CA2742551A1 - Composition - Google Patents

Composition Download PDF

Info

Publication number
CA2742551A1
CA2742551A1 CA2742551A CA2742551A CA2742551A1 CA 2742551 A1 CA2742551 A1 CA 2742551A1 CA 2742551 A CA2742551 A CA 2742551A CA 2742551 A CA2742551 A CA 2742551A CA 2742551 A1 CA2742551 A1 CA 2742551A1
Authority
CA
Canada
Prior art keywords
cationic
composition
alkyl
short chain
shampoo composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2742551A
Other languages
French (fr)
Inventor
Colin Christopher David Giles
Yuan-yuan LIANG
Koji Tsuchiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Original Assignee
Unilever PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC filed Critical Unilever PLC
Publication of CA2742551A1 publication Critical patent/CA2742551A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Abstract

Concentrated shampoo composition comprising from 25 to 70% by weight alkali metal alkylether sulphate and a short chain diol.

Description

COMPOSITION

The present invention relates to a concentrated shampoo composition.

Despite the prior art there remains the need for improved concentrated shampoo compositions.

Accordingly, the present invention provides a concentrated shampoo composition comprising from 25 to 70% by weight alkali metal alkylether sulphate and a short chain diol.

The short chain diol reduces the viscosity of the composition thus providing a concentrated shampoo composition with an acceptable rheology profile.

Preferably, the short chain diol has from 3 to 7 carbon atoms and more preferably 3 or 4 carbon atoms.

More preferably, the short chain diol is selected from 1, 2 butylene glycol, 1, 3 butylene glycol, 1,4 butylene glycol, 1, 2 propylene glycol, 1, 3 propylene glycol and mixtures thereof. Especially, preferably, the short chain diol is selected from 1, 3 butylene glycol and 1, 2 propylene glycol.

In the most preferred embodiment the short chain diol is 1, 3 butylene glycol.
The alkyl groups generally contain from 8 to 18, preferably from 10 to 16 carbon atoms and may be unsaturated though it is preferred that they are saturated.
The alkyl ether sulphates thereof may contain from 1 to 20 ethylene oxide units per molecule, preferably from 1 to 3 and most preferably 1 ethylene oxide unit.
The most preferred anionic cleansing surfactant is sodium lauryl ether sulphate (n)EO, (where n is from 1 to 3).

Mixtures of any of the foregoing anionic cleansing surfactants may also be suitable.

The total amount of anionic cleansing surfactant in compositions of the invention generally ranges from 20 to 70%, preferably from 27 to 60%, more preferably from 30 to 56% by total weight anionic cleansing surfactant based on the total weight of the composition.

Optionally, a composition of the invention may contain further ingredients as described below to enhance performance and/or consumer acceptability.

The composition can include co-surfactants, to help impart aesthetic, physical or cleansing properties to the composition.

An example of a co-surfactant is a nonionic surfactant, which can be included in an amount ranging from 0.5 to 20%, preferably from 0.7 to 6% and most preferably from 1 to 3% by weight based on the total weight of the composition.

For example, representative nonionic surfactants that can be included in shampoo compositions of the invention include condensation products of aliphatic (C8 -C18) primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups.

Other representative nonionic surfactants include mono- or di-alkyl alkanolamides.
Examples include coco mono- or di-ethanolamide and coco mono-isopropanolamide. A particularly preferred nonionic surfactant is coco mono-ethanolamide.

Further nonionic surfactants which can be included in shampoo compositions of the invention are the alkyl polyglycosides (APGs). Typically, the APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups. Preferred APGs are defined by the following formula:
RO - (G)n wherein R is a branched or straight chain alkyl group which may be saturated or unsaturated and G is a saccharide group.

R may represent a mean alkyl chain length of from about C5 to about C20.
Preferably R represents a mean alkyl chain length of from about C8 to about C12.
Most preferably the value of R lies between about 9.5 and about 10.5. G may be selected from C5 or C6 monosaccharide residues, and is preferably a glucoside.
G
may be selected from the group comprising glucose, xylose, lactose, fructose, mannose and derivatives thereof. Preferably G is glucose.

The degree of polymerisation, n, may have a value of from about 1 to about 10 or more. Preferably, the value of n lies from about 1.1 to about 2. Most preferably the value of n lies from about 1.3 to about 1.5.

Suitable alkyl polyglycosides for use in the invention are commercially available and include for example those materials identified as: Oramix NS1 0 ex Seppic;
Plantaren 1200 and Plantaren 2000 ex Henkel.

