment mass spectra were re-corded using a JEOL SX-120 instrument and low- and high- resolution (ES-HRMS) were recorded on a Micromass Q-TOF instrument. Optical rotations were measured on a Perkin-Elmer 341 polarimeter with a path length of 1 dm; concentrations are given in g per 100 mL. Thin layer chromatography (TLC) was carried out on Merck Kieselgel sheets, pre-coated with 60F254 silica. Plates were developed using 10% sulfuric acid.
Flash column chromatography was carried out on silica (Matrex, 60A, 35-70gm, Grace Amicon).
Ace-tonitrile was distilled from calcium hydride and stored over 4A molecular sieves. DMF was distilled from 4A molecular sieves and stored over 4A molecular sieves.
Bis (3-deoxy-3-(3-fluoropheny1-1H-1,2,3-triazol-1-y1)-fi-D-ga1actopyranosyl) sulfane (TD139) was prepared in accordance with the reaction scheme 1 below:
24 Ph PhPh Ph Bu4NP-NO2-'Tf20 DMF
\O pyridine \'10 60% over 2 \C) Tf20 L\o pyridine \
0 -20 C o steps when o '' -20 C 04.____ HO--.& AcCI
Tf0--... ...\_--SPh )\......4.\,-SPh SPh OH OAc OAc OAc OH OTf (1) (2) (3) (4) Ph Bu4N+N3-DMF 0 AcOH HO OH Ac20 Ac0 OAc 59% over 0 (80%) 0 pyridine 0 2 steps 60 C
______),, N3 SPh N3 SPh N3--.10. ....\õ-SPh OAc OAc OAc (6) (7) (5) Br2 CH2C12 AcCi OAc 68% over MeCN
_), ..
3 steps Et3N Ac0 OAc N3 50-60% Ac0 over 2 steps 0 Br Ac0 (8) Ac0 OAc Na_ Thiourea a0Me MeCN
reflux HO OH Me0H (10) 75% Ac OH
Ac0 OAc HO

