CA2775681C - Magnetically actuated ac power connector - Google Patents

Magnetically actuated ac power connector Download PDF

Info

Publication number
CA2775681C
CA2775681C CA2775681A CA2775681A CA2775681C CA 2775681 C CA2775681 C CA 2775681C CA 2775681 A CA2775681 A CA 2775681A CA 2775681 A CA2775681 A CA 2775681A CA 2775681 C CA2775681 C CA 2775681C
Authority
CA
Canada
Prior art keywords
face
component
electrical contacts
electrical
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2775681A
Other languages
French (fr)
Other versions
CA2775681A1 (en
Inventor
Arash Janfada
William Topping
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voltsafe Inc
Original Assignee
Arash Janfada
William Topping
Magnoplug Products Inc.
1027444 B.C. Ltd.
Lab 498 Products Inc.
Voltsafe Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arash Janfada, William Topping, Magnoplug Products Inc., 1027444 B.C. Ltd., Lab 498 Products Inc., Voltsafe Inc. filed Critical Arash Janfada
Priority to CA2775681A priority Critical patent/CA2775681C/en
Publication of CA2775681A1 publication Critical patent/CA2775681A1/en
Application granted granted Critical
Publication of CA2775681C publication Critical patent/CA2775681C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/70Structural association with built-in electrical component with built-in switch
    • H01R13/703Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part
    • H01R13/7036Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part the switch being in series with coupling part, e.g. dead coupling, explosion proof coupling
    • H01R13/7038Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part the switch being in series with coupling part, e.g. dead coupling, explosion proof coupling making use of a remote controlled switch, e.g. relais, solid state switch activated by the engagement of the coupling parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/6205Two-part coupling devices held in engagement by a magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/717Structural association with built-in electrical component with built-in light source
    • H01R13/7175Light emitting diodes (LEDs)

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

An apparatus for electrically connecting a power source to an electrical device is disclosed. The apparatus comprises a first component and a second component. The first component has a substantially planar contoured first face comprising a ferromagnetic plate, a first set of contacts electrically connectable to a power source, two power switches and a magnetically actuated sensor controlling the switches. The second component has a substantially planar contoured second face complementary to the first face comprising a magnet and a second set of electrically conductive contacts electrically connectable to a device. Connecting the first and second faces, results in the first and second pair of contacts electrically coupling and establishes an electrical path between the power source and the device, and connects the components by magnetic attractive force which actuates the power switches and initiates power to the device. The apparatus further comprises a safety circuit for preventing electric shock.

