CA2766560A1 - Method of determining the influence of a variable in a phenomenon - Google Patents

Method of determining the influence of a variable in a phenomenon Download PDF

Info

Publication number
CA2766560A1
CA2766560A1 CA2766560A CA2766560A CA2766560A1 CA 2766560 A1 CA2766560 A1 CA 2766560A1 CA 2766560 A CA2766560 A CA 2766560A CA 2766560 A CA2766560 A CA 2766560A CA 2766560 A1 CA2766560 A1 CA 2766560A1
Authority
CA
Canada
Prior art keywords
variable
variable nodes
influence
nodes
selecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2766560A
Other languages
English (en)
French (fr)
Inventor
Robert Edward Callan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CA2766560A1 publication Critical patent/CA2766560A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/29Graphical models, e.g. Bayesian networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Computation (AREA)
  • Probability & Statistics with Applications (AREA)
  • Operations Research (AREA)
  • Artificial Intelligence (AREA)
  • Algebra (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Complex Calculations (AREA)
CA2766560A 2011-02-08 2012-02-02 Method of determining the influence of a variable in a phenomenon Abandoned CA2766560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/023,181 US8560279B2 (en) 2011-02-08 2011-02-08 Method of determining the influence of a variable in a phenomenon
US13/023,181 2011-02-08

Publications (1)

Publication Number Publication Date
CA2766560A1 true CA2766560A1 (en) 2012-08-08

Family

ID=45655393

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2766560A Abandoned CA2766560A1 (en) 2011-02-08 2012-02-02 Method of determining the influence of a variable in a phenomenon

Country Status (7)

Country Link
US (1) US8560279B2 (enExample)
EP (1) EP2492829A1 (enExample)
JP (1) JP2012164314A (enExample)
CN (1) CN102693262B (enExample)
BR (1) BR102012002812A8 (enExample)
CA (1) CA2766560A1 (enExample)
IN (1) IN2012DE00312A (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190279098A1 (en) * 2012-03-29 2019-09-12 Elasticsearch B.V. Behavior Analysis and Visualization for a Computer Infrastructure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9940405B2 (en) 2011-04-05 2018-04-10 Beyondcore Holdings, Llc Automatically optimizing business process platforms
US8560279B2 (en) * 2011-02-08 2013-10-15 General Electric Company Method of determining the influence of a variable in a phenomenon
US20120209575A1 (en) * 2011-02-11 2012-08-16 Ford Global Technologies, Llc Method and System for Model Validation for Dynamic Systems Using Bayesian Principal Component Analysis
US10802687B2 (en) * 2011-12-04 2020-10-13 Salesforce.Com, Inc. Displaying differences between different data sets of a process
US10796232B2 (en) * 2011-12-04 2020-10-06 Salesforce.Com, Inc. Explaining differences between predicted outcomes and actual outcomes of a process
US9990568B2 (en) * 2013-11-29 2018-06-05 Ge Aviation Systems Limited Method of construction of anomaly models from abnormal data
CN106156067B (zh) * 2015-03-30 2019-11-01 日本电气株式会社 用于为关系数据创建数据模型的方法和系统
US11232175B2 (en) 2019-03-28 2022-01-25 Nec Corporation Method, system, and computer program product for determining causality
KR102700731B1 (ko) * 2019-10-17 2024-08-30 한국전력공사 배전설비 관리 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171507A (ja) * 1984-02-16 1985-09-05 Nippon Atom Ind Group Co Ltd プラントの異常診断方法
US6671661B1 (en) * 1999-05-19 2003-12-30 Microsoft Corporation Bayesian principal component analysis
US7636651B2 (en) * 2003-11-28 2009-12-22 Microsoft Corporation Robust Bayesian mixture modeling
US7519564B2 (en) * 2004-11-16 2009-04-14 Microsoft Corporation Building and using predictive models of current and future surprises
US8032340B2 (en) * 2007-01-04 2011-10-04 Fisher-Rosemount Systems, Inc. Method and system for modeling a process variable in a process plant
JP5130851B2 (ja) * 2007-09-27 2013-01-30 富士通株式会社 モデル作成支援システム、モデル作成支援方法、モデル作成支援プログラム
US8775358B2 (en) 2007-11-30 2014-07-08 Massachusetts Institute Of Technology Method and apparatus for performing probabilistic inference and providing related solution methods
WO2011016928A1 (en) * 2009-08-07 2011-02-10 Exxonmobil Upstream Research Company Drilling advisory systems and method based on at least two controllable drilling parameters
US8306791B2 (en) * 2009-12-21 2012-11-06 United Technologies Corporation Method and system for modeling the performance of a gas turbine engine
US8560279B2 (en) * 2011-02-08 2013-10-15 General Electric Company Method of determining the influence of a variable in a phenomenon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190279098A1 (en) * 2012-03-29 2019-09-12 Elasticsearch B.V. Behavior Analysis and Visualization for a Computer Infrastructure
US11657309B2 (en) * 2012-03-29 2023-05-23 Elasticsearch B.V. Behavior analysis and visualization for a computer infrastructure

Also Published As

Publication number Publication date
JP2012164314A (ja) 2012-08-30
IN2012DE00312A (enExample) 2015-04-10
CN102693262A (zh) 2012-09-26
US8560279B2 (en) 2013-10-15
BR102012002812A8 (pt) 2017-11-21
CN102693262B (zh) 2017-01-18
BR102012002812A2 (pt) 2017-11-07
EP2492829A1 (en) 2012-08-29
US20120203517A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US8560279B2 (en) Method of determining the influence of a variable in a phenomenon
US11487598B2 (en) Adaptive, self-tuning virtual sensing system for cyber-attack neutralization
Xu et al. PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data
JP5306902B2 (ja) 資産システムの高性能条件監視のためのシステムおよび方法
KR101713985B1 (ko) 예지 정비 방법 및 장치
WO2020049087A1 (en) Computer-implemented method, computer program product and system for anomaly detection and/or predictive maintenance
EP3105644B1 (en) Method of identifying anomalies
US20140258187A1 (en) Generating database cluster health alerts using machine learning
JP6751561B2 (ja) 装置の構成要素の集合を監視するシステムおよび方法
EP2646884A1 (en) Machine anomaly detection and diagnosis incorporating operational data
KR20140058501A (ko) 패턴 시퀀스를 가지는 커널 회귀 모델링을 사용하는 모니터링 시스템
US20050261837A1 (en) Kernel-based system and method for estimation-based equipment condition monitoring
US20210084056A1 (en) Replacing virtual sensors with physical data after cyber-attack neutralization
Skordilis et al. A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression
Lorenti et al. Predictive maintenance in the industry: A comparative study on deep learning-based remaining useful life estimation
Al-Refaie et al. Prediction of the remaining useful life of a milling machine using machine learning
Razavi et al. Remaining useful life estimation using ANFIS algorithm: A data-driven approcah for prognostics
Hu et al. Multivariate anomaly detection in real-world industrial systems
Yin et al. Sensor selection and location scheme for prognostic and health management
Schumann et al. Verification and validation of system health management models using parametric testing
Shahid et al. A novel deep multi‐task learning model for spatial–temporal fault detection and diagnosis in industrial systems
Qi Fault Diagnosis and Fault Severity Prediction Based on Computational Intelligence Techniques for Industrial Processes
Losi et al. Methodology to Monitor Early Warnings Before Gas Turbine Trip
Varde et al. Prognostics and health management
Hu et al. Detection of chiller energy efficiency faults using expectation maximization

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20161202

FZDE Discontinued

Effective date: 20200204