Other sugar-derived nonionic surfactants which can be included in compositions of the invention include the C10-C18 N-alkyl (C1-C6) polyhydroxy fatty acid amides, such as the C12-C18 N-methyl glucamides, as described for example in WO 92 06154 and US 5 194 639, and the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide.

A preferred example of a co-surfactant is an amphoteric or zwitterionic surfactant, which can be included in an amount ranging from 0.5 to about 10%, preferably from 1 to 6% by weight based on the total weight of the composition.

Examples of amphoteric or zwitterionic surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms.
Typical amphoteric and zwitterionic surfactants for use in shampoos of the invention include lauryl amine oxide, cocodimethyl sulphopropyl betaine, lauryl betaine, cocamidopropyl betaine and sodium cocoamphoacetate.

A particularly preferred amphoteric or zwitterionic surfactant is cocamidopropyl betaine.

Mixtures of any of the foregoing amphoteric or zwitterionic surfactants may also be suitable. Preferred mixtures are those of cocamidopropyl betaine with further amphoteric or zwitterionic surfactants as described above. A preferred further amphoteric or zwitterionic surfactant is sodium cocoamphoacetate.

Preferably, the hair care compositions of the invention are aqueous, i.e. they have water or an aqueous solution or a lyotropic liquid crystalline phase as their major component.

Preferably, the composition will comprise from 10 to 98%, preferably from 30 to 70% water by weight based on the total weight of the composition.
The composition according to the invention preferably comprises a silicone.
Particularly preferred silicone conditioning agents are silicone emulsions such as those formed from silicones such as polydiorganosiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone, polydimethyl siloxanes having hydroxyl end groups which have the CTFA
designation dimethiconol, and amino-functional polydimethyl siloxanes which have the CTFA designation amodimethicone.

The emulsion droplets may typically have a Sauter mean droplet diameter (D3,2) in the composition of the invention ranging from 0.01 to 20 micrometer, more preferably from 0.2 to 10 micrometer.

A suitable method for measuring the Sauter mean droplet diameter (D3,2) is by laser light scattering using an instrument such as a Malvern Mastersizer.

Suitable silicone emulsions for use in compositions of the invention are available from suppliers of silicones such as Dow Corning and GE Silicones. The use of such pre-formed silicone emulsions is preferred for ease of processing and control of silicone particle size. Such pre-formed silicone emulsions will typically additionally comprise a suitable emulsifier such as an anionic or nonionic emulsifier, or mixture thereof, and may be prepared by a chemical emulsification process such as emulsion polymerisation, or by mechanical emulsification using a high shear mixer. Pre-formed silicone emulsions having a Sauter mean droplet diameter (D3,2) of less than 0.15 micrometers are generally termed microemulsions.

Examples of suitable pre-formed silicone emulsions include emulsions DC2-1766, DC2-1784, DC-1785, DC-1786, DC-1788 and microemulsions DC2-1865 and DC2-1870, all available from Dow Corning. These are all emulsions/microemulsions of dimethiconol. Also suitable are amodimethicone emulsions such as DC2-8177 and DC939 (from Dow Corning) and SME253 (from GE Silicones).

Also suitable are silicone emulsions in which certain types of surface active block copolymers of a high molecular weight have been blended with the silicone emulsion droplets, as described for example in WO03/094874. In such materials, the silicone emulsion droplets are preferably formed from polydiorganosiloxanes such as those described above. One preferred form of the surface active block copolymer is according to the following formula:
HO(CH2CH2O)X(CH(CH3)CH2O)y(CH2CH2O)X H

wherein the mean value of x is 4 or more and the mean value of y is 25 or more.
Another preferred form of the surface active block copolymer is according to the following formula:

(HO(CH2CH2O)a(CH(CH3)CH2O)b)2-N-CH2-CH2-N((OCH2CH(CH3))b(OCH2CH2)a OH)2 wherein the mean value of a is 2 or more and the mean value of b is 6 or more.
Mixtures of any of the above described silicone emulsions may also be used.
The above described silicone emulsions will generally be present in a composition of the invention at levels of from 0.05 to 15%, preferably from 0.5 to 12% by total weight of silicone based on the total weight of the composition.
The silicone is preferably present at from 0.5 to 15% wt., more preferably 1 to 12% by weight.

In a preferred embodiment the composition according to the invention comprises a cationic deposition polymer.

