CA2791171C - Apixaban formulations - Google Patents

Apixaban formulations Download PDF

Info

Publication number
CA2791171C
CA2791171C CA2791171A CA2791171A CA2791171C CA 2791171 C CA2791171 C CA 2791171C CA 2791171 A CA2791171 A CA 2791171A CA 2791171 A CA2791171 A CA 2791171A CA 2791171 C CA2791171 C CA 2791171C
Authority
CA
Canada
Prior art keywords
apixaban
tablet
composition
measured
dissolution medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2791171A
Other languages
French (fr)
Other versions
CA2791171A1 (en
Inventor
Jatin Patel
Charles Frost
Jingpin Jia
Chandra Vema-Varapu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Holdings Ireland ULC
Pfizer Inc
Original Assignee
Bristol Myers Squibb Holdings Ireland ULC
Pfizer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US30805610P priority Critical
Priority to US61/308,056 priority
Application filed by Bristol Myers Squibb Holdings Ireland ULC, Pfizer Inc filed Critical Bristol Myers Squibb Holdings Ireland ULC
Priority to PCT/US2011/025994 priority patent/WO2011106478A2/en
Publication of CA2791171A1 publication Critical patent/CA2791171A1/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43901603&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2791171(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application granted granted Critical
Publication of CA2791171C publication Critical patent/CA2791171C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4833Encapsulating processes; Filling of capsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41621,2-Diazoles condensed with heterocyclic ring systems

Abstract

Compositions comprising crystalline apixaban particles having a D90 equal to or less than 89 µm, and a pharmaceutically acceptable carrier, are substantially bioequivalent and can be used to for the treatment and/or prophylaxis of thromboembolic disorders.

Description

APIXABAN FORMULATIONS
FIELD OF THE INVENTION
[0001] This invention relates to apixaban pharmaceutical formulations, and methods of using them, for example, for the treatment and/or prophylaxis of thromboembolic disorders.
BACKGROUND OF THE INVENTION
[0002] Apixaban is a known compound having the structure:

NITh r N
=
OMe
[0003] The chemical name for apixaban is 4,5,6,7-tetrahydro-1-(4-methoxypheny1)-7-oxo-614-(2-oxo-1-piperidinyl)pheny1]-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (CAS name) or 1-(4-methoxypheny1)-7-oxo-6-[4-(2-oxo-1-piperidinyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-e]pyridine-3-carboxamide (IUPAC name).
[0004] Apixaban is disclosed in U.S. Patent No. 6,967,208 (based on U.S.
Application Serial No. 101245,122 filed September 17, 2002), which has utility as a Factor Xa inhibitor, and is being developed for oral administration in a variety of indications that require the use of an antithrombotic agent.
[0005] The aqueous solubility (40 Eig/mL at all physiological pH) of apixaban suggests that the tablets with less than 10 mg apixaban (dose/solubility ratio = 250 mL) should not demonstrate dissolution rate limited absorption since dissolution rate limitations are only expected when the dose/solubility ratio is greater than 250 mL.
Based on this dose and solubility consideration, the particle size of the compound should not be critical for achieving consistent plasma profiles, according to the prediction based on the Biopharmaceutics Classification System (BCS; Amidon, G. L.
et al., Pharmaceutical Research, 12: 413-420 (1995)). However, it was determined that formulations that were made using a wet granulation process as well as those using large particles of apixaban drug substance resulted in less than optimal exposures, which can present quality control challenges.
SUMMARY OF THE INVENTION
[0006] In one aspect, there is provided a pharmaceutical composition comprising apixaban and a pharmaceutically acceptable diluent or carrier, wherein: as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 C, at least 77 wt% of apixaban in the pharmaceutical composition dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate; the apixaban comprises crystalline apixaban particles; and the crystalline apixaban particles have a D90 equal to or less than about 89 nm.
[0006a] In another aspect, there is provided a pharmaceutical composition comprising apixaban and a pharmaceutically acceptable diluent or carrier, wherein apixaban comprises crystalline apixaban particles, and wherein the crystalline apixaban particles have a 1)90 equal to or less than about 89 pm as measured by laser light scattering.
[000613] In a further aspect, there is provided, a solid pharmaceutical composition comprising apixaban and a pharmaceutically acceptable diluent or carrier, wherein raw materials from which the solid pharmaceutical composition is prepared comprise crystalline apixaban particles having a D90 equal to or less than about 89 tim as measured by laser light scattering, and wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 C, at least 77 wt% of apixaban in the solid pharmaceutical composition dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.
[0006c] In yet another aspect, there is provided a process for preparing a tablet comprising about 2.5 mg to about 5 mg of apixaban and a pharmaceutically acceptable diluent or carrier, the process comprising: blending raw materials comprising crystalline apixaban particles having a D90 equal to or less than about 89 p.m as measured by laser light scattering; and granulating, wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 C, at least 77 wt% of apixaban in the tablet dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.