OAc ./ Br _¨ F NH2 (11) N3 OH
(9) H2N
, 3-fluorophenylacetylene I Cul +
fa 1 triethylamine l'1tF
HO OH ''6 HO
N / N_--S
N HO
HO
F
/ NN
\ OH
TD139 * N
(Scheme 1) Compound (1) (cf. reaction scheme above) is commercial from Carbosynth Limited 5 8 & 9 Old Station Business Park - Compton - Berkshire - RG20 6NE ¨ UK or synthesized in three near-quantitative steps from D-galactose, (cf e.g. Li, Z. and Gildersleeve, J. C. J.
Am. Chem. Soc. 2006, 128, 11612-11619) Phenyl 2-0-acety1-4,6-0-benzylidene-1-thio-3-0-trifluoromethanesulfonyl*D-5 galactopyranoside (2) Compound 1 (10.5 g, 29.2 mmol) was dissolved in dried pyridine (4.73 mL, 58.4 mmol) and dried CH2C12 (132 mL ). The reaction mixture was cooled, under stirring, until -20 C (Ice and NaC1 bath 3:1). Slowly and under N2 atmosphere, Tf20 (5.68 mL, 33.6 mmol) was added. The reaction mixture was monitored by TLC (heptane:Et0Ac, 1:1 and 10 toluene:acetone, 10:1). When the reaction was complete, AcC1 (2.29 mL, 32.1 mmol) was added and keeping stirring, the temperature was increased to room temperature.
This mix-ture was monitored by TLC too (heptane:Et0Ac, 1:1 and toluene:acetone, 10:1).
When it was complete, it was quenched with CH2Cl2 and washed with 5 % HC1, NaHCO3 (saturated ¨ hereafter sat) and NaC1 (sat). The organic layer was dried over MgSO4, filtered and con-15 centrated under reduced pressure.
Phenyl 2-0-acetyl-4,6-0-benzyliden-1-thio*D-gulopyranoside (3) Tetrabutylammonium nitrite (25.3 g, 87.7 mmol) was added to a solution of com-pound 2 (15.6 g, 29.2 mmol) in DMF (110 mL ) and was kept stirring, under N2 atmos-20 phere, at 50 C. (The reaction started being purple and turned garnet).
The reaction was monitored by TLC (heptane:Et0Ac, 1:1 and toluene:acetone, 10:1) and quenched with CH2C12 . The mixture was washed with 5 % FIC1, NaHCO3 (sat) and NaC1 (sat).
The or-ganic layer was dried over MgSO4, filtered and concentrated under reduced pressure fol-lowed by purification by flash chromatography (Eluent heptane:Et0Ac, 1:1 and hep-
25 tane:Et0Ac, 1:2) and recrystallized from a mixture of Et0Ac and Heptane (1:3). 1H NMR
in CDC13 6. 7.60-7.57 (m, 2H, Ar), 7.43-7.40 (m, 2H, Ar), 7.37-7.34 (m, 3H, Ar), 7.29-7.25 (m, 3H, Ar), 5.50 (s, 1H, PhCH), 5.15 (d, 1H, J=10.29 Hz, H-1), 5.10 (dd, 1H, J=10.27 Hz, 2.85 Hz, H-2), 4.36 (dd, I H, J= 12.49 Hz,1.4 Hz, H-6), 4.18 (br s, 1H, H-3), 4.08 (dd, 1H, J= 3.59 Hz, 1.04 Hz, H-6), 4.03 (dd, 1H, J= 12.53 Hz, 1.75 Hz, H-4), 3.88 (s, 2H, H-5 +
OH), 2.12 ( s, 3H, OAc).
Phenyl 2-0-acetyl-4,6-0-benzylidene-1-thio-3-0-trifluoromethanesulfonyl-p-D-
26 gulopyranoside (4) Compound 3 (1.00 g, 2.48 mmol) was dissolved in dried CH2C12 (12.5 mL) and dried pyridine (0.40 mL, 4.96 mmol). The reaction mixture was cooled, under stirring, until -20 C (Ice and NaC1 bath 3:1). Slowly and under N2 atmosphere, Tf20 (0.48 mL, 2.85 mmol) was added. The reaction mixture was monitored by TLC (heptane:Et0Ac, 1:1 and toluene:acetone, 10:1) and when it was complete, it was quenched with CH2C12 and washed with 5 % HC1, NaHCO3 (sat) and NaC1 (sat). The organic layer was dried over MgSO4, fil-tered and concentrated under reduced pressure until being dry.
