CA2758684C - Pressure pulsation dampener - Google Patents

Pressure pulsation dampener Download PDF

Info

Publication number
CA2758684C
CA2758684C CA2758684A CA2758684A CA2758684C CA 2758684 C CA2758684 C CA 2758684C CA 2758684 A CA2758684 A CA 2758684A CA 2758684 A CA2758684 A CA 2758684A CA 2758684 C CA2758684 C CA 2758684C
Authority
CA
Canada
Prior art keywords
half housing
outlet
disposed
openings
choke plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2758684A
Other languages
French (fr)
Other versions
CA2758684A1 (en
Inventor
Fred Rusty Darsey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/949,524 external-priority patent/US8613607B2/en
Application filed by Individual filed Critical Individual
Publication of CA2758684A1 publication Critical patent/CA2758684A1/en
Application granted granted Critical
Publication of CA2758684C publication Critical patent/CA2758684C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Measuring Volume Flow (AREA)
  • Pipe Accessories (AREA)

Abstract

A pressure pulsation dampener for use in a gas stream is disclosed herein. The dampener can include a housing with an inlet half and an outlet half having a recess, a shaft hole, and an extension with an outlet port. The inlet half can be secured to the outlet half, and can have an extension with an inlet port, forming a flow path. A choke plate can be disposed in the recess within the flow path. A shaft can be disposed through the outlet half to move the openings. The dampener can include an indicator plate with indicator openings. A fastener can engage the indicator openings and secure to the outlet half. The dampener can have a transducer, a motor connected to the shaft, a motor driver, and a controller in communication with the motor driver for comparing frequency rates to preset limits and activating the motor.

Description

SPECIFICATION
PRESSURE PULSATOIN DAMPENER
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims priority to co-pending US Patent Application Serial No. 12/751,028 filed on March 31, 2010, entitled "Pulsation Dampener for Gas Compressors Having Selectable Size Choke Openings".
FIELD
[0002] The present embodiments generally relate to a pressure pulsation dampener.
BACKGROUND
[0003] A need exists for a pressure pulsation dampener that optimally reduces or greatly eliminates square root error.
[0004] A need exists for a pressure pulsation dampener that can be used to provide pulsation dampening to a medium flowing in a conduit. The medium can be a vapor, liquid, or multi phase medium.
[0005] A further need exists for a pressure pulsation dampener that optimizes the efficiency of an up stream compressor often associated with the use of a choke plate in flow systems.
[0006] The present embodiments meet these needs.

BRIEF DESCRIPTION OF THE DRAWINGS
100071 The detailed description will be better understood in conjunction with the accompanying drawings as follows:
[0008] Figure 1 depicts a cut view of a pressure pulsation dampener for use in a compressible medium according to one or more embodiments.
[0009] Figure 2 depicts an outlet port end view of an outlet half housing of Figure 1.
1000101 Figure 3 depicts an automated system for pulsation dampening according to one or more embodiments.
[00011] Figure 4 depicts a schematic of a controller according to one or more embodiments.
.. [00012] Figure 5 depicts a choke plate according to one or more embodiments.
[00013] Figure 6 depicts an indicator plate according to one or more embodiments.
1000141 The present embodiments are detailed below with reference to the listed Figures.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[000151 Before explaining the present apparatus and system in detail, it is to be understood the apparatus and system are not limited to the particular embodiments and the apparatus and system can be practiced or carried out in various ways.
[00016] The present embodiments relate to a pressure pulsation dampener. The pressure pulsation dampener can be used on a medium flowing in a flow system. The medium can be a natural gas stream. The medium can be natural gas from a compressor, natural gas from a tank, natural gas from a gathering site, natural gas from a separator, or combinations thereof. The medium can be a vapor, a liquid, or a multiphase stream. The medium can have a pressure from approximately fifty psig to about four hundred psig (pound-force per square inch gauge). For example, the medium can be a compressible natural gas stream.