[0006d] In yet another aspect, there is provided a tablet comprising about 2.5 mg to about 5 mg of apixaban and a pharmaceutically acceptable diluent or carrier, which is prepared by a process comprising: blending raw materials comprising crystalline apixaban particles having a D90 equal to or less than about 89 nm as measured by laser light scattering; and granulating, wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 C, at least 77 wt% of apixaban in the tablet dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.
10006e1 In yet another aspect, there is provided a tablet comprising from about 2.5 mg to about 5 mg of apixaban and a pharmaceutically acceptable diluent or carrier, wherein the tablet is prepared using crystalline apixaban particles having a D90 equal to or less than about 89 nm as a raw material as measured by laser light scattering, and wherein, as measured using a USP
Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 C, at least 77 wt% of apixaban in the tablet dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.
[0006f] Surprisingly and unexpectedly, it has been found that compositions for tablets comprising up to 5 mg, apixaban particles having a D90 (90% of the volume) less than 89 microns (pm) lead to consistent in-vivo dissolution in humans (at physiologic pH), hence, consistent exposure and consistent Factor Xa inhibition that will lead to consistency in therapeutic effect. Consistent exposure is defined as that where in-vivo exposure from tablets is similar to that from a solution and not affected by the differences in dissolution rates.
[0006g] It is preferred that the apixaban particles in the composition have a 1)90 not exceeding 89 nm. It is noted the notation Dx means that X% of the volume of particles have a diameter less than a specified diameter D. Thus a D90 of 89 pm means that 90% of the volume of particles in an apixaban composition have a diameter less than 89 pm.
[0007] The range of particle sizes preferred for use in the invention is D90 less than 89 pm, more preferably D90 less than 50 p.m, even more preferably D90 less than 30 pm, and most preferably D90 less than 25 pm. The particle sizes stipulated herein and in the claims refer to particle sizes were determined using a laser light scattering technique.
[0008] The invention further provides the pharmaceutical composition further comprising a surfactant from 0.25% to 2% by weight, preferably from 1 % to 2% by weight. As regards the surfactant, it is generally used to aid in wetting of a hydrophobic drug in a tablet formulation to ensure efficient dissolution of the drug, for example, sodium lauryl sulfate, sodium stearate, polysorbate 80 and poloxamers, preferably sodium lauryl sulfate.
[0009] The invention further provides a use of apixaban in a composition of the invention for the treatment or prophylaxis of thromboembolic disorders. The thromboembolic disorder may be a venous thromboembolic disorder, deep vein thrombosis, stroke, or a pulmonary embolism.
[0010] The present invention also provides a dry granulation process for preparing a composition comprising crystalline apixaban particles having a D90 equal to or less than about 89 pm as measured by laser light scattering, and a pharmaceutically acceptable carrier.
[0011] The formulations of this invention are advantageous because, inter alia, as noted above, they lead to consistent human in-vivo dissolution. The invention is surprising in this respect, however, in that exposures are variable even though apixaban has adequate aqueous solubility that would allow the drug to dissolve rapidly. That is, one would expect dissolution rate for a drug that has high solubility (as defined by the Biopharmaceutical Classification System) would not be limited by the particle size. It has surprisingly been found, however, that the particle size that impacts apixaban absorption rate is about a D90 of 89 p.m. Thus apixaban can be formulated in a composition having a reasonable particle size using dry granulation process, to achieve and maintain relatively fine particles to facilitate consistent in vivo dissolution.
[0012] In a relative bioavai lability study where various apixaban formulations were evaluated, it was determined that formulations made using a wet granulation process resulted in lower exposures compared to the exposures obtained from a dry granulation process.
Additionally, tablets made using larger particles (1)90 of 89 gm) had lower exposures compared to tablets made using the same process but with particle size of D90 of SO gm. In a dry granulation process, water is not used during manufacturing to develop granules containing apixaban and the excipients.
[0013] Formulations according to this invention, when dissolution tested in vitro preferably exhibit the following dissolution criteria. That is, the formulation exhibits dissolution properties such that, when an amount of the drug equivalent to 77% therein dissolves within 30 minutes. Usually the test result is established as an average for a pre-determined number of dosages (e.g., tablets, capsules, suspensions, 3a or other dosage form), usually 6. The dissolution test is typically performed in an aqueous media bufferred to a pH range (1 to 7.4) observed in the gastrointestinal tract and controlled at 37 C ( 1 C), together maintaining a physilogieal relevance.
It is noted that if the dosage form being tested is a tablet, typically paddles rotating at 50 -75 rpm are used to test the dissolution rate of the tablets. The amount of dissolved apixaban can be determined conventionally by HPLC, as hereinafter described.
The dissolution (in-vitro) test is developed to serve as a quality control tool, and more preferably to predict the biological (invivo) performance of the tablet, where invivo-invitro relationships (IVIVR) are established.
[0014] The term "particles" refers to individual drug substance particles whether the particles exist singly or are agglomerated. Thus, a composition comprising particulate apixaban may contain agglomerates that are well beyond the size limit of about 89 gm specified herein. However, if the mean size of the primary drug substance particles (i.e., apixaban) comprising the agglomerate are less than about 89 gm individually, then the agglomerate itself is considered to satisfy the particle size constraints defined herein and the composition is within the scope of the invention.
[0015] Reference to apixaban particles having "a mean particle size"
(herein also used interchangeably with "VMD" for "volume mean diameter") equal to or less than a given diameter or being within a given particle size range means that the average of all apixaban particles in the sample have an estimated volume, based on an assumption of spherical shape, less than or equal to the volume calculated for a spherical particle with a diameter equal to the given diameter. Particle size distribution can be measured by laser light scattering technique as known to those skilled in the art and as further disclosed and discussed below.
[0016] "Bioequivalent" as employed herein means that if a dosage form is tested in a crossover study (usually comprising a cohort of at least 10 or more human subjects), the average Area under the Curve (AUC) and/or the Cm aõ for each crossover group is at least 80 A) of the (corresponding) mean AUC and/or Crna, observed when the same cohort of subjects is dosed with an equivalent formulation and that formulation differs only in that the apixaban has a preferred particle size with a D90 in the range from 30 to 89 gm. The 30 gm particle size is, in effect, a standard against which other different formulations can be compared. AUCs are plots of serum concentration of apixaban along the ordinate (Y-axis) against time for the abscissa (X-axis). Generally, the values for AUC represent a number of values taken from all the subjects in a patient population and are, therefore, mean values averaged over the entire test population. Cmax, the observed maximum in a plot of serum level concentration of apixaban (Y-axis) versus time (X-axis) is likewise an average value.
[0017] Use of AUCs, Cm, and crossover studies is, of course otherwise well understood in the art. The invention can indeed be viewed in alternative terms as a composition comprising crystalline apixaban particles having a mean particle size equal to or less than about 89 um, as measured by Malvern light scattering, and a pharmaceutically acceptable carrier, said composition exhibiting a mean AUC
and/or mean Cam, which are at least 80% of the corresponding mean AUC and/or Cm,, values exhibited by a composition equivalent thereto (i.e., in terms of excipients employed and the amount of apixaban) but having an apixaban mean particle size of 30 um. Use of the term ÷AUC" for purposes of this invention implies crossover testing within a cohort of at least 10 healthy subjects for all compositions tested, including the ''standard" 30 um particle size composition.
[0018] The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. Thus, the above embodiments should not be considered limiting. Any and all embodiments of the present invention may be taken in conjunction with any other embodiment or embodiments to describe additional embodiments. Each individual element of the embodiments is its own independent embodiment. Furthermore, any element of an embodiment is meant to be combined with any and all other elements from any embodiment to describe an additional embodiment. In addition, the present invention encompasses combinations of different embodiment, parts of embodiments, definitions, descriptions, and examples of the invention noted herein.
DETAILED DESCRIPTION OF THE INVENTION
[0019] As previously stated, apixaban in any form which will crystallize can be used in this invention. Apixaban may be obtained directly via the synthesis described in U.S. Pat. No. 6,967,208 and/or US20060069258A1 (based on U.S. Application Serial No. 11/235,510 filed September 26, 2005).
[0020] Form N-1 (neat) and Form H2-2 (hydrate) of apixaban may be characterized by unit cell parameters substantially equal to the following shown in Table 1.
Table 1 Form N-1 H2-2 Solvate None Dihydrate +22 +22 a(A) 10.233(1) 6.193(1) b(A) 13.852(1) 30.523(1) c(A) 15.806(1) 13.046(1) a,. 90 90 92.98(1) 90.95(1) V(A3) 2237.4(5) 2466.0(5) Z' 1 1 Vm 559 617 SG P23/n P21/n Dcalc 1.364 1.335 0.05 0.09 Sol.sites None 2 H20 Z' is the number of molecules per asymmetric unit.
T( C) is the temperature for the crystallographic data.
Vm = V(unit cell) / (ZZ')
[0021] Characteristic X-ray diffraction peak positions (degrees 201-0.1) at room temperature, based on a high quality pattern collected with a diffractometer (CuKa) with a spinning capillary with 20 calibrated with a N1ST suitable standard are shown in Table 2 below.

