CA2714304A1 - Carbonic anhydrase bioreactor and process for co2-containing gas effluent treatment - Google Patents

Carbonic anhydrase bioreactor and process for co2-containing gas effluent treatment Download PDF

Info

Publication number
CA2714304A1
CA2714304A1 CA2714304A CA2714304A CA2714304A1 CA 2714304 A1 CA2714304 A1 CA 2714304A1 CA 2714304 A CA2714304 A CA 2714304A CA 2714304 A CA2714304 A CA 2714304A CA 2714304 A1 CA2714304 A1 CA 2714304A1
Authority
CA
Canada
Prior art keywords
carbonic anhydrase
reaction chamber
substrates
process according
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2714304A
Other languages
French (fr)
Other versions
CA2714304C (en
Inventor
Carmen Parent
Frederic Dutil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SpA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002353307A external-priority patent/CA2353307A1/en
Application filed by Individual filed Critical Individual
Priority to CA2813640A priority Critical patent/CA2813640C/en
Priority to CA2714304A priority patent/CA2714304C/en
Publication of CA2714304A1 publication Critical patent/CA2714304A1/en
Application granted granted Critical
Publication of CA2714304C publication Critical patent/CA2714304C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/222Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid in the presence of a rotating device only
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)

Abstract

A carbonic anhydrase bioreactor and process are disclosed. The bioreactor has a reaction chamber, liquid inlet, gas inlet, liquid outlet and gas outlet. The bioreactor and process use carbonic anhydrase provided on or in substrates that are in suspension within a liquid for catalyzing a reaction of CO2 into bicarbonate and hydrogen ions to obtain a treated gas and an ion-rich solution.

Description

CONTAINING GAS EFFLUENT TREATMENT

FIELD OF THE INVENTION
This invention relates to the field of gas effluent treatment and air purification. More specifically, it concerns a triphasic carbonic anhydrase bioreactor for the biological treatment of gaseous effluent. The invention also concerns a triphasic process for the biological treatment of a C02-containing gas effluent.

BACKGROUND
Contemporary industrial activities generate gaseous effluents containing a multitude of chemical compounds and contaminants which interfere with the equilibrium of elements in nature and affect the environment at different levels. Acid rain, the green-house effect, smog and the deterioration of the ozone layer are examples that speak volumes about this problem. Reduction of noxious emissions is therefore not surprisingly the subject of more and more legislation and regulation.
Industrial activities and applications which must contend with stricter environmental regulatory standards in order to expect any long term commercial viability, will turn more and more to biological and environmentally safe methods. Consequently, there is a real need for new apparatus and methods aimed at the biological treatment of gaseous waste or effluents.

There already exists a vast array of technologies aimed at the separation and recovery of individual or mixed gases and a number of different biological methods is known to treat gaseous waste or effluents : bacterial degradation (JP 2000-287679 ;
JP2000-236870), fermentation by anaerobic bacteria (WO 98/00558), photosynthesis through either plants (CA 2,029,101 Al ; JP04-190782) or microorganisms (JP 03-216180). Among the more popular are those gained through the harnessing of biological processes such as peat biofilters sprinkled with a flora of
-2-microorganisms in an aqueous phase, or biofilter columns comprising immobilized resident microorganisms (Deshusses et al. (1996) Biotechnol. Bioeng. 49, 587-598).
Although such biofilters have contributed to technological advances within the field of gaseous waste biopurification, the main drawbacks associated with their use are their difficult maintenance and upkeep, lack of versatility, as well as time consuming bacterial acclimation and response to perturbation periods (Deshusses et al.).

A number of biological sanitation/purification methods and products is known to use enzymatic processes, coupled or not to filtration membranes (S5250305 , to US4033822; JP 63-129987). However, these are neither intended nor adequate for the cleansing of gaseous waste or effluents. The main reason for this is that, in such systems, contaminants are generally already in solution (US5,130,237 US4,033,822 ; US4,758,417 ; US 5,250,305; W097/19196 ; JP 63-129987 ).
Efficient enzymatic conversion and treatability itself of gaseous waste or effluents in liquids therefore depend on adequate and sufficent dissolution of the gaseous phase in the liquid phase. However, the adequate dissolution of gaseous waste or effluents into liquids for enzymatic conversion poses a real problem which constitutes the first of a series of important limitations which compound the problem of further technological advances in the field of gas biopurification.

Although triphasic Gas-Liquid-Solid )) (GLS) reactors are commonly used in a large variety of industrial applications, their utilization remains quite limited in the area of biochemical gas treatment (US6245304 ;US4743545). Also known in the prior art are the GLS bioprocesses abundantly reported in the literature. A majority of these concerns wastewater treatment (JP09057289). These GLS processes are characterized in that the gaseous intake serves the sole purpose of satisfying the specific metabolic requirements of the particular organism selected for the wastewater treatment process. Such GLS treatment processes are therefore not aimed at reducing gaseous emissions.
3-As previously mentionned, these systems are neither intended nor adequate for the treatment of gaseous waste or effluents. An additional problem associated with the use of these systems is the non retention of the solid phase within the reactor.
Biocatalysts are in fact washed right out of the reactors along with the liquid phase.
Different concepts are, nonetheless, based on this principle for the reduction of gaseous emissions, namely carbon dioxyde. Certain bioreactors allow the uptake of CO2 by photosynthetic organisms (CA229101 JP03-216180) and similar processes bind C02 through algae (CA2232707 ; JP08-116965 ; JP04-190782 ; JP04-075537).
However, the biocatalyst retention problem remains largely unaddressed and 1o constitutes another serious limitation, along with gaseous effluent dissolution, to further technological advancements.

