CA2744380A1 - Method of reducing redox ratio of molten glass and ultra-clear glass made thereby - Google Patents
Method of reducing redox ratio of molten glass and ultra-clear glass made thereby Download PDFInfo
- Publication number
- CA2744380A1 CA2744380A1 CA2744380A CA2744380A CA2744380A1 CA 2744380 A1 CA2744380 A1 CA 2744380A1 CA 2744380 A CA2744380 A CA 2744380A CA 2744380 A CA2744380 A CA 2744380A CA 2744380 A1 CA2744380 A1 CA 2744380A1
- Authority
- CA
- Canada
- Prior art keywords
- glass
- iron
- weight percent
- pool
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011521 glass Substances 0.000 title claims abstract description 179
- 239000006060 molten glass Substances 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 191
- 229910052742 iron Inorganic materials 0.000 claims abstract description 95
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 75
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 75
- 239000001301 oxygen Substances 0.000 claims abstract description 75
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 73
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000010304 firing Methods 0.000 claims abstract description 47
- 238000002834 transmittance Methods 0.000 claims abstract description 41
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims abstract description 37
- 230000005540 biological transmission Effects 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000002737 fuel gas Substances 0.000 claims abstract description 25
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims abstract description 18
- 239000005361 soda-lime glass Substances 0.000 claims abstract description 16
- 230000003595 spectral effect Effects 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 8
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims abstract 7
- 239000000463 material Substances 0.000 claims description 65
- 239000006066 glass batch Substances 0.000 claims description 22
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 21
- 229910001882 dioxygen Inorganic materials 0.000 claims description 21
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- 239000000567 combustion gas Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 9
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 18
- 238000002474 experimental method Methods 0.000 description 23
- 239000000523 sample Substances 0.000 description 22
- 238000007792 addition Methods 0.000 description 14
- 238000005816 glass manufacturing process Methods 0.000 description 13
- 238000007670 refining Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- 239000011593 sulfur Substances 0.000 description 10
- 230000005587 bubbling Effects 0.000 description 7
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 7
- 239000006063 cullet Substances 0.000 description 7
- 239000010459 dolomite Substances 0.000 description 7
- 229910000514 dolomite Inorganic materials 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 229910000420 cerium oxide Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000005329 float glass Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007496 glass forming Methods 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 238000007540 photo-reduction reaction Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical group [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- -1 aragonite Chemical compound 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000006105 batch ingredient Substances 0.000 description 1
- 239000002419 bulk glass Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/173—Apparatus for changing the composition of the molten glass in glass furnaces, e.g. for colouring the molten glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/18—Stirring devices; Homogenisation
- C03B5/193—Stirring devices; Homogenisation using gas, e.g. bubblers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/235—Heating the glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0092—Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/10—Compositions for glass with special properties for infrared transmitting glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Glass Compositions (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
A soda-lime-silica glass for solar collector cover plates and solar mirrors has less than 0.010 weight percent total iron as Fe2O3, a redox ratio of less than 0.350, less than 0.0025 weight percent CeO2, and spectral properties that include a visible transmission, and a total solar infrared transmittance, of greater than 90% at a thickness of 5.5 millimeters, and reduced solariza-tion. In one non-limiting embodiment of invention, the glass is made by heating a pool of molten soda-lime-silica with a mixture of combustion air and fuel gas having an air firing ratio of greater than 11, or an oxygen firing ratio of greater than 2.31. In anoth-er non-limiting embodiment of the invention, streams of oxygen bubbles are moved through a pool of molten glass. In both em-bodiments, the oxygen oxidizes ferrous iron to ferric iron to reduce the redox ratio.
Description
METHOD OF REDUCING REDOX RATIO OF MOLTEN GLASS
AND ULTRA-CLEAR GLASS MADE THEREBY
BACKGROUND OF THE INVENTION
1. Field of the Invention [0001] This invention relates to a method of reducing the redox ratio (FeO/Fe2O3) of molten glass, and the glass made thereby, and more particularly, to a method of introducing oxygen into molten glass having a low iron content to oxidize the iron in the ferrous state (Fe++) to reduce the redox ratio.
AND ULTRA-CLEAR GLASS MADE THEREBY
BACKGROUND OF THE INVENTION
1. Field of the Invention [0001] This invention relates to a method of reducing the redox ratio (FeO/Fe2O3) of molten glass, and the glass made thereby, and more particularly, to a method of introducing oxygen into molten glass having a low iron content to oxidize the iron in the ferrous state (Fe++) to reduce the redox ratio.
2. Discussion of the Presently Available technology [0002] Solar collectors and solar mirrors use solar energy to heat a fluid, e.g. as disclosed in U.S. Patent Nos. 4,224,927 and 5,253,105, or to convert solar energy to electrical energy. In general, the solar collectors have a cover plate to pass the solar energy, to reduce heat loss due to convection, and to protect the photovoltaic cells of the electric power generating solar collectors, and the solar mirrors have a glass substrate to pass the solar energy to a reflective coating and reflect the solar energy back through the glass substrate to direct the solar energy to a designated area. Of particular interest in the following discussion are the glass cover plates and the glass substrates.
[0003] As is appreciated by those skilled in the art, the glass cover plates used for photovoltaic cover plates, and the glass substrates used for solar mirrors preferably above 380 nanometers ("nm") of the electromagnetic spectrum have a high transmission, e.g. above 90% in the visible and the infrared ("IR") range, and a low absorption, e.g. below 2% in the visible and the IR ranges. As is appreciated by those skilled in the art, the particular visible and IR range of the electromagnetic spectrum, and the peak transmission varies depending on the semi-conductor material of the photovoltaic cell. For example and not limiting to the discussion, for a silicon photovoltaic solar cell, the preferred visible and IR wavelength range is 380-1200 nm, and the peak transmission is at about 900 nm.
[0004] Generally, in the manufacture of flat glass, glass batch materials are melted; the molten glass is fined and homogenized, and the fined homogenized molten glass is formed into a flat glass ribbon by controllably decreasing the temperature of the molten glass as it floats on a molten metal bath. During the fining of the molten glass, gas bubbles are removed from the molten glass by additions of ingredients to the batch materials, and/or by moving gases, e.g. carbon monoxide and oxygen through the molten glass, e.g. see U.S. Patents 2,330,324 and 6,871,514. The batch materials for making glasses having high transmission, and low absorption, in the visible and the IR range of the electromagnetic spectrum have no additions of colorants.
As is appreciated by those skilled in the art, additions of colorants to the batch materials have been used to, among other things, reduce the transmission and increase the absorption in the visible and IR range of the subsequently formed glass. Glasses having high visible and IR transmission are usually referred to as low iron glasses. U.S. Patent Nos. 5,030,593; 5,030,594, and 6,962,887 disclose the making of low iron glasses that are almost colorless by processing raw glass batch materials that have a very low content of total iron expressed as Fe203, e.g. less than 0.020 % by weight (hereinafter also referred to as "wt%" or "wt. %"). Iron contents of less than 0.020 % by weight (200 parts per million (hereinafter also referred to as "ppm")) in batch materials are referred to as tramp iron because the iron is not added to the batch material but is present as an impurity in the ingredients of the batch material.
As is appreciated by those skilled in the art, additions of colorants to the batch materials have been used to, among other things, reduce the transmission and increase the absorption in the visible and IR range of the subsequently formed glass. Glasses having high visible and IR transmission are usually referred to as low iron glasses. U.S. Patent Nos. 5,030,593; 5,030,594, and 6,962,887 disclose the making of low iron glasses that are almost colorless by processing raw glass batch materials that have a very low content of total iron expressed as Fe203, e.g. less than 0.020 % by weight (hereinafter also referred to as "wt%" or "wt. %"). Iron contents of less than 0.020 % by weight (200 parts per million (hereinafter also referred to as "ppm")) in batch materials are referred to as tramp iron because the iron is not added to the batch material but is present as an impurity in the ingredients of the batch material.
[0005] Even though the iron content is low in low iron glasses, it is also preferred to reduce the weight percent of ferrous iron (Fe++) in the glass to maximize the transmission, and minimize the absorption of the glass in the visible and IR range of the electromagnetic spectrum. As is appreciated by those skilled in the art, iron in the ferric state is a less powerful colorant than iron in the ferrous state and shifts the transmittance spectrum of the glass toward yellow and away from the usual green-blue effect of the ferrous iron in glass. Stated another way, increasing iron in the ferric state while decreasing iron in the ferrous state, increases the transmission, and decreases the absorption of the glass in the visible and the IR range. One technique to reduce the weight percent of ferrous iron in the glass is to include cerium oxide in the glass batch materials because cerium oxide in the glass "decolorizes"
the glass. More particularly, cerium oxide is not a colorant in glass, but is a powerful oxidizing agent in glass, and its function in decolorized glass is to oxidize the iron in the ferrous state (Fe++) to iron in the ferric (Fe+++) state.
Although cerium oxide is useful to decolorize the remaining traces of ferrous iron, the use of cerium oxide has limitations, e.g. but not limiting to the discussion, when the glass is to be used as cover plates for electric power generating solar collectors and as glass substrates for solar mirrors. More particularly, exposing low iron glass cover plate having cerium oxide to the sun has a solarizing effect on the glass, which results from the photo-oxidation of Ce+++ to Ce++++ and the photo-reduction of Fe+++ to Fe++. As is appreciated by those skilled in the art, the solarization effect of cerium and the photo-reduction of Fe+++ to Fe++ reduces the transmission, and increases the absorption, of the glass in the visible and the IR range of the electromagnetic spectrum, which reduces the power generation of the solar cells.
the glass. More particularly, cerium oxide is not a colorant in glass, but is a powerful oxidizing agent in glass, and its function in decolorized glass is to oxidize the iron in the ferrous state (Fe++) to iron in the ferric (Fe+++) state.
Although cerium oxide is useful to decolorize the remaining traces of ferrous iron, the use of cerium oxide has limitations, e.g. but not limiting to the discussion, when the glass is to be used as cover plates for electric power generating solar collectors and as glass substrates for solar mirrors. More particularly, exposing low iron glass cover plate having cerium oxide to the sun has a solarizing effect on the glass, which results from the photo-oxidation of Ce+++ to Ce++++ and the photo-reduction of Fe+++ to Fe++. As is appreciated by those skilled in the art, the solarization effect of cerium and the photo-reduction of Fe+++ to Fe++ reduces the transmission, and increases the absorption, of the glass in the visible and the IR range of the electromagnetic spectrum, which reduces the power generation of the solar cells.
[0006] As can now be appreciated, it would be advantageous to provide a low iron glass that has low levels of iron in the ferrous state (Fe++) and does not have the limitation of the photo-reduction of iron in the ferric state (Fe+++) to iron in the ferrous state (Fe++) SUMMARY OF THE INVENTION
[0007] This invention relates to a soda-lime-silica glass, having, among other things:
Si02 65-75 weight percent Na20 10-20 weight percent CaO 5-15 weight percent MgO 0-5 weight percent A1203 0-5 weight percent K20 0-5 weight percent SO3 0-0.30 weight percent Total iron as Fe203 0.005-0.120 weight percent Redox ratio less than 0.550 wherein the glass has less than 0.0025 weight percent of CeO2. The spectral properties of the glass measured at a thickness 5.5 millimeters include, among other things, a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 20 observer over a wavelength range of 380 to 770 nanometers; a total solar infrared transmittance of greater than 87%
measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
Si02 65-75 weight percent Na20 10-20 weight percent CaO 5-15 weight percent MgO 0-5 weight percent A1203 0-5 weight percent K20 0-5 weight percent SO3 0-0.30 weight percent Total iron as Fe203 0.005-0.120 weight percent Redox ratio less than 0.550 wherein the glass has less than 0.0025 weight percent of CeO2. The spectral properties of the glass measured at a thickness 5.5 millimeters include, among other things, a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 20 observer over a wavelength range of 380 to 770 nanometers; a total solar infrared transmittance of greater than 87%
measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
[0008] Further, the invention relates to a method of reducing redox ratio of soda-lime-silica glass by, among other things, heating a pool of molten soda-lime-silica glass having iron in a ferrous state (Fe++) and in a ferric state (Fe+++), wherein the pool of molten glass is heated with an ignited mixture of combustion gas and fuel gas emanating from one or more burners, wherein flow of the combustion gas exceeds the amount of combustion gas required to ignite the fuel gas such that excess oxygen of the combustion gas oxidizes the iron in the ferrous state to iron in the ferric state to reduce the redox ratio.
Optionally oxygen gas can simultaneously be moved through the pool of molten glass wherein flow of the oxygen gas is in a direction from bottom of the pool of molten glass to top of the pool.
Optionally oxygen gas can simultaneously be moved through the pool of molten glass wherein flow of the oxygen gas is in a direction from bottom of the pool of molten glass to top of the pool.