Description

MAGNETICALLY ACTUATED AC POWER CONNECTOR
FIELD OF INVENTION
[0001] This invention relates to a power connector and, in particular, a power connector without probes for electrical connection.
BACKGROUND OF THE INVENTION
[0002] Conventional power cords comprises a male plug component having contact prongs extending outwards for inserting into a corresponding receiving member in a female plug component or a socket, where the receiving member holds the prongs in place and the male and female plug components are electrically connected using frictional force. In some situations, for example in very low temperatures, the insertion and removal of the prongs becomes difficult and may cause damage to the cord and to devices connected the cord.
[0003] US patent 7,311,526 disclosed a magnetic connector that connects a direct current (DC) voltage source to a device. Such connector has safety issues if used for transmitting high voltage alternative current (AC) signal, as electric shock will occur when the user touches electrically live exposed contacts. Therefore an improved power connector design is desired to accommodate high voltage AC electric power supply. Other power connector system that may share common design features with the current system are shown in the following patents:
7,621,753 Pal 7,874,844 Fitts 7,442,042 Lewis 6,739,915 Hyland 7,339,205 McNeely 6,770,986 Nagao 5,584,715 Ehrenfels
4,748,343 Engel 7,351,066 DiFonzo 7,517,222 Rohrbach 7,645,143 Rohrbach SUMMARY OF THE INVENTION
[0004] In the light of the foregoing background, it is an object of the present invention to provide an alternate power connector..
[0005] Accordingly, the present invention, in one aspect, is an apparatus for electrically connecting a power source to an electrical device. The apparatus comprises a first component and a second component. The first component has a substantially planar contoured first face, and the first face comprises, in part, a set of 3 electrical pad contacts, one for each: hot, neutral, and ground connected to the power source. The second component has a substantially planar contoured second face complementary to the first face, and the second face comprises, in part, a set of 3 electrical pad contacts, one for each: hot, neutral, and ground connected to the electrical device. The first set of contacts becomes electrically coupled to the second set of contacts upon connecting the first face with the second face, thereby establishing a first (primary) electrical path between the power source and the electronic device.
[0006] In an exemplary embodiment of the present invention, the power source may be any standard household AC supply outlet and the primary electrical path is an AC supply path between the outlet and the electronic device. The first plug component further comprises power rectifier circuitry which branches off from the primary path and supplies DC power via a secondary electrical path to internal power switching circuitry.
[0007] In a another exemplary embodiment, the power connector further comprises at least one electrically operated switch and one actuating sensor. The switch is initially in the off position and is disposed in the primary electrical path. The actuating member is disposed in the secondary electrical path. When the first and second faces are attached, the actuating sensor is triggered by the presence of the magnet and closes the switch located in the first electrical path resulting in power conduction to the electronic device.
[0008] In another exemplary embodiment of the present invention, the male plug face comprises a ferromagnetic element and the female plug face comprises a magnetic element.
The primary electrical path is established upon connecting the male plug face comprising of a ferromagnetic element, to the female plug face comprising a magnetic element, whereby the presence of the magnet on the female plug face triggers the actuating sensor inside the male plug component and closes the switch disposed in the primary electrical path and results in power conduction. In addition to actuating power conduction, the attractive force between the ferromagnetic and magnetic plates, on the male and female faces respectively, binds the plug components together allowing the electrical coupling between the pad contacts lobe maintained during plug operation.
[0009] There are many advantages to the present invention. First of all, the male plug component and the female plug component (i.e. the first component and the second component) are held together by non-frictional forces such as magnetic forces, and the contact face between the components is substantially planar and contoured. Attaching the components is simply completed by contacting the male plug face with the female plug face. Seperating the components requires minimal pulling force and as a result will not cause any damage to the components in low temperatures due to excessive friction force caused by variable temperature induced contraction of components. The performance of the substantially planar contoured contact face is not affected by contraction and expansion due to changes in ambient temperature. As a result, the force required to separate the plug components is also independent of ambient temperature.
[0010] The strength of the magnetic force is chosen to be removable with deliberate force but is considerably less than the maximum connective force of other connections, such that in situations where the device is pulled from the power supply with excessive force, the magnetic coupling between the male plug component and the female plug component of the power cord is always first to break, preventing damage to the device and the power supply. An example of such situation is in engine block heaters in vehicles where the user may drive a vehicle away from its parked position without noticing that the block heater cord is connected to a wall socket via an extension cord, a common practice used to keep the engine warm enough to be started in cold climates.
[0011] Another advantage of the present invention is that the circuit is designed to prevent the electrical contacts from being live with AC power when the male plug component is connected to the power source but not to the female plug. In the absence of the safety shut off mechanism, a user would suffer electric shock upon touching an electrically live contact.. Using an electrically operated switching mechanism as a part of the circuit ensures that the power transmission components are only actuated when the male plug face is in contact with the female plug face, which in the case of the present invention means that the contacts are accurately connected between the corresponding male and female plug components.