Table 2 Form N-1 Form H2-2 10.0 5.8 10.6 7.4 12.3 16.0 12.9 20.2 18.5 23.5 27.1 25.2 100221 It will be appreciated by those skilled in the art of manufacturing and granulation processes that there are numerous known methods which can be applied to producing apixaban solid dosage forms. The feature of this invention, however, involves processes that produce apixaban dosage forms with an ability to produce primary particles at the site of dissolution with a d90<89 gm. Examples of such methods include as well as dry granulation or wet-granulation by low or high-shear techniques [0023] The dry granulation process that produces crystalline apixaban particles having a mean particle size equal to or less than about 89 gm, is believed to be novel, and is accordingly provided as a further feature of the invention. Thus, the invention provides a drug product manufacturing process, comprising the steps:
(1) Blend the raw materials required prior to granulation;
(2) Granulate the raw materials from Step 1 using a dry or wet granulation process;
(3) Blend the sized granules from step 3 with extragranular raw materials;
(4) Compress the blend from Step 3 into tablets; and (5) Film coat the tablets from step 4.
[0024] In another embodiment, the invention provides a drug product manufacturing process, comprising the steps:
(1) Blend the raw materials, with apixaban of controlled particle size;
(2) Include intragranular portions of binder, disintegrant and other fillers in the mix from step (1);
(3) Granulate the materials from step (2) using process (3a) or (3b):
(3a) DRY GRANULATION: Delump the intragranular lubricant using a suitable screen or mill. Add the lubricant to the blend from step (2) and blend. Compact the lubricated blend to ribbons of density in the range of 1.0 to 1.2 g/cc and size the compacted ribbons using a roller compactor; or (3b) WET GRANULATION: Wet granulate the composition from step (2) using water to a target end point and optionally, size the wet-granules by passing through a screen/mill. Remove water for granulation by drying in a convection oven or a fluid-bed dryer. Size the dried granules by passing through a screen/mill;
(4) Blend the sized granules from step (3) and the extragranular disintegrant in a suitable blender;
(5) Delump the extragranular lubricant using a suitable screen/mill and blend with granules from step (4);
(6) Compress the blend from (5) into tablets;
(7) Film coat the tablets from step (6).
[0025] In a preferred embodiment, a dry granulation process is employed.
[0026] In a preferred embodiment, the surfactant (SLS) in the composition serves as a wetting aid for inherently hydrophobic apixaban drug substance (contact angle=54 with water), further exacerbated as part of air-jet milling process that is used to reduce apixaban particle size to the desired size.
[0027] The amount of apixaban contained in a tablet, capsule, or other dosage form containing a composition of this invention will usually be between 2.5 and 5 mg, usually administered orally twice a day, although amounts outside this range and different frequencies of administration are feasible for use in therapy as well. As previously mentioned, such dosage forms are useful, inter alia, in the prevention and/or treatment of thromboembolic disorders, for example, deep vein thrombosis, acute coronary syndrome, stroke, and pulmonary embolism, as disclosed in U.S.
Pat.
No. 6,967,208.

[0028] As noted, average particle size can be determined by Malvern light scattering, a laser light scattering technique. In the examples below, the particle size for apixaban drug substance was measured using a Malvern particle size analyzer.
[0029] Upon measurement completion, the sample cell was emptied and cleaned, refilled with suspending medium, and the sampling procedure repeated for a total of three measurements.
[0030] The dissolution test is performed in 900 mL of dissolution medium at 37 C, using USP Apparatus 2 (paddles) method at a rotation speed of 75 rpm.
Samples are removed after 10, 20, 30, 45, and 60 minutes from test initiation and analyzed for apixaban by HPLC at 280 nm. 0.1 N HCI or 0.05 M sodium phosphate pH 6.8 with 0.05% SDS solution has been used as dissolution medium during formulation development. While both methods serve the purposes as quality control tests (with adequate discrimination ability), and in establishing IVIVR, the latter was preferred from the standpoint of method robustness. A role of SDS (surfactant) in the latter dissolution medium is as a wetting aid to facilitate complete dissolution of hydrophobic apixaban from tablets, rather than to increase the solubility of apixaban.
Dissolution data from both the tests are included in this invention record and unless otherwise specified, the results reported were averages of values from six tablets.
[0031] Blood samples are drawn at predetermined time points following drug administration as specified in the clinical study protocol. Concentrations of the samples are measured using a validated analytical method (Liquid Chromatography with Tandem Mass Spectrometry). Individual subject pharmacokinetic parameters (eg, Cmax, AUC, T-I-IALF) are derived by non-compartmental methods using Kinetica software from the time-concentration profiles.
[0032] The invention is further exemplified and disclosed by the following non-limiting examples:
[0033] Table 3 shows apixaban tablet compositions prepared using the drygranulation process that were evaluated in bioequivalence (BE) study.

