CA2777711A1 - Coated cutting insert and method for making the same - Google Patents

Coated cutting insert and method for making the same Download PDF

Info

Publication number
CA2777711A1
CA2777711A1 CA2777711A CA2777711A CA2777711A1 CA 2777711 A1 CA2777711 A1 CA 2777711A1 CA 2777711 A CA2777711 A CA 2777711A CA 2777711 A CA2777711 A CA 2777711A CA 2777711 A1 CA2777711 A1 CA 2777711A1
Authority
CA
Canada
Prior art keywords
layer
cutting insert
coated cutting
al2o3
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2777711A
Other languages
French (fr)
Inventor
Volkmar Sottke
Zhigang Ban
Hartmut Westphal
Yixiong Liu
Michael Frank Beblo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Inc
Original Assignee
Kennametal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Inc filed Critical Kennametal Inc
Publication of CA2777711A1 publication Critical patent/CA2777711A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

A coated cutting insert 10 for removing material from a workpiece is disclosed. The insert 10 a substrate 12 and a wear-resistant coating including an a-alumina layer 15 and a Zr- or Hf- carbonitride outer layer 16 deposited on the a-alumina layer 15. The Zr- or Hf- carbonitride outer layer 16 is subjected to a post-coat wet blasting treatment. The wet blasting changes the stress condition of the alumina coating layer 15 from an initial tensile stress condition to a compressive stress condition.

Description

COATED CUTTING INSERT
AND METHOD FOR MAKING THE SAME
BACKGROUND OF THE INVENTION

100011 The present invention pertains to a coated cutting insert useful for the removal of material from a workpiece, e.g., chipforming machining of a workpiece. More specifically, the present invention pertains to a cutting insert useful for the removal of material from a workpiece, wherein the coated cutting insert comprises a substrate coated with a multilayer coating including a carbonitride of Zr or Hf and A1,03. The coating scheme includes an exposed Zr or Hf coating layer exhibiting a compressive stress.

100031 U.S. Patent No. 6,224,968 to van den Berg et al. (assigned to Kennametal Inc.) discloses the use of a coating comprising first TiN layer, a second carbonitride layer, a third A1203 layer and an outer Zr, Hf, V, Nb, Ta or Cr carbonitride layer on a hard metal, steel, cermet or ceramic substrate.

100041 U.S. Patent No. 6,884,496 to Westphal et al. (assigned to Kennametal Inc.) discloses a method of increasing the compressive residual stress of or of reducing the tensile residual stress of a Zr or Hf carbonitride coating layer through dry blasting the material with spray-formed hard material metal granulate.

100051 U.S. Patent No. 6,350,510 to Konig et al. (assigned to Kennametal Inc.) discloses multiphase layer of Zr or Hf carbonitride having internal compressive stresses. The compressive stress of the Zr or Hf layer is the result of an uninterrupted CVD
coating process between 900 C and 1100 C followed by a heat treatment.

100061 U.S. Patent Application Publication Nos. 2009/0004449 and 2009/0004440 to Ban et al. (assigned to Kennametal Inc.) disclose wetblasting a cutting insert with an outer wear resistant coating comprising M(O,,CYN,) wherein M is selected from the group comprising one or more of the following titanium, hafnium, zirconium, chromium, titanium-aluminum alloy, hafnium-aluminum alloy, zirconium-aluminum alloy, chromium-aluminum alloy, and their alloys, and x>0, y>0, z>0 and y+z>0.
SUMMARY OF THE INVENTION

(00071 A coated cutting insert for removing material from a workpiece that includes a substrate is provided. A wear-resistant coating on the substrate that includes an a-alumina layer and a Zr- or Hf- carbonitride outer layer deposited on the a-alumina layer. The Zr- or Hf- carbonitride outer layer is subjected to a post-coat wet blasting treatment. The wet blasting changes the stress condition of the Zr- or 1-If- carbonitride outer layer from an initial tensile or slightly compressive stress condition to a more compressive stress condition.
100081 An aspect of the invention is to provide a coated cutting insert comprising a substrate and a multilayer coating scheme comprising an a-A1203 layer and an outer layer of ZrCN or HfCN on the a-Al 03 layer, wherein the outer layer exhibits a blasted stress condition ranging between about -700 MPa and about -4.0 GPa as measured by XRD
using the Psi tilt method and the (220) reflection of ZrCN.