Suitable cationic deposition aid polymers may be homopolymers which are cationically substituted or may be formed from two or more types of monomers.
The weight average (Mw) molecular weight of the polymers will generally be between 100 000 and 2 million daltons. The polymers will have cationic nitrogen containing groups such as quaternary ammonium or protonated amino groups, or a mixture thereof. If the molecular weight of the polymer is too low, then the conditioning effect is poor. If too high, then there may be problems of high extensional viscosity leading to stringiness of the composition when it is poured.
The cationic nitrogen-containing group will generally be present as a substituent on a fraction of the total monomer units of the cationic polymer. Thus when the polymer is not a homopolymer it can contain spacer non-cationic monomer units. Such polymers are described in the CTFA Cosmetic Ingredient Directory, 3rd edition.
The ratio of the cationic to non-cationic monomer units is selected to give polymers having a cationic charge density in the required range, which is generally from 0.2 to 3.0 meq/gm. The cationic charge density of the polymer is suitably determined via the Kjeldahl method as described in the US Pharmacopoeia under chemical tests for nitrogen determination.
Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as (meth)acrylamide, alkyl and dialkyl (meth)acrylamides, alkyl (meth)acrylate, vinyl caprolactone and vinyl pyrrolidine. The alkyl and dialkyl substituted monomers preferably have C1-C7 alkyl groups, more preferably C1-3 alkyl groups. Other suitable spacers include vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol and ethylene glycol.

The cationic amines can be primary, secondary or tertiary amines, depending upon the particular species and the pH of the composition. In general secondary and tertiary amines, especially tertiary, are preferred.

Amine substituted vinyl monomers and amines can be polymerised in the amine form and then converted to ammonium by quaternization.
The cationic polymers can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.

Suitable cationic polymers include, for example:

- cationic diallyl quaternary ammonium-containing polymers including, for example, dimethyldiallylammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the industry (CTFA) as Polyquaternium 6 and Polyquaternium 7, respectively;
- mineral acid salts of amino-alkyl esters of homo-and co-polymers of unsaturated carboxylic acids having from 3 to 5 carbon atoms, (as described in U.S. Patent 4,009,256);
- cationic polyacrylamides (as described in W095/2231 1).

Other cationic polymers that can be used include cationic polysaccharide polymers, such as cationic cellulose derivatives, cationic starch derivatives, and cationic guar gum derivatives.
Cationic polysaccharide polymers suitable for use in compositions of the invention include monomers of the formula:

A-O-[R-N+(R1)(R2)(R3)X-], wherein: A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual. R is an alkylene, oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof. R1, R2 and R3 independently represent alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms. The total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R1, R2 and R3) is preferably about 20 or less, and X is an anionic counterion.

Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from the Amerchol Corporation, for instance under the tradename Polymer LM-200.

Other suitable cationic polysaccharide polymers include quaternary nitrogen-containing cellulose ethers (e.g. as described in U.S. Patent 3,962,418), and copolymers of etherified cellulose and starch (e.g. as described in U.S.
Patent 3,958,581).

A particularly suitable type of cationic polysaccharide polymer that can be used is a cationic guar gum derivative, such as guar hydroxypropyltrimethylammonium chloride (commercially available from Rhodia in their JAGUAR trademark series).
Examples of such materials are JAGUAR C13S, JAGUAR C14, JAGUAR C15 and JAGUAR C17.
Mixtures of any of the above cationic polymers may be used.

Cationic polymer will generally be present in a shampoo composition of the invention at levels of from 0.01 to 5%, preferably from 0.05 to 2%, more preferably from 0.07 to 1.2% by total weight of cationic polymer based on the total weight of the composition.

Preferably an aqueous shampoo composition of the invention further comprises a suspending agent. Suitable suspending agents are selected from polyacrylic acids, cross-linked polymers of acrylic acid, copolymers of acrylic acid with a hydrophobic monomer, copolymers of carboxylic acid-containing monomers and acrylic esters, cross-linked copolymers of acrylic acid and acrylate esters, heteropolysaccharide gums and crystalline long chain acyl derivatives. The long chain acyl derivative is desirably selected from ethylene glycol stearate, alkanolamides of fatty acids having from 16 to 22 carbon atoms and mixtures thereof. Ethylene glycol distearate and polyethylene glycol 3 distearate are preferred long chain acyl derivatives, since these impart pearlescence to the composition. Polyacrylic acid is available commercially as Carbopol 420, Carbopol 488 or Carbopol 493. Polymers of acrylic acid cross-linked with a polyfunctional agent may also be used; they are available commercially as Carbopol 910, Carbopol 934, Carbopol 941 and Carbopol 980. An example of a suitable copolymer of a carboxylic acid containing monomer and acrylic acid esters is Carbopol 1342. All Carbopol (trademark) materials are available from Goodrich.
Suitable cross-linked polymers of acrylic acid and acrylate esters are Pemulen TR1 or Pemulen TR2. A suitable heteropolysaccharide gum is xanthan gum, for example that available as Kelzan mu.
Mixtures of any of the above suspending agents may be used. Preferred is a mixture of cross-linked polymer of acrylic acid and crystalline long chain acyl derivative.