The main argument against the use of ultrafiltration membranes to solve this biocatalyst retention problem is their propensity to clogging. Clogging renders them is unattractive and so their use is rather limited for the retention of catalysts within reactors. However, a photobioreactor for medical applications as an artificial lung (W09200380 ; US5614378) and an oxygen recovery system (US4602987 ;
US4761209) are notable exceptions making use of carbonic anydrase and an ultrafiltration unit.

The patent applications held by the assignee, C02 Solution Inc., via Les Systemes Envirobio Inc.(EP0991462 ; W09855210 ; CA2291785) proposes a packed column for the treatment of carbon dioxyde using immobilized carbonic anhydrase without the use of an ultrafiltration membrane. Carbonic anhydrase is a readily availabe and highly reactive enzyme that is used in other systems for the reduction of carbon dioxyde emissions (US4602987 ; US4743545 ; US5614378 ; US6257335). In the system described by Trachtenberg for the carbonic anhydrase treatment of gaseous effluents (US6143556 ; CA2222030), biocatalyst retention occurs through a porous
-4-wall or through enzyme immobilization. However, important drawbacks are associated with the use of enzyme immobilization, as will be discussed below.

Other major drawbacks are associated with the use of enzymatic systems. One of these stems from systems where enzymatic activity is specifically and locally concentrated. This is the case with systems where enzymes are immobilized at a particular site or on a specific part of an apparatus. Examples in point of such systems are those where enzymes are immobilized on a filtration membrane (JP60014900008A2 ; US4033822; US5130237; US5250305 ; JP54-132291 ; JP63-129987; JP02-109986 ; DE3937892) or even, at a gas-liquid phase boundary (WO
96/40414 ; US6,143,556). The limited surface contact area obtainable between the dissolved gas substrate, the liquid and the enzyme's active site poses an important problem. Hence, these systems generate significantly greater waste of input material, such as expensive purified enzymes, because the contact surface with the gaseous phase is far from optimal and limits productive reaction rates.
Therefore, as mentioned previously, overcoming the contact surface area difficulty should yield further technological advances.

Other examples of prior art apparatuses or methods for the treatment of gas or liquid effluent are given in the following documents : CA2160311; CA2238323;
CA2259492; CA2268641; JP2000-236870; JP2000-287679; JP2000-202239;
US4758417; US5593886; US5807722; US6136577; and US6245304.

SUMMARY OF THE INVENTION
In one aspect, the present invention provides a carbonic anhydrase bioreactor for treating a C02-containing gas, comprising:
a reaction chamber for receiving a liquid;
-5-carbonic anhydrase provided on or in substrates that are in suspension within the liquid for catalyzing a reaction of CO2 into bicarbonate and hydrogen ions to obtain a treated gas and an ion-rich solution;

a liquid inlet in fluid communication with the reaction chamber for providing the reaction chamber with the liquid;

a gas inlet connected to the reaction chamber for providing the C02-containing gas to be treated into the reaction chamber in order to contact the liquid;

a liquid outlet in fluid communication with the reaction chamber for releasing the ion-rich solution; and a gas outlet in fluid communication with the reaction chamber to release the treated gas.

In another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the substrates comprise supports and the carbonic is anhydrase are provided on the supports.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the carbonic anhydrase are immobilized onto the supports.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the carbonic anhydrase are covalently bonded onto the supports.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the supports are solid polymer particles.

- 5a-Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the supports are composed of nylon.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the supports are composed of polystyrene, polyurethane, polymethylmethacrylate, or functionalised silica gel.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the substrates comprise porous substrates and the carbonic anhydrase are entrapped in the porous substrates.

Also in another aspect, the present invention provides the carbonic anhydrase io bioreactor as described above, wherein the porous substrates are made of organic or inorganic material.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the porous substrates comprise particles composed of an insoluble gel.

is Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the porous substrates comprise particles composed of silica.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the porous substrates comprise particles 20 composed of alginate.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the porous substrates comprise particles composed of alginate/chitosan.

- 5b -Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the porous substrates comprise particles composed of alginate/carboxymethylcellulose.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the substrates comprise a network and the carbonic anhydrase are chemically linked with the network.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the network is a PEG network.

Also in another aspect, the present invention provides the carbonic anhydrase io bioreactor as described above, wherein the network is an albumin network.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the substrates include particles of 0.005 pm to 0.1 pm in size.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the substrates include particles of 1 mm to 9 mm in diameter.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the substrates include particles of 3 mm in diameter.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the particles are composed of alginate.

-5c-Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the gas inlet comprises a gas bubbler for bubbling the C02-containing gas into the liquid.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, comprising a pressure regulating valve to control a pressure created by the gas bubbled within the reaction chamber.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the pressure regulating valve is located in the gas outlet.

1o Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, further comprising a filter having pores with a smaller diameter than a diameter of the suspended substrates for separating the substrates from the ion-rich solution.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the filter is constructed to enable ultrafiltration or microfiltration.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein further comprising a retention device for retaining the substrates with reaction chamber.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, further comprising an additional reaction chamber in series with the reaction chamber, hereinafter referred to as the primary reaction chamber, and the additional reaction chamber is downstream from the primary reaction chamber for further treating the treated gas.

-5d-Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the primary reaction chamber and the additional reaction chamber both receive suspended substrates with the carbonic anhydrase provided thereon or therein.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the additional reaction chamber contains a biocatalyst different from the carbonic anhydrase of the primary reaction chamber.
Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the substrates include particles of sub-lo micron size.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein a mixer is provided within the reaction chamber.

Also in another aspect, the present invention provides the carbonic anhydrase bioreactor as described above, wherein the mixer is an axial propeller.

Also in another aspect, the present invention provides a process using carbonic anhydrase for treating a CO2-containing gas, comprising:
suspending substrates within a liquid provided to a reaction chamber, carbonic anhydrase being provided on or in the substrates;

contacting the C02-containing gas to be treated with the liquid within the reaction chamber in the presence of the carbonic anhydrase, to promote the chemical conversion of the dissolved CO2 into an ion-rich solution containing hydrogen ions and bicarbonate ions and obtaining a treated gas;

releasing the ion-rich solution from the reaction chamber; and releasing the treated gas from the reaction chamber.