[0009] Still further, the invention relates to a method of reducing redox ratio of soda-lime-silica glass by, among other things, heating a pool of molten soda-lime-silica glass in a heating chamber, the pool of molten glass having iron in a ferrous state (Fe++) and in a ferric state (Fe+++); moving glass batch materials onto the pool of molten glass contained in the heating chamber, the batch materials having iron in the ferrous state (Fe++) and in the ferric state (Fe+++); melting the glass batch materials as they float on surface of the molten pool of glass; moving oxygen through the pool of molten glass to oxidize the ferrous iron to the ferric iron to reduce the redox ratio, and forming a glass ribbon from the pool of molten glass.
BRIEF DESCRIPTION OF THE DRAWINGS
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] Fig. 1 is a horizontal section of a glass melting furnace that can be used in the practice of the invention; Fig. 1A is the melting section of the furnace, and Fig. 1 B is the refining and homogenizing section of the furnace..
[0011] Fig. 2 is a vertical section of the melting section shown in Fig. 1A.
[0012] Fig. 3 is an elevated side view partially in cross section of a glass melting and refining apparatus that can be used in the practice of the invention.
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE INVENTION
[0013] As used herein, spatial or directional terms, such as "inner", "outer", "left", "right", "up", "down", "horizontal", "vertical", and the like, relate to the invention as it is shown in the drawing figures. However, it is to be understood that the invention can assume various alternative orientations and, accordingly, such terms are not to be considered as limiting. Further, all numbers expressing dimensions, physical characteristics, and so forth, used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical values set forth in the following specification and claims can vary depending upon the desired property desired and/or sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of "1 to 10"
should be considered to include any and all subranges between and inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, e.g., 1 to 6.7, or 3.2 to 8.1, or 5.5 to 10.
Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of "1 to 10"
should be considered to include any and all subranges between and inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, e.g., 1 to 6.7, or 3.2 to 8.1, or 5.5 to 10.
[0014] Before discussing several non-limiting embodiments of the invention, it is understood that the invention is not limited in its application to the details of the particular non-limiting embodiments shown and discussed herein since the invention is capable of other embodiments. Further, all documents, such as but not limited to issued patents and published patent applications, previously discussed, or referred to, and to be discussed or referred to, herein below are to be considered to be "incorporated by reference"
in their entirety. Still further, the terminology used herein to discuss the invention is for the purpose of description and is not of limitation. In addition, unless indicated otherwise, in the following discussion like numbers refer to like elements.
in their entirety. Still further, the terminology used herein to discuss the invention is for the purpose of description and is not of limitation. In addition, unless indicated otherwise, in the following discussion like numbers refer to like elements.
[0015] Any reference to composition amounts, such as "by weight percent", "wt%" or "wt. %", "parts per million" and "ppm" are based on the total weight of the final glass composition, or the total weight of the mixed ingredients, e.g. but not limited to the glass batch materials, which ever the case may be.
The "total iron" content of the glass compositions disclosed herein is expressed in terms of Fe203 in accordance with standard analytical practice, regardless of the form actually present. Likewise, the amount of iron in the ferrous state (Fe++) is reported as FeO, even though it may not actually be present in the glass as FeO. The proportion of the total iron in the ferrous state is used as a measure of the redox state of the glass and is expressed as the ratio FeO/Fe2O3, which is the weight percent of iron in the ferrous state (expressed as FeO) divided by the weight percent of total iron (expressed as Fe203).
The "total iron" content of the glass compositions disclosed herein is expressed in terms of Fe203 in accordance with standard analytical practice, regardless of the form actually present. Likewise, the amount of iron in the ferrous state (Fe++) is reported as FeO, even though it may not actually be present in the glass as FeO. The proportion of the total iron in the ferrous state is used as a measure of the redox state of the glass and is expressed as the ratio FeO/Fe2O3, which is the weight percent of iron in the ferrous state (expressed as FeO) divided by the weight percent of total iron (expressed as Fe203).
[0016] The visible range of the electromagnetic spectrum is 380-780 nanometers (hereinafter also referred to as "nm"), and the infra red (hereinafter also referred to as "IR") range of the electromagnetic spectrum is greater than 780 nm and usually considered to be in the range of 780-10,000 nm. As used herein, "visible transmittance" or "luminous transmittance" or "LTA" is measured using C.I.E. standard illuminant "A" with a 20 observer over the wavelength range of 380 to 770 nanometers. Glass color, in terms of dominant wavelength and excitation purity, is measured using C.I.E. standard illuminant "C" with a observer, following the procedures established in ASTM E308-90; "total solar infrared transmittance" or "TSIR" is measured over the wavelength range of 775 to 2125 nanometers, and "total solar energy transmittance" or "TSET" is measured over the wavelength range of 300 to 2500 nanometers. The TSIR
transmittance data is calculated using Parry Moon air mass 2.0 direct solar irradiance data and integrated using the Rectangular Rule, as is known in the art. The TSET transmittance data is calculated using ASTM air mass 1.5 global solar irradiance data and integrated using the Trapezoidal Rule, as is known in the art. Those skilled in the art will understand that the above spectral properties, e.g. LTA, infrared transmission, TSIR and TSET are measured at the actual glass thickness and can be recalculated at any thickness. In the following discussion the spectral properties of the glass are given for glasses having a standard thickness of 5.5 millimeter, even though the actual thickness of a measured glass sample is different than the standard thickness.
transmittance data is calculated using Parry Moon air mass 2.0 direct solar irradiance data and integrated using the Rectangular Rule, as is known in the art. The TSET transmittance data is calculated using ASTM air mass 1.5 global solar irradiance data and integrated using the Trapezoidal Rule, as is known in the art. Those skilled in the art will understand that the above spectral properties, e.g. LTA, infrared transmission, TSIR and TSET are measured at the actual glass thickness and can be recalculated at any thickness. In the following discussion the spectral properties of the glass are given for glasses having a standard thickness of 5.5 millimeter, even though the actual thickness of a measured glass sample is different than the standard thickness.
[0017] The present invention provides a soda-lime-silica glass that is high in visible light and infrared energy transmittance as measured in a normal (i.e. perpendicular) direction to a major surface of the glass sheet, and the glass of the invention is particularly ideal for, but is not limited to, use as cover plates for electric generating solar collectors, and glass substrates for solar mirrors. By "high visible light transmittance" is meant measured visible light transmittance equal to or greater than 85%, such as equal to or greater than 87%, such as equal to or greater than 90%, at 5.5 mm glass thickness. As is appreciated by those skilled in the art, a glass having a 90% visible light transmittance at a thickness of 5.5 mm, has a visible light transmission greater than 90% at a thickness less than 5.5 mm and has a visible light transmission less than 90% at a thickness greater than 5.5 mm. By "high infrared energy transmittance" is meant measured infrared energy transmittance equal to or greater than 85%, such as equal to or greater than 87%, such as equal to or greater than 90%, such as equal to or greater than 91 %, at 5.5 mm. As is appreciated by those skilled in the art, a glass having a 91 % infrared energy transmittance at a thickness of 5.5 mm, has an infrared energy transmission greater than 91 % at a thickness less than 5.5 mm and has an infrared visible light transmission less than 91 % at a thickness greater than 5.5 mm for glasses having a thickness less than 5.5 mm.
[0018] The glass of the invention can be made using a conventional non-vacuum refiner float glass system, e.g. but limited to the type shown in Figs.
and 2, or using a vacuum refiner float glass system, e.g. but not limited to the type shown in Fig. 3. Other types of conventional non-vacuum systems are disclosed in U.S. Patent Nos. 4,354,866; 4,466,562 and 4,671,155, and other types of vacuum refiner float glass system are disclosed in U.S. Patent Nos.
4,792,536 and 5,030,594.
and 2, or using a vacuum refiner float glass system, e.g. but not limited to the type shown in Fig. 3. Other types of conventional non-vacuum systems are disclosed in U.S. Patent Nos. 4,354,866; 4,466,562 and 4,671,155, and other types of vacuum refiner float glass system are disclosed in U.S. Patent Nos.
4,792,536 and 5,030,594.
[0019] Referring to Figs.1 and 2, there is shown a conventional continuously fed, cross-tank fired, glass melting and non-vacuum refining furnace 20 having an enclosure formed by a bottom 22, roof 24, and sidewalls 26 made of refractory materials. The glass batch materials 28 are introduced through inlet opening 30 in an extension 32 of the furnace 20 known as the fill doghouse in any convenient or usual manner to form a blanket 34 floating on surface 36 of molten glass 38. Overall progression of the glass as shown in Figs. 1 A and 1 B is from left to right in the figures, toward entrance end of a glass forming chamber 40 of the type used in the art to make float flat glass.
[0020] Flames (not shown) to melt the batch materials 28 and to heat the molten glass 38 issue from burner ports 42 spaced along the sidewalls 26 (see Fig. 2) and are directed onto and across the surface 36 of the molten glass 38.
As is known by those skilled in the art, during the first half of a heating cycle, the flames issue from a nozzle 43 (see Fig. 2) in each of the ports on one side of the tank 20, as the exhaust of the furnace moves through the ports on the opposite side of the furnace. During the second half of the heating cycle, the function of the ports are reversed, and the exhaust ports are the firing ports, and the firing ports are the exhaust ports. The firing cycle for furnaces of the type shown in Figs. 1 and 2 are well known in the art and no further discussion is deemed necessary. As can be appreciated by those skilled in the art, the invention contemplates using a mixture of air and fuel gas, or a mixture of oxygen and fuel gas, to generate the flames to heat the batch materials and the molten glass. For a discussion of using oxygen and fuel gas in the furnace of the type shown in Fig. 1, reference can be made to U.S. Patent Application Serial No. 12/031,303 filed February 14, 2008 and titled "Use of Photovoltaics for Waste Heat Recovery."
As is known by those skilled in the art, during the first half of a heating cycle, the flames issue from a nozzle 43 (see Fig. 2) in each of the ports on one side of the tank 20, as the exhaust of the furnace moves through the ports on the opposite side of the furnace. During the second half of the heating cycle, the function of the ports are reversed, and the exhaust ports are the firing ports, and the firing ports are the exhaust ports. The firing cycle for furnaces of the type shown in Figs. 1 and 2 are well known in the art and no further discussion is deemed necessary. As can be appreciated by those skilled in the art, the invention contemplates using a mixture of air and fuel gas, or a mixture of oxygen and fuel gas, to generate the flames to heat the batch materials and the molten glass. For a discussion of using oxygen and fuel gas in the furnace of the type shown in Fig. 1, reference can be made to U.S. Patent Application Serial No. 12/031,303 filed February 14, 2008 and titled "Use of Photovoltaics for Waste Heat Recovery."
[0021] The glass batch materials 28 as they move downstream from the batch feeding end or doghouse end wall 46 are melted in the melting section 48 of the furnace 20, and the molten glass 38 moves through waist 54 to refining section 56 of the furnace 20. In the refining section 56, bubbles in the molten glass 38 are removed, and the molten glass 38 is mixed or homogenized as the molten glass passes through the refining section 56. The molten glass 38 is delivered in any convenient or usual manner from the refining section 56 onto a pool of molten metal (not shown) contained in the glass-forming chamber 40.
As the delivered molten glass 38 moves through the glass-forming chamber 40 on the pool of molten metal (not shown), the molten glass is sized and cooled.
A dimensionally stable sized glass ribbon (not shown) moves out of the glass-forming chamber 40 into an annealing lehr (not shown). Glass making apparatus of the type shown in Figs. 1 and 2, and of the type discussed above are well known in the art and no further discussion is deemed necessary.
As the delivered molten glass 38 moves through the glass-forming chamber 40 on the pool of molten metal (not shown), the molten glass is sized and cooled.
A dimensionally stable sized glass ribbon (not shown) moves out of the glass-forming chamber 40 into an annealing lehr (not shown). Glass making apparatus of the type shown in Figs. 1 and 2, and of the type discussed above are well known in the art and no further discussion is deemed necessary.
[0022] Shown in Fig. 3 is continuously fed glass melting and vacuum refining equipment 78 for melting glass batch materials and refining the molten glass. Batch materials 80, preferably in a pulverulent state, are fed into cavity 82 of a liquefying vessel, e.g. a rotating drum 84. A layer 86 of the batch material 80 is retained on the interior walls of the vessel 84 aided by the rotation of the drum and serves as an insulating lining. As the batch material on the surface of the lining 84 is exposed to the heat within the cavity 82, it forms a liquefied layer 88 that flows out of a central drain opening 90 at the bottom 92 of the vessel 84 to a dissolving vessel 94 to complete the dissolution of unmelted particles in the liquefied material coming from the vessel 84.
[0023] A valve 96 controls the flow of material from the dissolving vessel 94 into a generally cylindrical vertically upright vessel 98 having an interior ceramic refractory lining (not shown) shrouded in a gas-tight, water-cooled casing 100. A molten stream 102 of refined glass falls freely from the bottom of the refining vessel 98 and can be passed to a subsequent stage in the glass making process as detailed in U.S. Patent No. 4,792,536. For a detailed discussion on the operation of the equipment 78 shown in Fig. 3 reference can be made to U.S. Patent No. 4,792,536.