Table 3 Dry Granulation Ingredients 5% w/w Drug Loaded 20 mg Tablet Granulation (mg/tablet) (% w/w) Intragranular Apixaban 5.00 20.00 Lactose Anhydrous 49.25 197.00 Microcrystalline Cellulose 39.50 158.00 Croscarmellose Sodium 2.00 8.00 Magnesium Stearate 0.50 2.00 Sodium Lauryl Sulfate 1.00 4.00 Extragranular Croscarmellose Sodium 2.00 8.00 Magnesium Stearate 0.75 3.00 Total 100.00 mg 400 mg Film Coat 3.5 14.0 Total 103.5 mg 414 mg [0034] Table 4 shows apixaban tablet compositions prepared using the wet granulation process that were evaluated in BE study.
Table 4 Wet Granulation Ingredients 5% w/w Drug Loaded 20 mg Tablet Granulation (mg/tablet) (% w/w) Intragranular Apixaban 5.00 20.00 Lactose Monohydrate 70.00 280.00 Microcrystalline Cellulose 5.00 60.00 Croscarmellose Sodium 2.50 10.00 Povidone 4.50 18.00 Purified Water 17.40 69.60 Extragranular Croscarmellose Sodium 2.50 10.00 Magnesium Stearate 0.50 2.09 Microcrystalline Cellulose 10.00 10.09 Total 100.00 400.00 Film Coat 3.5 14.0 Total 103.5 mg 414.0 [0035] Table 5 and Table 5a show the dissolution data that indicates that having a dry granulation process will result in faster dissolution compared to that from a wet granulation process. As shown in Table 5, the 20 mg tablets made using a dry granulation process had 79% apixaban dissolved in 30 minutes versus 62%
apixaban dissolved at 30 minutes for the 20 mg tablets made using a wet granulation process.
Dissolution test in 0.1N HCI also indicated a similar behavior of faster dissolution from tablets made using dry granulation process (58% in 30min), compared to wet granulation process (45% in 30min).
Table 5 % apixaban dissolved (USP II, 75 rpm, 0.05% SLS in 50mM phosphate, pH 6.8) Time (minutes) Wet Granulation Dry Granulation mg Tablets 20 mg Tablets API Particle Size 83.8 83.8 D90 (gm) Table 5a % apixaban dissolved (USP II, 75 rpm, 0.1N HC1) Time (minutes) Wet Granulation Dry Granulation 20 mg Tablets 20 mg Tablets API Particle Size 83.8 83.8 D90 (Pm) [0036] Table 6 and Table 6a provides the dissolution data from tablets made with different manufacturing pprocesses (wet and dry granulation) and drug substance different particle sizes. As shown Table 6, apixaban tablets that had 77%
dissolved in 30 minutes or 86% dissolved in 30 minutes both had AUC values that met bioequivalence criteria (Confidence Interval between 80% to 125%) when compared to the tablets that had 89% dissolved at 30 minutes. Similar rank order of the dissolution rates were observed for these tablets (A, B & C) when tested in 0.1N FIC1.
Table 6 % apixaban dissolved (USP II, 75 rpm, 0.05% SLS in 50m1M
phosphate, pH 6.8) Time (minutes) Wet Granulation Wet Granulation Dry Granulation 2 x 2.5 mg Tablets 2 x 2.5 mg Tablets 2 x 2.5 mg Tablets (A) (B) (C) Cina, (ng/mL) 101.8 (21) . 87.8 (24) 108.3 (24) AUC(INF) 1088 (32) 1030 (25) 1153 (26) (ng*hr/mL) Geomean (CV%) are presented for Cmax and AUC(INF) 10 Table 6a % apixaban dissolved (USP II, 75 rpm, 0.1N HC1) Wet Granulation Wet Granulation Dry Granulation Time (minutes) 2 x 2.5 mg Tablets 2 x 2.5 mg Tablets 2 x 2.5 mg Tablets (A) (B) (C) AUC(INF) 1088(32) 1030(25) 1153(26) (ng*hr/mL) Geomean (CV%) are presented for Cmax and AUC(INF) [0037] The results of clinical studies demonstrated that, for tablets with similar dissolution rates (89% and 86% at 30 min in pH 6.8 phosphate buffer containing 15 0.05% SLS), Cmax and AUC of the coated Phase 3 tablet (C) relative to the uncoated Phase 2 tablet (A), met bioequivalence criteria. Tablets with different dissolution rates (77% and 86% at 30 min) had similar AUCs, but did not meet equivalence criteria for Cmax. The lower boundary of the 90% confidence interval of ratio of geometric mean Cmax was 0.788, indicating the rate of absorption, as defined by Cmax, was lower for the slower dissolving tablet (77% at 30 min). Since the oral bioavai lability from these tablets is shown to be comparable to that from solution (see Figures 1 and 2 below), this dissolution rate (77% in 30min) is defined as the threshold for achieving consistent exposure.
[0038] Figures 3 and 4 illustrate the dissolution data that shows that while particle size impacts dissolution, controlling the particle size to less than 89 microns will result in a dissolution rate that will ensure consistent in-vivo exposures. As indicated in Figures 3 and 4, consistent exposures are expected once apixaban tablets have greater than 77% apixaban dissolved in 30 minutes. Since the tablets with 89 microns have >77% dissolved at 30 minutes, these tablets will also exhibit exposures that are equivalent to the exposures from tablets made with smaller particles (such as the tablets with 10 micron particles shown below). Whilst dissolution rate at an apixaban particle size of 119 microns is marginally greater than 77% in 30-min for the 5-mg apixaban tablets (Figure-4), the particle size threshold claimed is less than 89 microns.
This allows for the typical variability (RSD-2 to 3%) in the dissolution results, such that the oral bioavailability from tablets consistently matches that from solution.

Claims (45)