- 5e -An object of the present invention is to provide an apparatus that is distinct from and overcomes several disadvantages of the prior art bioreactor for the treatment of gas effluent, as will be discussed in detail below.

In another aspect of the present invention, there is provided a triphasic bioreactor for treating a C02-containing gas, comprising:
a reaction chamber containing a liquid;
suspended enzymes provided within the liquid for catalyzing a reaction of CO2 into bicarbonate and hydrogen ions to obtain a treated gas and an ion-rich solution;
io a liquid inlet in fluid communication with the reaction chamber for providing the reaction chamber with the liquid;
gas bubbling means connected to the reaction chamber for bubbling the C02-containing gas to be treated into the liquid thereby dissolving the gas into the liquid;
a liquid outlet in fluid communication with the reaction chamber for releasing the ion-rich solution; and a gas outlet in fluid communication with the reaction chamber to release said treated gas.

The bioreactor may also comprise a retention device for retaining the biocatalysts within the reaction chamber while the liquid outlet allows for the pressure release of the solution containing the reaction product.

The triphasic bioreactor of the present invention provides the advantages of biologically treating gaseous waste and effluents while simultaneously providing biocatalysts in liquid suspension, optimizing gas phase dissolution into the liquid phase and thereby optimizing surface contact area between the gas, liquid and solid phases, as well as retaining the biocatalysts within the reactor while allowing the pressure release of liquid containing a reaction product exempt of biocatalysts.

- 5f -In accordance with another aspect of the invention, the bioreactor comprises a pressure regulating valve to control a pressure created by the gas bubbled within the reaction chamber and a sampling means for sampling and analyzing liquid from the reaction chamber.
-6-The gas bubbling means preferably comprises a gas inlet of the reaction chamber to receive the gas to be treated and a bubbler located in a bottom portion of the reaction chamber. The bubbler has a gas inlet connected to the gas inlet of the reaction chamber and a plurality of gas outlets to diffuse the gas in the reaction chamber. The gas bubbling means further comprises a pipe to connect the gas inlet of the reaction chamber to the gas inlet of the bubbler.

The biocatalysts used in the bioreactor are preferably selected from the group consisting of enzymes, liposomes, microoganisms, animal cells, plant cells and a io combination thereof. Most preferably, the biocatalysts are entrapped in porous substrates pervading the reaction chamber. Alternatively, the biocatalysts may be carried by the liquid that feeds the reaction chamber.

The retention device preferably comprises a filter having pores with a smaller is diameter than the diameter of the biocatalysts. More preferably, the filter is a membrane filter.

In accordance with a first preferred embodiment, the membrane filter is located inside the reaction chamber upstream from the liquid outlet.

In accordance with a second preferred embodiment, the membrane filter is located outside the reaction chamber. In such a case, the retention device further comprises a first piping means and a second piping means. The first piping means is for piping liquid, which contains biocatalysts and reaction products, from the liquid outlet of the reaction chamber to the membrane filter where a permeate liquid containing the reaction products is separated from a retentate liquid containing the biocatalysts.
The second piping means is for piping the retentate liquid to the liquid inlet of the bioreactor.
-7-In accordance with a preferred aspect of the invention, the triphasic bioreactor is used for reducing carbon dioxide contained in a gas effluent. In such a case, the gas effluent to be treated contains carbon dioxide, the liquid filling the bioreactor is an aqueous liquid and the biocatalysts are enzymes capable of catalyzing the chemical conversion of the dissolved carbon dioxide into an aqueous solution containing hydrogen ions and bicarbonate ions. More preferably, the enzymes are carbonic anhydrase.

In accordance with a still further preferred aspect of the invention, the bioreactor 1o comprises an additional reaction chamber, as defined hereinabove, in series with the reaction chamber, hereinafter referred to as the first reaction chamber, to further treat the previously treated gas. In such a case, the biocatalysts filling the first reaction chamber are preferably different from the biocatalysts filling the additional reaction chamber.

The present invention also provides a method for the biocatalytic treatment of gas effluent which is basically a three-step process.

First, a reaction chamber filled with biocatalysts is filled with a liquid thereby suspending the biocatalysts in the liquid. Second, a gas to be treated is bubbled into the liquid thereby dissolving it into the liquid and creating a pressure inside the reaction chamber. The bubbling thereby promotes the biocatalytic reaction between the liquid and the gas to be treated in order to obtain a treated gas and a solution containing a reaction product. Third, the solution containing the reaction product is released by pressure from the reaction chamber whilst retaining the biocatalysts within the reaction chamber. During the second and third steps, the pressure is controlled within the reaction chamber and treated gas is released from the reaction chamber.
-8-In another aspect of the present invention, there is also provided a triphasic process for treating a C02-containing gas, comprising:
a) suspending enzymes in a liquid within a reaction chamber;
b) injecting the C02-containing gas to be treated into the liquid of the reaction chamber to promote dissolution of the gas into the liquid, and allowing the enzymes to promote the chemical conversion of the dissolved CO2 into an aqueous solution containing hydrogen ions and bicarbonate ions and obtaining a treated gas;
c) releasing the solution obtained in step b) from the reaction chamber;
and d) releasing the treated gas obtained in step b).
BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will become apparent upon reading is the detailed description and upon referring to the drawings in which:

Figure 1 is a cross-sectional side view of a triphasic bioreactor according to a first preferred embodiment of the invention.

Figure 2 is a schematic side view of a triphasic bioreactor according to a second preferred embodiment of the invention having an external tangential flow filter.

Figure 3 is a schematic side view of a triphasic bioreactor according to another embodiment of the invention, having an integrated filter.