[00017] The pressure pulsation dampener can have an outlet half housing, an inlet half housing, a choke plate, a shaft, an indicator plate, a stop pin, and a removable fastener.
[00018] The outlet half housing can have an outlet front side and an outlet back side. The outlet back side can have a recess formed therein. The recess can be a flat cylindrical surface.
[00019] The outlet front side and the outlet back side can have a shaft hole formed therethrough. An outlet pipe extension can be disposed in at least a portion of the outlet half housing side. The outlet pipe extension can be configured to engage a downstream conduit. For example, the outlet pipe extension can be integral with and formed perpendicular to the outlet back side, and can engage a downstream tubular member. An inlet pipe extension can be disposed in at least a portion of the inlet half housing side. The inlet pipe extension and the outlet pipe extension can have identical lengths.
[00020] The inlet half housing can have an inlet front side and an inlet back side. The inlet back side can be engaged with the outlet back side. As such, a seal can be formed between the outlet back side and inlet front side. The inlet pipe extension can be disposed within a portion of the inlet half housing. The inlet pipe extension can be in fluid communication with the outlet pipe extension and with an upstream tubular member. As such, the inlet pipe extension can allow the medium to travel from the upstream to the downstream, such as from an upstream tubular member to a downstream tubular member via outlet half housing and inlet half housing.
[00021] The outlet half housing and inlet half housing can have an overall diameter from about six inches to about thirty inches. The outlet half housing and inlet half housing can have a thickness from about three inches to about three-fourths of one inch. A
plurality of removable fasteners can be used to connect the inlet half housing to the outlet half housing.

[00022] The outlet half housing and inlet half housing can be at least partially made from steel, steel alloys, coated steel, iron, durable pressure resistant non-deforming polymers, or combinations thereof.
[00023] The choke plate can be disposed in the recess formed into the outlet back side of the outlet half housing. In one or more embodiments, the choke plate can engage the flow path formed by the inlet pipe extension. For example, the choke plate can intersect the flow path. The choke plate can create a variable restriction on the medium through the flow path.
[00024] The choke plate can have a diameter larger than an inner diameter of the upstream tubular member. For example, the diameter of the choke plate can be from about three to about seven times larger than the inner diameter of the upstream tubular member, [00025] The choke plate can have a thickness from about one-sixteenth of an inch to about two inches. For example, the thickness of the choke plate can be one-eighth of an inch. The choke plate can have a semicircular shape containing openings along only a curved portion thereof.
[00026] In one or more embodiments, a shaft can be disposed through the outlet half housing.
The shaft can be used to move a rectangular choke plate to one or more positions. The positions can selectively present individual openings to the flow path to dampen a pulsation frequency rate of the medium through the flow path. As such, a user can selectively control the pulsation frequency in the medium using a corresponding opening in the rectangular sliding choke plate.
1000271 The choke plate can include a centrally formed shaft hole and a plurality of openings.
The plurality of openings can be disposed around a perimeter of the choke plate. The plurality of openings can be used to allow the choke plate to create the variable restriction. The plurality of openings can have or form differing flow areas.
In one or more embodiments, one or more openings of the plurality of openings can have sequentially smaller inner diameters. For example, the inner diameters of a first opening, such as an opening disposed at a twelve 'o'clock position on the choke plate, can have a one and a half inch diameter, and a second opening, disposed at a one 'o'clock position on the choke plate, can have a one and a quarter inch diameter. The flow areas of the openings can decrease sequentially in a counter clockwise or clockwise direction.
[00028] Each of the openings of the plurality of openings can provide blockage in the pipe.
The blockage can range from zero percent blockage to ninety percent blockage of the flow path. The plurality of openings can be configured in an order of ascending or descending blockage percentages.
[00029] In one or more embodiments, the choke plate can have openings with inner diameters from about 0.03 inches to about 5.5 inches. The size of the openings in the choke plate can be a function of pipe size, schedule, and flow range. For example, if a pipe is a schedule 40, 2 inch class 600 lb, the opening can range from 0.20 inches to 1.25 inches.
[00030] In one or more embodiments, the shaft can be disposed through the outlet half housing. The shaft can be used to rotate the choke plate to a desired opening.
The desired opening can be selectively presented. Accordingly, the desired opening can be operatively aligned with the flow path, and can dampen the pulsation frequency rate of the medium through the flow path.
[00031] The indicator plate can have a plurality of indicator openings. The plurality of indicator openings can correspond to the plurality of openings in the choke plate. For example, a first indicator opening can be associated with the first opening of the plurality of openings formed through the choke plate. A marking or other tag, such as an RFID tag (radio frequency identification tag) or electro-magnetic tag, can be placed on or proximate to the first indicator opening, and the marking or tag can be configured to indicate that the first indicator opening is associated with the first opening of the plurality of openings formed through the choke plate.