CLAIMS:
1. A pharmaceutical composition comprising apixaban and a pharmaceutically acceptable diluent or carrier, wherein:
as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in mL of a dissolution medium at 37 °C, at least 77 wt% of apixaban in the pharmaceutical composition dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate;
the apixaban comprises crystalline apixaban particles; and the crystalline apixaban particles have a D90 equal to or less than about 89 m.
2. A pharmaceutical composition comprising apixaban and a pharmaceutically acceptable diluent or carrier, wherein apixaban comprises crystalline apixaban particles, and wherein the crystalline apixaban particles have a D90 equal to or less than about 89 µm as measured by laser light scattering.
3. The composition as defined in claim 2, wherein, as measured using a USP
Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37°C, at least 77% of apixaban in the pharmaceutical composition dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M
sodium phosphate at a pH of 6.8 containing 0.05% sodium lauryl sulfate.
4. A solid pharmaceutical composition comprising apixaban and a pharmaceutically acceptable diluent or carrier, wherein raw materials from which the solid pharmaceutical composition is prepared comprise crystalline apixaban particles having a D90 equal to or less than about 89 µm as measured by laser light scattering, and wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 °C, at least 77 wt% of apixaban in the solid pharmaceutical composition dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05%
sodium lauryl sulfate.
5. The composition as defined in claim 4, wherein the raw materials are granulated during preparation of the solid pharmaceutical composition.
6. The composition as defined in claim 5, wherein the raw materials are granulated by dry granulation.
7. The composition as defined in any one of claims 1 to 6, wherein the D90 is equal to or less than 85 µm as measured by laser light scattering.
8. The composition as defined in any one of claims 1 to 6, wherein the D90 is equal to or less than 50 µm as measured by laser light scattering.
9. The composition as defined in any one of claims 1 to 6, wherein the D90 is equal to or less than 30 µm as measured by laser light scattering.
10. The composition as defined in any one of claims 1 to 6, wherein the D90 is equal to or less than 25 µm as measured by laser light scattering.
11. The composition as defined in any one of claims 1 to 10, wherein the pharmaceutical composition comprises from about 2.5 mg to about 5 mg of apixaban.
12. The composition as defined in any one of claims 1 to 10 comprising 2.5 mg of apixaban.
13. The composition as defined in any one of claims 1 to 10 comprising 5 mg of apixaban.
14. The composition as defined in any one of claims 1 to 13, wherein said composition comprises Form N-1 of apixaban.
15. The composition as defined in any one of claims 1 to 14, further comprising from about 1% to about 2 % by weight of a surfactant.
16. The composition as defined in claim 15, wherein the surfactant is sodium lauryl sulfate.
17. The composition as defined in any one of claims 1 to 16 in the form of a tablet or capsule.
18. The composition as defined in any one of claims 1 to 16 in the form of a tablet.
19. A process for preparing a tablet comprising about 2.5 mg to about 5 mg of apixaban and a pharmaceutically acceptable diluent or carrier, the process comprising:
blending raw materials comprising crystalline apixaban particles having a D90 equal to or less than about 89 µm as measured by laser light scattering; and granulating, wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 °C, at least 77 wt% of apixaban in the tablet dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.
20. The process of claim 19, comprising the steps of:
(1) blending raw materials comprising crystalline apixaban particles prior to granulation;
(2) granulating the raw materials from the step (1) using a wet or dry granulation process;
(3) blending the granules obtained in the step (2) with extragranular raw materials;
(4) compressing the blend from the step (3) into a tablet; and (5) film coating the tablet from the step (4).
21. The process of claim 20, comprising the steps of:
(1) blending raw materials with crystalline apixaban particles to form a mix;
(2) adding intragranular portions of a binder, a disintegrant and at least one filler to the mix from the step (1) to form a blend:
(3) granulating the materials from the step (2) using a dry granulation process or a wet granulation process, wherein the dry granulation process comprises:

delumping an intragranular lubricant using a screen or mill; adding the intragranular lubricant to the blend from the step (2) and blending to form a lubricated blend;
compacting the lubricated blend to ribbons of density in the range of 1.1 to 1.2 g/cc and sizing the compacted ribbons using a roller compactor, and wherein the wet granulation process comprises:
wet granulating the blend from the step (2) using water to a target end point and, optionally, sizing the wet granules by passing through a screen or mill;
removing the water from the granulation by drying in a convection oven or fluid-bed dryer;
and sizing the dried granules by passing through a screen or mill;
(4) blending the granules obtained in the step (3) and an extragranular disintegrant in a blender;
(5) delumping an extragranular lubricant using a screen or mill and blending with granules from the step (4);
(6) compressing the blend from the step (5) into a tablet; and (7) film coating the tablet from the step (6).
22. The process of claim 20 or 21, wherein the dry granulation process is used.
23. A tablet comprising about 2.5 mg to about 5 mg of apixaban and a pharmaceutically acceptable diluent or carrier, which is prepared by a process comprising:
blending raw materials comprising crystalline apixaban particles having a D90 equal to or less than about 89 µm as measured by laser light scattering; and granulating, wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 °C, at least 77 wt% of apixaban in the tablet dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.
24. The tablet as defined in claim 23, wherein the process comprises the steps of:

(1) blending raw materials comprising crystalline apixaban particles prior to granulation;
(2) granulating the raw materials from the step (1) using a dry granulation process;
(3) blending the granules obtained in the step (2) with extragranular raw materials;
(4) compressing the blend from the step (3) into a tablet; and (5) film coating the tablet from the step (4).
25. The tablet as defined in claim 24, wherein the process comprises the steps of:
(1) blending raw materials with crystalline apixaban particles to form a mix;
(2) adding intragranular portions of a binder, a disintegrant and at least one filler to the mix from the step (1) to form a blend:
(3) granulating the materials from the step (2) using a dry granulation process, which comprises:
delumping an intragranular lubricant using a screen or mill; adding the intragranular lubricant to the blend from the step (2) and blending to form a lubricated blend;
compacting the lubricated blend to ribbons of density in the range of 1.1 to 1.2 g/cc and sizing the compacted ribbons using a roller compactor, (4) blending the granules obtained in the step (3) and an extragranular disintegrant in a blender;
(5) delumping an extragranular lubricant using a screen or mill and blending with granules from the step (4);
(6) compressing the blend from the step (5) into a tablet; and (7) film coating the tablet from the step (6).
26. The tablet as defined in any one of claims 23 to 25, wherein the crystalline apixaban particles have a D90 equal to or less than 85 µm as measured by laser light scattering.
27. The tablet as defined in any one of claims 23 to 26, wherein the crystalline apixaban particles have a D90 equal to or less than 50 imas measured by laser light scattering.
28. The tablet as defined in any one of claims 23 to 27, wherein the crystalline apixaban particles have a D90 equal to or less than 25 lam as measured by laser light scattering.
29. The tablet as defined in any one of claims 23 to 28, wherein the crystalline apixaban particles comprise Form N-1 of apixaban.
30. The tablet as defined in any one of claims 23 to 29, wherein the tablet contains 2.5 mg of apixaban.
31. The tablet as defined in any one of claims 23 to 29, wherein the tablet contains 5 mg of apixaban.
32. The tablet as defined in any one of claims 23 to 31, wherein:
the intragranular ingredients are apixaban, anhydrous lactose, microcrystalline cellulose, sodium croscarmellose, magnesium stearate, and sodium lauryl sulfate; and the extragranular ingredients are sodium croscannellose and magnesium stearate.
33. A tablet comprising from about 2.5 mg to about 5 mg of apixaban and a pharmaceutically acceptable diluent or carrier, wherein the tablet is prepared using crystalline apixaban particles having a D90 equal to or less than about 89 lam as a raw material as measured by laser light scattering, and wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 °C, at least 77 wt% of apixaban in the tablet dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.
34. The tablet as defined in claim 33, comprising 2.5 mg of apixaban.
35. The tablet as defined in claim 33, comprising 5 mg of apixaban.
36. A capsule comprising from about 2.5 mg to about 5 mg of apixaban and a pharmaceutically acceptable diluent or carrier, wherein the capsule is prepared using crystalline apixaban particles having a equal to or less than about 89 µm as a raw material as measured by laser light scattering, and wherein, as measured using a USP Apparatus 2 at a paddle rotation speed of 75 rpm in 900 mL of a dissolution medium at 37 °C, at least 77 wt% of apixaban in the capsule dissolves within 30 minutes in the dissolution medium, and the dissolution medium is 0.05 M sodium phosphate at a pH 6.8 containing 0.05% sodium lauryl sulfate.
37. The capsule as defined in claim 36, comprising 2.5 mg of apixaban.
38. The capsule as defined in claim 36, comprising 5 mg of apixaban.
39. The composition as defined in any one of claims 1 to 18 for use in treating or preventing a thromboembolic disorder.
40. The composition as defined in claim 39, wherein the thromboembolic disorder is selected from the group consisting of deep vein thrombosis, stroke, and pulmonary embolism.
41. The tablet as defined in any one of claims 23 to 35 for use in treating or preventing a thromboembolic disorder.
42. The tablet as defined in claim 41 wherein the thromboembolic disorder is selected from the group consisting of deep vein thrombosis, stroke, and pulmonary embolism.
43. Use of apixaban in a composition as defined in any one of claims 1 to 18 or in a tablet as defined in any one of claims 23 to 35 for the treatment or prevention of a venous thromboembolic event.
44. Use of apixaban in a composition as defined in any one of claims 1 to 18 or in a tablet as defined in any one of claims 23 to 35 for the prevention of stroke.
45. Use of apixaban in a composition as defined in any one of claims 1 to 18 or in a tablet as defined in any one of claims 23 to 35 for the treatment or prevention of deep vein thrombosis or pulmonary embolism.
CA2791171A 2010-02-25 2011-02-24 Apixaban formulations Active CA2791171C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US30805610P true 2010-02-25 2010-02-25
US61/308,056 2010-02-25
PCT/US2011/025994 WO2011106478A2 (en) 2010-02-25 2011-02-24 Apixaban formulations