[0012] Another advantage of the present invention is that the power connector has no moving parts and the surface of contact is substantially planar and contoured, therefore debris such as dust, dirt or ice will not easily collect on the components and potentially affect the operation of the connector such as shorting the circuit, especially so if the power connector is to be usable in outdoor environments. Where debris does collect on the contact surfaces, the surfaces can be readily wiped clean due to their substantially planer nature.
[0013] An additional advantage of the present invention is that the electrical contacts located on the male plug face will be slightly recessed below the contact surface of the ferromagnetic plate located on the contact face. This is primarily a safety feature which further reduces the chance of electric shock if a metal object is accidentally lodged between the male and female plug face when they are connected and the system is actuated to the on-position by the presence of the magnet.
BRIEF DESCRIPTION OF FIGURES
[0014] Fig. 1 is a block diagram of the power connector male and female faces according to an embodiment of the present invention.
[0015] Fig. 2 is a front view of a male plug face according to an embodiment of the present invention.
[0016] Fig. 3 is a front view of a female plug face according to an embodiment of the present invention.
[0017] Fig. 4a is a cutaway cross-section (X-Y) of the contoured male plug face according to an embodiment of the present invention.
[0018] Fib. 4b is a front view of the male plug face showing the location of cross-section (X-Y) according to an embodiment of the present invention.
[0019] Fig 5a is a cutaway cross-section (X'-Y') of the contoured female plug face according to an embodiment of the present invention.
[0020] Fig 5b is a front view of the female plug face showing the location of cross-section (X'-Y') according to an embodiment of the present invention.
[0021] Fig. 6 is a complete circuit diagram of the power connector circuitry of the male plug component according to an embodiment of the present invention.
[0022] Fig. 7 is a complete circuit diagram of the power connector circuitry of the female plug component according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0023] As used herein and in the claims, "comprising" means including the following elements but not excluding others.
[0024] As used herein and in the claims, "couple" or "connect" refers to electrical coupling or connection either directly or indirectly via one or more electrical means unless otherwise stated.
[0025] Referring now to Figs. 1, 2 and 3, the first embodiment of the present invention is a power connector 1 comprising a male plug component 2 and a female plug component 3.
The male plug component 2 has a standard male power supply connector at the rear (not shown) adapted to connect to a power supply such as a wall socket. The female plug component 3 has a standard female connector at the rear (not shown) adapted to connect to an external electrical device to be powered.
The male plug component 2 further comprises a male plug face 4 which is substantially planar and contoured, and the female plug component 3 further comprises a female plug face 5 which is also substantially planar and contoured. There is at least one set of contacts on the male plug face 4. In the specific example as shown in Fig. 2, there are three (3) electrical pad contacts, one for each: hot, neutral, and ground denoted by 6a, 66 and 7 respectively. There is also at least one set of contacts on the female plug face 3. In the specific example as shown in Fig. 3, there are three (3) electrical pad contacts, one for each: hot, neutral, and ground, denoted by be, 8b and 9 respectively. The contour of the male plug face 2 and the female plug face 3 are complementary to each other such that the entire male plug face 2 can be contacted to the female plug face 3.
[0026] In operation of the power connector 1, the male plug component 2 is brought into contact with the female plug component 3. The entire male plug face 4 is in contact with the female plug face 5 due to their substantially planer and complementary construction. When the two faces are in contact, the first set of three contacts 6a, 6b and 7 are electrically coupled to the corresponding second set of three contacts,8a, 8b and 9. This completes the electrical path between the power supply and the electrical device. As a result, electric power can flow from the power supply to the electrical device.
[0027] In an exemplary embodiment, referring to Fig.2 and Fig 3, one ferromagnetic element 10 is disposed on the male plug face 4, and at least one magnetic element 11 is disposed on the female plug face 5. The ferromagnetic element 10 and the magnetic element 11 become connected through magnetic attractive force when the male plug face 4 is brought into contact with the female plug face 5, thus attaching the male plug component 2 to the female plug component 3 and vice versa. In a further embodiment, the ferromagnetic element 10 and the magnetic element 11 are installed at predetermined locations in the male plug component 2 and the female plug component 3 respectively, such that the male plug component 2 can only be attached to the female plug component 3 in a predetermined orientation, where the predetermined orientation ensures the electrical path to be established in a safe manner and isolates the individual electrical pad contacts located on each of the plug faces.
[0028] Magnetic elements generate magnetic fields. When one magnetic element 10 is brought into proximity of a ferromagnetic element 11, a magnetic attractive force is generated between the two elements. The magnetic force acts substantially along the axis of the magnetic element. As such, in the present invention, when the male plug face 4 is brought into proximity of the female plug face 5, a magnetic attractive force is generated perpendicular to the male plug face 4 and the female plug face 5 causing them to attach. The magnetic force prevents the components from detaching once connected unless sufficient external force is applied to detach the components.
[0029] .In another exemplary embodiment, Fig. 4a and Fig. 4b show cross-section cutaways of the male plug face 4, and Fig. 5a and Fig. 5b show cross-section cutaways for the female plug face 5.
The cross-sections show the substantially planer and complementary contoured design of the plug faces. The electrical contacts on the male plug face 4 are 6a, 6b and 7 and are recessed within the contoured folds of the male and plug. Since the electrical pad contacts (6a, 6b and 7) on the male plug face 4 have to potential to be live when the system is actuated, this recessed design ensures additional safety and creates asymmetrical contours on the substantially planer face which ensure that the male plug face 4 and female plug face 5 only connect in one specific orientation.