1000321 The indicator plate can also include a shaft hole. The shaft hole can be configured to be concentrically aligned with the shaft. When the shaft hole is concentrically aligned with the shaft, the indicator openings can be aligned with their associated openings, allowing for visual indication of the plurality of openings in the choke plate.
[00033] Over-rotation of the indicator plate and the choke plate can be prevented by a stop pin disposed in the front side of the outer half housing.
1000341 The rotation of the indicator plate can be prevented by a removable fastener at least partially disposed through one of the indicator openings and through a portion of the front side of the outer half housing.
[00035] In one or more embodiments, a lock out device can be disposed on the front side of the outlet half housing over at least a portion of the indicator plate. The lock out device can be used to prevent unauthorized tampering with the indicator plate.
The lock out device can include a block. The block can be non-removably secured to the outlet half housing. The block can be used to engage the removable fastener, such as a set screw. As such, the block can prevent movement of the indicator openings and rotation of the indicator plate.
[00036] The block can have one or more lock holes disposed therethrough. The lock holes can allow a lock to be disposed through the block.
[00037] A first seal can be disposed between the inlet back side and the outlet back side. The first seal can be on a first side of the flow path. A second seal can be disposed between the inlet back side and the outlet back side, and on a second side of the flow path. The first and second seals can be elastomeric or other materials. For example, the first and second seals can be rubber o-rings. The first and second seals can be configured to provide positive pressure for the flow path, and to control impact of the medium in the recess in the outlet back side.
[00038] In one or more embodiments, a first metal to metal seal can be formed between the inlet back side and the outlet back side on a first side of the flow path. A
second metal to metal seal can be formed between the inlet back side and the outlet back side on a second side of the flow path. The first and second metal to metal seals can provide a positive pressure in the flow path.
[00039] One or more first flange type connectors can connect the outlet pipe extension to a downstream pipe. A second flange type connector can connect the inlet pipe extension to an upstream pipe.
1000401 In one or more embodiments, a second choke plate can be disposed in parallel to the first choke plate. The second choke plate can have a plurality inner diameters that can be different from the diameters of the plurality of openings formed in the first choke plate.
[00041] In one or more embodiments, the pressure pulsation dampener can be automated. As such, the automated pressure pulsation dampener can include a motor. The motor can be configured to rotate the shaft. The motor can be a direct drive motor, a variable drive motor, a remote controlled motor, an electric motor, or the like. The motor can be connected to a motor driver. The motor driver can be a speed reducer, a step gear assembly, a drive box, an actuator, a transmission, or other gear assembly.
1000421 A controller can be in communication with the motor. The motor can drive the motor drive to move the choke plate. The controller can include a processor. The processor can be in communication with a data storage.
1000431 The data storage can include computer instructions for processing signals from at least one upstream transducer connected to the upstream tubular member, and from at least one downstream transducer connected to the downstream tubular member.
The signals can be processed into monitored frequency rates. The data storage can include computer instructions for comparing the monitored frequency rates to preset limits in the data storage. The data storage can include computer instructions for instructing the processor to activate the motor to rotate the shaft to a pre-designated position in order to rotate the choke plate, providing an opening that minimizes pulsation frequency and optimizes flow measurement accuracy.
7 [00044] The transducers can be wireless and can have separate power supplies for connecting to the controller. The controller can be in wireless communication with the motor.
[00045] In one or more embodiments, the automated pressure pulsation dampener can include an analog to digital converter. The analog to digital converter can be disposed between the transducers and the controller, and can be in communication therewith.
The analog to digital converter can be one similar or substantially similar to those known to one skilled in the art.
[00046] In one or more embodiments, the automated pressure pulsation dampener can include a controller that can activate the motor. The controller can control the rotation of the motor such that the rotation of the shaft moves the choke plate to an opening that minimizes pulsation frequency and that optimizes flow measurement accuracy using existing customer compressor data.
[00047] Accordingly, the automated pressure pulsation dampener can allow a user to selectively control pulsation frequency in the medium using a corresponding opening in the choke plate automatically while maintaining a visual indication of the opening currently being used in the flow path by the choke plate.
[00048] Turning now to the Figures, Figure 1 depicts a cut view of a pressure pulsation dampener 10 for use in a compressible medium according to one or more embodiments. The pressure pulsation dampener 10 can include an outlet half housing 12b, an inlet half housing 12a, a choke plate 24, a shaft 26, and a centrally formed shaft hole 111.
[00049] The outlet half housing 12b can have an outlet front side and a outlet back side. A
recess 18 can be formed in the outlet back side. The outlet half housing 12b can have an outlet pipe extension 116. The outlet pipe extension 116 can be formed on or otherwise connected to the outlet half housing 12b.
8 [00050] The inlet half housing 12a can have an inlet front side and an inlet back side. The inlet back side can engage the outlet back side. As such, a seal can be formed between the inlet back side and the outlet back side. The inlet half housing 12a can also include an inlet pipe extension 122 formed thereon or connected thereto.
[00051] The inlet half housing 12a and the outlet half housing 12b can be connected to one another, such as by a first fastener 14a and a second fastener 14b.
[00052] A flow path 106 can be formed between the outlet pipe extension 116 and the inlet pipe extension 122. The flow path 106 can have an inlet 20 and an outlet 22.
The inlet 20 can be in fluid communication with a downstream tubular member. The outlet can be in fluid communication with an upstream tubular member.
[00053] The choke plate 24 can be disposed in the recess 18. The choke plate 24 can be at least partially disposed within the flow path 106. Accordingly, the flow path 106 can create a variable restriction on a medium flowing through the flow path 106.
The centrally formed shaft hole 111 can be disposed through the choke plate 24.
[00054] The centrally formed shaft hole 111 can be aligned with a hole formed through the inlet half housing 12a or the outlet half housing 12b.
[00055] The shaft 26 can be disposed through the hole formed through the inlet half housing 12a, the outlet half housing 12b, or both and into the centrally formed shaft hole 111.
The shaft 26 can engage and rotate the choke plate 24.
[00056] One or more first seals 16 can be disposed about or adjacent to the choke plate 24.
One or more shaft seals 27 can be disposed adjacent to or about the shaft 26.
[00057] A removable fastener 29, such as a set screw, can be used to connect an indictor plate 28 to the outlet half housing 12b.
[00058] A first flange type connector 12c can be disposed on the inlet pipe extension 122, and a second flange type connector 12d can be disposed on the outlet pipe extension 116.
9 The flange type connectors 12c and 12d can be used to connected the pipe extensions 116 and 122 to adjacent tubular members.
[00059] Figure 2 depicts an end view of the outlet house half housing 12b showing an outlet port 22. The shaft 26 can be disposed through the indicator plate 28. The indicator plate 28 can have a plurality of indicator openings 220. Each indicator opening 220 can be associated with an opening formed in the choke plate. As such, by viewing the indicator plate 28, one can determine what size of an opening in the choke plate is being used. Also depicted is the second flange type connector 12d.
[00060] Figure 3 depicts an automated system for pulsation dampening 300 according to one or more embodiments. The automated system for pulsation dampening 300 can include the pressure pulsation dampener 10, a transducer 64, a motor 50, and a control unit 54.
[00061] The control unit 54 can include an analog to digital converter 62, a pulse height analyzer 60, and a controller 58. A motor driver 56 can be in mechanical and/or electrical communication with the motor 50.
1000621 The control unit 54 can be in communication with the transducer 64.
For example, the transducer 64 can send a signal to the analog to digital converter 62. The analog to digital converter 62 can communicate the signal to the pulse height analyzer 60. The pulse height analyzer 60 can determine an amplitude of the pressure pulse measured by the transducer 64.
1000631 The pulse height analyzer 60 can communicate the determined amplitude of the pressure pulse measured by the transducer 64 to the controller 58. The controller 58 can use the determined amplitude of the pressure pulse measured by the transducer 64 to determine what opening on the choke plate 24 should be used, and to instruct the motor driver 56 to allow the motor 50 to rotate a predetermined amount. When the motor 50 rotates the predetermined amount, the preselected opening can be aligned with the flow path.

