CA2750817C - Cut-resistant hockey sock - Google Patents

Cut-resistant hockey sock Download PDF

Info

Publication number
CA2750817C
CA2750817C CA2750817A CA2750817A CA2750817C CA 2750817 C CA2750817 C CA 2750817C CA 2750817 A CA2750817 A CA 2750817A CA 2750817 A CA2750817 A CA 2750817A CA 2750817 C CA2750817 C CA 2750817C
Authority
CA
Canada
Prior art keywords
tubular layer
hockey
hockey sock
sock
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2750817A
Other languages
French (fr)
Other versions
CA2750817A1 (en
Inventor
David Tock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DO-GREE FASHIONS Ltd
Original Assignee
DO-GREE FASHIONS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DO-GREE FASHIONS Ltd filed Critical DO-GREE FASHIONS Ltd
Publication of CA2750817A1 publication Critical patent/CA2750817A1/en
Application granted granted Critical
Publication of CA2750817C publication Critical patent/CA2750817C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B11/00Hosiery; Panti-hose
    • A41B11/02Reinforcements
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B17/00Selection of special materials for underwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/06Knee or foot

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Socks And Pantyhose (AREA)

Abstract

A hockey sock is provided, constructed as a tube. The tube includes an outer textile layer and an inner lining including an ultra-high molecular weight polyethylene yarn that confers cut-resistance to the hockey sock. The inner lining may be configured as a knit half-cardigan fabric that is disposed generally in a floating relationship with the outer textile layer such that the two are connected only at their respective top and bottom, and/or a select number of locations such as point connections, seams, or other connections that permit a sliding relationship between the layers.

Description

CUT-RESISTANT HOCKEY SOCK
[0001]
TECHNICAL FIELD
[0002] Embodiments of the present invention relates to a hockey sock.
More particularly they relate to a hockey sock provided with a cut-resistant liner feature.
BACKGROUND
[0003] Hockey socks are ankle-to-thigh garments worn over protective gear by ice hockey players. Traditionally, they are form-fitting and are made of a cotton, synthetic, or blended rib-knit fabric. "Hockey socks"
should not be confused with "hockey skate socks" which are thin socks worn over the foot inside the skate in the same manner as socks worn inside shoes. The hockey sock generally are held up either by a garter or attached to undershorts with hook-and-loop fabric fastener tabs. Some players keep their socks tucked inside the upper ankle area of their skates, but other wear their socks pulled down over the outside heel of their skates. Many organized hockey teams wear hockey socks in designated team colors, which may be complementary to the team jersey.
[0004] One of the risks faced by hockey players is injury when the sharpened blade of a skate (worn by another player or oneself) comes into contact with the player. A resulting cut may range from a shallow cut or scrape to a deep wound that can sever muscles and/or tendons. For example, a player who falls to the ice during play may expose his calf and Achilles tendon to debilitating injury by another player who slides into him.
[0005] Some "hockey skate socks" have been developed using cut-resistant aramid fibers. These thin socks are worn next to the skin, and ¨

as a result of the physical properties of the fibers with which they are made cannot typically be dyed in a color-fast manner that would promote player use and compliance with uniform rules in hockey leagues. They may be screen printed or the like, but the regular washing of socks of this type (e.g., by school age and other non-major league/professional hockey players) may weaken the aramid fibers and may erode any printed pattern/color.
[0006] Accordingly, it would be advantageous to provide protective equipment that protects against such injury without impairing the mobility of a player wearing the equipment. It would further be advantageous to provide equipment of a type already in common use that would further provide protection against such injury. It would also be advantageous to provide cut-resistance in an outermost hockey garment such as a hockey sock, which will permit any underlying layers of garments, equipment, or the like to potentially assist in further protection.
BRIEF SUMMARY
[0007] In one aspect, embodiments of the present invention may include a hockey sock including a cut-resistant liner separate from an outer layer.
Certain embodiments may include more than one cut-resistant layer.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] FIG. 1 shows a pair of hockey socks;
[0009] FIG. 2 shows an external view of a dual-layer hockey sock;
[0010] FIG. 3 shows a perspective lateral section view of the hockey sock of FIG. 2, with a lining layer displayed; and [0011] FIG. 4 shows a view of the hockey sock of FIG. 2, with an intermediate length of an outer layer removed to display a lining inner layer.