[0030] In an exemplary embodiment, the magnetic element 11 is a permanent magnet, made of neodymium-iron-boron or samarium cobalt type disc or ring magnet. The magnetic force generated will be calibrated to be strong enough to prevent unintentional detachment but not too strong for possible damage to other parts, such as the power supply cable or the electrical device, before the connector components can be detached either accidentally or intentionally.
Preferably, a force between approximately 3lbs to Sibs should be produced between the magnetic and ferromagnetic elements.
[0031] In another exemplary embodiment, a disc-type magnet has a diameter of 0.375 inch or 0.5 inch and a thickness ranging from 0.1 inch to 0.125 inch. In yet another exemplary embodiment, a ring-type magnet has an outer diameter of 0.375 inch to 0.5 inch, an inner diameter of 0.125 inch and a thickness ranging from 0.1 inch to 0.125 inch.
[0032] In an exemplary embodiment, an electric circuit is provided to control the establishment of the electrical path. Referring to Fig. 6, three circuit component-groups are disposed in the male plug component 2 each of which perform a separate function while working together to activate the plug system. The AC/DC power supply component-group 12 converts conventional household power (120volt AC) into a low-voltage direct current (DC) supply, The AC/DC power supply component-group 12 is connected to the 120volt AC power source (house power plug) on one end and on the other end is connected to the sensor and switching component-group 13. The sensor and switching component-group 13 performs the function of detecting the presence of a magnetic field. As shown in Fig. 6õ this component-group is connected to the AC/DC power source component-group 12 at one end, and on the other is connected to the power transmission component-group 14. The power transmission is attached to a standard residential power supply at one end, and to the hot and neutral contacts (6a, 6b) on the male plug face 4 on the other. A final component group is place between the power transmission component-group and the contacts 6a and 6b on the male plug face 4. This is the indicator light component group 15 which consists of two light-emitting-diodes (LED) in parallel, and a capacitor in series with the LEDs. The indicator light component group informs the plug system operator that the relays are engaged and that power is being transmitted by the system.
[00331 Referring to Figs. 2, 3 and 6, at least one electronic sensor and one electrically operated switch is disposed in the male plug component 2. In a specific embodiment as shown in Fig. 6, one hall-effect switch 16 is disposed inside the male plug component 2, and two power relay type switches 17are disposed inside the male plug component 2. The system is powered on when the hall-effect sensor 16 in the male plug component 2 senses the presence of a magnetic field from the magnet disposed on the female plug face 5. When the male plug component 2 and female plug component 3 are connected, they attach by magnetic attraction force between the magnet 11 disposed on the female plug face 5 and the ferromagnetic plate 10 disposed on the male plug face 4.
Simultaneous with the connection of the plug components, the hall-effect sensor 16 detects the presence of the magnetic field and begins to provides current to the coil of the power relay switches 17. This triggers the relays into the "on" position where they begin to conduct AC power to the attached electric device. The relay power output terminals are electrically connected to contacts 6a and 6b disposed on the male plug face 4.
[0034] In a further exemplary embodiment, with reference to Fig. 1, Fig, 6 and Fig. 7, when the male plug component 2 and female plug component 3 are attached, contacts 6a, 6b and 7 disposed on the male plug face 4 are in direct contact with contacts 8a, 8b and 9 disposed on the female face.
The connection of the In turn the electric device is connected via the female plug component 3 to contacts 8a and 8b internally (Fig. 7). As a result power is transferred to the electronic device.
When the user detaches the male plug component 2 from the female plug component 3, the magnet 13 and associated magnetic field is also removed from the vicinity of the Hall-Effect sensor 16 causing the Hall-Effect sensor to terminate current transfer to the coils of the relays. This causes the relays to return to the "off' position and stop the transition of power to contacts 6a and 6b making the system electronically inactive.
(0035] In an exemplary embodiment, the AC/DC conversion circuit is a transformer-based conversion circuit that outputs a 6V DC voltage.
[0036] In one embodiment, with reference to Fig. 7, an indicator circuit 19 is provided within the female plug component 3 electrically parallel to the device connecting wires of the female component 3 to alert the user when electric power is supplied to the electrical device. In an exemplary embodiment, the indicator 19 is a visual indicator light emitting diode (LED) circuit.
[0037] The exemplary embodiments of the present invention are thus fully described. Although the description referred to particular embodiments, it will be clear to one skilled in the art that the present invention may be practiced with variation of these specific details.
Hence this invention should not be construed as limited to the embodiments set forth herein.
[0038] For example, the casing or external housing of the male 2 and female 3 plug components can be constructed of any rigid synthetic, semi-synthetic or organic composite polymeric material such as polyvinyl chloride, and can be constructed in any shape conductive to the adapted use, so long as the design parameters and functional constrains previously described are maintained.
[0039] In another example, a gasket can be provided surrounding the male plug face 6 and the female plug face 7. The gaskets then push against each other when the male plug face 2 is in contact with the female plug face 3, preventing external particles such as dust or ice to enter, causing damage to the power connector system.
[0040] .In yet another example, the actuating element may be spring loaded piston witin the male plug component upon which live electrical contacts are mounted. Once the male and female plug components are connected, the piston is drawn forward and electrically coupled with contacts on the female component thus transmitting power to a connected electronic device.
[0041] An AC/DC conversion circuit with transformer-less or capacitative elements can be used in place of a transformer conversion circuit with the same function. A
transformer-less conversion circuit generally occupies less space.
[0042] It is obvious to one skilled in the art that the plug faces can be contoured in away to improve alignment of the components, as long as an axial frictional force is not created during attachment.
The construction and assembly of the embodiments previously described is accomplished through conventional means and uses conventional components and therefore should be consistent with the common general knowledge of a person skilled in the art.
i0