Figure 4 is a schematic side view of a triphasic bioreactor according to a further embodiment, having an integrated tangential flow filter.

Figure 5 is a schematic side view of a triphasic bioreactor according to a still further embodiment, having a filter cartridge.
-9-Figure 6 is a schematic side view of a series of linked triphasic bioreactors for the treatment of gas effluent.

s While the invention will be described in conjunction with example embodiments, it will be understood that it is not intended to limit the scope of the invention to such embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included as defined by the appended claims.

io DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE
INVENTION

Referring to Figures 1 or 2, the triphasic bioreactor (1) is an apparatus for physico-chemically treating a gas (10). Minimally, it features a reaction chamber (2) filled with 15 biocatalysts (4) in suspension in a liquid (3), a liquid inlet (5) and liquid (6) and gas (7) outlets in fluid communication with the reaction chamber (2). It is worth noting that the use of the article "a" means "at least one" and hence a triphasic bioreactor according to the invention may advantageously comprise more than one reaction chamber, and/or more than one liquid and gas outlet and inlets. The liquid inlet (5) is 20 for receiving the liquid (3) and filling the reaction chamber (2). The reaction chamber (2) is made of an appropriate material that could be glass, plastic, stainless steel, a synthetic polymer or other suitable material.

A gas bubbling means (8) and a retention device (9) are also provided. The gas 25 bubbling means (8) is for receiving the gas (10), or gases, to be treated inside the reaction chamber (2) and for bubbling it into the liquid (3) thereby both dissolving the gas to be treated (10) into the liquid (3) and creating a pressure within the reaction chamber (2). The biocatalysts (4) are chosen so as to be able to biocatalyze a reaction between the gas (10) to be treated and the liquid (3) in order to obtain a
-10-treated gas (11) and a solution (12) containing a reaction product. The liquid outlet (6) is for releasing by pressure the solution (12) containing the reaction product while the retention device (9) retains the biocatalysts (4) within the reaction chamber (2).
The gas outlet (7) is for releasing the treated gas (11) from the reaction chamber (2).
The triphasic bioreactor (1) preferably includes a pressure regulating valve (13) to control the pressure created by the gas (10) bubbled into the reaction chamber (2).
The pressure regulating valve (13) may be located in the gas outlet (7). The triphasic bioreactor (1) may also include a valve (14) at the liquid outlet (6) and/or at the liquid 1o inlet (5) for regulating the flow of liquid (3) into and out of the reaction chamber (2).
As will become more apparent further along in the description, these features are used for both regulating the pressure inside the reaction chamber (2) so as not to exceed the pressure limits the apparatus may withstand, but also to better control the pressure release of the solution (12) containing the reaction product.
'5 As shown in Figure 2, the triphasic bioreactor (1) may include a mixer (15) within the reaction chamber (2) to mix the liquid (3), the biocatalysts (4) and the gas (10). Any type of mixer known in the art could be used. For example, as shown in Figure 2, the mixer (15) might include an axial propeller (16) operatively connected to a top cover 20 (18) of the reaction chamber (2) by means of a driving shaft (17). In such a case, the bioreactor also comprises a suitable driving means for driving the shaft into rotation.
In order to drive forward the reaction between the gas to be treated (10) and the liquid (3), the biocatalysts (4) must comprise a molecule capable of reacting with the 25 substrates, namely the dissolved gas (10) and the liquid (3), so as to yield a treated gas (11) and a solution (12) containing a reaction product. Biocatalysts comprising such a molecule may be selected from a wide variety of biological materials including enzymes, liposomes, microoganisms, animal cells and/or plant cells and the like. Fractions, complexes or combinations thereof may also be used
-11-simultaneously. Fractions of enzymes may comprise, for example, specific sub-units of an enzyme, such as its catalytic sub-units. Fractions of a microorganism, animal or plant cell may comprise, for example, specific sub-cellular organelles or compartments such as cellular membranes, ribosomes, mitochondria, chloroplasts or fractions such as cytoplasmic or nuclear extracts. For the purpose of the invention, the biocatalysts may also be entrapped in a porous substrate, for example, an insoluble gel particle such as silica, alginate, alginate/chitosane, alginate/carboxymethylcelIu lose, etc. For the purpose of the invention, biocatalysts may also be immobilized on solid packing in suspension in the liquid, such as 1o enzymes covalently bound to plastic packing. Alternatively, enzymes might be in a free state, or chemically linked in an albumin or PEG network. All of these biological materials, which may be obtained through routine methods that are well documented in the scientific literature and known to the person skilled in the art, may be made of use with the present invention which is quite versatile.
Retention of the biocatalysts (4) inside the reaction chamber (2) is an important feature of the invention as biological materials are often quite expensive. In order to allow the pressure release of solution (12) containing the reaction product whilst retaining the biocatalysts (4) within the reaction chamber (2), the retention device (9) must be adapted according to the relative and respective sizes of the reaction products and the biocatalysts (4), as well as co-factors when appropriate.

Pressure release of the solution (11) containing the reaction product may be likened to pressure filtration such as ultrafiltration or microfiltration, which are defined as the action of filtering a solution through a fine membrane by pressure.
"Ultrafiltration" is a term which is, in the strict sense, reserved for the physical separation of particles of 0,005 to 0,1 pm in size.
-12-Although, in a variety of its embodiments the present invention may make use of ultrafiltration or microfiltration membranes (19) (20), as shown in Figures 2-6, it is by no means restricted to their use. For instance, depending upon the size of the biocatalysts and reaction product, an appropriate retention device (9) may comprise a simple grid and/or perforated base, at the bottom of the reaction chamber (2), as shown in Figure 1, for slowing the flow of solution (11) containing the reaction product from the reaction chamber (2) whilst retaining the biocatalysts (4) inside the reaction chamber (2).