Publications (2)

Publication Number Publication Date
CA2791171A1 CA2791171A1 (en) 2011-09-01
CA2791171C true CA2791171C (en) 2017-08-29

Family

ID=43901603

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2791171A Active CA2791171C (en) 2010-02-25 2011-02-24 Apixaban formulations

Country Status (31)

Country Link
US (5) US9326945B2 (en)
EP (7) EP3017811B1 (en)
JP (4) JP5846647B2 (en)
KR (3) KR20210124532A (en)
CN (3) CN109602713A (en)
AU (1) AU2011220775B2 (en)
BR (1) BR112012021337A8 (en)
CA (1) CA2791171C (en)
CO (1) CO6640207A2 (en)
CY (2) CY1117434T1 (en)
DK (5) DK3257500T3 (en)
ES (5) ES2757603T3 (en)
HK (5) HK1180248A1 (en)
HR (5) HRP20160179T1 (en)
HU (4) HUE047139T2 (en)
IL (2) IL221064D0 (en)
IN (1) IN2012DN06587A (en)
LT (4) LT3251660T (en)
MX (3) MX353145B (en)
NZ (1) NZ601738A (en)
PE (3) PE20130378A1 (en)
PL (5) PL3017811T3 (en)
PT (5) PT2538925E (en)
RS (5) RS59810B1 (en)
RU (1) RU2685724C2 (en)
SG (2) SG10201501349VA (en)
SI (5) SI3257500T1 (en)
SM (1) SMT201600049B (en)
TR (1) TR201903195T4 (en)
WO (1) WO2011106478A2 (en)
ZA (1) ZA201205807B (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011220775B2 (en) 2010-02-25 2015-09-24 Bristol-Myers Squibb Holdings Ireland Unlimited Company Apixaban formulations
WO2013164839A2 (en) * 2012-03-06 2013-11-07 Cadila Healthcare Limited Amorphous form of apixaban, process of preparation and compositions thereof
WO2013174498A1 (en) * 2012-05-24 2013-11-28 Ratiopharm Gmbh Dosage forms comprising apixaban and matrix former
EP2900217A1 (en) * 2012-09-26 2015-08-05 Bristol-Myers Squibb Company Apixaban liquid formulations
CN102908324A (en) * 2012-10-31 2013-02-06 南京正科制药有限公司 Apixaban tablet
EP2752414A1 (en) 2013-01-04 2014-07-09 Sandoz AG Crystalline form of apixaban
CZ2013305A3 (en) 2013-04-23 2014-11-05 Zentiva, K.S. Novel crystalline forms of APIXABAN and process of their preparation
US20160113912A1 (en) * 2013-06-18 2016-04-28 Cadila Healthcare Limited An improved process for the preparation of apixaban and intermediates thereof
EP2907507A1 (en) * 2014-02-17 2015-08-19 Sandoz Ag Pharmaceutical composition comprising apixaban
CN103830199A (en) * 2014-03-24 2014-06-04 重庆东得医药科技有限公司 Medicine preparation containing apixaban and preparation method of medicine preparation
CN104316637B (en) * 2014-10-30 2016-08-17 江苏宝众宝达药业有限公司 High effective liquid chromatography for measuring Eliquis cleans residual quantity
US9603846B2 (en) 2014-11-25 2017-03-28 Cadila Healthcare Limited Process for the preparation of apixaban
WO2016181276A1 (en) * 2015-05-08 2016-11-17 Wockhardt Limited Stable pharmaceutical compositions comprising antibacterial agent
WO2017088841A1 (en) 2015-11-26 2017-06-01 Zentiva, K.S. Preparation of a drug form containing amorphous apixaban
CN106913528A (en) * 2015-12-25 2017-07-04 中美华世通生物医药科技(武汉)有限公司 Eliquis micropill and preparation method thereof
US10537524B2 (en) 2016-01-12 2020-01-21 North & South Brother Pharmacy Investment Company Limited Apixaban solid composition and preparation method thereof
EP3195860A1 (en) * 2016-01-22 2017-07-26 STADA Arzneimittel AG Method for producing an apixaban granulate
WO2017163170A1 (en) * 2016-03-21 2017-09-28 Sun Pharmaceutical Industries Limited Pharmaceutical composition comprising apixaban
WO2017182908A1 (en) * 2016-04-18 2017-10-26 Emcure Pharmaceuticals Limited Pharmaceutical compositions of apixaban
EP3243505A1 (en) 2016-05-13 2017-11-15 Zaklady Farmaceutyczne Polpharma SA A pharmaceutical composition comprising amorphous apixaban
CN106822006B (en) * 2016-06-08 2020-08-28 北京普德康利医药科技发展有限公司 Apixaban tablet and preparation method thereof
WO2017221209A1 (en) 2016-06-23 2017-12-28 Lupin Limited Pharmaceutical formulations of apixaban
RU2750667C2 (en) * 2016-09-24 2021-06-30 Кбп Биосаенсес Ко., Лтд Pharmaceutical composition containing antagonist of mineralocorticoid receptors and its application
CN106420651B (en) * 2016-09-28 2019-03-08 乐普药业股份有限公司 A kind of preparation method of Apixaban tablet
WO2018150286A1 (en) 2017-02-17 2018-08-23 Unichem Laboratories Ltd Pharmaceutical composition of apixaban
JP7044115B2 (en) 2017-11-27 2022-03-30 三菱ケミカル株式会社 A resin modification composition for a thermoplastic resin containing a rubber-containing graft polymer composition, a rubber-containing graft polymer-containing resin composition and a molded product thereof.
KR20190075566A (en) 2017-12-21 2019-07-01 전자부품연구원 Monitoring system and method for using a multi-sensor
TR201722523A2 (en) 2017-12-28 2019-07-22 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi SOLID ORAL PHARMACEUTICAL COMPOSITIONS CONTAINING APIXABAN
CN108236604A (en) * 2018-02-07 2018-07-03 中国药科大学 Eliquis flexible lipidosome
AU2019255599A1 (en) 2018-04-16 2020-11-12 Bristol-Myers Squibb Company Apixaban formulations
KR20190130411A (en) * 2018-05-14 2019-11-22 신일제약주식회사 Pharmaceutical formulation comprising apixaban and method for preparing the same
CN112261935A (en) 2018-08-14 2021-01-22 江苏恒瑞医药股份有限公司 Injectable pharmaceutical composition and preparation method thereof
EP3666773A1 (en) 2018-12-11 2020-06-17 KRKA, D.D., Novo Mesto Process for preparing apixaban
EP3669866A1 (en) 2018-12-19 2020-06-24 KRKA, d.d., Novo mesto Pharmaceutical composition comprising apixaban
CN109464415B (en) * 2019-01-09 2021-08-17 常州恒邦药业有限公司 Apixaban pharmaceutical composition and preparation method thereof
CN111214442B (en) * 2020-02-13 2021-12-10 山东百诺医药股份有限公司 Apixaban co-micropowder
CN111494326A (en) * 2020-04-11 2020-08-07 南京正大天晴制药有限公司 Apixaban tablet and preparation method thereof
WO2022115052A1 (en) * 2020-11-27 2022-06-02 Santa Farma Ilac Sanayii A.S. Improved wet granulation processes for apixaban comprising formulations
WO2022150030A2 (en) 2021-01-08 2022-07-14 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi A film coated tablet of apixaban
WO2022150029A1 (en) 2021-01-08 2022-07-14 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi A film coated tablet comprising apixaban
GB202102575D0 (en) 2021-02-23 2021-04-07 Teva Pharmaceutical Industries Ltd Fixed-dose pharmaceutical compositions

