CA2691171C - Portable navigation system - Google Patents

Portable navigation system Download PDF

Info

Publication number
CA2691171C
CA2691171C CA2691171A CA2691171A CA2691171C CA 2691171 C CA2691171 C CA 2691171C CA 2691171 A CA2691171 A CA 2691171A CA 2691171 A CA2691171 A CA 2691171A CA 2691171 C CA2691171 C CA 2691171C
Authority
CA
Canada
Prior art keywords
module
information
mode
conveyance
navigational information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2691171A
Other languages
French (fr)
Other versions
CA2691171A1 (en
Inventor
Andrew Hunter
Naser El-Sheimy
Zainab Syed
David Bruce Wright
Chris Goodall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trusted Positioning Inc
Original Assignee
Trusted Positioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trusted Positioning Inc filed Critical Trusted Positioning Inc
Priority to CA2691171A priority Critical patent/CA2691171C/en
Publication of CA2691171A1 publication Critical patent/CA2691171A1/en
Application granted granted Critical
Publication of CA2691171C publication Critical patent/CA2691171C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3423Multimodal routing, i.e. combining two or more modes of transportation, where the modes can be any of, e.g. driving, walking, cycling, public transport

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

A portable navigation module and its method of operation are disclosed for seamlessly providing navigation and positioning information to a user. The module comprises: means, such as a GPS receiver, for receiving a first set of navigational information from an external source, such as satellites; and an inertial sensor unit for generating a second set of navigational information at the module. The navigational information is used by a processor programmed with a core algorithm, to identify the mode of conveyance algorithm and an orientation or misalignment algorithm. The algorithm utilizes the navigational information, aided by the mode of conveyance information and the orientation information, to produce a filtered navigation solution (which comprises position, velocity and attitude). The solution is suitably displayed, preferably on a detachable display unit. The system has the following attributes: the solution is produced seamlessly, even if one source of navigational information is temporarily out of service; the accuracy of the solution is assisted by use of the mode of conveyance and orientation information; and there is no requirement for the module to be permanently aligned with the direction of movement of the conveyance platform.