Phenyl 2-0-acety1-3-azido-4,6-0-benzylidene-3-deoxy-1-thio-p-D-galactopyranoside (5) Tetrabutylammonium azide (2.12 g, 7.44 mmol) was added carefully to a solution of compound 4 (1.3256 g, 2.48 mmol) in DMF (10 mL ) and was kept stirring, under N2 at-mosphere, at 50 C. The reaction was monitored by TLC (E:H, 1:1) and concentrated under reduced pressure followed by purification by flash chromatography (Eluent heptane:Et0Ac, 2:1 and heptane:Et0Ac, 1:1). 1H NMR in CDC13 6 7.61-7.58 (m, 2H, Ar), 7.44-7.41 (m, 2H, Ar), 7.39-7.36 (m, 3H, Ar), 7.30-7.24 (m, 3H, Ar), 5.59 (s, 1H, PhCH), 5.35 (t, 1H, J= 9.95 Hz, H-2), 4.73 (d, 1H, J= 9.63 Hz, H-1), 4.44 (dd, 1H, .1= 6.24 Hz, 1.60 Hz, H-6), 4.35-4.34 (dd, 1H, J= 3.33 Hz, 0.88 Hz, H-4), 4.11 (dd, 1H, J= 12.48 Hz, 1.67 Hz, H-6), 3.57 (d, 1H, J= 1.15 Hz, H-5), 3.44 (dd, 1H, J= 10.21 Hz, 3.29 Hz, H-3), 2.17 (s, 3H, OAc).
Phenyl 2-0-acetyl-3-azido-3-deoxy-l-thio-P-D-galactopyranoside (6) Compound 5 (470 mg, 1.1 mmol) was dissolved in 80% acetic acid (75 mL ) and the mixture was heated at 60 C. The reaction was monitored by TLC (heptane:Et0Ac, 1:1).
When the reaction was complete, the mixture was concentrated under reduced pressure and heating.
Phenyl 2,4,6-tri-O-acetyl-3-azido-3-deoxy-l-thio-13-D-galactopyranoside (7) Acetic anhydride (30 mL) was added to a solution of compound 6 (373 mg, 1.1mmol) in dry pyridine (30 mL). The reaction was monitored by TLC
(heptane:Et0Ac, 1:1) and when it was complete, it was concentrated under reduced pressure. 1H
NMR in CDC13 6 7.54-7.51 (m, 2H, Ar), 7.35-7.30 (m, 3H, Ar), 5.46 (dd, 1H, H-4), 5.23 (t, 1H, H-
27 2), 4.73 (d, 1H, H-1), 4.15 (d, 2H, H-6, H-6), 3.94 (dt, I H, H-5), 3.68 (dd, 1H, H-3), 2.18 (s, 3H, OAc), 2.15 (s, 3H, OAc), 2.06 (s, 3H, OAc).
2,4,6-tri-0-acetyl-3-azido-3-deoxy-a-D-galactopyranosyl bromide (8) Compound 7 (237.4 mg, 560 gmol) was dissolved in dry CH2Cl2 (2 mL), and bro-mine (32 I, 620 mot) was added. The reaction was monitored by TLC
(heptane:Et0Ac, 1:1). When the reaction was complete, a small amount of cyclopentene was added to the reaction mixture to remove the rests of Br2. The mixture was concentrated under reduced pressure and purified by quick Flash chromatography (Eluent: 500mL
heptane:Et0Ac, 2:1).
2,4,6-tri-O-acety1-3-azido-3-deoxy-a-D-galactopyranose-1-isothiouronium bromide (9) The sensitive bromide 8 (70.6 mg, 180 mop was immediately dissolved in dry ace-tonitrile (1.7 mL) and refluxed with thiourea (13.7 mg, 180 mop under N2 for 4 hours. The reaction was monitored by TLC (heptane:Et0Ac, 1:1) and when it was complete, the mix-ture was cooled.
Bis-(2,4,6-tri-0-acety1-3-azido-3-deoxy-b-D-galactopyranosyl)-sulfane (10) The sensitive bromide 8 (77.0 mg, 196 mop and Et3N (60 1, 430 mot) was added to the last mixture (9). The reaction was monitored by TLC (heptane:Et0Ac, 1:1). When it was complete, the reaction mixture was concentrated under reduced pressure and without heating. The residue was purified by flash chromatography (Eluent:
heptane:Et0Ac, 1:1).
H NMR in CDCI3 6 5.50 (dd, 2H, H-4,), 5.23 (t, 2H, H-2, H-2'), 4.83 (d, 2H, H-1, H-1'), 4.15 (dd, 4H, H-6, H-6, H-6', H-6'), 3.89 (dt, 2H, H-5, H-5'), 3.70 (dd, 2H, H-3, H-3'), 2.19 (s, 6H, 20Ac), 2.15 (s, 6H, 20Ac), 2.18 (s, 6H, 20Ac).
Bis-(3-azido-3-deoxy-p-D-galactopyranosyl)-su1fane (11) Compound 10 (160 mg, 0.00024 mol) was dissolved in dry Me0H (2.6 mL) and dry CH2C12 (1.6 mL), and Na0Me (1M, 24 jtL, 24 mol) was added. The reaction was moni-tored by TLC (heptane:Et0Ac 1:1 and D:M 5:1). When the reaction was complete, the mix-ture was neutralized with Duolite C436 until pH 7, filtered and washed with Me0H. The filtered solution was concentrated under reduced pressure. The residue was purified by flash
28 chromatography (Eluent: CH2C12:Me0H, 5:1) to give pure 11 (74.1 mg, 75%). 1H