1o In the present invention, pressure is generated within the reaction chamber (2) by bubbling the gas to be treated (10) into the liquid (3). This pressure contributes to the dissolution of the gas to be treated (10) inside the liquid (3) containing the biocatalysts (4) and therefore to its further physico-chemical transformation.
The partial pressure inside the reaction chamber (2) is greater on one side of the 1s retention device (9). There is consequently greater dissolution of gas to be treated according to the law of dissolution of gases, known as the law of Henry, which states that the concentration of a given dissolved gas is proportional to its partial pressure in the atmosphere at the surface of the liquid. As stated above, the retention device (9) preferably comprises a filter (19). If the biocatalyst materials are sub-microns 20 particles, for example in the range of 0,005 to 0,1 m in size, a membrane filter is preferably used. Such a membrane filter may be made of cellulose, nylon, polymethyl methacrylate, PVDF or the like, with pores having a smaller diameter than the diameter of the biocatalysts, and co-factors when appropriate.

25 As shown in Figures 1, and 3 to 5, the membrane filter (19) may be integrated inside the reaction chamber (2) upstream from the liquid outlet (6). In such an embodiment, the liquid flows perpendicularly to the filter (19) as in classic frontal filtration.
Appropriate pore size allows permeate liquid (12) to exit through the filter (19) exempt of biocatalysts (4). The solution (12) containing the reaction product must
-13-therefore pass through the filter (19) first in order to be able to exit the reaction chamber (2) via the liquid outlet (6). The permeate liquid (12) or filtrate released may then be discarded or conveyed/piped to other treatment units for further treatment such as decantation, ion exchange, etc.
Alternatively, the bioreactor (1) may include an integrated filter cartridge (20) fixed inside the reaction chamber (2) and positioned at the desired height within the reaction chamber (2), as shown in Figure 5. The filter cartridge (20) is linked directly to the non-pressurized liquid outlet (6) and allows for filtration of the solution (11) to containing the reaction product, but not the biocatalysts (4), directly into the liquid outlet (6). As mentioned above, the pore size of the membrane (19) inside the cartridge (20) is dependent upon both the size of the biocatalysts (4) and the reaction product, as well as co-factors when appropriate.

Optionally, the bioreactor (1) may also incorporate a closed loop circuit (21) including a pump (22) to circulate liquid tangentially to the membrane (19), as shown in Figures 2 and 4. This particular embodiment of the invention is different because instead of being perpendicular to the filter, the flow of liquid is "tangential" relatively to the filter membrane (19). Liquid therefore "sweeps" the filter membrane (19) tangentially thereby promoting recirculation of the liquid (3) and the biocatalysts (4).
The captive biocatalysts (4) therefore remain in liquid suspension. Clogging of the pores of the membrane filter is consequently considerably reduced.

In accordance with a second preferred embodiment of the invention, the membrane filter (19) may be located outside of the reaction chamber (2), as shown in Figures 2 and 6. According to this particular embodiment, the retention device (9) will further include a first pipe, or any other means adapted to convey a liquid, for piping the solution (12) containing biocatalysts (4) and reaction products from the liquid outlet (6) of the reaction chamber (2) to the membrane filter (19) where a permeate liquid
-14-(12) e.g. the solution (12) containing the reaction products, is separated from the retentate liquid (26) containing the biocatalysts (4). In such an embodiment, the retention device (9) further comprises a second pipe for piping the retentate liquid (26) back to the liquid inlet (5) and into the bioreactor's reaction chamber (2). The permeate liquid (12) may be discarded, or conveyed/piped to other treatment units for further treatment such as decantation, ion exchange etc.

An important feature of the invention is the gas bubbling means (8). In one embodiment of the triphasic bioreactor, the gas bubbling means (8) preferably 1o comprises a bubbler (24) or a number of these, as shown in Figure 1, located in the bottom portion of the reaction chamber (2). The bubbler (24) has a gas inlet (29) connected to a gas inlet (23) of the reaction chamber (2) by means of a suitable pipe (27), to receive the gas effluent (10) to be treated The bubbler (24) also comprises a plurality of gas outlets (28) to diffuse the gas in the reaction chamber (2).

As shown in Figure 1, the gas bubbling means may include a bubbler (24) in the form of a removable cap, made of a foam-like material, covering a gas outlet nozzle, at the bottom portion of the triphasic bioreactor (2). Foam-like material is advantageous as it provides the plurality of gas outlets (28) needed to diffuse very fine bubbles and contributes to their uniform distribution within the liquid (3) containing the biocatalysts (4). The reduction in size of the gas bubbles enhances both gas dissolution and contact surface between gas (10) and liquid (3) phase reactants and the biocatalysts (4). As stated above, the invention may include a mixer (15) in order to enhance the uniform distribution of gas (10) bubbles and biocatalysts (4) within the liquid (3).

The relative size and dimensions of the reaction chamber (2), as well as the relative porosity of the filter membranes used, if any, is dependent upon particular usage requirements and directly proportional to the liquid flow rates required. As expected,
-15-liquid flow rates may vary greatly between different applications. Appropriate dimension adjustments and allowances should therefore be made when passing from one type of application to the other.

In accordance with a preferred aspect of the invention, the triphasic bioreactor is used for removing carbon dioxide from a gas effluent (10) containing carbon dioxide.
In such a case, the liquid (3) filling the reaction chamber (2) is an aqueous solution, preferably water, and the biocatalysts (4) are enzymes capable of catalyzing the chemical conversion of the dissolved carbon dioxide into an aqueous solution (12) io containing hydrogen ions and bicarbonate ions. The enzymes are, preferably, carbonic anhydrase.