100091 A coated cutting insert comprising a substrate and a multilayer coating scheme comprising an a-Al 03 layer and an outer layer of ZrCN or HICN on the a-A1203 layer, wherein the a-A1203 layer exhibits a blasted stress condition ranging between about 300 MPa to about -1.0 GPa as measured by XRD using the Psi tilt method and the (024) reflection of a-Al203.
100101 A method of making a coated cutting insert comprising the steps of providing a substrate, coating the substrate with a multilayer wear-resistant coating including an a-Al,03 layer and an outer Zr- or Hf- carbonitride outer layer on the a-AI203 layer, and subjecting the outer layer to a wet blasting treatment.

BRIEF DESCRIPTION OF THE DRAWINGS

(00111 The following is a brief description of the drawings that form a part of this patent application:

100121 FIG. I is an isometric view of a specific embodiment of a coated cutting insert of the present invention wherein the coated cutting insert is in a post-blasted condition;
100131 FIG. 2 is a partial cross-sectional view of the coated cutting insert illustrated in FIG. 1. The section illustrates a portion of the coated cutting insert along section line A-B
and near the surface of the insert.

100141 FIG. 3 is a photomicrograph of a section a coated cutting insert according to one embodiment of the present invention. The section shows a calotte scar exposing the substrate and coating layers on the flank face of the insert.

DETAILED DESCRIPTION

100151 Referring to the drawings, FIG. I shows a coated cutting insert 10 according to on5e embodiment of the present invention. Cutting insert 10 is useful for the removal of material from a workpiece, e.g., chipforming machining of a workpiece. The coated cutting insert 10 may present a cutting corner 11. FIG. 2 shows a cross-sectional view of the cutting of FIG. I along section line A-B and at cutting corner 11.

100161 Referring still to FIG. 2, the cutting insert 10 has a substrate 12 with a multilayer coating the thereon. The substrate comprises a WC hard metal, cermet, ceramic or steel. According to one embodiment of the present invention and beginning with the innermost coating adjacent the substrate and progressing outwardly, the layers of the multilayer coating include a TiN layer 13, a TiCN layer 14, an A1203 layer 15 and an outer coating 16. The TiCN layer 14 may be a moderate temperature TiCN coating or a high temperature TiCN coating. In a certain embodiment, the A1203 layer 15 is a textured a-Al-103 having a predominant (104) growth texture. The outer coating 16 comprises a Zr-based or Hf-based carhonitride, preferably ZrCN.

100171 In a particular embodiment of the present invention, a bonding layer 18 may be disposed between the Al203 layer 15 and an outer coating 16. The bonding layer 18 can comprise M(O,C,.N,) wherein M is selected from the group comprising one or more of the following titanium, hafnium, zirconium, chromium, titanium-aluminum alloy, hafnium-aluminum alloy, zirconium-aluminum alloy, chromium-aluminum alloy, and their alloys, and x > 0, y > 0, z > 0 and y+z > 0. When aluminum is present in the "M" component of the wear indicating layer, it is in combination with another one or more of the other elements (i.e., titanium, hafnium, zirconium, chromium). Another embodiment of the present invention provides a TiOCN layer 17. The TiOCN layer 17 may be located between the TiCN
layer 14 and the A1203 layer 15.

100181 FIG. 3 is a photomicrograph of a section of a coated cutting insert according to one embodiment of the present invention. The section shows a calotte scar exposing the substrate and coating layers on the flank face of the insert. The photomicrograph shows a WC-Co substrate 20 having a multilayer coating thereon. Beginning with the coating layer adjacent the substrate and progressing outwardly are the following layers, a TiN layer 22, an MT-TiCN layer 24, a TiOCN layer 26, an a- A 1203 layer 28, and a ZrCN layer 30.