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150366A (en) 1998-06-15 2000-11-21 Pfizer Inc. Ziprasidone formulations
PT1140941E (en) 1998-12-23 2005-02-28 Bristol Myers Squibb Pharma Co HETEROCYCLICS CONTAINING NITROX AS FACTOR XA INHIBITORS
TWI331526B (en) 2001-09-21 2010-10-11 Bristol Myers Squibb Pharma Co Lactam-containing compounds and derivatives thereof as factor xa inhibitors
DE60233335D1 (en) 2001-09-21 2009-09-24 Bristol Myers Squibb Co LACTOMATIC COMPOUNDS AND THEIR DERIVATIVES AS FACTOR XA HEMMER
US20070025991A1 (en) * 2003-03-19 2007-02-01 Charalabos Pothoulakis Use of antagonists of ghrelin or ghrelin receptor to treat intestinal inflammation
US20050059719A1 (en) * 2003-09-16 2005-03-17 Badawy Sherif Ibrahim Farag Solid dosage formulation containing a Factor Xa inhibitor and method
DE10355461A1 (en) * 2003-11-27 2005-06-23 Bayer Healthcare Ag Solid, high bioavailabilty oral formulations of N-substituted 5-chloro-2-thiophene-carboxamide derivative in hydrophilized form, useful for combating thrombo-embolic diseases
US7434502B2 (en) 2004-07-21 2008-10-14 Husqvarna Outdoor Products Inc. Bar knob with cam-operated locking mechanism
US20060016084A1 (en) * 2004-07-24 2006-01-26 Ching-Lin Liao Laser-Based datum instrument
US7396932B2 (en) * 2004-09-28 2008-07-08 Bristol-Myers Squibb Company Process for preparing 4,5-dihydro-pyrazolo[3,4-c]pyrid-2-ones
US20060160841A1 (en) 2005-01-19 2006-07-20 Chenkou Wei Crystallization via high-shear transformation
GB0507577D0 (en) * 2005-04-14 2005-05-18 Novartis Ag Organic compounds
US20070191306A1 (en) 2005-08-17 2007-08-16 Bristol-Myers Squibb Company FACTOR Xa INHIBITOR FORMULATION AND METHOD
US9034381B2 (en) 2005-11-10 2015-05-19 Alphapharm Pty Ltd Process to control particle size
US20070259913A1 (en) 2006-05-04 2007-11-08 David Deitchman Prophylaxis of thromboembolic events in cancer patients
PE20080661A1 (en) * 2006-09-12 2008-06-12 Glaxo Group Ltd PHARMACEUTICAL COMPOSITION INCLUDING AN INHIBITOR OF FACTOR Xa
EA020045B1 (en) * 2007-05-02 2014-08-29 Портола Фармасьютиклз, Инк. Combination therapy with a compound acting as a platelet adp receptor inhibitor
US9050368B2 (en) * 2007-11-13 2015-06-09 Meritage Pharma, Inc. Corticosteroid compositions
WO2009135946A1 (en) * 2008-05-09 2009-11-12 Atacama Labs Oy Method and apparatus for dry granulation
FI20080351A0 (en) * 2008-05-09 2008-05-09 Atacama Labs Oy Process for preparing a tablet with low drug content
US20110159050A1 (en) 2008-07-11 2011-06-30 Basf Se Amphiphilic proteins as morphology modifiers
US20100018486A1 (en) * 2008-07-22 2010-01-28 Hung-Tao Liu Cathode energy fuel-saving device
MX2011011517A (en) * 2009-04-29 2012-06-19 Amarin Corp Plc Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same.
SI2442791T1 (en) 2009-06-16 2020-03-31 Pfizer Inc. Dosage forms of apixaban
AU2011220775B2 (en) 2010-02-25 2015-09-24 Bristol-Myers Squibb Holdings Ireland Unlimited Company Apixaban formulations
JP6092629B2 (en) * 2010-03-10 2017-03-08 ルピン・リミテッドLupin Limited Suspension prepared for use with rifaximin