NMR in CDC13 6 4.72 (d, 2H, J=9.7 Hz, H-1, H-1'), 3.95 (br s, 2H, H-4, H-4'), 3.84 (t, 2H, J= 9.8 Hz, H-2, H-2'), 3.74 (dd, 2H, J= 11.47 Hz, 7.23 Hz, H-6, H-6'), 3.64 (dd, 2H, J= 11.48 Hz, 4.72 Hz, H-6, H-6'), 3.60-3.55 (ddd, 2H, 7.15 Hz, 4.67 Hz, 0.93 Hz, H-5, H-5'), 3.36 (dd, 2H, J= 10 Hz, 3.05 Hz, H-3, H-3').
Bis-{3-deoxy-3-14-(3-fluorophenyl)-1H-1,2,3-triazol-1-yl]-13-D-galactopyranosyl} sul-fane (Named TD139) TD139 was synthesized at ambient temperature by Cu(1)-catalyzed cycloaddition between bis-(3-azido-3-deoxy-13-D-galactopyranosyl)-sulfane (11) and 3-fluorophenylacetylene (3 eq.) with Cu(I) (0.2 eq), triethylamine (2 eq.) in N,N-dimethylformamide (DMF, 100 mL/mmol sulfane). The reaction was monitored with tic until complete, concentrated and first purified by flash chromatography (Eluent:
CH2C12:Me0H, 8:1), followed by final purification by preparative hplc to give TD139 in 76% yield as a white amorphous solid. 1H-NMR (CD30D, 400 MHz) d 8.59 (s, 2H, tria-zole-H), 7.63 (br d, 2H, 7.6 Hz, Ar-H), 7.57 (br d, 2H, 8.4 Hz, Ar-H), 7.41 (dt, 2H, 6,0 and 8.0 Hz, Ar-H), 7.05 (br dt, 2H, 2.4 and 6.4 Hz, Ar-H), 4.93 (dd, 2H, 2,4 and 10.4 Hz, H3), 4.92 (d, 2H, 10.4 Hz, HI), 4.84 (2H, 10.4 Hz, H2), 4.18 (d, 2H, 2.4 Hz, H4), 3.92 (dd, 2H, 4.2 and 7.6 Hz, H5), 3.84 (dd, 2H, 7.6 and 11.4 Hz, H6), 3.73 (dd, 2H, 4.2 and 11.4 Hz, H6): FAB-HRMS miz calcd for C28F130F2N6Na08S (M+Na+), 671.1712; found, 671.1705.
Model of bleomycin-induced lung fibrosis Female C57/B16 mice (10-14 weeks old) were anaesthetized with halothane, and bleomycin or saline was administered intratracheally (33 lig in 50 1 of saline) and lungs were harvested on day 26. TD139 was instilled into the lungs of mice on days 18, 20, 22 and 24 of bleomycin induced lung injury. Fibrosis was assessed by histological score of collagen stained lung sections and by total collagen content by Sircol assay.
Mice were treated with bleomycin (bleo) or saline (control) and bleomycin treated mice were treated with 200 mg/kg pirfenidone twice daily on days 18-24. TD139 was ad-ministered intratracheally on days 18, 20, 22 and 24. Lungs were harvested on day 26.
Figure 1 shows (A) Total lung collagen measured by Sircol assay; (B) Fibrosis
29 score; and (C) Inflammatory score. Results represent the mean and SEM (A) or box and whiskers (median, interquartile range, minimum to maximum, B and C) of n=8 mice per group (n=7 bleo). ***P<0.005, "P<0.01, *P<0.05. Figure 1E) Beta-catenin activation in vivo was assessed by scoring sections of bleomycin treated mouse lung (control and 10 ug TD treated) stained with an anti-active beta catenin.
Effect on alveolar epithelial cells Primary alveolar epithelial cells from WT mice were plated and treated with TGF-i31 in the presence or absence of 10 .1.1\4 TD139. Figure ID) Cells were lysed and analyzed for active P-catenin, total f3-catenin and f3-actin by western blot.
In conclusion TD139 is a galectin-3 inhibitor and blocked TGF-E3-induced [3-catenin activa-tion in vitro and bleomycin induced lung fibrosis in vivo and is believed to represent a novel therapeutic strategy for treatment of lung fibrosis in mammals, in particular humans.
Drug treatment Mice were divided into the following groups set forth in Table I:
Immunohistochemistry Paraffin-embedded sections of mouse tissue were stained with Masson's trichrome and haemotoxylin and eosin (H&E) as per manufacturer's instructions. Sections were proc-essed for immunohistochemistry and the following primary antibodies used:
mouse anti-active (ABC) beta-catenin (Millipore) and sections visualized and quantified.
Table I