[0024] As is appreciated, the invention is not limited to the process of and/or equipment for making glass, and any of the glass making processes and/or equipment known in the art can be used in the practice of the invention.
[0025] Typically, the glass batch used in the glass making apparatus shown in Figs. 1 and 2 includes sodium sulfate (salt cake) as a melting and refining aid in the amounts of about 5 to 15 parts by weight per 1000 parts by weight of the silica source material (sand), with about 10 parts by weight considered desirable to assure adequate refining, i.e. removal of bubbles from the molten glass. The sulfur-containing materials can be added such that the retained sulfur content e.g., the average amount of SO3 left in the resultant bulk glass is less than or equal to 0.2 wt. %, such as less than or equal to 0.15 wt.
%, such as less than or equal to 0.1 wt. %, such as less than or equal to 0.05 wt. %. In one non-limiting embodiment of the invention, the residual sulfur can be in the range of 0.005 wt. % to 0.13 wt. %. When operating the glass making apparatus 78 shown in Fig. 3, it is preferred, but not limiting to the invention, to restrict the sodium sulfate to less than two parts by weight per 1000 parts by weight of the silica source material and to restrict the SO3 to less than 0.02 wt.
%. More particularly, the glass batch materials melted in the glass making apparatus 78 shown in Fig. 3 are essentially free of sulfur. By "essentially free of sulfur" is meant that no intentional addition of sulfur-containing compounds is made to the glass batch materials. However, trace amounts of sulfur can be present in the glass due to impurities in the batch materials or other sources, e.g. but not limited to cullet. By "trace amounts of sulfur" is meant sulfur in the range of greater than 0 wt. % to 0.03 wt. %. The "sulfur" content of the glass compositions disclosed herein is expressed in terms of SO3 in accordance with standard analytical practice, regardless of the form actually present.
%, such as less than or equal to 0.1 wt. %, such as less than or equal to 0.05 wt. %. In one non-limiting embodiment of the invention, the residual sulfur can be in the range of 0.005 wt. % to 0.13 wt. %. When operating the glass making apparatus 78 shown in Fig. 3, it is preferred, but not limiting to the invention, to restrict the sodium sulfate to less than two parts by weight per 1000 parts by weight of the silica source material and to restrict the SO3 to less than 0.02 wt.
%. More particularly, the glass batch materials melted in the glass making apparatus 78 shown in Fig. 3 are essentially free of sulfur. By "essentially free of sulfur" is meant that no intentional addition of sulfur-containing compounds is made to the glass batch materials. However, trace amounts of sulfur can be present in the glass due to impurities in the batch materials or other sources, e.g. but not limited to cullet. By "trace amounts of sulfur" is meant sulfur in the range of greater than 0 wt. % to 0.03 wt. %. The "sulfur" content of the glass compositions disclosed herein is expressed in terms of SO3 in accordance with standard analytical practice, regardless of the form actually present.
[0026] Glass batch materials used for making low iron glass cover plates for electric power generating solar collectors, and for making glass substrates for solar mirrors preferably provide a glass that has a high measured transmission, e.g. greater than 90%, and a high measured IR transmission, e.g. greater than 91 %. In the practice of the invention, iron is not intentionally added to the batch materials, and iron present in the molten glass as ferrous iron (Fe++) is oxidized to ferric iron (Fe+++) As is appreciated by those skilled in the art and as discussed above, additions of CeO2 are added to the glass batch materials to oxidize the ferrous ion (Fe++) to the ferric ion (Fe+++) to increase the visible and IR transmission of the glass. It is believed, however, that exposing glass having CeO2 to the sun's radiation results in solarization reactions which photo-oxidizes Ce+++ to Ce++++ and photo-reduces Fe+++ to Fe++', which results in the reduction of visible and IR transmission of the glass. CeO2 in amounts less than 0.0025 wt. % (25 ppm) or less in the glass does not result in objectionable levels of solarization, e.g. a reduction of less than 0.15% of the measured visible and IR
transmission after exposure to sunlight for 28 days. CeO2 in amounts equal to, or greater than 0.0800 wt. % (800 ppm) results in unacceptable levels of solarization, e.g. a 1.0% reduction in the measured visible and IR
transmission of the glass after exposure to sunlight for 28 days.
transmission after exposure to sunlight for 28 days. CeO2 in amounts equal to, or greater than 0.0800 wt. % (800 ppm) results in unacceptable levels of solarization, e.g. a 1.0% reduction in the measured visible and IR
transmission of the glass after exposure to sunlight for 28 days.
[0027] In view of the forgoing, in the preferred practice of the invention ingredients that oxidize the ferrous iron Fe++ to the ferric Fe +++ and can be solarized, e.g. CeO2 are not added to the batch materials, and if present, are present as tramp materials, such that the glass preferably has equal to or less than 0.0025 wt. % (25 ppm) CeO2. Although the invention is directed to low iron soda-lime-silica glasses, e.g. soda-lime-silica glasses having equal to or less than 0.01 wt. % (100 ppm) total iron expressed as Fe203, the invention is not limited thereto, and the invention can be practiced to lower the percent by weight of the ferrous iron in high iron glasses, e.g. soda-lime-silica glasses having greater than 0.01 wt. % (100 ppm) total iron expressed as Fe203. Further, the invention is not limited to glass cover plates for solar collectors, and to glass substrates for solar mirrors, and can be used (1) as a glass cover plate, or glass substrate for any type of solar cell or solar collector; (2) as residential and commercial windows; (3) as windows for any type of vehicle, e.g. land, air, space, above water, and below water, vehicle; (4) as furniture table tops, and (5) combinations thereof.
[0028] Table 1 lists the major constituents and their respective ranges in weight percent of a non-limiting embodiment of a commercial clear float glass of the invention that can be used to make cover plates for solar collectors, glass substrates for solar mirrors, and/or commercial, residential and appliance windows.
CONSTITUENT WEIGHT %
Si02 65-75 Na20 10-20 CaO 5-15 MgO 0-5 S03 0-0.30 Total iron as Fe203 greater than 0-0.120 Redox ratio less than 0.350 [0029] Usually cerium is added to the batch materials as hydrated cerium carbonate (Ce2CO3.3H20) and can be present in the glass as Ce+++
(Ce203) or Ce++++ (CeO2). In one non-limiting embodiment of the invention, no CeO2 is present in the glass. In another non-limiting embodiment of the invention CeO2 is present in the glass in amounts equal to or less than 0.0025 wt. %. In still another non-limiting embodiment of the invention, CeO2 can be present in the glass as a tramp material, e.g. as an impurity in the batch materials and/or in the glass cullet added to the batch materials to aid in the melting of the batch materials. Based on the forgoing CeO2 can be present in the glass of the invention within the range of 0 to 0.0100 wt. %, preferably in the range of 0 to 0.0075 wt. %, more preferably in the range of 0 to 0.0050 wt.
%, and most preferably in the range of 0 to 0.0025 wt. %.
CONSTITUENT WEIGHT %
Si02 65-75 Na20 10-20 CaO 5-15 MgO 0-5 S03 0-0.30 Total iron as Fe203 greater than 0-0.120 Redox ratio less than 0.350 [0029] Usually cerium is added to the batch materials as hydrated cerium carbonate (Ce2CO3.3H20) and can be present in the glass as Ce+++
(Ce203) or Ce++++ (CeO2). In one non-limiting embodiment of the invention, no CeO2 is present in the glass. In another non-limiting embodiment of the invention CeO2 is present in the glass in amounts equal to or less than 0.0025 wt. %. In still another non-limiting embodiment of the invention, CeO2 can be present in the glass as a tramp material, e.g. as an impurity in the batch materials and/or in the glass cullet added to the batch materials to aid in the melting of the batch materials. Based on the forgoing CeO2 can be present in the glass of the invention within the range of 0 to 0.0100 wt. %, preferably in the range of 0 to 0.0075 wt. %, more preferably in the range of 0 to 0.0050 wt.
%, and most preferably in the range of 0 to 0.0025 wt. %.
[0030] Clear soda-lime-silica glasses having low amounts of iron have a substantial absence of color in visible transmittance. In the practice of one non-limiting embodiment of the invention, the total iron expressed as Fe203, is less than about 0.025 wt. % (250 parts per million), more preferably less than 0.015 wt. % (150 parts per million) and most preferably less than 0.010 wt. % (100 parts per million), and in the preferred practice of the invention the glasses have a redox value (FeO/Fe2O3) of less than 0.35, preferably less than 0.25, more preferably less than 0.20, and most preferably less than 0.150.
[0031] Examples of commercial low iron glass that have high measured visible and IR transmission are presented in Table 2 below.
(A) (B) CONSTITUENT WEIGHT % WEIGHT %
Si02 65-75 65-75 Na20 10-20 10-20 CaO 5-15 5-15 MgO 0-5 0-5 SO3 0.12-0.20 0.12-0.20 Total iron as Fe203 0.005-0.025 0.005-0.025 Redox ratio less than 0.250 less than 0.550 CeO2 0.18-0.256 0.02-0.100 [0032] The glasses of Table 2 can be made using the equipment shown in Figs. 1-3; it should be noted however, that if the equipment shown in Fig. 3 is used, the SO3 is preferably less than 0.02 wt%.
(A) (B) CONSTITUENT WEIGHT % WEIGHT %
Si02 65-75 65-75 Na20 10-20 10-20 CaO 5-15 5-15 MgO 0-5 0-5 SO3 0.12-0.20 0.12-0.20 Total iron as Fe203 0.005-0.025 0.005-0.025 Redox ratio less than 0.250 less than 0.550 CeO2 0.18-0.256 0.02-0.100 [0032] The glasses of Table 2 can be made using the equipment shown in Figs. 1-3; it should be noted however, that if the equipment shown in Fig. 3 is used, the SO3 is preferably less than 0.02 wt%.
[0033] In the practice of the invention, oxygen is introduced into the molten glass to oxidize the ferrous iron (Fe++) to the ferric iron (Fe+++) In one non-limiting embodiment of the invention, oxygen is bubbled into the pool of molten glass; in another non-limiting embodiment of the invention, the ratio of oxygen to fuel or firing gas is increased to oxidize the iron in the ferrous state (Fe++) to iron in the ferric state (Fe+++) and in still another non-limiting embodiment of the invention, oxygen is bubbled into the pool of molten glass and the ratio of oxygen to fuel or firing gas is increased to oxidize the iron in the ferrous state (Fe++) to iron in the ferric state (Fe+++) Support for one non-limiting embodiment of the invention that oxygen can be used to oxidize the iron in the ferrous state to iron in the ferric state, and for another non-limiting embodiment of the invention that oxygen can be used to replace all or part of the CeO2 to oxidize the iron in the ferrous state to iron in the ferric state, is provided by the following experiment.
[0034] Six lab melts were made of low iron glass of the type sold by PPG
Industries, Inc. under the registered trademark Starphire. Each of the lab melts included 1000 grams of Starphire glass cullet. The glass composition of the cullet was not analyzed; however, the Starphire glass has a glass composition within the ranges of the ingredients shown in column (B) of Table 2. The cullet was contained in 4-inch silica crucibles and melted at a temperature of 2600 degrees F (1427 degrees C). Oxygen gas was introduced into the molten glass using a porous ceramic tube made by etching the bottom 1 inch (2.54 centimeters) of the closed end of a mullite tube in hydrofluoric acid.
Although the sizes of the holes were not measured, it is believed the holes had a diameter of about less than 1 millimeter.
Industries, Inc. under the registered trademark Starphire. Each of the lab melts included 1000 grams of Starphire glass cullet. The glass composition of the cullet was not analyzed; however, the Starphire glass has a glass composition within the ranges of the ingredients shown in column (B) of Table 2. The cullet was contained in 4-inch silica crucibles and melted at a temperature of 2600 degrees F (1427 degrees C). Oxygen gas was introduced into the molten glass using a porous ceramic tube made by etching the bottom 1 inch (2.54 centimeters) of the closed end of a mullite tube in hydrofluoric acid.
Although the sizes of the holes were not measured, it is believed the holes had a diameter of about less than 1 millimeter.
[0035] Sample A was the control sample and no oxygen was introduced into the molten glass of Sample A. The flow rate of oxygen introduced into the molten glass of Sample B was 10 cubic centimeters ("CC") per minute for 30 minutes; into the molten glass of Sample C was 20 CC per minute for 30 minutes; into the molten glass of each of Samples D and E was 20 CC per minute for 60 minutes, and into the molten glass of Sample F was 20 CC per minute for 120 minutes. Upon conclusion of the introduction of oxygen of the molten glass of the Samples B-F, it was observed that the ends of the tubes in the molten glass of Samples C and D were broken. It is believed that the tubes broke as a result of thermal shock. The molten glass of each of the crucibles of Samples A-F was cooled, and the glass analyzed to determine the redox ratio of Sample A (the control sample) and the redox ratio of the Samples B-F (the "test samples"). The FeO, Fe203 and FeO/Fe2O3 (the redox ratio) of the Samples A-F
are shown in Table 3 below.