100191 The Zr- or Hf- carbonitride outer layer coating may be applied by means of CVD, whereby the gas phase, at a reaction temperature between 700 C. and 1 100 C. and preferably at pressures between 5 kPA and 100 kPa, contains, in addition to H.) and/or Ar and chlorides of the above-mentioned metals, also carbon donors and nitrogen donors which have a C--N molecular group. This is preferably a cyanide group with a triple bond between the carbon and nitrogen, whose spacing at room temperature amounts to between 0.114 and 0. 118 nm. Such compounds are hydrogen cyanide, cyanamide, cyanogen, cyanacetylene or acetonitrile. Alternatively or in part, such gaseous compounds can also be used which have CN molecular groups with a single bond between the carbon and the nitrogen.
Molecules with single CN bonds include methylamine and ethylenediamine. The present invention includes within its framework appropriate substances containing the cyanide group;
compounds of this kind are in principle known in the state of the art. Other gaseous media which are capable of forming cyano groups at the reaction temperature can be gated into the reaction vessel.

100201 The thickness of the TiN 13 layer may be 0 to 2.0 pm, for example, 0.1 to 0.5 pm. The thickness of the TICN 14 layer may be 1.0 to 20.0 pm, for example, 2.0 to 10 pm.
The thickness of the Al203 layer 15 may be 1.0 to 15.0 pm, for example 2.0 to 8.0 pm. The thickness of the outer coating 16 may be 0.5 to 5.0 pin, for example 1.0 to 3.0 pm. The post-coating wet blasting step removes outer coating layer 16 to a certain extent.
The thickness of the outer coating 16 may be 0.5 to 4.5 pm, for example 1.0 to 3.0 pm.

100211 The multilayer coating is subjected to a post-coat wet blast treatment.
The post-coating wet blasting step comprises pneumatically projecting alumina particles in a liquid (e.g., water) slurry to impinge all surfaces of the pre-blasted coating scheme. The post-coating wet blasting step converts the tensile stress in the outer layer to compressive stress or increases the compressive stress of the outer layer. The post-coating wet blasting step also smoothens the surface of the outer coating layer 16. It is clear that the wet blasting step both changes the stress condition and smoothens the surface of the outer coating 16. The outer coating 16 (as-deposited) is in slight-tension or compression. In the case of slight tension, the post-coat wet blasting step converts the tensile stress of the outer coating 16 to a post-blasted compressive stress level. In the case of slight compression, the post-coating wet blasting step further increases the compressive stress of the outer coating layer 16.

10022] The post-coating wet blasting step also leads to smoothening of the outer coating 16. In one alternative, the exposed alumina coating layer exhibits a surface roughness R. of between about 0.2 m and about 0.5 pm using a WYKO measurement technique. In another alternative, the exposed alumina coating layer exhibits a surface roughness Ra of between about 0.2 m and about 0.4 pm using a WYKO measurement technique. In still another alternative, the exposed alumina coating layer exhibits a surface roughness Ra of between about 0.3 pm and about 0.4 m using a WYKO measurement technique. In regard to the WYKO technique, a sampling area of 0.3 mm by 0.2 tnm was chosen in WYKO measurement under the Vertical Scanning Interferometry mode.

100231 In one alternative of the wear-resistant coating scheme, the outer coating exhibits a pre-blasted (or as-deposited) stress condition equal to between about 100 MPa tensile stress to about -400 MPa compressive stress. As used herein, when referring to stress conditions of a coating a positive number indicates a tensile condition and a negative number indicates a compressive condition. After completion of the wet blasting, the outer coating layer 16 has a compressive stress condition of between -700 MPa to about -4.0 GPa.
In another alternative, the outer coating 16 exhibit a stress condition of between -2.0 GPa to about -4.0 GPa after completion of the wet blasting.

100241 In another alternative of the wear-resistant coating scheme, the A12O3 layer 15 exhibits a pre-blasted (or as-deposited) stress condition equal to between about 400 MPa tensile stress to about 800 MPa tensile stress. After completion of the wet blasting, the A12O3 layer 15 has a compressive stress condition of between 300 MPa to about -1.0 GPa.
(0025( In reference to the measurement technique for the stress of a ZrCN
outer coating, the technique is x-ray diffraction (XRD) technique. The XRD stress measurement is based upon the Psi tilt method and the reflection (220) of the ZrCN coating layer was chosen for measurement. Psi tilts of 0 degrees, 28.9 degrees, 43.1 degrees, 56.8, an 75 degrees were selected for the measurement of the residual stress levels. Positive and negative Psi tilts were chosen to supply the data required to determine possible shear stresses.
Additionally, three Phi rotation angles were selected (0 degrees, 45 degrees, and 90 degrees) to provide the data required to determine the biaxial stress state of the material.