Claims (26)

What is claimed is:
1. An apparatus for electrically connecting a power source to an electrical device, comprising:
a first component having a substantially planar first face, said first face comprising a first set of 3 electrical pad contacts, one for each: hot, neutral, and ground connected to said power source;
a second component having a substantially planar second face complementary to said first face, said second face comprising a second set of 3 electrical pad contacts, one for each: hot, neutral, and around connected to said electrical device;
wherein each of said first set of electrical contacts comprises a first plate portion immovably fixed on said first face;
wherein each of said second set of electrical contacts comprises a second plate portion immovably fixed on said second face;
wherein said first plate portions of said first set of electrical contacts are disposed in a triangular fashion to define a first triangle on said first face;
wherein said second plate portions of said second set of electrical contacts are disposed in a triangular fashion to define a second triangle on said second face such that said first triangle and said second triangle are congruent to each other; and wherein a shape of said first face and a shape of said second face are complementary to each other so that, when said first component is attached to said second component, said first plate portions of said first set of electrical contacts are brought in direct contact with said second plate portions of said second set of electrical contacts, respectively, at vertices of said first and second triangles, thereby electronically coupling said first set of electrical contacts to said second set of electrical contacts to establish an electrical path between said power source and said electrical device; and wherein said first component comprises a ferromagnetic element and said second component comprises a magnetic element, whereby said electrical path is established upon magnetically coupling said ferromagnetic element to said magnetic element, wherein said ferromagnetic element and said magnetic element are installed at predetermined locations in said first component and said second component, respectively, such that said first component can only be attached to said second component in a predetermined orientation, where said predetermined orientation ensures said electrical path to be established, wherein said first face of said first component has a raised portion, said ferromagnetic element being installed on the raise portion at substantially a central location of the first triangle on said first face, and wherein said second face of said second component has a lowered portion that is to be intermeshed with said raised portion of said first face of said first component, said magnetic element being installed on the lowered portion at substantially a central location of the second triangle on said second face.
2. An apparatus for electrically connecting a power source to an electrical device, comprising:
a first component having a substantially planar first face, said first face comprising a first set of 3 electrical pad contacts, one for each: hot, neutral, and ground connected to said power source;
a second component having a substantially planar second face complementary to said first face, said second face comprising a second set of 8 electrical Dad contacts, one for each: hot, neutral, and around connected to said electrical device;
wherein each of said first set of electrical contacts comprises a first plate portion immovably fixed on said first face;
wherein each of said second set of electrical contacts comprises a second plate portion immovably fixed on said second face;
wherein said first plate portions of said first set of electrical contacts are disposed in a triangular fashion to define a first triangle on said first face;
wherein said second plate portions of said second set of electrical contacts are disposed in a triangular fashion to define a second triangle on said second face such that said first triangle and said second triangle are congruent to each other;
wherein a shape of said first face and a shape of said second face are complementary to each other so that, when said first component is attached to said second component, said first late portions of said first set of electrical contacts are brought in direct contact with said second plate portions of said second set of electrical contacts, respectively, at vertices of said first and second triangles, thereby electronically coupling said first set of electrical contacts to said second get of electrical contacts to establish an electrical path between said power source and said electrical device;
wherein said power source is an AC supply source, said electrical path is a first electrical path as an AC supply path, and said first component further comprises a power rectification circuit branching off from the AC supply path and rectifying the AC supply to a DC supply for operation of a second electrical path; and wherein the apparatus further comprising at least one electrically operated sensor and at least one electrically operated switchable member initially in an open state, wherein said sensor is disposed in said second electrical path and connected to said switchable member, and said switchable member is disposed in said first electrical path, and wherein connecting said first and second components causes said sensor to switch said switchable member to a closed state, thereby establishing power transmission.
3. The apparatus according to claim 2, wherein said electrically operated sensor is a hall-effect sensor and said switchable member consists of a pair of power relay switches one of each: hot and neutral electrical connections, wherein said first component comprises a ferromagnetic element and said second component comprises a magnetic element, whereby said first electrical path is established upon magnetically coupling said ferromagnetic element to said magnetic element, wherein said ferromagnetic element and said magnetic element are installed at predetermined locations in said first component and said second component, respectively, such that said first component can only be attached to said second component in a predetermined orientation, where said predetermined orientation ensures said first electrical path to be established, wherein said ferromagnetic element and said magnetic element are installed such that, when said first face is brought into proximity of said second face, a magnetic attractive force is generated perpendicular to said first face and said second face, and wherein, when said first component is attached to said second component, said hall-effect sensor detects a presence of a magnetic field from said magnet element to provide current to said power relay switches, thereby triggering said power relay switches into an ON position.