[00064) Figure 4 depicts an embodiment of the controller 58 according to one or more embodiments. The controller 58 can include a processor 405 in communication with a data storage 410.
[00065] The processor 405 can be a Pentium processor, a micro processor, or a similar device.
The data storage 410 can be any computer readable medium, such as a flash drive, a compact disc, a hard drive, or the like.
[00066] The data storage 410 can include computer instructions for processing signals from at least one transducer 420. For example, the computer instructions for processing signals from at least one transducer can instruct the processor 405 to communicate with the analog to digital converter or with the transducer.
[00067] The data storage 410 can also include computer instructions for instructing the processor to receive the amplitude of pressure pulse measured by the transducer 430.
For example, these computer instructions can instruct the processor 405 to communicate with a pulse height analyzer.
[00068] The data storage 410 can also include computer instructions for comparing the amplitude of pressure pulse to preset limits in the data storage 440. For example, the data storage 410 can have one or more charts that associate an opening in the choke plate to a desired amplitude of pressure pulse based upon the monitored amplitude of pressure pulse.
[00069] The data storage 410 can also include computer instructions for rotating the choke plate to a predefined position 450. For example, the predefined position can be associated with an opening determined by the computer instructions for comparing the amplitude of pressure pulse to preset limits in the data storage 440. The predefined opening can minimize pulsation frequency and optimize flow measurement.