(0026( Biaxial stress calculations were completed using the following equation:
d~v - do 1 d =S1(o1+a,)+2:S,o,sin'yr u where: S1 and '/z S, are the x-ray elastic constants d,,,, measured peak d-spacing for the Psi tilt and Phi rotation d0 stress free peak d-spacing for diffracted reflection a, and a2 are the primary stresses o, =a,cos'V +a,sin 2y The relationship of the various tilt and rotation angles in this method is shown in FIG. 5.
Young's Modulus (E) is taken to be 434 GPa, Poisson's Ratio (v) is taken to be 0.2, and x-ray elastic constants (S, and S2) are taken to be -0.46x 106 mm2/N and 2.76x 106 mm` /N
respectively for calculation of stress in ZrCN coating. Similar measurements may be done for an 1-11ICN coating.

(0027( In reference to the measurement technique for the stress of the A1203 layer, the technique is essentially the same as above with the following exceptions. The reflection (024) of the A1203 layer was chosen for measurement. Young's Modulus (E) is taken to be 401GPa, Poisson's Ratio (v) is taken to be 0.22, and x-ray elastic constants (Si and S2) are taken to be -0.53x 106 mm2/N and 2.94x 106 mm2/N respectively for calculation of stress in A12O3 coating.

(00281 The wet blasting is accomplished using a slurry comprising alumina particulates and water. The slurry of alumina particulates and water is pneumatically projected at the surface to impinge the surface of the substrate. The fundamental parameters of the alumina-water slurry are grit (i.e., alumina particles) concentration in volume percent, and alumina particle size in micrometers ( m). In one alternative, the slurry comprises between about 5 volume percent and about 35 volume percent alumina particulates with the balance water. In another alternative, the slurry comprises between about 8 volume percent and about 25 volume percent alumina particulates with the balance water. For the particle size, in one alternative, the alumina particles can range in size between about 20 m and about 100 gm. In another alternative, the alumina particles can range in size between about 35 pm and about 75 m.

100291 The operating parameters for the wet blasting step are pressure, angle of impingement, and duration. In this application, the angle of impingement is about ninety degrees, i.e., the particles impinge the surface at a ninety degree angle. In one alternative, the pressure ranges between about 35 pounds per square inch '(psi) and about 55 psi. In another alternative, the pressure ranges between about 40 pounds per square inch (psi) and about 50 psi. The duration of the wet blasting varies with the specific wet blasting operation wherein the goal is to achieve optimum stress levels in the outer coating and Al2O3 layer. Exemplary durations comprise between about 6 seconds and about 45 seconds. One range of duration is between about 9 seconds and about 30 seconds. Still another range of duration is between about 12 seconds and about 21 seconds.

100301 In reference to a method of making a coated cutting insert, the basic steps comprise the following steps. The first step comprises providing a substrate wherein the substrate is selected from the group consisting of hard metals, cermets or ceramics. Second, the substrate is coated with a multilayer wear-resistant coating including an Al-103 layer and an outer Zr- or Hf- carbonitride outer layer on the a-A1203 layer. Third. the coating is subjected to a wet blasting treatment.

100311 Specific examples of the inventive coated cutting insert and the comparative testing thereof are set forth below. One comparative test measured the tool life in minutes of an inventive coated cutting insert against the tool life in minutes of two other prior art cutting insert.
10032 Table I sets out the basic process parameters used to deposit the alumina-containing base coating region and the zirconium-containing outer coating region for the specific examples, both of the prior art and of the inventive ceramic cutting insert. In this regard, the process of parameters in Table I represents the steps used to apply a coating scheme to the surface of the cemented carbide substrate.