COMPONENT SAMPLE
A B C D E F
FeO 0.0044 0.0038 0.0022 0.0043 0.0002 0.0000 Fe203 0.0154 0.0162 0.0172 0.0179 0.0172 0.0176 FeO/Fe2O 0.286 0.235 0.128 0.240 0.012 0.000 [0036] The Samples B-F each had a lower redox value than the redox value of Sample A indicating that more of the ferrous iron in Samples B-F was oxidized than in the Sample A. Based on the amount of oxygen added to the molten glass for sample F and sample C, the efficiency for below Reaction 1 ranged from 0.16 to 0.35%. The efficiency was determined by calculating the amount of oxygen that reacted with the ferrous iron divided by the total amount of oxygen introduced into the molten glass during the lab experiment through the porous ceramic tube.
Reaction 1 4FeO + 02 H 2Fe2O3 [0037] As is appreciated by those skilled in the art, the above lab experiment clearly demonstrates that moving oxygen through molten glass oxidizes the ferrous iron to the ferric iron and lowers the redox ratio.
are shown in Table 3 below.
COMPONENT SAMPLE
A B C D E F
FeO 0.0044 0.0038 0.0022 0.0043 0.0002 0.0000 Fe203 0.0154 0.0162 0.0172 0.0179 0.0172 0.0176 FeO/Fe2O 0.286 0.235 0.128 0.240 0.012 0.000 [0036] The Samples B-F each had a lower redox value than the redox value of Sample A indicating that more of the ferrous iron in Samples B-F was oxidized than in the Sample A. Based on the amount of oxygen added to the molten glass for sample F and sample C, the efficiency for below Reaction 1 ranged from 0.16 to 0.35%. The efficiency was determined by calculating the amount of oxygen that reacted with the ferrous iron divided by the total amount of oxygen introduced into the molten glass during the lab experiment through the porous ceramic tube.
Reaction 1 4FeO + 02 H 2Fe2O3 [0037] As is appreciated by those skilled in the art, the above lab experiment clearly demonstrates that moving oxygen through molten glass oxidizes the ferrous iron to the ferric iron and lowers the redox ratio.
[0038] In the practice of one non-limited embodiment of the invention, the glass batch ingredients selected for making low iron glasses have no additions of iron, and any iron present in the batch materials is present as tramp materials. Iron content generally referred to as tramp amounts of iron are amounts of iron less than 0.025 wt. %. For purposes of the present invention, batch materials are selected to have an iron content to provide the glass with a total iron expressed as Fe203 of less than 0.025 wt. % (250 ppm).
As is appreciated by those skilled in the art, batch materials are selected for minimal iron contamination, but it would be difficult to reduce the total iron content (Fe203) in the glass batch materials to provide a glass having less than about 0.005 wt. % (50 ppm) without incurring considerable expense. In the non-limiting embodiment of the invention under discussion, batch selection includes a low iron sand, which can have an iron content of about 0.008 wt. % iron (80 ppm) analyzed as Fe203. Limestone and dolomite, conventional glass batch materials, are avoided because of their typical iron contamination. Instead, it is preferred to use a purer source of calcium such as aragonite, which is a mineral form of calcium carbonate with only about 0.020 wt. % (200 ppm) Fe203. Further it is preferred to use low iron dolomite, having an iron (Fe203) content of less than about 0.020 wt. % (200 ppm). A preferred alumina source is aluminum hydrate, with about 0.008 wt. % (80 ppm) Fe203. An example of a glass batch mixture that can be used to make glasses within the ranges of the glass of Table 1 is shown in Table 4.
Batch Constituent Parts by Weight Low Iron Sand 1000 Soda Ash 322-347.8 Aragonite 160-281 Dolomite 0-179 Aluminum hydrate 0-35.1 Salt Cake 0-15 [0039] As discussed above, in the preferred practice of the invention, cerium is not added to the batch materials, and preferably, but not limiting to the invention, cerium is only present as a tramp material, e.g. less than 0.010 wt. %
(100 ppm).
As is appreciated by those skilled in the art, batch materials are selected for minimal iron contamination, but it would be difficult to reduce the total iron content (Fe203) in the glass batch materials to provide a glass having less than about 0.005 wt. % (50 ppm) without incurring considerable expense. In the non-limiting embodiment of the invention under discussion, batch selection includes a low iron sand, which can have an iron content of about 0.008 wt. % iron (80 ppm) analyzed as Fe203. Limestone and dolomite, conventional glass batch materials, are avoided because of their typical iron contamination. Instead, it is preferred to use a purer source of calcium such as aragonite, which is a mineral form of calcium carbonate with only about 0.020 wt. % (200 ppm) Fe203. Further it is preferred to use low iron dolomite, having an iron (Fe203) content of less than about 0.020 wt. % (200 ppm). A preferred alumina source is aluminum hydrate, with about 0.008 wt. % (80 ppm) Fe203. An example of a glass batch mixture that can be used to make glasses within the ranges of the glass of Table 1 is shown in Table 4.
Batch Constituent Parts by Weight Low Iron Sand 1000 Soda Ash 322-347.8 Aragonite 160-281 Dolomite 0-179 Aluminum hydrate 0-35.1 Salt Cake 0-15 [0039] As discussed above, in the preferred practice of the invention, cerium is not added to the batch materials, and preferably, but not limiting to the invention, cerium is only present as a tramp material, e.g. less than 0.010 wt. %
(100 ppm).
[0040] The batch materials for the glass making processes shown in Figs. 1-3 preferably include the ingredients in the range shown on Table 4, except that the glass making apparatus shown in Fig. 3 is preferably operated using two parts by weight of sodium sulfate per 1000 parts by weight of the sand (the silica source material); whereas, it is preferred to operate the glass making apparatus of Figs. 1 and 2 using 7 parts by weight of sodium sulfate per 1000 parts by weight of the silica source material. In the practice of the invention, the glass batch materials of Table 4 provide glasses having compositions shown in Table 5 below.
(A) (B) (C) Ingredient wt. % wt. % wt. %
Si02 72.65 73.26 72.85 Na20 13.87 15.09 14.04 CaO 10.20 11.03 9.64 MgO 2.94 0.17 3.14 SO3 0.173 0.196 0.169 Fe203 0.0086 0.0087 0.0176 A1203 0.04 0.04 0.04 SrO 0.126 0.206 0.108 [0041] The glass compositions of Table 5 were computer calculated from the batch formula of Table 4. It should be noted, however, that the glass composition of the fifth experiment discussed below was selected to be similar to computer calculated glass composition of Column (A) of Table 5. The computer program does not provide a redox ratio; however, the redox ratios of the invention discussed above are applicable for the glass compositions shown in Table 5. The glasses listed in Table 5 made using the glass making apparatus of Fig. 3 would have an S03 content less than 0.02 wt. %. As can be appreciated, the invention is not limited to the glass compositions listed in Table 5.
(A) (B) (C) Ingredient wt. % wt. % wt. %
Si02 72.65 73.26 72.85 Na20 13.87 15.09 14.04 CaO 10.20 11.03 9.64 MgO 2.94 0.17 3.14 SO3 0.173 0.196 0.169 Fe203 0.0086 0.0087 0.0176 A1203 0.04 0.04 0.04 SrO 0.126 0.206 0.108 [0041] The glass compositions of Table 5 were computer calculated from the batch formula of Table 4. It should be noted, however, that the glass composition of the fifth experiment discussed below was selected to be similar to computer calculated glass composition of Column (A) of Table 5. The computer program does not provide a redox ratio; however, the redox ratios of the invention discussed above are applicable for the glass compositions shown in Table 5. The glasses listed in Table 5 made using the glass making apparatus of Fig. 3 would have an S03 content less than 0.02 wt. %. As can be appreciated, the invention is not limited to the glass compositions listed in Table 5.
[0042] Other ingredients having a wt. % less than 0.01 wt. % are tramp materials which are impurities found in the batch materials and can include Mn02, Zr02, CoO, Se, NiO, Cl, P205, V205, CeO2, Cr203, Li20, K20 and Ti02.
[0043] The following experiments were conducted on a glass production line having a furnace of the type shown in Figs. 1 and 2 to determine the effect of exposing molten glass 38 to controlled amounts of 02 prior to the molten glass 38 moving through the waist 54 of the furnace 20. In one experiment two oxygen spargers each consisting of a 2 inch (5.08 centimeter ("cm")) diameter, inch (15.2 cm) long porous A1203-ZrO2-SiO2 refractory (tradename Vision commercially available from ANH Refractories Co.) cylindrical block attached to the end of a 1 inch (2.54 centimeter) diameter and 16 feet (4.9 meters) long water cooled straight metal pipe were located 3 feet (0.9 meters) from the batch feeding end 46 of the melter 48 and 4 feet (1.2 meters) from the left wall of the furnace, and the second sparger was located 3 feet (0.9 meters) from the batch feeding end of the melter and 4 feet (1.2 meters) from the right wall of the furnace. Each of the spargers was spaced 42 inches (1.1 meters) above the bottom surface of the furnace. Twenty five (25) cubic feet per hour ("CFH") of oxygen were moved through each of the spargers. It was observed that the spargers generated gas bubbles that were about 1/8 inch (0.32 centimeter) in diameter as they burst on the surface of the molten glass.
[0044] The batch composition had ingredients to make glass similar to the glass listed in column B of Table 5. The batch ingredients initially added to the melter did not have any additions of Ce02, the only Ce02 present in the batch materials were tramp amounts, and the Ce02 present in the glass cullet. Twice during the glass production run hydrated cerium carbonate was added to the batch materials. A first sample of the glass was taken before the first addition of the hydrated cerium carbonate and was analyzed; the first sample had a redox ratio of 0.48. Three (3) pounds of hydrated cerium carbonate per 1000 pounds of sand was added to the batch materials for 12 hours. Forty eight (48) hours after the first addition of hydrated cerium carbonate, a second sample of the glass was taken and analyzed; the second sample had a redox ratio of 0.43.
The Ce02 in the glass increased from 0.04 wt. % to 0.06 wt. %. After a period of 6 days after the first addition, a second addition of hydrated cerium carbonate was made. The second addition was 3 pounds of hydrated cerium carbonate per 1000 pounds of sand for 26 hours. Four (4) days after the second addition, a third sample of the glass was taken and analyzed. The third sample of glass had a redox ratio of 0.471; contained 0.0102 wt % (102 ppm) Fe203, and 0.04 wt%
(400 ppm) Ce02. The usual level of Ce02 is about 0.07% (700 ppm) and the usual level of the redox ratio is in the range of about 0.48-0.50. The results from the first experiment suggested that the introduction of oxygen gas into the molten glass through the two porous refractory spargers can serve as a substitute for adding CeO2 to oxidize the ferrous iron to the ferric iron, and to lower the glass redox ratio by about 0.01 -0.03, in a large commercial glass furnace.
The Ce02 in the glass increased from 0.04 wt. % to 0.06 wt. %. After a period of 6 days after the first addition, a second addition of hydrated cerium carbonate was made. The second addition was 3 pounds of hydrated cerium carbonate per 1000 pounds of sand for 26 hours. Four (4) days after the second addition, a third sample of the glass was taken and analyzed. The third sample of glass had a redox ratio of 0.471; contained 0.0102 wt % (102 ppm) Fe203, and 0.04 wt%
(400 ppm) Ce02. The usual level of Ce02 is about 0.07% (700 ppm) and the usual level of the redox ratio is in the range of about 0.48-0.50. The results from the first experiment suggested that the introduction of oxygen gas into the molten glass through the two porous refractory spargers can serve as a substitute for adding CeO2 to oxidize the ferrous iron to the ferric iron, and to lower the glass redox ratio by about 0.01 -0.03, in a large commercial glass furnace.
[0045] A second experiment was conducted on a glass production run to make clear glass having 0.10 wt% Fe203, i.e. high iron glass. In the second experiment, the sparger positions in relationship to the furnace walls was the same, however the spargers were spaced 8 inches (20 cm) from the bottom surface of the furnace. Further, each of the the spargers in the second experiment was a thicker porous refractory cylindrical block (3 inch (7.6 cm) diameter compared to only 2 inch (5.08 cm) diameter used in the first experiment) to increase the useable life of the spargers. The oxygen flow rate was 20 CFH at 40 PSI through each of the spargers. The average redox ratio of the glass two weeks before oxygen was flowed through the spargers was 0.338 and the range of the redox ratio was 0.005. The average redox ratio with oxygen moving through the spargers was 0.336 and the range of the redox ratio was 0.01. There was no significant change in the mean value of redox ratio, only an increase in the variability of the redox value. The conclusion of the second experiment was that while the glass redox ratio was lowered at least part of the time while using the oxygen spargers, the glass redox ratio was not lowered on a continuous basis due to non-homogeneous mixing of the molten glass in the furnace.