Suspending agent will generally be present in a shampoo composition of the invention at levels of from 0.1 to 10%, preferably from 0.5 to 6%, more preferably from 0.9 to 4% by total weight of suspending agent based on the total weight of the composition.

A further component that may be used in compositions of the invention is a hydrocarbon oil or ester oil. Like silicone oils, these materials may enhance the conditioning benefits found with compositions of the invention.

Suitable hydrocarbon oils have at least 12 carbon atoms, and include paraffin oil, polyolefin oil, mineral oil, saturated and unsaturated dodecane, saturated and unsaturated tridecane, saturated and unsaturated tetradecane, saturated and unsaturated pentadecane, saturated and unsaturated hexadecane, and mixtures thereof. Branched-chain isomers of these compounds, as well as of higher chain length hydrocarbons, can also be used. Also suitable are polymeric hydrocarbons of C2.6 alkenyl monomers, such as polyisobutylene.

Suitable ester oils have at least 10 carbon atoms, and include esters with hydrocarbyl chains derived from fatty acids or alcohols. Typical ester oils are formula R'COOR in which Rand R independently denote alkyl or alkenyl radicals and the sum of carbon atoms in R' and R is at least 10, preferably at least 20. Di-and trialkyl and alkenyl esters of carboxylic acids can also be used.

Preferred fatty oils are mono-, di- and triglycerides, more specifically the mono-, di-, and tri-esters of glycerol with long chain carboxylic acids such as Cl_22 carboxylic acids. Examples of such materials include cocoa butter, palm stearin, sunflower oil, soyabean oil and coconut oil.

Mixtures of any of the above described hydrocarbon/ester oils also be used.
The total combined amount of hydrocarbon oil and ester oil in compositions of the invention may suitably range from 0.05 to 10%, particularly from 0.2 to 5%, and especially from 0.5 to 3% by weight of the composition.

A composition of the invention may contain other ingredients for enhancing performance and/or consumer acceptability. Such ingredients include fragrance, dyes and pigments, pH adjusting agents, pearlescers or opacifiers, viscosity modifiers, and preservatives or antimicrobials. Each of these ingredients will be present in an amount effective to accomplish its purpose. Generally these optional ingredients are included individually at a level of up to 5% by weight of the total composition.

The invention will be further illustrated by the following, non-limiting Example, in which all percentages quoted are by weight based on total weight unless otherwise stated.
A concentrated shampoo composition.

Ingredient % wt. active Anionic surfactant 28 Cocomonoethanolamide 2 Water 2 Cationic deposition polymer 0.4 Perfume 0.7 Water 3 EDTA 0.1 DC1788 Silicone 3.6 DC7123 Silicone 2.4 1, 3-butyleneglycol 0.5 Pearlescer 0.1 Preservative 0.001 DMDMH 0.055 Sodium chloride 1 Water To 100 The composition according to Example 1 can be made by the following process:
Weigh out and heat the anionic surfactant (provided as 70% wt. aqueous suspension) to around 70 C with stirring. Then add the butylene glycol.
Separately mix 2% wt. water and 2% wt. CMEA until the CMEA is dissolved. Then add the CMEA to the anionic surfactant and allow to cool.

Once cooled to around 400C add the cationic deposition polymer, perfume and 3% wt. water under mixing. The preservatives and salt can be added before the final water, all under mixing.