Table 1 Process Parameters for Invented coating process Materials Temperature Pressure Total Time ( C) (mbar) (minutes) Gases Present TiN 905 160 60 H2+N2+TiC14+HCI
TiCN 880 70 - 90 240 T1CI4+ H2+ N2 +CH3CN+Ar TiOCN 1000 75 - 500 70 H2+N2+CH4+T1CI4+CO+AICI3 a-A1203 1000 75 300 H2+AICI3+ C02+HCI+H2S
ZrCN 960-1000 80 240 ZrC13+ H2+ CH3CN+Ar The above steps occur in sequence beginning with the TiN step through the step to apply the ZrCN.

100331 In reference to the above steps in Table 1, control of the A1203 to ensure a-phase results is important to the integrity of the outer coating. Poor adhesion between ZrCN
and other alumina phases leads to flaking of the outer layer during wet blasting or metalcutting. In a preferred embodiment, the tx-A1203 layer has a dominant texture in the (104) orientation.

100341 In a first example, prior art cutting inserts used in the comparative testing comprised a coating scheme similar to the present invention with the exception being the prior art inserts utilize a TiCN/TiN outer coating layer. Both the prior art coated cutting inserts and the inventive coated ceramic cutting insert.were ANSI Standard cutting inserts.
Table 2. Post-Coating Blasting Parameters Parameter Description Composition of the alumina particle-water In the range of 5% - 35% by volume slurry Size of the alumina particles In the range of 20 m - 100 pm Pressure during the impingement process In the ran a of 35 psi - 55 psi Duration of the Impingement In the range of 6 seconds to 45 seconds 100351 For the comparative testing measuring tool life, the parameters were as follows:
workpiece material: 80-55-06 ductile iron; speed equal to 656 surface feet per minute (sfm) (200 surface meters per minute); a feed rate equal to 0.004 inch (0.1 millimeters) per revolution (ipr); a depth of cut (doc) equal to 0.08 inch (2.03 millimeters);
a lead angle equal to - 5 degree with coolant. The failure criteria were: UNF equal to 0.012 inches (0.3 millimeters) maximum; nose wear (NW) equal to 0.012 inches (0.3 millimeters);
depth of cut notching (DOCN) equal to 0.012 inches (0.3 millimeters); CR equal to 0.004 inches (0.1 millimeters); and TW equal to 0.012 inches (0.3 millimeters).

100361 In the comparative testing, samples, i.e., three each of the prior art coated cutting inserts and three inventive coated cutting inserts, were run. The results of the comparative testing are set forth in Table 3 below.

Table 3. Tool Life Results from Comparative Testing Tool Life (Minutes)/Failure Mode Prior Art - I A 10.3 / NW
Prior Art - 2A 9.6 / NW
Prior Art - 3A 7.3 / NW
Invention - 1 14.0 / NW
Invention - 2 9.9 / NW
Invention - 3 11.9 / NW

These cutting test results show approximately 30% improvement in the life time (tool life) of the inventive cutting inserts in the wear resistance as compared to the wear resistance of the prior art.cutting inserts.
100371 A second comparative measuring notching resistance was also performed.
A
wet turning cycle was used with the following parameters: workpiece materials:
316 Ti stainless steel; speed equal to 656 surface feet per minute (sfm) (200 surface meters per minute), a feed rate equal to 0.01 inch (0.25 millimeters) per revolution, and a depth of cut equal to 0.08 inch (2 millimeters); and a lead angle equal to -5 degrees. The prior art is a commercial carbide..cutting tool coated kappa A1203 with ZrCN top layer treated with dry blasting.. Both the prior art coated cutting inserts and the inventive coated cutting insert have the style of the ANSI Standard CNMG432RP. Table 4 below sets forth results of a comparison of the tool life determined by depth of cut notching for the prior art coated cutting insert and the inventive coated cutting insert. The failure criterion is: depth of cut notching (DOCN) equal to 0.0 12 inches (0.3 millimeters).

Table 4 Comparison of Prior Art Cutting Inserts and Inventive Cutting Inserts Tool life by DOCK (in minutes) Prior Art Insert 10.7 Inventive Insert 12.7 The inventive cutting inserts exhibited 20% improvement in depth of notch resistance in machining 316 Ti stainless steel.