[00070] Figure 5 depicts a choke plate 500 according to one or more embodiments. The choke plate 500 can include a plurality of openings 32a-32j. The plurality of openings 32a-32j can be disposed about a perimeter 108 of the choke plate 500. The plurality of openings 32a-32j can be sequentially arranged. For example, a first opening 32a can be one inch in diameter, a second opening 32b can be 1/4 of an inch in diameter, a third opening 32c can be 1/2 of an inch in diameter, and so forth.
[00071] The centrally formed shaft hole 111 can have one or more key slots 530. The key slot 530 can be configured to engage a knob or ridge formed on a shaft, such as the shaft depicted in Figure 1. The choke plate 500 can be at least partially encased by the outlet half housing 12b.
[00072] As the choke plate 500 is rotated, at least one of the plurality of openings 32a-32j or at least a portion of one or more of the plurality of openings 32a-32j can be located in the flow path shown above in Figure 1.
[00073] Figure 6 depicts an indicator plate 600 according to one or more embodiments. The indicator plate 600 can have a shaft hole 624 formed therethrough. The shaft hole 624 can have one or more key slots 626. The key slot 626 can secure the indicator plate 600 to the shaft 26.
[00074] The indicator plate 600 can have one or more indicator openings, such as first indicator opening 622a and tenth indicator opening 622j. The indicator opening 622a and 622j can correspond to an opening in the choke plate.
[00075] A stop pin 40 can be provided to disable rotation of the indicator plate 600 and the choke plate into any position which would close flow through the flow path.
[00076] While these embodiments have been described with emphasis on the embodiments, it should be understood that within the scope of the appended claims, the embodiments might be practiced other than as specifically described herein.

Claims (19)

What is claimed is:
1. A pulsation dampener for use on a medium in a flow system, the dampener comprising:

a. an outlet half housing comprising a recess formed into a portion thereof and a shaft hole formed therethrough, wherein an outlet pipe extension having an outlet port is disposed on the outlet half housing;

b. an inlet half housing configured to secure to the outlet half housing, wherein an inlet pipe extension having an inlet port is disposed on the inlet half housing, and wherein a flow path is formed between the inlet port and the outlet port when the outlet half housing is secured to the inlet half housing;

c. a choke plate disposed in the recess and at least partially disposed within the flow path, wherein the choke plate comprises:

(i) a centrally formed shaft hole; and (ii) a plurality of openings disposed about a perimeter of the choke plate;

d. a shaft disposed through the outlet half housing for moving the choke plate to selectively present individual openings of the plurality of openings to the flow path;

e. an indicator plate comprising a plurality of indicator openings corresponding to the plurality of openings in the choke plate;

f. a stop pin disposed on the outlet half housing for preventing over-rotation of the indicator plate and the choke plate; and g. a removable fastener for engaging one of the plurality of indicator openings and securing to a portion of the outlet half housing.
2. The dampener of claim 1, wherein each of the plurality of openings at least partially blocks flow through the flow path, and wherein the blockage of flow ranges from zero percent blockage to ninety percent blockage.
3. The dampener of claim 1, wherein the medium is a vapor, a liquid, or a mixed phase.
4. The dampener of claim 1, wherein the medium is a natural gas.
5. The dampener of claim 4, wherein the natural gas is a natural gas from a compressor, a natural gas from a tank, a natural gas from a gathering site, a natural gas from a separator, or combinations thereof.
6. The dampener of claim 1, wherein the outlet half housing and the inlet half housing have outer diameters from six inches to thirty six inches.
7. The dampener of claim 1, wherein the outlet half housing and the inlet half housing each comprise: steel, a steel alloy, a coated steel, iron, a durable pressure resistant non-deforming polymer, or combinations thereof.
8. The dampener of claim 1, further comprising:

a. a first seal disposed between the outlet half housing and the inlet half housing on a first side of the flow path; and b, a second seal disposed between the outlet half housing and the inlet half housing on a second side of the flow path.
9. The dampener of claim 1, further comprising:

a. a first metal to metal seal formed between the outlet half housing and the inlet half housing on a first side of the flow path; and b. a second metal to metal seal formed between the outlet half housing and the inlet half housing on a second side of the flow path.
10. The dampener of claim 1, wherein the choke plate has a diameter from three to seven times larger than an inner diameter of an upstream tubular member.
11. The dampener of claim 1, wherein the choke plate has a semicircular shape containing the plurality of openings along only a curved portion thereof.
12. The dampener of claim 1, further comprising:

a. a flange type connector adjacent the outlet pipe extension; and b. another flange type connector adjacent the inlet pipe extension.
13. The dampener of claim 1, further comprising a second choke plate disposed in parallel to the choke plate, wherein the second choke plate comprises a second plurality of openings with different diameters than the plurality of openings of the choke plate.
14. The dampener of claim 1, wherein the medium has a pressure from fifty psig to five thousand psig.
15. The dampener of claim 1, wherein the choke plate is a circular shape, a rectangular shape, a curvilinear shape, or a parallelogram shape.
16. The dampener of claim 1, further comprising a lock out device disposed on a front side of the outlet half housing over at least a portion of the indicator plate for preventing unauthorized tampering with the indicator plate and the choke plate.
17. An automated system for dampening pulsation of a medium, wherein the system comprises:

a. a pressure pulsation dampener for use on a medium, the pressure pulsation dampener comprising:

(i) an outlet half housing comprising a recess formed into a portion thereof and a shaft hole formed therethrough, wherein an outlet pipe extension having an outlet port is disposed on the outlet half housing;

(ii) an inlet half housing configured to secure to the outlet half housing, wherein an inlet pipe extension having an inlet port is disposed on the inlet half housing, and wherein a flow path is formed between the inlet port and the outlet port when the outlet half housing is secured to the inlet half housing;

(iii) a choke plate disposed in the recess and at least partially disposed within the flow path, wherein the choke plate comprises: a centrally formed shaft hole and a plurality of openings disposed about a perimeter of the choke plate;

(iv) a shaft disposed through the outlet half housing for moving the choke plate to selectively present individual openings of the plurality of openings to the flow path;

(v) an indicator plate comprising a plurality of indicator openings corresponding to the plurality of openings in the choke plate;

(vi) a stop pin disposed on the outlet half housing for preventing over-rotation of the indicator plate and the choke plate; and (vii) a removable fastener for engaging one of the indicator openings and securing to a portion of the outlet half housing;

b. a transducer;

c. a motor connected to the shaft for rotating the shaft; and d. a controller in communication with the motor, wherein the controller comprises:
(i) a processor;