[0046] In a third experiment, the production run was making a glass composition included 0.05 wt% CeO2. In the third experiment, oxygen was moved through selected bubblers of one row of 19 individual gas bubblers (water cooled metal tubes) 150 (see Fig. 1 A) mounted in the base 26 of the furnace 20.
The bubblers extended upward into the molten glass about 24 inches (0.61 meters) from the bottom surface of the furnace and 33 inches (0.84 meters) below the surface 36 of the molten glass 38. The bubblers 150 were positioned about 50 feet from the wall 46 of the furnace 20 in the area of the 4th port 42 (see Fig. 2). The bubblers 150 were spaced about 18 inches (0.46 meters) apart and span the furnace 20 in a perpendicular fashion to the direction of the molten glass flow. Initially oxygen was moved through 6 bubblers, and then over the next three days through 12 of the remaining 13 bubblers; one bubbler did not function because it was clogged. Although the position of the first six bubblers was not recorded, it is believed the six bubblers were the three outer bubbles on each end of the row of bubblers. The oxygen flow was initially 5 CFH through each of the 18 bubblers and was increased after 3 days by 5 CFH, and increased by 5 CFH once again 4 days after the first increase. The last step of 5 CFH was reversed because the high rate of oxygen bubbling was entraining and leaving residual bubbles in the molten glass. It was observed that the bubblers generated gas bubbles that were about 6 inches (15.2 cm) in diameter as they burst on the surface of the molten glass. The glass redox ratio prior to introducing oxygen gas through the bubblers was 0.45. The glass made with oxygen moving through the 18 bubblers and after the last step of 5 CFH was reversed had a redox ratio of 0.41 and an Fe203 of 0.0096 wt. %. The use of the oxygen gas in the bubblers lowered the glass redox by 0.04.
The bubblers extended upward into the molten glass about 24 inches (0.61 meters) from the bottom surface of the furnace and 33 inches (0.84 meters) below the surface 36 of the molten glass 38. The bubblers 150 were positioned about 50 feet from the wall 46 of the furnace 20 in the area of the 4th port 42 (see Fig. 2). The bubblers 150 were spaced about 18 inches (0.46 meters) apart and span the furnace 20 in a perpendicular fashion to the direction of the molten glass flow. Initially oxygen was moved through 6 bubblers, and then over the next three days through 12 of the remaining 13 bubblers; one bubbler did not function because it was clogged. Although the position of the first six bubblers was not recorded, it is believed the six bubblers were the three outer bubbles on each end of the row of bubblers. The oxygen flow was initially 5 CFH through each of the 18 bubblers and was increased after 3 days by 5 CFH, and increased by 5 CFH once again 4 days after the first increase. The last step of 5 CFH was reversed because the high rate of oxygen bubbling was entraining and leaving residual bubbles in the molten glass. It was observed that the bubblers generated gas bubbles that were about 6 inches (15.2 cm) in diameter as they burst on the surface of the molten glass. The glass redox ratio prior to introducing oxygen gas through the bubblers was 0.45. The glass made with oxygen moving through the 18 bubblers and after the last step of 5 CFH was reversed had a redox ratio of 0.41 and an Fe203 of 0.0096 wt. %. The use of the oxygen gas in the bubblers lowered the glass redox by 0.04.
[0047] A fourth experiment was conducted on the glass composition of the third experiment except that the only Ce02 present in the batch materials was tramp Ce02 in the glass cullet in an amount of 0.04 wt. %. In the fourth experiment, the bubblers were raised to a position 27 inches (0.69 meters) from the level of the molten glass and the oxygen was moved through each of the 18 bubblers 150 at a flow rate of 12.5 CFH. The oxygen gas flow rate was increased from 12.5 CFH to 17.5 CFH per bubbler, and from 17.5 CFH to 20 CFH per bubbler over the next five days. The rate of oxygen was dropped back to 17.5 CFH because the high rate of oxygen gas bubbling was entraining and leaving residual bubbles in the molten glass. A sample of the glass while bubbling oxygen gas at a flow rate of 17.5 CFH per bubbler had a redox ratio of 0.467, 0.0092 wt. % (92 ppm) Fe203 and 0.033 wt. % Ce02 (330 ppm). It is believed that bubbling oxygen gas at a total flow rate of 100 CFH into 7564 cubic feet of molten glass for 24 hours (2400 CF of oxygen per 7564 cubic feet of molten glass) is equal to about 0.01 wt. % Ce02 in terms of causing an equivalent decrease in the glass redox ratio. The efficiency of bubbling with oxygen gas in the commercial glass furnace was calculated and is about 0.12%, which is similar to that observed in the laboratory experiment. The efficiency was determined by calculating the amount of oxygen that reacted with the ferrous iron divided by the total amount of oxygen introduced into the molten glass during the fourth experiment through the 18 bubblers 150.
[0048] From the above experiments it was concluded that the glass redox ratio can be lowered by introducing oxygen gas into the molten glass as a substitute for the need to add CeO2 to oxidize the iron in the ferrous state (Fe++) to iron in the ferric state (Fe+++) The oxygen gas can be introduced through either a sparger consisting of a porous refractory block or a water cooled metal bubblers. It was observed that the size of the bubbles generated by the oxygen gas was much smaller using the sparger than with the water cooled bubbler More particularly, the size of the bubbles from the spargers were similar to the bubbles moved through the molten glass in the lab experiment. In the instance when the glass is made in the glass making apparatus shown in Fig. 3, the oxygen would be bubbled into the molten glass in the dissolution chamber 94 through bubblers 110 (only one shown in Fig. 3) mounted through the base 112 of the dissolution chamber 94.
[0049] With reference to Fig. 2, in another non-limiting embodiment of the invention, oxygen to oxidize the ferrous iron (Fe++) to ferric iron (Fe+++) is provided by increasing the ratio of combustion air, i.e. oxygen gas to the fuel or firing gas at the firing ports. The normal firing ratio of combustion air to fuel gas is 10.9 as determined by the formula "total combustion air flow rate (the combustion air to all of the firing ports) divided by total fuel gas flow rate (fuel gas to all of the firing ports)." As is appreciated by those skilled in the art, the flow rate of combustion air and fuel gas is not evenly distributed to each of the firing ports; however, in the practice of the invention the total flow rate of the combustion air and the total flow rate of the fuel gas is of interest.
Further, as is appreciated by those skilled in the art, the combustion gas includes 21 %
oxygen and the remaining percent mostly nitrogen. Therefore, the normal firing ratio of oxygen to fuel gas for combustion air/fuel gas fired furnaces is 2.29 (10.9 total combustion air/total fuel gas x 0.21 oxygen in combustion air). In the following discussion, the "air firing ratio" is determined by the formula "total combustion air flow rate (the combustion air to all of the firing ports) divided by total fuel gas flow rate (fuel gas to all of the firing ports)" and is normally 10.9. The "oxygen firing ratio" for an oxygen/fuel gas fired furnace is determined by the formula "total oxygen gas flow rate (the oxygen to all of the firing ports) divided by total fuel gas flow rate (fuel gas to all of the firing ports)" and is normally 2.29, and the "oxygen firing ratio" for a combustion air/fuel gas firing furnace is determined by the formula "total combustion air flow rate times percent of oxygen in the combustion air divided by total fuel gas flow rate (fuel gas to all of the firing ports)" and is normally 2.29. Increasing the air firing ratio to greater than 11.0, or the oxygen firing ratio to 2.31 by increasing the total combustion air flow rate or the total combustion oxygen, respectively, provides excess oxygen to oxidize the ferrous iron (Fe++) to ferric iron (Fe+++) [0050] In a fifth experiment that was conducted on a commercial glass furnace making low iron glass having a glass composition similar to the computer calculated glass composition of column A in Table 5. A sample of glass was taken and analyzed; the glass had a redox ratio of 0.45. During the fifth experiment, oxygen gas at a flow rate of 3 CFH per bubbler was moved through the 18 bubblers 150 located in Port 4 of the glass furnace 20. The batch materials were changed by using low iron dolomite to replace part of the aragonite in the glass batch. The dolomite increases the MgO content of the glass, which increases the durability of the glass as is known in the art. It is believed that the addition of dolomite also helps to lower the glass redox, because the dolomite does not contain high levels of carbon impurities, which are present in the aragonite and can act as a reducing agent to reduce the ferric iron (Fe+++) to the ferrous iron (Fe++) [0051] Combustion air at each of the 7 ports 42 on each side of the furnace 20 was increased during their firing cycle by increasing the air firing ratio from 12.3 to 13.3 in steps of 0.1-0.4 (increasing the oxygen firing ratio from 2.58 to 2.79 in steps of 0.02-0.084) each over a five day period. About 72 hours after the ratio was increased, a sample of glass was taken and analyzed. The redox ratio of the sample was 0.39. The low iron float glass composition produced is similar to the computer generated glass composition of Column (A) in Table 5 and contained 0.0084 wt. % (84 ppm) Fe203 and 0.0021 wt. % (21 ppm) Ce02.
The glass had a LTA (visible transmittance value) of 91.3%, a TSIR value of 90.4% and a TSET value of 90.7% at an actual thickness of about 3.2 mm (0.1254 inches). An LTA value of 91.3%is a very high glass transmittance that is useful as a cover plate to protect the photovoltaic cells in electric power generating solar collectors and as a glass substrate for solar mirrors. It is concluded from this fifth experiment that the glass redox ratio can be lowered by about 0.06 by increasing the air firing ratio (the oxygen firing ratio).
Further, as is appreciated by those skilled in the art, the combustion gas includes 21 %
oxygen and the remaining percent mostly nitrogen. Therefore, the normal firing ratio of oxygen to fuel gas for combustion air/fuel gas fired furnaces is 2.29 (10.9 total combustion air/total fuel gas x 0.21 oxygen in combustion air). In the following discussion, the "air firing ratio" is determined by the formula "total combustion air flow rate (the combustion air to all of the firing ports) divided by total fuel gas flow rate (fuel gas to all of the firing ports)" and is normally 10.9. The "oxygen firing ratio" for an oxygen/fuel gas fired furnace is determined by the formula "total oxygen gas flow rate (the oxygen to all of the firing ports) divided by total fuel gas flow rate (fuel gas to all of the firing ports)" and is normally 2.29, and the "oxygen firing ratio" for a combustion air/fuel gas firing furnace is determined by the formula "total combustion air flow rate times percent of oxygen in the combustion air divided by total fuel gas flow rate (fuel gas to all of the firing ports)" and is normally 2.29. Increasing the air firing ratio to greater than 11.0, or the oxygen firing ratio to 2.31 by increasing the total combustion air flow rate or the total combustion oxygen, respectively, provides excess oxygen to oxidize the ferrous iron (Fe++) to ferric iron (Fe+++) [0050] In a fifth experiment that was conducted on a commercial glass furnace making low iron glass having a glass composition similar to the computer calculated glass composition of column A in Table 5. A sample of glass was taken and analyzed; the glass had a redox ratio of 0.45. During the fifth experiment, oxygen gas at a flow rate of 3 CFH per bubbler was moved through the 18 bubblers 150 located in Port 4 of the glass furnace 20. The batch materials were changed by using low iron dolomite to replace part of the aragonite in the glass batch. The dolomite increases the MgO content of the glass, which increases the durability of the glass as is known in the art. It is believed that the addition of dolomite also helps to lower the glass redox, because the dolomite does not contain high levels of carbon impurities, which are present in the aragonite and can act as a reducing agent to reduce the ferric iron (Fe+++) to the ferrous iron (Fe++) [0051] Combustion air at each of the 7 ports 42 on each side of the furnace 20 was increased during their firing cycle by increasing the air firing ratio from 12.3 to 13.3 in steps of 0.1-0.4 (increasing the oxygen firing ratio from 2.58 to 2.79 in steps of 0.02-0.084) each over a five day period. About 72 hours after the ratio was increased, a sample of glass was taken and analyzed. The redox ratio of the sample was 0.39. The low iron float glass composition produced is similar to the computer generated glass composition of Column (A) in Table 5 and contained 0.0084 wt. % (84 ppm) Fe203 and 0.0021 wt. % (21 ppm) Ce02.
The glass had a LTA (visible transmittance value) of 91.3%, a TSIR value of 90.4% and a TSET value of 90.7% at an actual thickness of about 3.2 mm (0.1254 inches). An LTA value of 91.3%is a very high glass transmittance that is useful as a cover plate to protect the photovoltaic cells in electric power generating solar collectors and as a glass substrate for solar mirrors. It is concluded from this fifth experiment that the glass redox ratio can be lowered by about 0.06 by increasing the air firing ratio (the oxygen firing ratio).
[0052] As is appreciated by those skilled in the art, increasing the oxygen firing ratio and operating the furnace at elevated temperatures can increase NOx emissions. This can be managed by reducing the temperature of the furnace and/or by appropriate emission control equipment. The invention is not limited to operating temperature of the furnace and/or by the use of emission control systems.