4. The apparatus according to claim 2, further comprising a first indicator light circuit in said first component, and a second indicator light circuit in said second component for indicating establishment of said electrical path.
5. The apparatus according to claim 2, wherein said electrical contacts are symmetrically located on said first face and said second face.
6. The apparatus according to claim 2, wherein said first set of electrical contacts are disposed in an isosceles triangular fashion to define said first triangle on said first face; and wherein said second set of electrical contacts are disposed in an isosceles triangular fashion to define said second triangle on said second face such that said first triangle and said second triangle are congruent to each other.
7. The apparatus according to claim 2, wherein said first component comprises a recess having an asymmetrical shape formed on said first face, while said second component comprises a protrusion formed on said second face, said recess and said protrusion having a shape complementary to each other so as to ensure said first face and said second face to be connected only in one specific orientation.
8. An apparatus comprising:
a first component comprising:
a first set of electrical contacts;
a ferromagnetic element; and a first face having the first set of electrical contacts and the ferromagnetic element disposed thereon;
a second component comprising:
a second set of electrical contacts;
a magnetic element producing a magnetic field; and a second face having the second set of electrical contacts and the magnetic element disposed thereon;
a sensor; and a switching element for enabling a flow of current;
wherein coupling the first component with the second component causes the first set of electrical contacts to form an electrical connection with the second set of electrical contacts;
wherein coupling the first component with the second component generates an attractive force between the ferromagnetic element and the magnetic element; and wherein the sensor, responsive to detecting the magnetic field, is configured to cause the switching element to enable current to flow between the first set of electrical contacts and the second set of electrical contacts.
9. The apparatus of claim 8, wherein the ferromagnetic element is located substantially at the center of the first face.
10. The apparatus of claim 8, wherein the magnetic element is located substantially at the center of the second face.
11. The apparatus of claim 8, wherein the first set of electrical contacts and the second set of electrical contacts each comprise three electrical contacts.
12. The apparatus of claim 11, wherein each of the first and second sets of electrical contacts comprise hot, neutral and ground contacts.
13. The apparatus of claim 8, wherein the first face comprises a protruding portion having the ferromagnetic element disposed thereon, and wherein the second face comprises a recessed portion for accepting the protruding portion, the recessed portion having the magnetic element disposed thereon.
14. The apparatus of claim 13, wherein the first set of electrical contacts are disposed on a portion of the first face other than the protruding portion.
15. The apparatus of claim 13, wherein the second set of electrical contacts are disposed on a portion of the second face other than the recessed portion.
16. The apparatus of claim 8, wherein the first component is connected to a power source and the second component is connected to an electrical device, and wherein coupling the protruding portion to the recessed portion establishes an electrical path between the power source and the electrical device.
17. The apparatus of claim 8, wherein a surface of the first face and a surface of the second face have complementary shapes.
18. The apparatus of claim 8, wherein the first component and the second component can only be coupled in a predetermined orientation.
19. The apparatus of claim 8, wherein the attractive force has a magnitude of about 3 to 5 pounds.
20. The apparatus of claim 8, further comprising at least one light emitting diode, wherein the at least one light emitting diode is illuminated when the switching element is enabling the current flow.
21. The apparatus of claim 8, wherein the sensor is a Hall-effect sensor.
22. The apparatus of claim 8, wherein the switching element is a relay switch.
23. The apparatus of claim 8, further comprising a gasket configured to seal an interface between the first face and the second face when the first component and the second component are coupled.
24. A method comprising:
providing a first component, the first component comprising:
a first set of electrical contacts;
a ferromagnetic element; and a first face having the first set of electrical contacts and the ferromagnetic element disposed thereon;
providing a second component, the second component comprising:
a second set of electrical contacts;
a magnetic element producing a magnetic field; and a second face having the second set of electrical contacts and the magnetic element disposed thereon;
coupling the first component with the second component to:
generate an attractive force between the ferromagnetic element and the magnetic element; and form an electrical connection between the first set of electrical contacts and the second set of electrical contacts;
detecting, by a sensor, the magnetic field; and responsive to the sensor detecting the magnetic field, causing, by the sensor, a switching element to enable current to flow between the first set of electrical contacts and the second set of electrical contacts.
25. The method of claim 24, wherein the switching element has a default configuration preventing current from flowing, and wherein enabling current to flow comprises triggering the switching element to a configuration allowing current to flow.
26. The method of claim 25, wherein a surface of the first face of the first component and a surface of the second face of the second component have complementary shapes.
CA2775681A 2012-04-30 2012-04-30 Magnetically actuated ac power connector Active CA2775681C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2775681A CA2775681C (en) 2012-04-30 2012-04-30 Magnetically actuated ac power connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2775681A CA2775681C (en) 2012-04-30 2012-04-30 Magnetically actuated ac power connector