The transformation of CO2 into bicarbonate ions, usually a slow naturally occurring process, is catalyzed by the enzyme in suspension in the reaction chamber (2).
Without catalysis, the equilibrium reaction must undergo an intermediate hydration that slows the transformation of CO2 into bicarbonate ions. The following equations describe the relevant processes:

without enzyme : dissolved C02 -a H2CO3 -> H+ + HC03- (I) with enzyme : dissolved C02 > H+ + HC03- (II) The enzyme carbonic anhydrase, which is of relatively low molecular weight (30,000 daltons), may be made to form part of a complex in order to increase its size.
This, in turn, allows the use of membranes with greater porosity and enhances liquid flow rates. Different types of enzyme complexes may be formed. Among these are those using whole cells such as red blood cells. However, with red blood cells, the enzymes rapidly leak out and are lost. Encapsulation techniques may therefore overcome this problem. Enzymes may be immobilized on solid packing. Packing made of polymers such as nylon, polystyrene, polyurethane, polymethyl
-16-methacrylate, functionnalized silica gel, etc. may be used. Enzymes may also be entrapped in insoluble gel particles such as silica, alginate, alginate/chitosane or alginate/carboxymethylcellulose, etc. or covalently linked or non-covalently linked in a network of albumin, PEG or other molecule. Such a network constitutes a loose type network. It may appear as a cloudy suspension, "filaments" of which are often visible to the naked eye. For the purpose of the invention, alginate particles should preferably possess a diameter comprised in a range from 1 to 9 mm, and preferably, a diameter inferior to 3 mm.

1o Thanks to the different features of the triphasic bioreactor, such as the bubbling means and the enclosed reactor filled with the aqueous liquid, the pressure obtained inside the reaction chamber (2) permits the gas effluent containing carbon dioxide to rapidly dissolve into the liquid (3) which contains the carbonic anhydrase biocatalysts (4), thereby optimizing the reaction conditions of reaction (II). A tangential flow is filtration system, such as shown in Figures 2, 4 and 6, allows the solution (12) containing the bicarbonate ions to be released from the reaction chamber (2) while part of the liquid containing the carbonic anhydrase biocatalysts (4) is returned to the reaction chamber (2).

20 In order to better monitor the parameters of the reaction process such as pH, temperature, reaction by-product concentration, etc., the triphasic bioreactor (1) may incorporate a sampling means (25) for sampling and analyzing liquid from inside the reaction chamber, as shown in Figure 2. As well, thermoregulation circuits may be added onto the reaction chamber in order to optimize temperature conditions.
Gas 25 composition analyzers may also be provided at the gas inlet (5) and/or outlet (7).
Additional valves may also be added onto the liquid and gas inlets and outlets in order to better regulate the flow rates of the different phases, the level of liquid inside the reaction chamber, the pressure inside the reaction chamber, etc.
-17-In yet another embodiment, the invention may consist in a series of reaction chambers (2), with one or more additional reaction chambers, as shown in Figure 6.
These may be linked so as to treat gas simultaneously or sequentially. In reaction chambers linked in succession, as shown in Figure 6, the gas outlet (7) which releases the treated gas from one reaction chamber (2) may be linked in fluid communication to the next reaction chamber (2) through its gas inlet (23).
This allows for further or extensive treatment of the gas. The number of reaction chambers therefore depends on the extent of gas treatment required. Extensive or further treatment might entail treating the gas repeatedly in successive reaction io chambers, all of which contain the same biocatalysts. However, extensive or further treatment might also entail different treatments in succession, the particular biocatalysts varying from one reaction chamber to the next. Therefore biocatalysts in one reaction chamber may be different from the biocatalysts in the other reaction chamber(s) in such a series.

Another object of the invention is to provide a triphasic process for physico-chemically treating a gas effluent. The process of the invention is basically a three-step process. First, a reaction chamber, filled with the biocatalysts (4) in suspension in the liquid (3), is provided. Second, the gas to be treated (10) is bubbled into the liquid (3) in the reaction chamber (2) in order to dissolve the gas to be treated (10) into the liquid (3) and to increase a pressure within the reaction chamber (2).
Bubbling thereby promotes the biocatalytic reaction between the liquid (3) and the gas (10) in order to obtain a treated gas (11) and a solution (12) containing a reaction product. Third, the solution (12) containing a reaction product is pressure released from the reaction chamber (2) whilst retaining the biocatalysts (4) within the reaction chamber (2). All the while during the second and third steps, the pressure is controlled within the reaction chamber (2) and a treated gas (11) is released from the reaction chamber (2).
-18-In yet another embodiment of the invention, the last step of the process may occur through ultrafiltration. The ultrafiltration may be conducted either inside or outside of the reaction chamber.

Although preferred embodiments of the present invention have been described in detail herein and illustrated in the accompanying drawings, it is to be understood that the invention is not limited to these precise embodiments and that various changes and modifications may be effected therein without departing from the scope or spirit of the present invention.

Claims (61)

1. A carbonic anhydrase bioreactor for treating a CO2-containing gas, comprising:
a reaction chamber for receiving a liquid;

carbonic anhydrase provided on or in substrates that are in suspension within the liquid for catalyzing a reaction of CO2 into bicarbonate and hydrogen ions to obtain a treated gas and an ion-rich solution;

a liquid inlet in fluid communication with the reaction chamber for providing the reaction chamber with the liquid;

a gas inlet connected to the reaction chamber for providing the CO2-containing gas to be treated into the reaction chamber in order to contact the liquid;