[0053] From the above it can be appreciated that increasing the air firing ratio (the oxygen firing ratio) provides oxygen to the molten glass to oxidize the ferrous iron (Fe++) to ferric iron (Fe+++). As can be appreciated, the invention is not limited to any particular ratio value; however, it is preferred to have an oxygen firing ratio of 2.31 (an air firing ratio of 11.0), more preferred an oxygen firing ratio of 2.63 (an air firing ratio of 12.5), and most preferred an oxygen firing ratio of 2.71 (an air firing ratio of 12.9). Further as can be appreciated, bubbling oxygen through the molten glass provides oxygen to the molten glass to oxidize the ferrous iron (Fe++) to ferric iron (Fe+++). In one non-limiting embodiment of the invention, and as discussed above, 2400 CF per 24 hours of oxygen per 7564 cubic feet of molten glass (0.32 CFper 24 hours per cubic foot of molten glass) is equal to about 0.01 % CeO2 in terms of causing an equivalent decrease in the glass redox ratio. Still further, as can be appreciated, increasing the air firing ratio (the oxygen firing ratio) while bubbling oxygen through the molten glass increases the amount of oxygen to the molten glass to oxidize the ferrous iron (Fe++) to ferric iron (Fe+++) and can be used to avoid excessive increases of the air firing ratio (the oxygen firing ratio) thereby reducing environmental concerns.
[0054] Based on the forgoing, the invention can be practiced to make a glass for solar control cover plates and for solar mirrors, e.g. low iron glass having the components in the range shown in Table 6, and the properties discussed below.
COMPONENT RANGE
Si02 65-75 wt. %
Na20 10-20 wt. %
CaO 5-15 wt. %
MgO greater than 0 to 5 wt. %
CeO2 less than 0.0025 wt. %
SO3 0.12-0.2 wt. %
Fe203 (total iron) equal to or less than 0.01 wt. %
Redox ratio less than 0.400, or less than 0.350, or less than 0.200, or less than 0.150 [0055] The glasses of Table 6 at a glass thickness of 5.5 millimeters have an LTA equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 90%; a TSIR equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 90%, or equal to or greater than 91 %, and a TSET equal to or greater than 89%, or equal to or greater than 90%, or equal to or greater than 91 %. The spectral properties of the glass vary as the redox ratio and/or the Fe203 (total iron) vary as was discussed above.
COMPONENT RANGE
Si02 65-75 wt. %
Na20 10-20 wt. %
CaO 5-15 wt. %
MgO greater than 0 to 5 wt. %
CeO2 less than 0.0025 wt. %
SO3 0.12-0.2 wt. %
Fe203 (total iron) equal to or less than 0.01 wt. %
Redox ratio less than 0.400, or less than 0.350, or less than 0.200, or less than 0.150 [0055] The glasses of Table 6 at a glass thickness of 5.5 millimeters have an LTA equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 90%; a TSIR equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 90%, or equal to or greater than 91 %, and a TSET equal to or greater than 89%, or equal to or greater than 90%, or equal to or greater than 91 %. The spectral properties of the glass vary as the redox ratio and/or the Fe203 (total iron) vary as was discussed above.
[0056] Further, based on the forgoing, the invention can be practiced to make a glass for commercial and residential buildings, furniture and appliances, and for land, above and below water, and aerospace, e.g. high iron glass having the components in the range shown in Table 7, and the properties discussed below.
COMPONENT RANGE
Si02 65-75 wt. %
Na20 10-20 wt. %
CaO 5-15 wt. %
MgO greater than 0 to 5 wt. %
CeO2 less than 0.080 wt. %, or less than 0.060 wt. %, or less than 0.030 wt. % or less than 0.020 wt. %, or less than 0.010 wt. %
SO3 0.12-0.2 wt. %
Fe203 (total iron) greater than 0.01 wt. % to 0.12 wt. %
Redox ratio less than 0.550, or less than 0.400, or less than 0.350, or less than 0.200, or less than 0.150 [0057] The glasses of Table 7 at a glass thickness of 5.5 millimeters, have an LTA equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 90%; a TSIR equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 89%, or equal to or greater than 90%, and a TSET equal to or greater than 88%, or equal to or greater than 89%, or equal to or greater than 90%. The spectral properties of the glass vary as the redox ratio and/or the Fe203 (total iron) vary as was discussed above.
COMPONENT RANGE
Si02 65-75 wt. %
Na20 10-20 wt. %
CaO 5-15 wt. %
MgO greater than 0 to 5 wt. %
CeO2 less than 0.080 wt. %, or less than 0.060 wt. %, or less than 0.030 wt. % or less than 0.020 wt. %, or less than 0.010 wt. %
SO3 0.12-0.2 wt. %
Fe203 (total iron) greater than 0.01 wt. % to 0.12 wt. %
Redox ratio less than 0.550, or less than 0.400, or less than 0.350, or less than 0.200, or less than 0.150 [0057] The glasses of Table 7 at a glass thickness of 5.5 millimeters, have an LTA equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 90%; a TSIR equal to or greater than 85%, or equal to or greater than 87%, or equal to or greater than 89%, or equal to or greater than 90%, and a TSET equal to or greater than 88%, or equal to or greater than 89%, or equal to or greater than 90%. The spectral properties of the glass vary as the redox ratio and/or the Fe203 (total iron) vary as was discussed above.
[0058] The above glasses are preferably, but not limited to the invention, made in glass making equipment similar to, but not limited to the type shown in Figs. 1 and 2. The above glass can be made in glass making equipment having a vacuum refiner, e.g. similar to, but not limited to the type shown in Fig.
3 by reducing the SO3 to less than 0.010 wt% as discussed above.
3 by reducing the SO3 to less than 0.010 wt% as discussed above.
[0059] It will be readily appreciated by those skilled in the art that modifications can be made to the invention without departing from the concepts disclosed in the foregoing description. Accordingly, the particular embodiments described in detail herein are illustrative only and are not limiting to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Claims (22)
1. A soda-lime-silica glass, comprising:
SiO2 65-75 weight percent Na2O 10-20 weight percent CaO 5-15 weight percent MgO 0-5 weight percent Al2O3 0-5 weight percent K2O 0-5 weight percent SO3 0-0.30 weight percent Total iron as Fe2O3 0.005-0.120 weight percent Redox ratio less than 0.550 wherein the glass has less than 0.0025 weight percent of CeO2 and spectral properties of the glass measured at a thickness 5.5 millimeters comprises:
a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 2 o observer over a wavelength range of 380 to 770 nanometers;
a total solar infrared transmittance of greater than 87% measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
SiO2 65-75 weight percent Na2O 10-20 weight percent CaO 5-15 weight percent MgO 0-5 weight percent Al2O3 0-5 weight percent K2O 0-5 weight percent SO3 0-0.30 weight percent Total iron as Fe2O3 0.005-0.120 weight percent Redox ratio less than 0.550 wherein the glass has less than 0.0025 weight percent of CeO2 and spectral properties of the glass measured at a thickness 5.5 millimeters comprises:
a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 2 o observer over a wavelength range of 380 to 770 nanometers;
a total solar infrared transmittance of greater than 87% measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
2. The glass according to claim 1 wherein the spectral properties comprise:
the visible transmission is greater than 87%;
the total solar infrared transmittance of greater than 89%, and the total solar energy transmittance of greater than 90%.
the visible transmission is greater than 87%;
the total solar infrared transmittance of greater than 89%, and the total solar energy transmittance of greater than 90%.
3. The glass according to claim 1 wherein the spectral properties comprise:
the visible transmission is greater than 90%, and the total solar infrared transmittance of greater than 90%.
the visible transmission is greater than 90%, and the total solar infrared transmittance of greater than 90%.
4. The glass according to claim 3, wherein the total iron as Fe2O3 is 0.005-0.025 weight percent and the redox ratio is less than 0.350.
5. The glass according to claim 1, wherein the total iron as Fe2O3 is 0.005-0.025 weight percent and the redox ratio is less than 0.200.
6. A method of reducing redox ratio of soda-lime-silica glass comprising:
heating a pool of molten soda-lime-silica glass having iron in a ferrous state (Fe++) and in a ferric state (Fe+++) wherein the pool of molten glass is heated with an ignited mixture of combustion gas and fuel gas emanating from one or more burners, wherein flow of the combustion gas exceeds the amount of combustion gas required to ignite the fuel gas such that excess oxygen of the combustion gas oxidizes the iron in the ferrous state to iron in the ferric state to reduce the redox ratio.
heating a pool of molten soda-lime-silica glass having iron in a ferrous state (Fe++) and in a ferric state (Fe+++) wherein the pool of molten glass is heated with an ignited mixture of combustion gas and fuel gas emanating from one or more burners, wherein flow of the combustion gas exceeds the amount of combustion gas required to ignite the fuel gas such that excess oxygen of the combustion gas oxidizes the iron in the ferrous state to iron in the ferric state to reduce the redox ratio.
7. The method according to claim 6 wherein oxygen firing ratio of the ignited mixture is greater than 2.31, and the oxygen fuel ratio is determined as follows:
total flow of the combustion gas to all of the burners times the percent of oxygen in the combustion gas divided by total flow of the fuel gas to all of the burners.
total flow of the combustion gas to all of the burners times the percent of oxygen in the combustion gas divided by total flow of the fuel gas to all of the burners.
8. The method according to claim 7 wherein the oxygen firing ratio is in the range of 2.31-2.71.
9. The method according to claim 7 wherein the oxygen firing ratio is greater than 2.63.
10. The method according to claim 8 wherein the oxygen firing ratio is greater than 2.71.
11. The method according to claim 6 wherein the molten glass further comprises greater than zero and less than 0.0800 weight percent of CeO2.
12. The method according to claim 6 wherein the CeO2 is less than 0.0025 weight percent.
13. The method according to claim 6 wherein the CeO2 is in the range of greater than zero and equal to or less than 0.0025 weight percent and the redox ratio is equal to or less than 0.350.
14. The method according to claim 6 further comprising controllably cooling portions of the pool of molten glass to provide a glass wherein the glass has total iron as Fe2O3 in the range of 0.005-0.120 weight percent, a redox ratio of less than 0.550, wherein the glass has less than 0.0025 weight percent of CeO2 and spectral properties of the glass measured at a thickness 5.5 millimeters comprises:
a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 2 o observer over a wavelength range of 380 to 770 nanometers;
a total solar infrared transmittance of greater than 87% measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 2 o observer over a wavelength range of 380 to 770 nanometers;
a total solar infrared transmittance of greater than 87% measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
15. The method according to claim 14 wherein the spectral properties comprise:
the visible transmission is greater than 87%;
the total solar infrared transmittance of greater than 89%, and the total solar energy transmittance of greater than 90%.
the visible transmission is greater than 87%;
the total solar infrared transmittance of greater than 89%, and the total solar energy transmittance of greater than 90%.
16. The method according to claim 15 wherein the spectral properties comprise:
the visible transmission is greater than 90%, and the total solar infrared transmittance of greater than 90%.
the visible transmission is greater than 90%, and the total solar infrared transmittance of greater than 90%.
17. The method according to claim 16, wherein the total iron as Fe2O3 is 0.005-0.025 weight percent and the redox ratio is less than 0.350.
18. The method according to claim 6 further comprising moving oxygen gas through the pool of molten glass wherein flow of the oxygen gas is in a direction from bottom of the pool of molten glass to top of the pool.
19. A method of reducing redox ratio of soda-lime-silica glass comprising:
heating a pool of molten soda-lime-silica glass in a heating chamber, the pool of molten glass having iron in a ferrous state (Fe++) and in a ferric state (Fe+++);
moving glass batch materials onto the pool of molten glass contained in the heating chamber, the batch materials having iron in the ferrous state (Fe++) and in the ferric state (Fe+++);
melting the glass batch materials as they float on surface of the molten pool of glass;
moving oxygen through the pool of molten glass to oxidize the ferrous iron to the ferric iron to reduce the redox ratio, and forming a glass ribbon from the pool of molten glass.
heating a pool of molten soda-lime-silica glass in a heating chamber, the pool of molten glass having iron in a ferrous state (Fe++) and in a ferric state (Fe+++);
moving glass batch materials onto the pool of molten glass contained in the heating chamber, the batch materials having iron in the ferrous state (Fe++) and in the ferric state (Fe+++);
melting the glass batch materials as they float on surface of the molten pool of glass;
moving oxygen through the pool of molten glass to oxidize the ferrous iron to the ferric iron to reduce the redox ratio, and forming a glass ribbon from the pool of molten glass.