Publications (2)

Publication Number Publication Date
CA2775681A1 CA2775681A1 (en) 2013-10-30
CA2775681C true CA2775681C (en) 2018-09-18

Family

ID=49510693

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2775681A Active CA2775681C (en) 2012-04-30 2012-04-30 Magnetically actuated ac power connector

Country Status (1)

Country Link
CA (1) CA2775681C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168817B (en) * 2017-01-05 2022-04-05 电压安全公司 Power connector using resistance sensing
US11070000B2 (en) 2019-11-22 2021-07-20 International Business Machines Corporation Magnetic power connection

Also Published As

Publication number Publication date
CA2775681A1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US9774149B2 (en) Magnetically actuated AC power connector
US9083110B2 (en) Quick-disconnect power adapters
US10096938B2 (en) Quick-disconnect power adapters
EP2137745B1 (en) Power coupling system
CN101800385B (en) Magnetic electric connector
US20120071008A1 (en) Magnetic electrical coupling adaptor
US10644461B2 (en) Modified electrical devices
EP2437359A1 (en) Power plug with leakage protection function
JP3163609U (en) Magnetic electrical connector
CN201608374U (en) Magnetic electric connector
KR20180050287A (en) Electrical receptacle assembly with electrical disconnection solution
CA2775681C (en) Magnetically actuated ac power connector
EP2764588A2 (en) Quick-disconnect power adapters
CN210223925U (en) Leakage protector
CN206619944U (en) Power suitching type electric automobile intelligent AC charging pile
CN211126137U (en) Grounding device
KR101464684B1 (en) Electric outlet using coilgun type and operating method thereof
CN209592517U (en) A kind of blind person's safe and intelligent plugs and sockets
CN205680878U (en) Ight supply socket
CN214313768U (en) Electric shock prevention power supply connecting device
CN208889997U (en) A kind of charging equipment
TWI509914B (en) A multifunction socket device
CN112864737B (en) Waterproof power connector
JP7373617B2 (en) Plug and outlet for PLC
CN102916389B (en) Electricity Wiring protection device

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20170413