100381 The patents and other documents identified herein are hereby incorporated in their entirety by reference herein. Other embodiments of the invention will be apparent to those skilled in the art from a consideration of the specification or a practice of the invention disclosed herein. There is the intention that the specification and examples are illustrative only and are not intended to be limiting on the scope of the invention. The following claims indicate the true scope and spirit of the invention.

Claims (18)

1. A coated cutting insert comprising:
a substrate; and a multilayer coating scheme comprising:
an .alpha.- Al2O3 layer; and an outer layer of ZrCN or HfCN on the a- Al2O3 layer, wherein the outer layer exhibits a blasted stress condition ranging between about -700 MPa to about -4.0 GPa as measured by XRD using the Psi tilt method and the (220) reflection of ZrCN or HfCN.
2. The coated cutting insert of claim 1 wherein the blasted stress condition ranges between about -2.0 GPa and about -4.0 GPa.
3. The coated cutting insert of claim 1 wherein the multilayer coating scheme further comprises an innermost TiN and a TiCN layer on the TiN layer, wherein the a- Al2O3 layer is on the TiCN layer.
4. The coated cutting insert of claim 1 further comprising a bonding layer between the Al2O3 layer and an outer layer, the bonding layer comprising M(O x C y N z) wherein M is selected from the group comprising one or more of the following titanium, hafnium, zirconium, chromium, titanium-aluminum alloy, hafnium-aluminum alloy, zirconium-aluminum alloy, chromium-aluminum alloy, and their alloys, and x >= 0, y >= 0, z 0 and y+z > 0, and whereby when M is aluminum, then at least one of titanium, hafnium, zirconium or chromium is also present.
5. The coated cutting insert of claim 3 further comprising a TiOCN layer between the TiCN layer and the Al2O3 layer.
6. The coated cutting insert of claim 1 wherein the substrate comprises a hard metal, a cermet or a ceramic.
7. The coated cutting insert of claim 1 wherein the outer layer has a thickness of 0.5 µm to 4.5 µm and the .alpha.-Al2O3 layer has a thickness of 1.0 µm to 15.0 µm.
8. A coated cutting insert comprising:
a substrate; and a multilayer coating scheme comprising:
an .alpha.-Al2O3 layer; and an outer layer of ZrCN or HfCN on the a- Al2O3 layer, wherein the a-Al2O3 layer exhibits a blasted stress condition ranging between about 300 MPa to about -1.0 GPa as measured by XRD using the Psi tilt method and the (042) reflection of .alpha.-Al2O3.
9. The coated cutting insert of claim 8 wherein the multilayer coating scheme further comprises an innermost TiN and a TiCN layer on the TiN layer, wherein the a- A1,01 layer is on the TiCN layer.
10. The coated cutting insert of claim 8 further comprising a bonding layer between the Al2O3 layer and an outer layer, the bonding layer comprising M(O x C y N z) wherein M is selected from the group comprising one or more of the following titanium, hafnium, zirconium, chromium, titanium-aluminum alloy, hafnium-aluminum alloy, zirconium-aluminum alloy, chromium-aluminum alloy, and their alloys, and x >= 0, y > 0, z >=
0 and y+z > 0, and whereby when M is aluminum, then at least one of titanium, hafnium, zirconium or chromium is also present.
11. The coated cutting insert of claim 10 further comprising a TiOCN layer between the TiCN layer and the Al2O3 layer.
12. The coated cutting insert of claim 8 wherein the substrate comprises a hard metal, a cermet or a ceramic.
13. The coated cutting insert of claim 8 wherein the substrate comprises a hard metal, a cermet or a ceramic.
14. The coated cutting insert of claim 8 wherein the outer layer has a thickness of 0.5 µm to 4.5 µm and the .alpha.-Al2O3 layer has a thickness.of 1.0 µm to 15.0 µm.
15. A method of making a coated cutting insert comprising the steps of:
providing a substrate;
coating the substrate with a multilayer wear-resistant coating including an a-Al2O3 layer and an outer Zr- or Hf- carbonitride outer layer on the .alpha.-Al2O3 layer; and subjecting the outer layer to a wet blasting treatment.
16. The method making a coated cutting insert according to claim 15 wherein the wet blasting treatment utilizes a slurry comprising alumina particles and water, wherein the alumina comprises 5% to 35% by volume of the slurry.
17. The method making a coated cutting insert according to claim 16 wherein the alumina particles are 20 µm - 100 µm.
18. The method making a coated cutting insert according to claim 16 wherein the slurry is blasted at a pressure of 35 psi to 55 psi and the wet blasting continues for six seconds to forty-five seconds.
CA2777711A 2009-11-10 2010-11-10 Coated cutting insert and method for making the same Abandoned CA2777711A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/615,530 2009-11-10
US12/615,530 US8323783B2 (en) 2009-11-10 2009-11-10 Coated cutting insert and method for making the same
PCT/US2010/056158 WO2011060021A2 (en) 2009-11-10 2010-11-10 Coated cutting insert and method for making the same