DETAILED DESCRIPTION
[0012] Embodiments are described with reference to the drawings in which like elements are generally referred to by like numerals. The relationship and functioning of the various elements of the embodiments may better be understood by reference to the following detailed description. However, embodiments are not limited to those illustrated in the drawings. It should be understood that the drawings are not necessarily to scale, and in certain instances details may have been omitted that are not necessary for an understanding of embodiments of the present invention, such as ¨ for example ¨conventional fabrication and assembly. The present invention now will be described more fully hereinafter. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. As used in this specification and the claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise.
[0013] FIG. 1 shows a pair of hockey socks 100 of the present invention, including a multi-colored striped pattern on its exterior. FIG. 2 shows a side view of a single hockey sock 100. The sock 100 is open at its top end 102 and at its bottom end 104, forming a tapered tube or generally tube-like shape configured and dimensioned to accommodate and fit to a player's leg, including any underlying equipment (e.g., shin guards, thigh pads, etc.). A smaller-diameter portion near the bottom end 104 may allow a player to tuck the sock 100 into his skate or to have it closely fit around the skate's exterior. The visible outer layer 110 may include or completely be constructed of, for example, a textured polyester fiber, cotton, or a combination thereof, as well as any other appropriate knitted, woven, or non-woven textile material. In preferred embodiments, the outer layer 110 may be dyed during and/or after construction, and/or may incorporate dyed or otherwise colored yarn and/or other construction materials that will be useful and likely to be used by players desiring (or ¨
subject to rules ¨ needing) to have certain colors in their hockey socks.
For example, the sock may include colored material selected to provide a desired color scheme such as official team colors, or some other pre-determined color and/or color-combination.
[0014] FIG. 3 shows an upper portion of the sock 100 of FIG. 3, viewed along a lateral section taken across line 3-3 of FIG. 2. The outer layer 110 surrounds an inner layer 112. The inner layer 112 includes an ultra-high molecular weight polyethylene yarn (e.g., commercially available under the trade name Dyneema ). In various embodiments, the liner/ inner layer 112 may include, consist of, or consist essentially of the ultra-high molecular weight polyethylene yarn, which may be woven or may be knit, for example, as a half-cardigan fabric. The liner 112 may be woven, knit, or any combination thereof. FIG. 4 shows the hockey sock of FIG. 2, with an intermediate portion of the outer layer 110 removed for illustrative purposes only to show the liner 112. In the embodiment shown, the liner 112 is attached to the outer layer 110 only along a circumferential upper seam 106 near the upper end 102 and/or a circumferential lower seam 108 near the lower end 104. At least one or more other points and/or seams of contact between the liner 112 and the outer layer 110 may be provided in other embodiments between near the upper end and near the lower end, but with a significant surface portion of each of the outer layer 110 and the liner 112 being disposed in a "floating" relationship between contact regions. Each of the outer layer 110 and the liner 112 preferably will include at least one layer of material, but each of the outer layer 110 and the liner 112 may include more than one layer of material.
In embodiments where the outer layer 110 and/or the liner 112 includes more than one layer of material, those other layers may include the same or different construction and composition than each other. Stated differently, a first layer 110 will include at least one layer of material, but may ¨ in other embodiments that will readily be understood ¨ include a plurality of layers, each of which may differ from the others. In like manner, a second, inner, layer 112 will include at least one layer of the cut-resistant material described above, but may ¨ in other embodiments that will readily be understood ¨ include a plurality of layers, each of which may differ from the others. As such, each of the outer layer 110 and the liner 112 may include multilayer construction. Those of skill in the art will readily appreciate that the floating construction and other construction features described above with reference to two-layer-only embodiment will readily apply to such further multilayer embodiments, within the scope of the present disclosure.
[0015] This construction may enhance the cut-resistance feature of the hockey sock 100. The liner fabric 112 made of ultra-high molecular weight polyethylene yarn most preferably will have cut-resistant properties inherent in the yarn and aided by the knit or woven nature of the fabric, such that it is configured to resist significant cutting penetration by a hockey skate blade. The "floating" relationship between a significant surface portion of each of the outer layer 110 and the liner 112 may provide for extra energy absorption and redirection in the kind of glancing blow that may commonly be expected when a skate blade contacts the hockey sock 100 being worn by a player during skating/ game-play conditions.
[0016] Although no standardized test is known for measuring cut-resistance of hockey socks being contacted by skate blades, exemplary embodiments have been tested under conditions believed to approximate those that could be encountered in a skating/ game-play situation. For each test, a sock specimen was mounted onto a legform (as used for testing under "BS EN 13061, Protective Clothing; Shin guards for association football players requirements and test"). A rubber pad, 1.27 cm (0.5 inches) thick was placed over the legform to simulate muscle and skin of a human leg. The sharpened edge standard hockey skate blade was directed into the simulated leg using a tracked drop tower. In the control tests, the simulated leg was sheathed in a standard single-layer hockey sock made of a knit cotton polyester blend. The blade penetrated through the sock and through the 0.5 inches of material at an average velocity of 6.28 m/sec. However, in the tests of the test embodiment of a lined sock of the type described above with reference to FIGS. 1-4 (specifically embodied with an outer layer of a knit textured polyester and recycled cotton and an inner layer of Dyneemae yarn knitted as a half-cardigan fabric), even skate speeds in excess of 8.2 m/sec did not cut through the 0.5 inches of material (a >30% increase in the speed/energy of blade attack, which was the maximum velocity attainable on the testing equipment used). In each of the experimental operations using the legform sheathed with a lined hockey sock 100, the liner remained intact or substantially intact.
[0017] While particular embodiments of the present invention have been illustrated and described, the scope of the claims should not be limited by the embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.