Dosing Group Induction Treatment Dose Administration days 1 Control Vehicle N/A

2 Bleomycin Vehicle , , Intratracheal and 24 22 20, 3 Bleomycin TD139 10 ug 18, Intratracheal and 24 22 20, 4 Bleomycin TD139 3 ug 18, Intratracheal and 24 22 20, 5 Bleomycin TD139 1 ug 18, Intratracheal and 24 18, 20, 22 6 Bleomycin TD139 0.1 ug and 24 Intratracheal 200 b.i.d. from 7 Bleomycin Pirfenidone oral mg/kg day 18 Determination of lung fibrosis and inflammation Histological lung inflammation and fibrosis score were carried out in Masson's tri-chrome stained sections. Inflammation (peribronchiolar, perivascular, and alveolar wall 5 thickness) scored in > 5 random fields at magnification X630 using the following system (peribronchiolar and perivascular, 1 = no cells. 2 = <20 cells, 3 = 20 ¨ 100 cells, 4 => 100 cells; alveolar wall thickness, 1 = no cells, 2 = 2 ¨ 3 cells thick, 3 = 4 ¨ 5 cells thick, 4 = > 5 cells thick). The combined inflammatory score was the sum of these scores.
Fibrosis score was evaluated as the area of the section positively stained for collagen (1 =
none. 2 = <10%.
10 3 = < 50%, 4 => 50%). Only fields where the majority of the field was composed of alve-oli were scored.
Determination of lung collagen by sircol assay Collagen content in the left lung lobe was determined by sircol assay as per manu-15 facturer's instructions. The left lobe was minced in 5 ml of 3 mg/ml pepsin in 0.5 M acetic acid and incubated with shaking at 4oC for 24 h. Cleared lung extract (0.2 ml) was incu-bated with 0.8 ml sircol reagent for 1 h at room temperature and precipitated collagen cen-trifuged at 10,000g for 5 min at 4oC. Pellets solubilised in 1 ml 1 M NaOH and absorbance measured at 570 nm alongside collagen standards.
Primary Type 11 alveolar epithelial cell isolation Treated and control mouse type II lung alveolar epithelial cells (AECs) were ex-tracted following a standard method. Briefly, I ml of 50 U/ml dispase (BD
Biosciences) was administered intratracheally into perfused lungs followed by instillation of 0.5 ml of 1% low melting point agarose. The agarose within the upper airways was allowed to set on ice for 2 minutes and the lungs were placed in 4 ml 50 U/ml dispase for 45 min at room temperature. The lung lobes minus the upper airways were then dispersed in DMEM con-taining 50 ug/m1 DNAse I (Sigma-Aldrich, UK). The cell suspension was passed through a 100-p,m cell strainer and the cells washed in DMEM followed by resuspension in DMEM
containing 10% FCS. The cell suspension was plated onto tissue culture plastic for 1 h to allow any contaminated fibroblasts and macrophages to adhere. Non-adherent epithelial cells were counted and cultured for 2 days on tissue culture plastic or cover-slips pre-coated with 5 ug/m1 collagen (AMS Biotechnology) and 10 ug/m1 fibronectin (Sigma-Aldrich), Cells were washed three times in PBS before treatment. Epithelial cells were either incu-bated in DMEM containing 10% FCS, 50 U/ml penicillin, 50 g/ml streptomycin and 5 [Egiml L-glutamine or transferred to complete mouse media (DMEM/F-12 containing 0.25%
BSA, 10 nM hydrocortisone, 5 ug/m1 Insulin-Transferrin-Sodium-Selenite (ITS) and sup-plemented with 0.1 mg/ml sodium succinate, 75 ug/m1 succinic acid and 1.8 ug/m1 choline bitartrate).
Western Blotting Cells were lysed in 25 mM HEPES pH 7.4, 0.3 M NaC1, 1.5 mM MgC12, 0.2 mM
EDTA, 0.5% triton X-100, 0.5 mM dithiothreitol, 1 mM sodium orthovanadate and protease inhibitors (Boehringer Mannheim, Sussex, UK; prepared as per manufacturers instructions).
Lysates equilibrated for protein using Pierce BCA protein assay reagent (Pierce) and re-solved on 12% SDS-PAGE gels. Western blot analysis undertaken using the following primary antibodies; rabbit anti beta-catenin, (BD Biosciences), rabbit polyclonal anti-beta-actin antibody (Sigma, UK), mouse anti-active (ABC) beta-catenin (Millipore).
Example 1 Measurement of Galectin-3 levels in human lung biopsies:
Biopsies were sampled from patients with usual interstitial pneumonia (UIP), the most common cause of IPF. Biopsies were fixed in neutral buffered formalin for 12-24h prior to embedding in paraffin wax for sectioning. Sum sections were cut and transferred onto glass slides. Sections were dewaxed in xylene for 10 mins and rehydrated by placing slides for 2 min each in graded ethanol (100%-95%-80%-70%-50%-water) Antigen re-trieval was performed by microwaving sections in 0.01M citrate pH 6.0 for 15 min. After cooling in running tap water peroxidase was blocked by incubating in 1%
hydrogen perox-ide solution for 15 mins. Slides were rinsed in phosphate buffered saline (PBS) and non specific binding was blocked using serum free protein block and avidin/biotin blocking kit (Vector Laboratories, USA). The sections were incubated with mouse monoclonal anti-human galectin-3 clone 9C4 from Novocastra. (diluted to 1:100 in antibody diluent, DAKO, UK) overnight at 4 C. After 3 washes with PBS, sections were incubated with biotinylated rabbit anti-mouse IgG (H+L) secondary antibody (diluted 1:200 in antibody diluent) for 30 minutes at room temperature. Slides were rinsed 3 times with PBS and incubated with 3 drops of avidin:biotinylated enzyme complex (R.T.U. Vectastain Elite ABC
Reagent, PK-7100, Vector Labs, Burlingame, CA, USA) for 30 minutes followed by liquid diaminoben-zidine (DAB) (Liquid DAB+Substrate Chromogen System, K3468, Dako UK Ltd, Cam-bridgeshire) in the dark for 10 minutes.
Slides were rinsed 3 times in PBS, counterstained for 30 seconds with Mayers hae-matoxylin (ThermoShandon, UK) and 30 seconds in Scotts tap water (83 mM MgSO4, 7.1 mM NaHCO3 in tap water), dehydrated through graded ethanol (70%, 90%, 100% 2 min each), and cleared in xylene. Slides were mounted using Pertex mounting solution (CellPath Hemel Hempstead, UK).
Sections were visualized by light microscopy.
Galectin-3 is markedly up-regulated in fibroproliferative areas in the lung of patients with UIP.
Example 2 Method for measurement of Galectin-3 levels in human serum or human broncho-alveolar lavage fluid:
1. Dilute the Capture Antibody to the working concentration in PBS without carrier protein.
Immediately coat a 96-well microplate6 with 100 pl per well of the diluted Capture Anti-body. Seal the plate and incubate overnight at room temperature.
2. Aspirate each well and wash with Wash Buffer, repeating the process two times for a total of three washes. Wash by filling each well with Wash Buffer (400 [IL) using a squirt bottle, manifold dispenser, or autowasher. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Wash Buffer by aspirating or by inverting the plate and blotting it against clean paper towels.
3. Block plates by adding 300 IA of Reagent Diluent to each well. Incubate at room tem-perature for a minimum of 1 hour.
4. Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition.
Assay Procedure 1. Add 100 f.tL of sample or standards in Reagent Diluent, or an appropriate diluent, per well. Cover with an adhesive strip and incubate 2 hours at room temperature.
2. Repeat the aspiration/wash as in step 2 of Plate Preparation.
3. Add 100 [IL of the Detection Antibody, diluted in Reagent Diluent, to each well. Cover with a new adhesive strip and incubate 2 hours at room temperature.
4. Repeat the aspiration/wash as in step 2 of Plate Preparation.
5. Add 100 [IL of the working dilution of Streptavidin-HRP to each well. Cover the plate and incubate for 20 minutes at room temperature. Avoid placing the plate in direct light.
6. Repeat the aspiration/wash as in step 2.
7. Add 100 [IL of Substrate Solution to each well. Incubate for 20 minutes at room tempera-ture. Avoid placing the plate in direct light.
8. Add 50 0_, of Stop Solution to each well. Gently tap the plate to ensure thorough mixing.
9. Determine the optical density of each well immediately, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength cor-rection is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm.
This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate.
Example 3 Measurement of galectin-3 levels in serum from patients and controls:

Serum was sampled from patients with UIP, patients with non-specific interstitial pneumonia (NSIP) and aged matched controls. Galectin-3 levels were measured using the ELISA method described in example 2. Serum was collected and stored at -80 C
prior to assay. Samples were normally diluted 1:10 in PBS prior to assay. ELISA was carried out as described in the manufacturers protocol:
Galectin-3 was measured serially (on 2-5 occasions) in the serum of 6 patients with stable IPF (UIP). Stable IPF was defined as no significant change in exercise tolerance, breathlessness or lung function. Galectin-3 was elevated in the serum of patients with IPF
(control 17.9 0.95 ng/ml n=8, IPF 26.7 4.7 ng/ml n = 6, P < 0.05) but not in patients with non-specific interstitial pneumonia (NSIP) (serum concentration 14.57 0.84 ng/ml (n=10)).
The serum level of galectin-3 remains remarkably constant over time in these pa-tients (serum galectin-3 25.5 0.8 ng/ml n=23). We tested 5 serum samples from patients undergoing an acute exacerbation of IPF. These patients were defined as having an acute exacerbation by decreased exercise to tolerance, decreased lung function and increased breathlessness. In these patients there was a dramatic rise in serum galectin-3, 73.8 12.2 ng/ml. Furthermore, we identified 2 patients who had serial galectin-3 measurements prior and during an acute exacerbation of their IPF. Both patients show stable galectin-3 serum levels during the period while their lung function was stable. However, during an acute ex-acerbation when lung function declined there was a sharp rise in serum galectin-3.
Example 4 Measurement of galectin-3 levels in BAL fluid from patients and controls:
Broncho-alveolar lavage (BAL) fluid was sampled from IPF patients and age matched controls using a standard technique. Briefly, a bronchoscope was passed through the mouth or nose into the lungs and a small lung section was flushed with a specified amount of saline. The BAL fluid was collected and stored at -80 C. The level of Galectin-3 was measured using the ELISA method described in Example 2.
Galectin-3 levels were significantly elevated in BAL samples from IPF patients compared to age matched controls (control 18.8 3.6 ng/ml n = 16, IPF 39.7 +
3.7 ng/ml n = 15, P< 0.01).

Claims (43)