Claims (6)

1. Concentrated shampoo composition comprising from 25 to 70% by weight alkali metal alkylether sulphate and a short chain diol.
2. Concentrated shampoo composition according to claim 1 wherein the short chain diol has from 3 to 7 carbon atoms.
3. Concentrated shampoo composition according to claim 1 or 2 wherein the short chain diol comprises 3 or 4 carbon atoms.
4. Concentrated shampoo composition according to any preceding claim wherein the short chain diol is selected from 1, 2 butylene glycol, 1, 3 butylene glycol, 1,4 butylene glycol, 1, 2 propylene glycol, 1, 3 propylene glycol and mixtures thereof.
5. Concentrated shampoo composition according to any preceding claim wherein the short chain diol is selected from 1, 3 butylene glycol and 1, 2 propylene glycol.
6. Concentrated shampoo composition according to any preceding claim wherein the short chain diol is 1, 3 butylene glycol.
CA2742551A 2008-11-07 2009-10-26 Composition Abandoned CA2742551A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08168595.0 2008-11-07
EP08168595 2008-11-07
PCT/EP2009/064060 WO2010052147A2 (en) 2008-11-07 2009-10-26 Composition

Publications (1)

Publication Number Publication Date
CA2742551A1 true CA2742551A1 (en) 2010-05-14

Family

ID=40481724

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2742551A Abandoned CA2742551A1 (en) 2008-11-07 2009-10-26 Composition

Country Status (8)

Country Link
EP (1) EP2341889A2 (en)
CN (1) CN102209519A (en)
AR (1) AR074296A1 (en)
AU (1) AU2009312895A1 (en)
BR (1) BRPI0916123A2 (en)
CA (1) CA2742551A1 (en)
TW (1) TW201021842A (en)
WO (1) WO2010052147A2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207101B1 (en) 2011-03-24 2012-06-26 Conopco, Inc. Methods for enhancing perfume efficacy
US8207100B1 (en) 2011-03-24 2012-06-26 Conopco, Inc. Specific perfumes having enhanced efficacy when used in specific liquid concentrate compositions
WO2016172472A1 (en) 2015-04-23 2016-10-27 The Procter & Gamble Company Concentrated personal cleansing compositions and uses
EP3285728B1 (en) 2015-04-23 2019-12-18 The Procter and Gamble Company Concentrated personal cleansing compositions and methods
CN107530247B (en) 2015-04-23 2021-09-07 宝洁公司 Concentrated personal cleansing compositions
JP7066412B2 (en) 2015-04-23 2022-05-13 ザ プロクター アンド ギャンブル カンパニー Delivery of surfactant-soluble antidandruff agents
US10952950B2 (en) 2015-04-23 2021-03-23 The Procter And Gamble Company Concentrated personal cleansing compositions and methods
EP3423031B1 (en) 2016-03-03 2021-09-08 The Procter & Gamble Company Aerosol antidandruff composition
CN109310320B (en) 2016-03-23 2022-09-06 宝洁公司 Imaging method for determining stray fibers
US10653590B2 (en) 2016-10-21 2020-05-19 The Procter And Gamble Company Concentrated shampoo dosage of foam for providing hair care benefits comprising an anionic/zwitterionic surfactant mixture
US11185486B2 (en) 2016-10-21 2021-11-30 The Procter And Gamble Company Personal cleansing compositions and methods
CN109843383A (en) 2016-10-21 2019-06-04 宝洁公司 For delivering the foam of the desired dose volume of consumer, amount of surfactant and scalp health dosage in optimal formulation space
CN109843258A (en) 2016-10-21 2019-06-04 宝洁公司 Indicate the concentrated type shampoo foam of hair conditioning benefit
CN109843382A (en) 2016-10-21 2019-06-04 宝洁公司 For providing the concentrated type shampoo foam of hair-care beneficial effect
CA3038128C (en) 2016-10-21 2021-10-12 The Procter & Gamble Company Stable compact shampoo products with low viscosity and viscosity reducing agent
US10441519B2 (en) 2016-10-21 2019-10-15 The Procter And Gamble Company Low viscosity hair care composition comprising a branched anionic/linear anionic surfactant mixture
EP3528777B1 (en) 2016-10-21 2021-09-01 The Procter & Gamble Company Skin cleansing compositions and methods
CN109843252A (en) 2016-10-21 2019-06-04 宝洁公司 The concentrated type shampoo foam of specified hair volume beneficial effect
US10842720B2 (en) 2016-10-21 2020-11-24 The Procter And Gamble Company Dosage of foam comprising an anionic/zwitterionic surfactant mixture
US10806686B2 (en) 2017-02-17 2020-10-20 The Procter And Gamble Company Packaged personal cleansing product
US10675231B2 (en) 2017-02-17 2020-06-09 The Procter & Gamble Company Packaged personal cleansing product
US11679073B2 (en) 2017-06-06 2023-06-20 The Procter & Gamble Company Hair compositions providing improved in-use wet feel
US11224567B2 (en) 2017-06-06 2022-01-18 The Procter And Gamble Company Hair compositions comprising a cationic polymer/silicone mixture providing improved in-use wet feel
US11141370B2 (en) 2017-06-06 2021-10-12 The Procter And Gamble Company Hair compositions comprising a cationic polymer mixture and providing improved in-use wet feel
EP3694479A1 (en) 2017-10-10 2020-08-19 The Procter and Gamble Company A method of treating hair or skin with a personal care composition in a foam form
MX2020003316A (en) 2017-10-10 2021-12-06 Procter & Gamble Compact shampoo composition containing sulfate-free surfactants.
WO2019074993A1 (en) 2017-10-10 2019-04-18 The Procter & Gamble Company Sulfate free clear personal cleansing composition comprising low inorganic salt
JP2020536876A (en) 2017-10-10 2020-12-17 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Compact shampoo composition containing amino acid-based anionic surfactant and cationic polymer
MX2020005900A (en) 2017-12-20 2022-03-31 Procter & Gamble Clear shampoo composition containing silicone polymers.
WO2020005309A1 (en) 2018-06-29 2020-01-02 The Procter & Gamble Company Low surfactant aerosol antidandruff composition
MX2022009191A (en) 2020-02-27 2022-08-18 Procter & Gamble Anti-dandruff compositions with sulfur having enhanced efficacy and aesthetics.
US11819474B2 (en) 2020-12-04 2023-11-21 The Procter & Gamble Company Hair care compositions comprising malodor reduction materials
US20220378684A1 (en) 2021-05-14 2022-12-01 The Procter & Gamble Company Shampoo Compositions Containing a Sulfate-Free Surfactant System and Sclerotium Gum Thickener