Publications (1)

Publication Number Publication Date
CA2777711A1 true CA2777711A1 (en) 2011-05-19

Family

ID=43973099

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2777711A Abandoned CA2777711A1 (en) 2009-11-10 2010-11-10 Coated cutting insert and method for making the same

Country Status (8)

Country Link
US (1) US8323783B2 (en)
EP (1) EP2499273B1 (en)
JP (1) JP2013510729A (en)
KR (1) KR20120091313A (en)
CN (1) CN102612570B (en)
BR (1) BR112012011074A2 (en)
CA (1) CA2777711A1 (en)
WO (1) WO2011060021A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668982B2 (en) 2009-11-10 2014-03-11 Kennametal Inc. Coated cutting insert and method for making the same
US8524360B2 (en) 2011-08-29 2013-09-03 Kennametal Inc. Cutting insert with a titanium oxycarbonitride coating and method for making the same
DE102012022466A1 (en) * 2011-11-18 2013-05-23 Kennametal Inc. Coated cutting insert for removing material i.e. chip formation, from workpiece, has multilayer coating scheme including aluminum oxide layer and outer layer exhibiting blasted stress condition
US10100405B2 (en) 2015-04-20 2018-10-16 Kennametal Inc. CVD coated cutting insert and method of making the same
DE102015222491B4 (en) * 2015-11-13 2023-03-23 Kennametal Inc. Cutting tool and method of making same
CN105506626B (en) * 2016-01-07 2017-10-17 南昌理工学院 A kind of cutting element
CN112058609A (en) * 2020-07-28 2020-12-11 南京顺发热处理有限公司 Metal heat treatment process capable of prolonging service life of metal product