Also Published As

Publication number Publication date
DK3251660T3 (en) 2019-11-25
CA2791171A1 (en) 2011-09-01
KR101796300B1 (en) 2017-11-10
JP6192078B2 (en) 2017-09-06
SI3017811T1 (en) 2019-04-30
EP3251660A1 (en) 2017-12-06
ES2757603T3 (en) 2020-04-29
CY1121597T1 (en) 2020-05-29
BR112012021337A8 (en) 2016-11-29
IL221064D0 (en) 2012-09-24
ZA201205807B (en) 2016-01-27
ES2562279T3 (en) 2016-03-03
HRP20160179T1 (en) 2016-04-08
PL3251660T3 (en) 2020-02-28
US20170202824A1 (en) 2017-07-20
EP3257500A1 (en) 2017-12-20
PE20130378A1 (en) 2013-03-30
HK1180248A1 (en) 2013-10-18
SI3251660T1 (en) 2019-12-31
JP6033945B2 (en) 2016-11-30
US20170202825A1 (en) 2017-07-20
PT3257500T (en) 2019-11-26
AU2011220775A1 (en) 2012-09-13
CY1117434T1 (en) 2017-04-26
EP3246021A1 (en) 2017-11-22
RS54559B1 (en) 2016-06-30
EP2538925B1 (en) 2015-12-16
EP2538925A2 (en) 2013-01-02
RS58699B1 (en) 2019-06-28
SG182750A1 (en) 2012-08-30
US9326945B2 (en) 2016-05-03
HRP20190430T8 (en) 2019-06-14
HRP20200046T1 (en) 2020-03-20
AU2011220775B2 (en) 2015-09-24
HRP20190430T1 (en) 2019-05-17
DK3017811T3 (en) 2019-04-01
PT3017811T (en) 2019-03-21
US20160243101A1 (en) 2016-08-25
BR112012021337A2 (en) 2016-10-25
HUE047140T2 (en) 2020-04-28
SI2538925T1 (en) 2016-04-29
HUE027168T2 (en) 2016-10-28
PL3017811T3 (en) 2019-06-28
PE20160042A1 (en) 2016-01-28
IL251991D0 (en) 2017-06-29
NZ601738A (en) 2014-02-28
HK1243945B (en) 2020-06-19
LT3251660T (en) 2019-12-10
HRP20192069T1 (en) 2020-02-07
JP5846647B2 (en) 2016-01-20
EP3246021B1 (en) 2019-11-13
LT3246021T (en) 2020-02-10
WO2011106478A3 (en) 2012-04-12
JP2017039768A (en) 2017-02-23
RS59593B1 (en) 2020-01-31
HUE043932T2 (en) 2019-09-30
EP3017811A1 (en) 2016-05-11
ES2758031T8 (en) 2020-08-05
RU2685724C2 (en) 2019-04-23
US20200375968A1 (en) 2020-12-03
LT3257500T (en) 2019-12-10
ES2758031T3 (en) 2020-05-04
HK1243947B (en) 2020-06-19
SI3257500T1 (en) 2019-12-31
HK1224216A1 (en) 2017-08-18
SI3246021T1 (en) 2020-03-31
HUE047139T2 (en) 2020-04-28
CN109602716A (en) 2019-04-12
PT2538925E (en) 2016-03-18
HK1243946A1 (en) 2018-07-27
TR201903195T4 (en) 2019-03-21
LT3017811T (en) 2019-02-25
SG10201501349VA (en) 2015-04-29
DK3246021T3 (en) 2020-02-03
RU2012140690A (en) 2014-03-27
PL2538925T3 (en) 2016-06-30
SMT201600049B (en) 2016-04-29
CO6640207A2 (en) 2013-03-22
MX353145B (en) 2017-12-20
MX364938B (en) 2019-05-15
DK2538925T3 (en) 2016-03-14
IN2012DN06587A (en) 2015-10-23
WO2011106478A2 (en) 2011-09-01
HRP20192064T1 (en) 2020-02-21
DK3257500T3 (en) 2019-11-25
RS59576B1 (en) 2019-12-31
EP3643301A1 (en) 2020-04-29
PT3251660T (en) 2019-12-02
EP3251660B1 (en) 2019-10-16
ES2767848T3 (en) 2020-06-18
KR20170126016A (en) 2017-11-15
JP2016065086A (en) 2016-04-28
EP3257500B1 (en) 2019-10-16
JP6577980B2 (en) 2019-09-18
JP2017226679A (en) 2017-12-28
KR20130009753A (en) 2013-01-23
PE20210468A1 (en) 2021-03-08
US20130045245A1 (en) 2013-02-21
EP3017811B1 (en) 2018-12-05
ES2714363T3 (en) 2019-05-28
EP3662899A1 (en) 2020-06-10
CN102770126A (en) 2012-11-07
MX2012009244A (en) 2012-08-23
PT3246021T (en) 2020-02-21
JP2013521226A (en) 2013-06-10
KR20210124532A (en) 2021-10-14
PL3257500T3 (en) 2020-03-31
CN109602713A (en) 2019-04-12
RS59810B1 (en) 2020-02-28
PL3246021T3 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
CA2791171C (en) Apixaban formulations
WO2017146709A1 (en) A unique high-shear granulation process for improved bioavailability of rivaroxaban
AU2017228681B2 (en) Apixaban formulations
WO2021096444A1 (en) Pharmaceutical compositions comprising ticagrelor

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20160209