a liquid outlet in fluid communication with the reaction chamber for releasing the ion-rich solution; and a gas outlet in fluid communication with the reaction chamber to release the treated gas.
2. The carbonic anhydrase bioreactor according to claim 1, wherein the substrates comprise supports and the carbonic anhydrase are provided on the supports.
3. The carbonic anhydrase bioreactor according to claim 2, wherein the carbonic anhydrase are immobilized onto the supports.
4. The carbonic anhydrase bioreactor according to claim 3, wherein the carbonic anhydrase are covalently bonded onto the supports.
5. The carbonic anhydrase bioreactor according to claim 2, wherein the supports are solid polymer particles.
6. The carbonic anhydrase bioreactor according to claim 2, wherein the supports are composed of nylon.
7. The carbonic anhydrase bioreactor according to claim 2, wherein the supports are composed of polystyrene, polyurethane, polymethylmethacrylate, or functionalised silica gel.
8. The carbonic anhydrase bioreactor according to claim 1, wherein the substrates comprise porous substrates and the carbonic anhydrase are entrapped in the porous substrates.
9. The carbonic anhydrase bioreactor according to claim 8, wherein the porous substrates are made of organic or inorganic material.
10. The carbonic anhydrase bioreactor according to claim 8, wherein the porous substrates comprise particles composed of an insoluble gel.
11. The carbonic anhydrase bioreactor according to claim 8, wherein the porous substrates comprise particles composed of silica.
12. The carbonic anhydrase bioreactor according to claim 8, wherein the porous substrates comprise particles composed of alginate.
13. The carbonic anhydrase bioreactor according to claim 8, wherein the porous substrates comprise particles composed of alginate/chitosan.
14. The carbonic anhydrase bioreactor according to claim 8, wherein the porous substrates comprise particles composed of alginate/carboxymethylcellulose.
15. The carbonic anhydrase bioreactor according to claim 1, wherein the substrates comprise a network and the carbonic anhydrase are chemically linked with the network.
16. The carbonic anhydrase bioreactor according to claim 15, wherein the network is a PEG network.
17. The carbonic anhydrase bioreactor according to claim 15, wherein the network is an albumin network.
18. The carbonic anhydrase bioreactor according to claim 1, wherein the substrates include particles of 0.005 µm to 0.1 µm in size.
19. The carbonic anhydrase bioreactor according to claim 1, wherein the substrates include particles of 1 mm to 9 mm in diameter.
20. The carbonic anhydrase bioreactor according to claim 19, wherein the substrates include particles of 3 mm in diameter.
21. The carbonic anhydrase bioreactor according to claim 19, wherein the particles are composed of alginate.
22. The carbonic anhydrase bioreactor according to claim 1, wherein the gas inlet comprises a gas bubbler for bubbling the CO2-containing gas into the liquid.
23. The carbonic anhydrase bioreactor according to claim 22, comprising a pressure regulating valve to control a pressure created by the gas bubbled within the reaction chamber.
24. The carbonic anhydrase bioreactor according to claim 23, wherein the pressure regulating valve is located in the gas outlet.
25. The carbonic anhydrase bioreactor according to claim 1, further comprising a filter having pores with a smaller diameter than a diameter of the suspended substrates for separating the substrates from the ion-rich solution.
26. The carbonic anhydrase bioreactor according to claim 25, wherein the filter is constructed to enable ultrafiltration or microfiltration.
27. The carbonic anhydrase bioreactor according to claim 1, wherein further comprising a retention device for retaining the substrates with reaction chamber.
28. The carbonic anhydrase bioreactor according to claim 1, further comprising an additional reaction chamber in series with the reaction chamber, hereinafter referred to as the primary reaction chamber, and the additional reaction chamber is downstream from the primary reaction chamber for further treating the treated gas.
29. The carbonic anhydrase bioreactor according to claim 28, wherein the primary reaction chamber and the additional reaction chamber both receive suspended substrates with the carbonic anhydrase provided thereon or therein.
30. The carbonic anhydrase bioreactor according to claim 28, wherein the additional reaction chamber contains a biocatalyst different from the carbonic anhydrase of the primary reaction chamber.
31. The carbonic anhydrase bioreactor according to claim 1, wherein the substrates include particles of sub-micron size.
32. The carbonic anhydrase bioreactor according to claim 1, wherein a mixer is provided within the reaction chamber.
33. The carbonic anhydrase bioreactor according to claim 32, wherein the mixer is an axial propeller.
34. A process using carbonic anhydrase for treating a CO2-containing gas, comprising:

suspending substrates within a liquid provided to a reaction chamber, carbonic anhydrase being provided on or in the substrates;

contacting the CO2-containing gas to be treated with the liquid within the reaction chamber in the presence of the carbonic anhydrase, to promote the chemical conversion of the dissolved CO2 into an ion-rich solution containing hydrogen ions and bicarbonate ions and obtaining a treated gas;