Claims (17)

1. A hockey sock, comprising:
an inner tubular layer having an upper end and a lower end, and comprising ultra-high molecular weight polyethylene yarn knit as a fabric; and an outer tubular layer of a textile material;
wherein the outer tubular layer of textile material is attached to the inner tubular layer near the upper end and near the lower end and at at least one other point of contact, beyond near the upper end and near the lower end.
2. The hockey sock of claim 1, further comprising at least one seam of contact between the outer tubular layer of textile material and the inner tubular layer, between near the upper end and near the lower end.
3. The hockey sock of claim 1 or 2, constructed to comprise a floating relationship between a significant surface portion of each of the outer layer and the inner tubular layer.
4. The hockey sock of any one of claims 1 to 3, wherein the attachment of the outer tubular layer of textile material to the inner tubular layer comprises a circumferential upper seam, a circumferential lower seam, or both.
5. The hockey sock of any one of claims 1 to 4, wherein the ultra-high molecular weight polyethylene yarn knit as a fabric is configured as a half-cardigan fabric.
6. The hockey sock of any one of claims 1 to 5, wherein the outer tubular layer comprises a textured polyester fiber, cotton, or a combination thereof.
7. The hockey sock of any one of claims 1 to 6, wherein the outer tubular layer comprises colored material selected to provide a desired color scheme.
8. The hockey sock of any one of claims 1 to 7, wherein the inner tubular layer comprises woven construction, knit construction, or any combination thereof.
9. The hockey sock of any one of claims 1 to 8, wherein the outer tubular layer comprises a multi-colored striped pattern.
10. The hockey sock of any one of claims 1 to 9, configured and dimensioned to accommodatingly fit over a hockey player's leg and standard safety equipment.
11. The hockey sock of any one of claims 1 to 10, configured with an open top end and an open bottom end.
12. The hockey sock of claim 11, wherein the open bottom end comprises a smaller diameter than the open top end.
13. The hockey sock of any one of claims 1 to 12, wherein the inner tubular layer consists essentially of ultra-high molecular weight polyethylene yarn knit as a half-cardigan fabric.
14. A hockey sock, comprising:
a first tubular layer having an upper end and a lower end, and comprising ultra-high molecular weight polyethylene yarn knit as a fabric; and a second tubular layer of a textile material;
wherein the second tubular layer of textile material is attached to cover an exterior surface of the first tubular layer near the upper end, near the lower end and at at least one other location of attachment between the first and second tubular layers.
15. The hockey sock of claim 14, wherein the first tubular layer comprises more than one layer.
16. The hockey sock of claim 14, wherein the second tubular layer comprises more than one layer.
17. The hockey sock of claim 14, wherein the ultra-high molecular weight polyethylene yarn knit as a fabric is configured as a half-cardigan fabric.
CA2750817A 2011-01-14 2011-08-29 Cut-resistant hockey sock Expired - Fee Related CA2750817C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161432863P 2011-01-14 2011-01-14
US61/432,863 2011-01-14

Publications (2)

Publication Number Publication Date
CA2750817A1 CA2750817A1 (en) 2012-07-14
CA2750817C true CA2750817C (en) 2013-08-06