20. The method according to claim 19 further comprising controllably cooling potions of the pool of molten glass to provide a glass wherein the glass has total iron as Fe2O3 in the range of 0.005-0.120 weight percent, a redox ratio of less than 0.550, wherein the glass has less than 0.0025 weight percent of CeO2 and spectral properties of the glass measured at a thickness 5.5 millimeters comprises:
a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 2 o observer over a wavelength range of 380 to 770 nanometers;
a total solar infrared transmittance of greater than 87% measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
a visible transmission of greater than 85% measured using C.I.E.
standard illuminant "A" with a 2 o observer over a wavelength range of 380 to 770 nanometers;
a total solar infrared transmittance of greater than 87% measured over a wavelength range of 775 to 2125 nanometers, and a total solar energy transmittance of greater than 89% measured over a wavelength range of 300 to 2500 nanometers, wherein the total solar infrared transmittance and the total solar energy transmittance are calculated using Parry Moon air mass 2.0 direct solar irradiance data and ASTM air mass 1.5 global solar irradiance data respectively, and integrated using the Rectangular Rule and Trapezoidal Rule, respectively.
21. The method according to claim 20 wherein the spectral properties comprise:
the visible transmission is greater than 90%;
the total solar infrared transmittance of greater than 90%, and the total solar energy transmittance of greater than 90%, and the total iron as Fe2O3 is 0.005-0.025 weight percent and the redox ratio is less than 0.350.
the visible transmission is greater than 90%;
the total solar infrared transmittance of greater than 90%, and the total solar energy transmittance of greater than 90%, and the total iron as Fe2O3 is 0.005-0.025 weight percent and the redox ratio is less than 0.350.
22. The method according to claim 19 wherein the batch materials are melted as the batch materials float on surface of the pool of molten glass and moving the oxygen gas bubbles is accomplished by moving a plurality of spaced streams of oxygen gas bubbles upward through the pool of molten glass toward the surface of the pool of molten glass from a position below the surface of the pool of molten glass and downstream from the melting batch materials, wherein the streams of gas bubbles are in a line transverse to direction or flow of the molten glass.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/275,264 US8304358B2 (en) | 2008-11-21 | 2008-11-21 | Method of reducing redox ratio of molten glass and the glass made thereby |
US12/275,264 | 2008-11-21 | ||
PCT/US2009/064557 WO2010059559A1 (en) | 2008-11-21 | 2009-11-16 | Method of reducing redox ratio of molten glass and ultra-clear glass made thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2744380A1 true CA2744380A1 (en) | 2010-05-27 |
Family
ID=41460180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2744380A Abandoned CA2744380A1 (en) | 2008-11-21 | 2009-11-16 | Method of reducing redox ratio of molten glass and ultra-clear glass made thereby |
Country Status (13)
Country | Link |
---|---|
US (2) | US8304358B2 (en) |
EP (1) | EP2396284B1 (en) |
JP (1) | JP5785092B2 (en) |
KR (1) | KR101304664B1 (en) |
CN (1) | CN102272062A (en) |
BR (1) | BRPI0921419A2 (en) |
CA (1) | CA2744380A1 (en) |
ES (1) | ES2577527T3 (en) |
MX (1) | MX343670B (en) |
MY (1) | MY150854A (en) |
PL (1) | PL2396284T3 (en) |
RU (1) | RU2536526C2 (en) |
WO (1) | WO2010059559A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2712849A1 (en) | 2012-09-28 | 2014-04-02 | Türkiye Sise Ve Cam Fabrikalari A.S. | A flat glass application with low iron content |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2252555A2 (en) * | 2008-03-03 | 2010-11-24 | Saint-Gobain Glass France | Method of producing glass |
US8966941B2 (en) * | 2008-09-01 | 2015-03-03 | Saint-Gobain Glass France | Process for obtaining glass and glass obtained |
US8304358B2 (en) | 2008-11-21 | 2012-11-06 | Ppg Industries Ohio, Inc. | Method of reducing redox ratio of molten glass and the glass made thereby |
US8467124B2 (en) * | 2010-02-19 | 2013-06-18 | Ppg Industries Ohio, Inc. | Solar reflecting mirror and method of making same |
US20100242953A1 (en) * | 2009-03-27 | 2010-09-30 | Ppg Industries Ohio, Inc. | Solar reflecting mirror having a protective coating and method of making same |
BRPI1014048A2 (en) * | 2009-06-12 | 2017-02-07 | Air Prod & Chem | combustion method, method for affecting the oxidation state of metal species, and furnace. |
US8815402B2 (en) | 2010-03-31 | 2014-08-26 | Ppg Industries Ohio, Inc. | Mirror having reflective coatings on a first surface and an opposite second surface |
CN103153892B (en) * | 2010-05-20 | 2016-05-18 | 法国圣戈班玻璃厂 | For the glass baseplate of high temperature application |
US8991215B2 (en) * | 2010-06-17 | 2015-03-31 | Johns Manville | Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter |
US20130072371A1 (en) * | 2011-03-17 | 2013-03-21 | Ppg Industries Ohio, Inc. | Method of, and apparatus for, using a glass fluxing agent to reduce foam during melting of glass batch |
KR101340384B1 (en) * | 2011-09-23 | 2013-12-11 | 주식회사 케이씨씨 | Method for producing soda lime silicate sheet glass and highly transparent sheet glass produced by the same |
US20130276481A1 (en) * | 2011-12-21 | 2013-10-24 | Hisashi Kobayashi | Controlling glassmelting furnace operation |
US20150166402A1 (en) * | 2012-01-12 | 2015-06-18 | Nippon Electric Glass Co., Ltd. | Glass |
EP3572382B1 (en) | 2012-02-24 | 2024-10-02 | PPG Industries Ohio, Inc. | Method of making a lithium containing glass with high oxidized iron content |
US10202302B2 (en) | 2012-02-24 | 2019-02-12 | Ppg Industries Ohio, Inc. | Lithium containing glass with high and low oxidized iron content, and products using same |
US20140152914A1 (en) * | 2012-11-30 | 2014-06-05 | Corning Incorporated | Low-Fe Glass for IR Touch Screen Applications |
US8978420B2 (en) | 2012-12-14 | 2015-03-17 | Ppg Industries Ohio, Inc. | Bending device for shaping glass for use in aircraft transparencies |
US9016094B2 (en) * | 2013-01-16 | 2015-04-28 | Guardian Industries Corp. | Water cooled oxygen lance for use in a float glass furnace and/or float glass furnace using the same |
US20140309099A1 (en) * | 2013-04-15 | 2014-10-16 | Ppg Industries Ohio, Inc. | Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same |
JP2017507103A (en) | 2014-01-29 | 2017-03-16 | コーニング インコーポレイテッド | Glass for display lighting processed with laser |
WO2016040480A1 (en) * | 2014-09-09 | 2016-03-17 | The Curators Of The University Of Missouri | Method to produce inorganic nanomaterials and compositions thereof |
JP6494969B2 (en) * | 2014-09-30 | 2019-04-03 | AvanStrate株式会社 | Glass substrate manufacturing method and glass substrate manufacturing apparatus |
EP3253750B1 (en) * | 2015-02-03 | 2019-04-10 | Council of Scientific and Industrial Research | Novel flavone based egfr inhibitors and process for preparation thereof |
JPWO2016159362A1 (en) * | 2015-04-03 | 2018-03-01 | 旭硝子株式会社 | Glass article |
WO2016158841A1 (en) * | 2015-04-03 | 2016-10-06 | 旭硝子株式会社 | Glass article |
US10570045B2 (en) * | 2015-05-22 | 2020-02-25 | John Hart Miller | Glass and other material melting systems |
CN106587585B (en) * | 2016-12-20 | 2019-04-23 | 沈阳市超高真空应用技术研究所 | A kind of dual cavity controllable pressure high-temperature quenching thermoforming system and technique |
CN107162408B (en) * | 2017-06-15 | 2019-09-06 | 漳州旗滨玻璃有限公司 | A kind of thin electronic glass of ultrawhite and its production method |
CN108409133A (en) * | 2017-08-11 | 2018-08-17 | 沭阳鑫达新材料有限公司 | Photovoltaic glass watt photovoltaic glass and manufacturing process |
FR3077293B1 (en) * | 2018-01-26 | 2021-06-04 | Saint Gobain | LAMINATED WINDOWS. |
KR20210096140A (en) | 2018-11-26 | 2021-08-04 | 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 | High Performance Fiber Glass Composition with Improved Modulus of Elasticity |
CA3117986A1 (en) | 2018-11-26 | 2020-06-04 | Owens Corning Intellectual Capital, Llc | High performance fiberglass composition with improved specific modulus |
US11680005B2 (en) * | 2020-02-12 | 2023-06-20 | Owens-Brockway Glass Container Inc. | Feed material for producing flint glass using submerged combustion melting |
JP7354776B2 (en) * | 2019-11-05 | 2023-10-03 | 日本電気硝子株式会社 | Glass manufacturing method and sheet glass manufacturing method |
CA3167860A1 (en) * | 2020-02-03 | 2021-08-12 | Vitro Flat Glass Llc | Soda lime silica glass with high visible light transmittance |
CN112876066B (en) * | 2020-06-30 | 2022-04-15 | 成都光明光电股份有限公司 | Environment-friendly glass material |
CN113429116B (en) * | 2021-06-11 | 2023-02-03 | 秦皇岛玻璃工业研究设计院有限公司 | Gradient oxygen-increasing low-NOx combustion device and process for float glass melting furnace |
CN116854487B (en) * | 2023-07-10 | 2024-08-02 | 同创普润(上海)机电高科技有限公司 | Composition for furnace cover and application thereof |
Family Cites Families (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2038627A (en) * | 1935-07-18 | 1936-04-28 | Corning Glass Works | Method of making glass |
US2274643A (en) * | 1939-12-19 | 1942-03-03 | Pittsburgh Plate Glass Co | Fining of glass |
US2254079A (en) * | 1940-02-06 | 1941-08-26 | Pittsburgh Plate Glass Co | Method and apparatus for forming and refining glass |
US2387222A (en) * | 1941-09-17 | 1945-10-16 | Owens Illinois Glass Co | Method of refining glass |
US2331052A (en) * | 1941-11-27 | 1943-10-05 | Owens Illinois Glass Co | Method of refining molten glass |
US2330324A (en) * | 1942-02-25 | 1943-09-28 | Pittsburgh Plate Glass Co | Fining of glass |
US3208841A (en) * | 1960-10-06 | 1965-09-28 | Owens Illinois Glass Co | Apparatus for melting glass |
US3353941A (en) * | 1964-05-29 | 1967-11-21 | Emhart Corp | Method of melting glass |
NL129745C (en) * | 1964-06-05 | |||
US3622296A (en) | 1966-08-29 | 1971-11-23 | Corning Glass Works | Method of fining glass |
US3669435A (en) * | 1970-02-26 | 1972-06-13 | American Optical Corp | All-ceramic glass making system |
US3716349A (en) * | 1971-05-17 | 1973-02-13 | American Optical Corp | Method for producing laser glasses having high resistance to internal damage and the product produced thereby |
US3811860A (en) * | 1972-06-09 | 1974-05-21 | Ppg Industries Inc | Processing of stirring molten glass with bubbles from electrolysis |
US4224927A (en) * | 1978-08-30 | 1980-09-30 | Ppg Industries, Inc. | Solar collector for heating a fluid |
US4354866A (en) * | 1980-04-04 | 1982-10-19 | Ppg Industries, Inc. | Method of bidirectionally attenuating glass in a float process with edge cooling |
US4466562A (en) * | 1981-12-15 | 1984-08-21 | Ppg Industries, Inc. | Method of and apparatus for severing a glass sheet |
US4599100A (en) * | 1985-04-01 | 1986-07-08 | Ppg Industries, Inc. | Melting glass with port and melter burners for NOx control |
US4671155A (en) * | 1985-06-13 | 1987-06-09 | Ppg Industries, Inc. | Positioning apparatus |
US4634461A (en) * | 1985-06-25 | 1987-01-06 | Ppg Industries, Inc. | Method of melting raw materials for glass or the like with staged combustion and preheating |
US4632687A (en) * | 1985-06-25 | 1986-12-30 | Ppg Industries, Inc. | Method of melting raw materials for glass or the like using solid fuels or fuel-batch mixtures |
US4792536A (en) * | 1987-06-29 | 1988-12-20 | Ppg Industries, Inc. | Transparent infrared absorbing glass and method of making |