(ii) a data storage in communication with the processor, wherein the data storage comprises computer instructions for comparing monitored frequency rates to preset limits in the data storage and for instructing the processor to activate the motor to rotate the shaft to a pre-designated position depending on the monitored frequency rates.
18. The system of claim 17, further comprising an analog to digital converter in communication with the transducer and the controller.
19. An automated system for dampening pulsation of a medium, wherein the system comprises:

a. a pressure pulsation dampener for use on a medium, wherein the pressure pulsation dampener comprises:

(i) an outlet half housing comprising a recess formed into a portion thereof and a shaft hole formed therethrough, wherein an outlet pipe extension having an outlet port is disposed on the outlet half housing;

(ii) an inlet half housing configured to secure to the outlet half housing, wherein an inlet pipe extension having an inlet port is disposed on the inlet half housing, and wherein a flow path is formed between the inlet port and the outlet port when the outlet half housing is secured to the inlet half housing;

(iii) a choke plate disposed in the recess and at least partially disposed within the flow path, wherein the choke plate comprises: a centrally formed shaft hole and a plurality of openings disposed about a perimeter of the choke plate;

(iv) a shaft disposed through the outlet half housing for moving the choke plate to selectively present individual openings of the plurality of openings to the flow path;

(v) an indicator plate comprising a plurality of indicator openings corresponding to the plurality of openings in the choke plate;

(vi) a stop pin disposed on the outlet half housing for preventing over-rotation of the indicator plate and the choke plate; and (vii) a removable fastener for engaging one of the plurality of indicator openings and securing to a portion of the outlet half housing;

b. a transducer; and c. a control unit for instructing a motor to move the choke plate depending on signals sent from the transducer.
CA2758684A 2010-11-18 2011-11-18 Pressure pulsation dampener Expired - Fee Related CA2758684C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/949,524 2010-11-18
US12/949,524 US8613607B2 (en) 2010-03-31 2010-11-18 Pressure pulsation dampener

Publications (2)

Publication Number Publication Date
CA2758684A1 CA2758684A1 (en) 2012-05-18
CA2758684C true CA2758684C (en) 2019-10-08

Family

ID=46179325

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2758684A Expired - Fee Related CA2758684C (en) 2010-11-18 2011-11-18 Pressure pulsation dampener

Country Status (2)

Country Link
CA (1) CA2758684C (en)
MX (1) MX2011012360A (en)

Also Published As

Publication number Publication date
MX2011012360A (en) 2012-05-18
CA2758684A1 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
US9291157B1 (en) Automated system for pressure pulsation dampening
CA3027378C (en) Water meter with magnetically driven flow restriction valve
US9574923B2 (en) Water meter systems and methods with bypass-flow path and rechargeable energy storage
US7051765B1 (en) Balanced orifice plate
US9170137B2 (en) Rotatable orifice plate for direct flow measurement
CN1232893C (en) Self-centering magnet assembly for use in linear travel measurement device
US9909680B2 (en) Mechanical stop for actuator and orifice
US20090035121A1 (en) Fluid Flow Modulation and Measurement
US20110308888A1 (en) High pressure lubrication system
EP2277013A2 (en) Pressure differential metering device
WO2009014656A1 (en) Differential pressure diagnostic for process fluid pulsations
US11892331B2 (en) Cartridge-style hydraulic flow sensor
US20090150096A1 (en) Electronic flow characteristic indicating flow meter
CA2758684C (en) Pressure pulsation dampener
EP2948742B1 (en) Rotatable orifice plate for direct flow measurement
US8397587B2 (en) Paddle-type flowmeter with magnetic coupling
EP3940288A1 (en) A method and system of monitoring a meter set using a sensor
NL2014629A (en) Orifice assembly for a differential pressure meter.
US20170045896A1 (en) Flow Controller
EP1676101A2 (en) Inferential densometer and mass flowmeter
NL2018493B1 (en) Orifice carrier flange
CN216668828U (en) Valve-controlled electromagnetic water meter
Styles et al. Testing of Two 30-inch Magnetic Flow Meters
CN202132593U (en) Temperature and pressure protection type flow controller
CN209925685U (en) Three-way valve and valve control system

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20161103

MKLA Lapsed

Effective date: 20211118