WE CLAIM:
1. A compound of the general formula (I):
2. The compound of claim 1 selected from bis (3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-.beta.-D-galactopyranosyl) sulfane as the free form.
3. The compound according to any one of claims 1-2, for use as a medicament.
4. A pharmaceutical composition comprising the compound of any one of claims 1-and optionally a pharmaceutically acceptable additive, such as a carrier or an excipient.
5. The pharmaceutical composition of claim 4 wherein the composition is adminis-tered by the pulmonary route.
6. The compound of any one of the claims 1-3 for use in a method for treating pul-monary fibrosis, such as Idiopathic pulmonary fibrosis in a mammal.
7. The compound of claim 6, wherein the compound is administered by the pulmo-nary route.
8. The compound of claim 6 or 7 wherein said mammal is a human subject.
9. A method for treatment of pulmonary fibrosis, such as Idiopathic pulmonary fi-brosis comprising administering to a mammal in need thereof a therapeutically effective amount of the compound of any one of claims 1-3.
10. The method of claim 9, wherein the compound of any one of claims 1-3 is ad-ministered by the pulmonary route.
11. A process of preparing a compound of formula I comprising a step of reacting bis-(3-deoxy-3-azido-.beta.-D-galactopyranosyl) sulfane with 3-fluorophenylacetylene and an amine in a solvent, resulting in the compound of formula I.
12. The process of claim 11 wherein the amine is triethylamine, a catalyst is present, such as Cu(I), and the solvent is an organic solvent, such as N,N-dimethylformamide (DMF).
13. A nebulizer device for pulmonary administration comprising a compound of any one of claims 1-3.
14. The nebulizer device of claim 13, wherein the compound is bis (3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-.beta.-D-galactopyranosyl) sulfane as the free form.
15. A dry powder device for pulmonary administration comprising a compound of any one of claims 1-3.
16. The dry powder device of claim 15, wherein the compound is bis (3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-.beta.-D-galactopyranosyl) sulfane as the free form.
17. A method of diagnosing pulmonary fibrosis in a human subject comprising a) measuring a galectin-3 level (e.g. concentration) in a body sample from the human subject using a suitable test method, b) comparing the galectin-3 level to a predetermined reference level , and c) determining whether the galectin-3 level is indicative of diagnosing the sub-ject with pulmonary fibrosis.
18. The method of claim 17 wherein the indicative level of galectin-3 is at least 22 ng/ml, such as at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml.
19. A method of predicting the prognosis of pulmonary fibrosis in a human subject comprising a) measuring a galectin-3 level (e.g. concentration) in a body sample from the human subject using a suitable test method, and b) determining whether the galectin-3 level is indicative of a poor prognosis or not for the human subject.
20. The method of claim 19 wherein the indicative level of galectin-3 is at least 22 ng/ml, such as at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml.
21. A method of monitoring development or progression of pulmonary fibrosis in a human subject, comprising a) measuring a galectin-3 level in a body sample from the sub-ject at least two times with sufficient interval(s) to measure a clinically relevant change, b) comparing the galectin-3 level to a predetermined reference level, and repeating steps a) and b) one or more times to monitor the development or progression of pulmonary fibrosis in the human subject.
22. The method of claim 21 wherein the time period between two measurements is independently selected from 2 weeks to 2 years, such as 2 weeks, 4 weeks, 1 month, 2 months, 3 months 6 months, 1 year, or 2 years.
23. The method of claim 21 wherein when the indicative level of galectin-3 is below 22 ng/ml treatment of pulmonary fibrosis may be stopped, adjusted or put on hold.
24. The method of claim 21 wherein when the indicative level of galectin-3 is at least 22 ng/ml, such as at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml treatment of pulmonary fibrosis may be initi-ated or increased.
25. A method of monitoring or predicting exacerbation of symptoms in a human subject with pulmonary fibrosis comprising a) measuring a galectin-3 level (e.g. concentra-tion) in a body sample from the human subject using a suitable test method, b) comparing the galectin-3 level to a predetermined reference level, b) determine the presence or absence of a galectin-3 level indicative of the development or progression of exacerbation of symp-toms, and c) repeating steps a) and b) to monitor or predict the development or progression of the exacerbation of symptoms in the human subject.
26. The method of claim 25 wherein when the indicative level of galectin-3 is below 22 ng/ml treatment of pulmonary fibrosis may be stopped, adjusted or put on hold.
27. The method of claim 25 wherein when the indicative level of galectin-3 is at least 22 ng/ml, such as at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml treatment of pulmonary fibrosis is initiated or increased.
28. The method of claim 25 wherein when the indicative level of galectin-3 is at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml prophylactic treatment of exacerbation of symptoms is initiated or increased.
29. The method of any one of claims 17-28 wherein the pulmonary fibrosis is idio-pathic pulmonary fibrosis.
30. The method of any one of claims 17-29 wherein the subject is diagnosed with mild, moderate or aggressive forms of pulmonary fibrosis according to the level of galectin-3.
31. The method of any one of claims 17-30 wherein in step a) further bio-markers are measured which markers are relevant for pulmonary fibrosis, including markers linked to Galectin-3 levels, leading to a more accurate diagnosis, prognosis, and/or monitoring.
32. The method of claim 31 wherein the bio-markers are selected from MMP7, perDLCO, KL-6, SP-A, MMP-7, CCL-18, IL13, CC-chemokines, IL10, IL1 receptor an-tagonist, CCL2, Calgranulin B (S100A9 or MRP14), macrophage migration inhibitory fac-tor (MIF), pro-collagen, pro-collagen 3.
33. The method of claim 31 wherein the bio-markers are selected from analysis of the presence and frequency of certain cell types in body fluids from said human subject.
34. The method of claim 32 wherein the bio-markers are selected from analysis of the presence and frequency of fibrocytes and T-cell subpopulations in body fluids from said human subject.
35. The method of any one of claims 17-34 wherein the predetermined reference level for galectin-3 is in the range from about 10.0 ng/mL to about 25.0 ng/mL, such as in the range from about 13.0 ng/mL to about 19.2 ng/mL.
36. The method of any one of claims 17-35 wherein the body sample is selected from blood, serum, plasma, broncho-alveolar lavage fluid, lung tissue.
37. The method of any one of claims 17-36 wherein the suitable test method is se-lected from an immunoassay, an immunohistochemical assay, a colorimetric assay, a tur-bidimetric assay, and flow cytometry.
38. The method of claim 21 or 25, wherein the subject has a galectin-3 blood con-centration determined to be within a target range.
39. The method of claim 38, wherein the target range is from 10 ng/ml to 70 ng/ml.
40. A method for treatment of pulmonary fibrosis, such as Idiopathic pulmonary fibrosis in a human subject having a galectin-3 level indicative of pulmonary fibrosis or exacerbation of symptoms comprising administering to a human subject a therapeutically effective amount of a galectin-3 inhibitor.
41. The method of claim 40 wherein the galectin-3 inhibitor is selected from the compound of any one of claims 1-3.
42. The method of claim 40 wherein the indicative level of galectin-3 is at least 22 ng/ml, such as at least 25 ng/ml, such as at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml.
43. The method of claim 40 comprising the additional step of monitoring the sub-ject's galectin-3 blood level after the therapy is initiated.
CA2795753A 2012-10-31 2012-11-15 Novel galactoside inhibitor of galectins Abandoned CA2795753A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2795753A CA2795753A1 (en) 2012-10-31 2012-11-15 Novel galactoside inhibitor of galectins
ES13785446T ES2817888T3 (en) 2012-10-31 2013-10-30 Galectin-3 galactoside inhibitor and its use to treat pulmonary fibrosis
CN201380057194.2A CN104755088A (en) 2012-10-31 2013-10-30 Galactoside inhibitor of galectin-3 and its use for treating pulmonary fibrosis
IN2573DEN2015 IN2015DN02573A (en) 2012-10-31 2013-10-30
CA2884802A CA2884802A1 (en) 2012-10-31 2013-10-30 Galactoside inhibitor of galectin-3 and its use for treating pulmonary fibrosis
PCT/EP2013/072691 WO2014067986A1 (en) 2012-10-31 2013-10-30 Galactoside inhibitor of galectin-3 and its use for treating pulmonary fibrosis
EP13785446.9A EP2914269B1 (en) 2012-10-31 2013-10-30 Galactoside inhibitor of galectin-3 and its use for treating pulmonary fibrosis
JP2015538502A JP2015535233A (en) 2012-10-31 2013-10-30 Galactosidic inhibitors of galectin-3 and their use for pulmonary fibrosis
EP17183955.8A EP3278805A1 (en) 2012-10-31 2013-10-30 Diagnosing pulmonary fibrosis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,794,066 2012-10-31
CA2794066A CA2794066C (en) 2012-10-31 2012-10-31 Galactoside inhibitor of galectins
CA2795753A CA2795753A1 (en) 2012-10-31 2012-11-15 Novel galactoside inhibitor of galectins