Family

ID=46489560

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2750817A Expired - Fee Related CA2750817C (en) 2011-01-14 2011-08-29 Cut-resistant hockey sock

Country Status (2)

Country Link
US (1) US20120180196A1 (en)
CA (1) CA2750817C (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130160176A1 (en) * 2011-12-27 2013-06-27 Robert Magri Protective Ice Hockey Sock
US20140359913A1 (en) * 2011-12-27 2014-12-11 Robert Magri Protective Ice Hockey Sock
USD731779S1 (en) * 2012-07-11 2015-06-16 John S. Balisy Hockey shorts and sock set
US20140289924A1 (en) * 2013-03-08 2014-10-02 Elicit Brands, Llc Cut resistant compression sock with moisture channeling
AU2013206548B1 (en) * 2013-06-26 2013-12-12 Andrew Serafim Multilayered Sports Socks
US20150052654A1 (en) * 2013-08-23 2015-02-26 Douglas Thom Ventilated, cut-resistant hockey sock
US9924750B2 (en) * 2014-07-23 2018-03-27 Skate-Cut-Proof Inc. Athletic protective shield
USD759349S1 (en) * 2015-06-19 2016-06-21 Dominique Zimmermann Sockpants garment
US9644923B2 (en) * 2015-07-02 2017-05-09 Lars Petter Andresen Composite, protective fabric and garments made thereof
US10060708B2 (en) * 2015-07-02 2018-08-28 Lars Petter Andresen Protective garments
US20170176147A1 (en) * 2015-07-02 2017-06-22 Lars Petter Andresen Protective Garments
US20170027239A1 (en) * 2015-07-27 2017-02-02 Jason Ryan Cut-Resistant Hockey Sock
US10954612B2 (en) * 2017-06-26 2021-03-23 Sheertex Inc. Rip resistant, non-pilling fine knit garments
CN111235736A (en) * 2020-02-25 2020-06-05 浙江千禧龙纤特种纤维股份有限公司 Ultraviolet-proof and wear-resistant fabric and silk stockings
DE102021107071A1 (en) 2021-03-22 2022-09-22 Stefan Wunder Sports socks for one leg and jersey set with sports socks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571960A (en) * 1982-09-30 1986-02-25 Foster-Boyd, Inc. Two-ply athletic sock with low-friction interface surfaces
ATE420231T1 (en) * 2001-10-31 2009-01-15 Asahi Kasei Fibers Corp ELASTIC KNIT OR CUFF KNIT FABRIC WITH MULTI-LAYER CONSTRUCTION
US20060042327A1 (en) * 2004-05-24 2006-03-02 Joseph Hummel Cut resistant garment
US20090235421A1 (en) * 2008-03-19 2009-09-24 Nick Sash Conforming limb guard
US9994979B2 (en) * 2008-06-06 2018-06-12 Supreme Corporation Lightweight, cut and/or abrasion resistant garments, and related protective wear
US20110159264A1 (en) * 2009-12-22 2011-06-30 Jeremiah Sullivan Multifunctional protective fabric

Also Published As

Publication number Publication date
CA2750817A1 (en) 2012-07-14
US20120180196A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
CA2750817C (en) Cut-resistant hockey sock
AU2018204638B2 (en) Fabric system
CA2314999C (en) Slash resistant garments for protecting a person from injury
US5581817A (en) Sports sock
EP2329731B1 (en) Cut resistant sports sock
US11445774B2 (en) Compressive garment having an outer layer
PT751719E (en) FRICTION CLOTHES REDUCED
CA2839268C (en) Athletic pants
US4856110A (en) Athletic protective safety sock
US9924750B2 (en) Athletic protective shield
US8418262B2 (en) Body armour protection system protective hockey undershirt
US10433601B2 (en) Slide-inhibiting safety garment for ice and associated method
US20160174616A1 (en) Athletic jersey with cut-resistant portion
US20120233735A1 (en) Calf Muscle and Tendon Guard
US10226085B2 (en) Protective athletic pant
KR102002680B1 (en) Sports gloves
US20170027239A1 (en) Cut-Resistant Hockey Sock
US20160021948A1 (en) Athletic protective shield
US20230263251A1 (en) Activewear garment with enhanced traction
US11957549B2 (en) Appendage garment with enhanced traction
JP3162927U (en) stockings
JP3162925U (en) stockings
JP3162926U (en) stockings
JP3162928U (en) stockings
TWM414830U (en) Structure of professional football socks

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831