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE509201C2 (en) 1994-07-20 1998-12-14 Sandvik Ab Aluminum oxide coated tool
BR9612781A (en) * 1996-10-09 2000-04-18 Widia Gmbh Composite bodies, processes for their preparation and use of the composite body.
DE19719195A1 (en) * 1997-05-09 1998-11-12 Widia Gmbh Cutting insert for machining and method for producing this cutting insert
JP3837959B2 (en) 1999-05-13 2006-10-25 三菱マテリアル株式会社 Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
ATE273405T1 (en) * 1999-11-25 2004-08-15 Seco Tools Ab COATED CUTTING INSERT FOR MILLING AND TURNING APPLICATIONS
JP4891515B2 (en) * 2000-07-12 2012-03-07 住友電工ハードメタル株式会社 Coated cutting tool
US6884496B2 (en) * 2001-03-27 2005-04-26 Widia Gmbh Method for increasing compression stress or reducing internal tension stress of a CVD, PCVD or PVD layer and cutting insert for machining
SE525581C2 (en) * 2002-05-08 2005-03-15 Seco Tools Ab Cutting coated with alumina made with CVD
JP2004284003A (en) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
DE10320652A1 (en) * 2003-05-07 2004-12-02 Kennametal Widia Gmbh & Co.Kg Tool, especially a cutting tool, comprising a substrate member onto which at least one layer is deposited by means of chemical vapor deposition (CVD) used in machining operations, e.g. metal cutting
SE526602C2 (en) * 2003-10-27 2005-10-18 Seco Tools Ab Coated cutting for rough turning
SE528107C2 (en) * 2004-10-04 2006-09-05 Sandvik Intellectual Property Coated carbide inserts, especially useful for high-speed machining of metallic workpieces
KR100576321B1 (en) * 2004-12-14 2006-05-03 한국야금 주식회사 Cutting tool/an abrasion resistance tool with high toughness
JP4739236B2 (en) * 2004-12-27 2011-08-03 住友電工ハードメタル株式会社 Surface coated cutting tool
WO2006080154A1 (en) * 2005-01-26 2006-08-03 Sumitomo Electric Hardmetal Corp. Edge replacement cutting tip and method of manufacturing the same
CN101151115B (en) * 2005-03-29 2012-10-31 住友电工硬质合金株式会社 Replacement cutter tip and method of manufacturing the same
SE529023C2 (en) * 2005-06-17 2007-04-10 Sandvik Intellectual Property Coated carbide cutter
SE530756C2 (en) * 2006-09-15 2008-09-02 Sandvik Intellectual Property Methods of Manufacturing a Coated Cement Cutting Tool, a Coated Cutting Tool and a Coated Rotating Cutting Tool
SE531929C2 (en) * 2007-07-13 2009-09-08 Seco Tools Ab Coated cemented carbide inserts for turning steel or stainless steel
US8512882B2 (en) * 2007-02-19 2013-08-20 TDY Industries, LLC Carbide cutting insert
IL182344A (en) * 2007-04-01 2011-07-31 Iscar Ltd Cutting insert having ceramic coating
US8080323B2 (en) * 2007-06-28 2011-12-20 Kennametal Inc. Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
US20090004449A1 (en) * 2007-06-28 2009-01-01 Zhigang Ban Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
DE102007042833A1 (en) * 2007-09-10 2009-03-12 Walter Ag Blast-treated cutting insert and method
JP2009255233A (en) * 2008-04-17 2009-11-05 Mitsubishi Materials Corp Surface coated cutting tool

Also Published As

Publication number Publication date
KR20120091313A (en) 2012-08-17
CN102612570A (en) 2012-07-25
US20110107679A1 (en) 2011-05-12
US8323783B2 (en) 2012-12-04
WO2011060021A3 (en) 2011-08-25
WO2011060021A2 (en) 2011-05-19
EP2499273B1 (en) 2019-01-09
JP2013510729A (en) 2013-03-28
EP2499273A4 (en) 2015-11-18
CN102612570B (en) 2014-12-17
BR112012011074A2 (en) 2016-07-05
EP2499273A2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US10968512B2 (en) CVD composite refractory coatings and applications thereof
EP2499273B1 (en) Coated cutting insert
US9238267B2 (en) Cutting insert and method for production thereof
EP3034653B1 (en) Cvd coated cutting tool
EP2160260B1 (en) Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
JP3325987B2 (en) Coated object
US8557406B2 (en) Coated PCBN cutting insert, coated PCBN cutting tool using such coated PCBN cutting insert, and method for making the same
EP1980649A1 (en) Cutting insert having ceramic coating
EP3326741B1 (en) Surface-coated cutting tool and method for producing same
IL160911A (en) Oxide coated cutting tool and method for the preparation thereof
JP2007136631A (en) Cutting tip with replaceable edge
WO2011112334A2 (en) Coated ceramic cutting insert and method of making the same
US9044811B2 (en) Surface coated cutting tool
WO2014153469A1 (en) Coatings for cutting tools
CN103121115A (en) Coated cutting empiecement and method for manufacturing the same
CA2783953A1 (en) A cutting insert with a titanium oxycarbonitride coating and method for making the same
JP7265491B2 (en) coated cutting tools
WO2014153324A1 (en) COATED BODY WHEREIN THE COATING SCHEME INCLUDES A COATING OF LAYER OF TiAL2O3 AND METHOD OF MAKING THE SAME
US8668982B2 (en) Coated cutting insert and method for making the same
JP2000218410A (en) Surface coated cemented carbide cutting tool having good tenacity of aluminum oxide layer forming hard coated layer
CN112292482B (en) Coated cutting tool

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20131113