Publications (1)

Publication Number Publication Date
CA2795753A1 true CA2795753A1 (en) 2014-04-30

Family

ID=50605933

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2794066A Active CA2794066C (en) 2011-04-19 2012-10-31 Galactoside inhibitor of galectins
CA2795753A Abandoned CA2795753A1 (en) 2012-10-31 2012-11-15 Novel galactoside inhibitor of galectins

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2794066A Active CA2794066C (en) 2011-04-19 2012-10-31 Galactoside inhibitor of galectins

Country Status (1)

Country Link
CA (2) CA2794066C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017228365B2 (en) * 2016-03-04 2021-05-27 Galectin Sciences, Llc Selenogalactoside compounds for the prevention and treatment of diseases associated with galectin and the use thereof
AU2018265571B2 (en) 2017-05-12 2022-09-29 Galectin Sciences, Llc Compounds for the prevention and treatment of diseases and the use thereof

Also Published As

Publication number Publication date
CA2794066A1 (en) 2014-04-30
CA2794066C (en) 2017-02-28

Similar Documents

Publication Publication Date Title
US20210221836A1 (en) Idiopathic pulmonary fibrosis-detection, monitoring, prediction methods
EP2914269B1 (en) Galactoside inhibitor of galectin-3 and its use for treating pulmonary fibrosis
Bolaños et al. Role of Sonic Hedgehog in idiopathic pulmonary fibrosis
Sun et al. Sphingosine-1–phosphate receptor–3 is a novel biomarker in acute lung injury
US8178091B2 (en) Compositions and methods for the treatment of respiratory disorders
US20110166148A1 (en) Treatment of inflammation using alpha 7 receptor-binding cholinergic agonists
Sousa et al. Effect of inhaled glucocorticoids on IL-1 beta and IL-1 receptor antagonist (IL-1 ra) expression in asthmatic bronchial epithelium.
US20160263183A1 (en) Methods for treating lung disease
US20120021924A1 (en) Detection and modulation of cytochrome c acetylation
JP2017507322A (en) A novel assay to detect human periostin
CA2795753A1 (en) Novel galactoside inhibitor of galectins
Tokunaga et al. The significance of CD163-expressing macrophages in asthma
Manohar et al. Proteomic identification and analysis of human endometrial proteins associated with unexplained infertility
JP6712235B2 (en) Biomarker for lung cancer, its diagnostic method, and kit
KR100756972B1 (en) Composition for prevention treatment and diagnosis of chronic obstructive pulmonary disease
JP2022551649A (en) Biomarkers for graft-versus-host disease
WO2019064073A1 (en) Use of ca125 to predict anti-mesothelin treatment of mesotheliomas
KR20150090107A (en) Therapeutic method for mesothelioma
Øie et al. Adrenomedullin is increased in alveolar macrophages and released from the lungs into the circulation in severe heart failure
Potapov cand. med. science, as. prof. Dnipro State Medical University, Ukraine
KR100733695B1 (en) Composition for prevention treatment and diagnosis of chronic inflammatory airway diseases
TW202406543A (en) Predictive biomarker of clinical response to a pde4 inhibitor
WO2024038185A1 (en) Method of selecting patients for treatment with an il-33 axis antagonist
WO2024027901A1 (en) Predictive biomarker of clinical response to a pde4 inhibitor
Shetty Articles in PresS. Am J Physiol Lung Cell Mol Physiol (January 8, 2016). doi: 10.1152/ajplung. 00290.2015

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20170627

FZDE Dead

Effective date: 20200106