releasing the ion-rich solution from the reaction chamber; and releasing the treated gas from the reaction chamber.
35. The process according to claim 34, wherein the substrates comprise supports and the carbonic anhydrase are provided on the supports.
36. The process according to claim 35, wherein the carbonic anhydrase are immobilized onto the supports.
37. The process according to claim 36, wherein the carbonic anhydrase are covalently bonded onto the supports.
38. The process according to claim 35, wherein the supports are solid polymer particles.
39. The process according to claim 35, wherein the supports are composed of nylon.
40. The process according to claim 35, wherein the supports are composed of polystyrene, polyurethane, polymethylmethacrylate, or functionalised silica gel.
41. The process according to claim 34, wherein the substrates comprise porous substrates and the carbonic anhydrase are entrapped in the porous substrates.
42. The process according to claim 41, wherein the porous substrates are made of organic or inorganic material.
43. The process according to claim 41, wherein the porous substrates comprise particles composed of an insoluble gel.
44. The process according to claim 41, wherein the porous substrates comprise particles composed of silica.
45. The process according to claim 41, wherein the porous substrates comprise particles composed of alginate.
46. The process according to claim 41, wherein the porous substrates comprise particles composed of alginate/chitosan.
47. The process according to claim 41, wherein the porous substrates comprise particles composed of or alginate/carboxymethylcellulose.
48. The process according to claim 34, wherein the substrates comprise a network and the carbonic anhydrase are chemically linked with the network.
49. The process according to claim 48, wherein the network is a PEG network.
50. The process according to claim 48, wherein the network is an albumin network.
51. The process according to claim 34, wherein the substrates include particles of 0.005 µm to 0.1 µm in size.
52. The process according to claim 34, wherein the substrates include particles of 1 mm to 9 mm in diameter.
53. The process according to claim 52, wherein the substrates include particles of 3 mm in diameter.
54. The process according to claim 52, wherein the particles are composed of alginate.
55. The process according to claim 34, wherein the CO2-containing gas is bubbled into the liquid.
56. The process according to claim 55, wherein the substrates are retained within the reaction chamber.
57. The process according to claim 56, comprising controlling the pressure within the reaction chamber.
58. The process according to claim 57, wherein the ion-rich solution is released by pressure.
59. The process according to claim 34, wherein the substrates are separated from the ion-rich solution.
60. The process according to claim 59, wherein the substrates are separated from the ion-rich solution by filtration.
61. The process according to claim 60, wherein the filtration is ultrafiltration or microfiltration.
CA2714304A 2001-07-13 2002-07-11 Carbonic anhydrase bioreactor and process for co2-containing gas effluent treatment Expired - Lifetime CA2714304C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2813640A CA2813640C (en) 2001-07-13 2002-07-11 Carbonic anhydrase system and process for treating a co2-containing gas
CA2714304A CA2714304C (en) 2001-07-13 2002-07-11 Carbonic anhydrase bioreactor and process for co2-containing gas effluent treatment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA2,353,307 2001-07-13
CA002353307A CA2353307A1 (en) 2001-07-13 2001-07-13 Device and procedure for processing gaseous effluents
CA2393016A CA2393016C (en) 2001-07-13 2002-07-11 Triphasic bioreactor and process for gas effluent treatment
CA2714304A CA2714304C (en) 2001-07-13 2002-07-11 Carbonic anhydrase bioreactor and process for co2-containing gas effluent treatment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2393016A Division CA2393016C (en) 2001-07-13 2002-07-11 Triphasic bioreactor and process for gas effluent treatment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2813640A Division CA2813640C (en) 2001-07-13 2002-07-11 Carbonic anhydrase system and process for treating a co2-containing gas

Publications (2)

Publication Number Publication Date
CA2714304A1 true CA2714304A1 (en) 2003-01-13
CA2714304C CA2714304C (en) 2013-07-09

Family

ID=25682657

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2714304A Expired - Lifetime CA2714304C (en) 2001-07-13 2002-07-11 Carbonic anhydrase bioreactor and process for co2-containing gas effluent treatment
CA2393016A Expired - Lifetime CA2393016C (en) 2001-07-13 2002-07-11 Triphasic bioreactor and process for gas effluent treatment

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2393016A Expired - Lifetime CA2393016C (en) 2001-07-13 2002-07-11 Triphasic bioreactor and process for gas effluent treatment

Country Status (1)

Country Link
CA (2) CA2714304C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067648A1 (en) * 2011-11-11 2013-05-16 Co2 Solutions Inc. Co2 capture with carbonic anhydrase and membrane filtration

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2541986A1 (en) 2005-04-21 2006-10-21 Co2 Solution Inc. Carbonic anhydrase having increased stability under high temperatue conditions
WO2014000113A1 (en) * 2012-06-29 2014-01-03 Co2 Solutions Inc. Techniques for biocatalytic treatment of co2-containing gas and for separation of biocatalyst from ion loaded streams
EP2912172B1 (en) 2012-10-29 2018-12-05 CO2 Solutions Inc. Techniques for co2 capture using sulfurihydrogenibium sp. carbonic anhydrase
CA2890582C (en) 2014-08-27 2022-07-19 Normand Voyer Co2 capture methods using thermovibrio ammonificans carbonic anhydrase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067648A1 (en) * 2011-11-11 2013-05-16 Co2 Solutions Inc. Co2 capture with carbonic anhydrase and membrane filtration
EP2776143A4 (en) * 2011-11-11 2016-01-27 Co2 Solutions Inc Co2 capture with carbonic anhydrase and membrane filtration

Also Published As

Publication number Publication date
CA2714304C (en) 2013-07-09
CA2393016C (en) 2011-01-04
CA2393016A1 (en) 2003-01-13

Similar Documents

Publication Publication Date Title
CA2827024C (en) Carbonic anhydrase system and process for treating a co2-containing gas
EP1521629B1 (en) Triphasic bioreactor and process for gas effluent treatment
US6524843B1 (en) Process and apparatus for the treatment of carbon dioxide with carbonic anhydrase
Mallick Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review
RU2603736C2 (en) Method and device for capturing carbon dioxide (co2) from a gaseous stream
CA2414871A1 (en) Process and apparatus using a spray absorber bioreactor for the biocatalytic treatment of gases
Michaels Membrane technology and biotechnology
CA2393016C (en) Triphasic bioreactor and process for gas effluent treatment
Kaya et al. Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis
CA2509989C (en) Process and apparatus for the treatment of co2-containing gas using carbonic anhydrase
Mohseni Biological treatment of waste gases containing inorganic compounds
CN209685507U (en) A kind of active carbon-MBR device of water supply decolouring and deodorizing filtering
Zheng Efficient CO2 delivery from flue gas to microalgae ponds through a novel membrane system
Nag et al. Membrane Reactors
CN116375247A (en) River water purification method and device containing lignin pollutants
TR2021017210A1 (en) Production and application of gas bubble immobilized microalgae culture in water or wastewater treatment process.
Zhang et al. Treatment of odour containing hydrogen sulphide released from pharmaceutical wastewater treatment plant with SBR process by bio-trickling filter
Mokrani Transport of gases across membranes
Vercellino et al. Biological and Physical Polishing of a Space Based Waste Stream
TWM418125U (en) Microbio-reaction module and bio-reaction apparatus

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20220711