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4103551A1 (en) * 1991-02-06 1992-08-13 Henkel Kgaa FLOWABLE PEARL CONCENTRATE
DE4228594A1 (en) * 1992-08-27 1994-03-03 Maeurer & Wirtz Gmbh & Co Kg Agent for cleaning and conditioning hair, skin, textiles and hard surfaces
DE19738645C1 (en) * 1997-09-04 1999-07-08 Henkel Kgaa Water-miscible cationic surfactant concentrates
TWI337200B (en) * 2003-01-28 2011-02-11 Kao Corp Liquid detergent composition
JP4018032B2 (en) * 2003-06-17 2007-12-05 高砂香料工業株式会社 Hair and body cleaning composition
KR101222646B1 (en) * 2005-02-28 2013-01-16 가오 가부시키가이샤 Surfactant composition
DE102005018668A1 (en) * 2005-04-21 2006-11-02 Henkel Kgaa Body cleansing composition with reduced water content
EP1876162B1 (en) * 2005-04-28 2012-02-22 Adeka Corporation Alkanediol composition, process for producing the same and cosmetic

Also Published As

Publication number Publication date
CN102209519A (en) 2011-10-05
WO2010052147A2 (en) 2010-05-14
WO2010052147A3 (en) 2011-04-14
BRPI0916123A2 (en) 2015-11-03
AU2009312895A1 (en) 2010-05-14
EP2341889A2 (en) 2011-07-13
AR074296A1 (en) 2011-01-05
TW201021842A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CA2742551A1 (en) Composition
AU2010264972B2 (en) Antidandruff shampoo based on a gel network
AU2009312928B2 (en) Conditioning shampoo composition comprising an aqueous conditioning- gel
AU2010265008B2 (en) Shampoo composition containing a conditioning gel network
WO2010052070A2 (en) Composition
AU2009312929A1 (en) Conditioning shampoo comprising an aqueous conditioning gel phase in the form of vesicles
WO2010052071A2 (en) Composition
EP2531169B1 (en) Shampoo containing a gel network
EP2445475A2 (en) Concentrated shampoo
US20130022567A1 (en) Hair care composition comprising alkyl-modified siloxane
EP2579836A2 (en) Hair care composition
US20130039875A1 (en) Shampoo containing a dendritic macromolecule and a gel network
WO2009047106A1 (en) Hair conditioner comprising polyolefin particles and a silicone
WO2010149423A2 (en) Composition

Legal Events

Date Code Title Description
FZDE Discontinued
FZDE Discontinued

Effective date: 20121026