US5006144A (en) * | 1990-06-25 | 1991-04-09 | Ppg Industries, Inc. | Melting glass with oxidation control and lowered emissions |
US5030593A (en) * | 1990-06-29 | 1991-07-09 | Ppg Industries, Inc. | Lightly tinted glass compatible with wood tones |
US5030594A (en) * | 1990-06-29 | 1991-07-09 | Ppg Industries, Inc. | Highly transparent, edge colored glass |
DE4128645A1 (en) * | 1991-08-29 | 1993-03-11 | Flachglas Ag | SOLAR MIRROR, METHOD FOR THE PRODUCTION AND USE THEREOF |
DE4207059C1 (en) * | 1992-03-06 | 1993-10-21 | Schott Glaswerke | Process for the purification of oxidic melts |
US5755846A (en) * | 1992-06-06 | 1998-05-26 | Beteiligungen Sorg Gmbh & Co. Kg | Regenerative glass melting furnace with minimum NOx formation and method of operating it |
US5447547A (en) * | 1994-01-31 | 1995-09-05 | Gas Research, Inc. | Annular batch feed furnace and process |
AU696443B2 (en) * | 1994-10-26 | 1998-09-10 | Asahi Glass Company Limited | Glass having low solar radiation and ultraviolet ray transmittance |
US5632795A (en) * | 1995-01-17 | 1997-05-27 | Corning Incorporated | Reduction of nitrogen containing glass batch materials using excess oxygen |
US5830812A (en) * | 1996-04-01 | 1998-11-03 | Ppg Industries, Inc. | Infrared and ultraviolet radiation absorbing green glass composition |
PT1023245E (en) * | 1997-10-20 | 2005-06-30 | Ppg Ind Ohio Inc | BLUE GLASS COMPOSITION THAT ABSORBATES UV AND INFRARED RADIATION |
US6103650A (en) | 1997-11-28 | 2000-08-15 | Ppg Industries Ohio, Inc. | Green privacy glass |
US6237369B1 (en) | 1997-12-17 | 2001-05-29 | Owens Corning Fiberglas Technology, Inc. | Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner |
EP1118597B1 (en) * | 1998-08-26 | 2007-05-23 | Nihon Yamamura Glass Co. Ltd. | Ultraviolet-absorbing, colorless, transparent soda-lime silica glass |
US6461736B1 (en) * | 1998-09-04 | 2002-10-08 | Nippon Sheet Glass Co., Ltd. | Light-colored glass of high transmittance and method for production thereof, glass plate with electrically conductive film and method for production thereof, and glass article |
DE29819347U1 (en) * | 1998-10-30 | 2000-01-27 | Flachglas AG, 90766 Fürth | Soda lime silicate glass composition |
ES2198167T3 (en) * | 1998-12-01 | 2004-01-16 | Societe Generale Pour Les Techniques Nouvelles S.G.N. | PROCEDURE AND DEVICE FOR INCINERATION AND VITRIFICATION OF WASTE, PARTICULARLY RADIOACTIVE. |
US7168269B2 (en) * | 1999-08-16 | 2007-01-30 | The Boc Group, Inc. | Gas injection for glass melting furnace to reduce refractory degradation |
US6422041B1 (en) * | 1999-08-16 | 2002-07-23 | The Boc Group, Inc. | Method of boosting a glass melting furnace using a roof mounted oxygen-fuel burner |
JP2001316128A (en) | 2000-03-02 | 2001-11-13 | Nippon Sheet Glass Co Ltd | Pale colored high transmittance plate-glass and method for manufacturing same |
WO2001066477A1 (en) | 2000-03-06 | 2001-09-13 | Nippon Sheet Glass Co., Ltd. | Flat glass having high transmittance |
JP4731086B2 (en) * | 2000-03-14 | 2011-07-20 | 日本山村硝子株式会社 | UV-absorbing colorless and transparent soda-lime silica glass |
DE10042771B4 (en) * | 2000-08-31 | 2004-02-12 | Schott Glas | Process for controlling and setting the redox state of redox refining agents in a glass melt |
DE10108992C2 (en) * | 2001-02-23 | 2003-04-03 | Schott Glas | Solarization-stable borosilicate glass and its uses |
DE10118880C2 (en) * | 2001-04-18 | 2003-04-30 | Sorg Gmbh & Co Kg | Methods and arrangements for heating glass melting furnaces with fossil fuels |
US6532771B1 (en) * | 2001-08-21 | 2003-03-18 | Praxair Technology, Inc. | Method for controlling glass furnace atmosphere |
KR100847618B1 (en) * | 2001-09-05 | 2008-07-21 | 니혼 이타가라스 가부시키가이샤 | High transmission glass plates and method for manufacturing the same |
US6610622B1 (en) * | 2002-01-28 | 2003-08-26 | Guardian Industries Corp. | Clear glass composition |
US7144837B2 (en) * | 2002-01-28 | 2006-12-05 | Guardian Industries Corp. | Clear glass composition with high visible transmittance |
US7169722B2 (en) * | 2002-01-28 | 2007-01-30 | Guardian Industries Corp. | Clear glass composition with high visible transmittance |
US7326665B2 (en) * | 2002-09-04 | 2008-02-05 | Asahi Glass Company, Limited | Light blue flat glass |
KR20040024226A (en) | 2002-09-13 | 2004-03-20 | 케이알정밀 주식회사 | An Impulse Valve Structure of Apparatus for Supplying Inert Gas Alternatively |
FR2850373B1 (en) * | 2003-01-24 | 2006-05-26 | Saint Gobain | GRAY SILICO-SODO-CACIC GLASS COMPOSITION FOR THE MANUFACTURE OF WINDOWS |
US6962887B2 (en) * | 2003-05-14 | 2005-11-08 | Ppg Industries Ohio, Inc. | Transparent glass having blue edge color |
FR2865729B1 (en) * | 2004-01-30 | 2007-10-05 | Saint Gobain Emballage | SILICO-SODO-CALCIUM GLASS COMPOSITION |
US7601660B2 (en) * | 2004-03-01 | 2009-10-13 | Guardian Industries Corp. | Clear glass composition |
US7732360B2 (en) * | 2004-04-20 | 2010-06-08 | Vidrio Plano De Mexico, S.A. De C.V. | Colorless glass composition |
DE102004033653B4 (en) * | 2004-07-12 | 2013-09-19 | Schott Ag | Use of a glass for EEFL fluorescent lamps |
US7700869B2 (en) * | 2005-02-03 | 2010-04-20 | Guardian Industries Corp. | Solar cell low iron patterned glass and method of making same |
US7743630B2 (en) * | 2005-05-05 | 2010-06-29 | Guardian Industries Corp. | Method of making float glass with transparent conductive oxide (TCO) film integrally formed on tin bath side of glass and corresponding product |
US7700870B2 (en) * | 2005-05-05 | 2010-04-20 | Guardian Industries Corp. | Solar cell using low iron high transmission glass with antimony and corresponding method |
US7562538B2 (en) * | 2005-05-27 | 2009-07-21 | Guardian Industries Corp. | Method of making clear glass composition |
FR2888577B1 (en) | 2005-07-13 | 2008-05-30 | Saint Gobain Isover Sa | GLASS MAKING PROCESS |
US7435696B2 (en) * | 2005-07-15 | 2008-10-14 | Vidrio Plano De Mexico, S.A. De C.V. | Glass composition with high visible light transmission and low ultraviolet light transmission |
US7584632B2 (en) | 2005-07-28 | 2009-09-08 | Corning Incorporated | Method of increasing the effectiveness of a fining agent in a glass melt |
US7802452B2 (en) * | 2005-12-21 | 2010-09-28 | Johns Manville | Processes for making inorganic fibers |
US7825051B2 (en) * | 2006-01-12 | 2010-11-02 | Ppg Industries Ohio, Inc. | Colored glass compositions |
JP2007238398A (en) | 2006-03-10 | 2007-09-20 | Nippon Sheet Glass Co Ltd | Soda-lime based glass composition |
US8648252B2 (en) * | 2006-03-13 | 2014-02-11 | Guardian Industries Corp. | Solar cell using low iron high transmission glass and corresponding method |
US7557053B2 (en) * | 2006-03-13 | 2009-07-07 | Guardian Industries Corp. | Low iron high transmission float glass for solar cell applications and method of making same |
RU2429209C2 (en) * | 2006-03-28 | 2011-09-20 | Ппг Индастриз Огайо, Инк. | Blue glass weakly absorbing solar radiation |
FR2903397B1 (en) | 2006-07-06 | 2008-08-22 | Saint Gobain Emballage Sa | SILICO-SODO-CALCIUM GLASS COMPOSITION |
US7560402B2 (en) * | 2006-10-06 | 2009-07-14 | Guardian Industries Corp. | Clear glass composition |
US7560403B2 (en) * | 2006-10-17 | 2009-07-14 | Guardian Industries Corp. | Clear glass composition with erbium oxide |
WO2008063940A1 (en) * | 2006-11-17 | 2008-05-29 | Praxair Technology, Inc. | Reducing crown corrosion in a glassmelting furnace |
FR2921357B1 (en) * | 2007-09-21 | 2011-01-21 | Saint Gobain | SILICO-SODO-CALCIUM GLASS COMPOSITION |
EP2252555A2 (en) * | 2008-03-03 | 2010-11-24 | Saint-Gobain Glass France | Method of producing glass |
US8966941B2 (en) * | 2008-09-01 | 2015-03-03 | Saint-Gobain Glass France | Process for obtaining glass and glass obtained |
US20100122728A1 (en) * | 2008-11-17 | 2010-05-20 | Fulton Kevin R | Photovoltaic device using low iron high transmission glass with antimony and reduced alkali content and corresponding method |
US8304358B2 (en) | 2008-11-21 | 2012-11-06 | Ppg Industries Ohio, Inc. | Method of reducing redox ratio of molten glass and the glass made thereby |
US20100255980A1 (en) * | 2009-04-03 | 2010-10-07 | Guardian Industires Corp. | Low iron high transmission glass with boron oxide for improved optics, durability and refining, and corresponding method |
US8361915B2 (en) * | 2009-05-22 | 2013-01-29 | Vidrio Plano De Mexico, S.A. De C.V. | Glass composition |
CN201448850U (en) * | 2009-08-13 | 2010-05-05 | 泰山玻璃纤维有限公司 | Pure oxygen combustor |
BRPI1014048A2 (en) * | 2009-06-12 | 2017-02-07 | Air Prod & Chem | combustion method, method for affecting the oxidation state of metal species, and furnace. |
-
2008
- 2008-11-21 US US12/275,264 patent/US8304358B2/en active Active
-
2009
- 2009-11-16 JP JP2011537534A patent/JP5785092B2/en active Active
- 2009-11-16 MX MX2011005385A patent/MX343670B/en active IP Right Grant
- 2009-11-16 RU RU2011125304/03A patent/RU2536526C2/en active
- 2009-11-16 KR KR1020117014146A patent/KR101304664B1/en active IP Right Review Request
- 2009-11-16 ES ES09756894.3T patent/ES2577527T3/en active Active
- 2009-11-16 EP EP09756894.3A patent/EP2396284B1/en not_active Revoked
- 2009-11-16 CN CN2009801540729A patent/CN102272062A/en active Pending
- 2009-11-16 CA CA2744380A patent/CA2744380A1/en not_active Abandoned
- 2009-11-16 WO PCT/US2009/064557 patent/WO2010059559A1/en active Application Filing
- 2009-11-16 BR BRPI0921419A patent/BRPI0921419A2/en not_active IP Right Cessation
- 2009-11-16 MY MYPI20112212 patent/MY150854A/en unknown
- 2009-11-16 PL PL09756894.3T patent/PL2396284T3/en unknown
-
2012
- 2012-10-17 US US13/653,613 patent/US9133049B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2712849A1 (en) | 2012-09-28 | 2014-04-02 | Türkiye Sise Ve Cam Fabrikalari A.S. | A flat glass application with low iron content |
Also Published As
Publication number | Publication date |
---|---|
MX2011005385A (en) | 2011-07-29 |
RU2011125304A (en) | 2012-12-27 |
CN102272062A (en) | 2011-12-07 |
US20130038940A1 (en) | 2013-02-14 |
MY150854A (en) | 2014-03-14 |
BRPI0921419A2 (en) | 2018-05-29 |
RU2536526C2 (en) | 2014-12-27 |
PL2396284T3 (en) | 2016-11-30 |
KR101304664B1 (en) | 2013-09-06 |
EP2396284A1 (en) | 2011-12-21 |
US8304358B2 (en) | 2012-11-06 |
MX343670B (en) | 2016-11-16 |
WO2010059559A1 (en) | 2010-05-27 |
KR20110095903A (en) | 2011-08-25 |
US20100126218A1 (en) | 2010-05-27 |
ES2577527T3 (en) | 2016-07-15 |
JP5785092B2 (en) | 2015-09-24 |
JP2012509246A (en) | 2012-04-19 |
EP2396284B1 (en) | 2016-05-18 |
US9133049B2 (en) | 2015-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8304358B2 (en) | Method of reducing redox ratio of molten glass and the glass made thereby | |
US6871514B2 (en) | Method of making glass, a method and device for the control and setting of the redox state of redox fining agents in a glass melt | |
US11814315B2 (en) | Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same | |
US6722161B2 (en) | Rapid glass melting or premelting | |
US20110098171A1 (en) | Method of producing glass | |
KR20140000208A (en) | Glass melter, modification method for glass blank, production method for molten glass, production method for glassware, and production apparatus for glassware | |
US11780764B2 (en) | Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same | |
Hubert | Industrial glass processing and fabrication | |
KR101340384B1 (en) | Method for producing soda lime silicate sheet glass and highly transparent sheet glass produced by the same | |
US20230183124A1 (en) | Soda Lime Silica Glass with High Visible Light Transmittance | |
KR20170107903A (en) | Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |
Effective date: 20131118 |