Description

PORTABLE NAVIGATION SYSTEM
FIELD OF THE INVENTION
[0001] The present invention relates generally to a portable navigation system adapted for use by an individual both when on foot or in a vehicle or on a moving platform, for the purpose of navigation and positioning.
BACKGROUND OF THE INVENTION
[0002] The common practice in the field of portable navigation is the use of GPS-only systems. The position and/or velocity information from the GPS receiver is displayed on a digital map to identify the location of the user. However, GPS
is not reliable as it needs a direct line of sight to at least four different GPS
satellites and the line of sight may be interfered with, for example by trees when in a forest or blocked, for example when in a tunnel.
[0003] Inertial sensors are self-contained sensors that sense the changes in accelerations and angular rates of the conveying body. These sensors are sometimes used to bridge the GPS signal outages if they are tethered with the moving body in a well defined orientation. The tethered and well aligned constraints make the device application specific and not user friendly.
[0004] Navigation when using an assembly of inertial sensors has heretofore involved the use of different navigation algorithms for different transit/conveyance modes.
Consequently, there has been no commercially available system known to us that can provide seamless navigation (position, velocity and attitude) information, when multiple modes of conveyance are involved, due to the fact that different algorithms have been used. More specifically, the on-foot mode of transit is implemented by using pedestrian dead reckoning (PDR) algorithm to avoid the huge drifts associated with the integration of inertial signals. However, PDR requires assumptions that must be satisfied for all type of walking modes. For example, climbing up the stairs require different assumptions for stride length and step detection threshold than going down the stairs. In addition, the in-vehicle navigation mode cannot be implemented using PDR and needs mechanization algorithm. Hence, two algorithms are used for the two most common transit modes. It is important for the system to recognize the appropriate mode of transit to switch between the modes otherwise the system will not work well. A mechanization algorithm for on-foot is not desirable due to the quadratic drift of derived navigation parameters with time. This problem has been resolved in the prior art as follows:
1) Use of wireless only positioning (GPS or cellular signals triangulation) for different transit modes (such as positioning used in iPhone). Wireless positioning has only one algorithm no matter what the mode of transit is.
However, as previously stated, wireless signals require line of sight to four different signal sources (such as four GPS satellites in case of GPS
positioning) to provide a position. Unfortunately, this condition cannot be satisfied all the time;
2) Use of a physical switch, such as cables or tethering inside a land vehicle, to ensure that mechanization algorithm is used for in-vehicle navigation. If in doubt, such systems use wireless only navigation. If wireless only navigation is unavailable, then the user simply doesn't get the navigation information;
or 3) Design separate systems, if seamless positioning using inertial sensors is desired, for on-foot and in-vehicle navigation, to ensure the desired use of the navigation system.
SUMMARY
[0005] The challenge is to provide a user-friendly system:
= that does not need to be tethered and precisely aligned in either on-foot or on a moving platform mode of transit;
= that provides a useful navigation solution for either mode of transit or conveyance, preferably using a single navigation or core algorithm and constraining drifts of the navigation algorithm during on-foot mode, for example by using updates from PDR without any assumptions; and = that is preferably capable of GPS integration along with inertial sensor based positioning without assumptions.
[0006] The objective of the present invention is therefore to provide a portable navigation system (`PNS') module adapted to seamlessly produce a navigation solution pertaining to the module, for both in-vehicle (including a moving platform) and on-foot modes of transit.
[0007] The PNS module utilizes two independent sources of navigational information. It melds the information, when both sources are available, to produce the navigation solution; or it can produce the solution using the information from only one source, when the information from the other source is temporarily unavailable.
Thus the output of the module is seamless or continuous.
[0008] More particularly, the PNS module incorporates:
= a receiver, such as a GPS receiver, for receiving navigational information from an external source, such as GPS satellites. The receiver produces an output of absolute navigational information pertaining to the module, in the form of signals indicative thereof;
= an assembly of sensors for generating navigational information at the module.
The sensor assembly produces an output of measured navigational information pertaining to the module, in the form of signals indicative thereof; and = a processor coupled to the receiver and sensor assembly for receiving their signals and programmed to accomplish the following:
o determining the mode of conveyance of the module;
o determining the orientation of the sensors; and o using the absolute and measured navigational information, together with the mode of conveyance and orientation information, to determine and produce the navigation solution. The solution will provide positioning and heading information of the user and module, such as instantaneous position, velocity and attitude information.
[0009] The processor is preferably programmed with:
= a mechanization navigation algorithm for converting the sensor measurements to relative navigational information;
= a conveyance algorithm for using the composite absolute and relative navigational information to establish the mode of conveyance;
= an orientation algorithm for using the composite navigational information to establish the orientation of the sensors; and = a core or navigation algorithm for using the composite navigational information, the mode of conveyance information and the orientation information to determine and produce a filtered navigation solution.
[0010] By initially determining the mode of conveyance and the orientation of the sensors, the core navigation algorithm is able to select and use appropriate constraints to ameliorate errors (such as drift) arising from the sensors.
[0011] By way of example, if the mode of conveyance is determined to be on-foot, the core navigation algorithm can be aided by a pedestrian dead reckoning (PDR) algorithm to limit sensor drift.
[0012] Optionally, the navigation solution may be communicated to a display and shown thereon. The display may be part of the module body, or may be separate from and wirelessly connected to the module.
[0013] In another aspect, a method is provided for seamlessly producing a navigation solution using a portable navigation system module, comprising:
= receiving navigational information at the module from an external source and producing signals indicative thereof;
= generating navigational information at the module using sensors and producing signals indicative thereof;
= determining the mode of conveyance of the module using navigational information derived from the receiver and sensor signals and producing information indicative thereof;
= determining the orientation of the sensors using navigational information derived from the receiver and sensor signals and producing information indicative thereof; and = processing and filtering the navigational information, the mode of conveyance information and the orientation information to determine and produce a navigation solution.
[0014] Optionally, the filtered navigation solution is displayed, either at the module or at another location.
[0015] Broadly stated then, a system is provided which combines:

= providing and using a composite of navigational information, derived from an external source and measured at the module with sensors, to determine the mode of conveyance of the module and the orientation of the sensors; and = using the composite navigational information, the mode of conveyance information and the orientation information to produce a navigation solution pertaining to the module using an appropriately aided core navigation algorithm.
[0016] In the event the navigational information from the external source is temporarily not available, the system produces the solution using only the information measured by the sensors.
DESCRIPTION OF THE DRAWINGS
[0017] Figure 1 is a block diagram of a navigation module according to the present invention;
[0018] Figure 2 is a flowchart illustrating the mode of conveyance algorithm;
and
[0019] Figure 3 is a flowchart illustrating the core algorithm.
DESCRIPTION OF THE PREFERRED EMBODIMENT
[0020] In the development of the present system, the information contained in the thesis of Dr. Zainab Syed was used. The thesis is available at http ://www. ucalgary. ca/engo_webdoc s/NE S/09.20288 .Zainab . Syed. pdf. It provides background and guidance with respect to the system and its disclosure.
[0021] In one embodiment, a portable electronic module 1 is provided which comprises a GPS receiver 2, an assembly 3 of sensors, a processor 4 and a display 5.
[0022] The GPS receiver 2 receives navigational information in the form of signals from GPS satellites and converts the information into position and velocity data (referred to as 'absolute navigational information'). The receiver produces the data in the form of signals indicative thereof.
[0023] The sensor assembly 3 comprises: accelerometers 6 for measuring module accelerations; gyroscopes 7 for measuring module turning rates; magnetometers 8 for measuring magnetic field strength for use in establishing module heading; and a barometer 9 for measuring pressure for use in establishing altitude changes.
The sensor assembly 3 generates data indicative of these measurements, in the form of an output of signals. It will be noted that the sensor assembly 3 generates this information at the module. The information so produced is used to compute 'relative navigational information' pertaining to the module.
[0024] As a minimum, the sensor assembly 3 may get by with inertial sensors, namely two accelerometers for monitoring forward/ backward and lateral directions and a vertical gyroscope for monitoring heading rate. However, a full complement of:
three accelerometers (for forward/backward, lateral and vertical accelerations monitoring); and three gyroscopes (two horizontal gyros for measuring roll and pitch, and a vertical gyro for measuring heading) is preferably utilized for the most accurate solution.
[0025] The receiver 2 and sensor assembly 3 are coupled to the processor 4 so as to communicate thereto the absolute navigational information and the sensors' data.
This may be done using, for example, a Texas Instruments MSP430 family or other basic microcontroller to capture and time synchronize all the sensor data before transferring the data to a higher powered processor such as an ARM9 based unit or other dedicated DSP for the navigation processing.
[0026] The processor is programmed with: a mechanization algorithm for converting the sensor data to relative navigational information by using mechanization equations such as are described in section 2.3 of Syed's thesis; a conveyance algorithm for using the composite navigational information to establish the mode of conveyance; an orientation algorithm for using the composite navigational information to establish the orientation of the sensors; and a core algorithm (for example an extended Kalman Filter as discussed in sections 2.4 and 2.5 of Syed's thesis) for using the navigational information, the mode of conveyance information and the orientation information to determine and produce a filtered navigation solution.
[0027] As previously stated, the solution is seamless ¨ that is, it is produced continuously even though the GPS may temporarily be inoperative.
[0028] In an experimental prototype, the GPS receiver 2 used was an Antaris receiver module; and the sensor assembly 3 comprised: three orthogonal Micro-Electro-Mechanical Systems MEMS accelerometers (model LIS3L02AL, available from ST Microelectronics); three orthogonal MEMS gyroscopes (model LISY300AL, available from ST Microelectronics); three orthogonal magnetometers (model HMC

5843, available from Honeywell); and a barometer (model 1451, available from MSI
Sensors).
[0029] The processor 4 comprised a micro-processor 10 and memory 11. The micro-processor 10 was programmed as stated to apply the algorithms, which utilized the composite absolute navigational information and sensors data stored in memory buffer.
[0030] More particularly, a mechanization algorithm was applied by the processor 4 to the data incoming from the sensor assembly 3, to convert the data to relative navigational information. This was accomplished by applying mechanization equations, trigonometric identities and pressure to height conversion formulas.
Guidance in this regard is provided in the Syed thesis where section 2.3 contains information about a mechanization algorithm and heading estimation using magnetometers. The pressure can be changed into height by following the steps provided in Ranta-aho 2003 which can be accessed at http://wwvv.vaisala.com/files/height_calculation.pdf.
[0031] Using the available absolute and relative navigational information derived from the receiver 2 and sensor assembly 3, (said information being referred to herein as 'the composite navigational information'), the mode of conveyance algorithm was applied to establish the mode of module conveyance. The mode of conveyance algorithm uses inertial, magnetometer and barometer signals to determine the physical state of the sensor module, i.e., if the module is carried by a person or inside a land vehicle. After the mode of conveyance is established, two distinct alignments were determined, specifically: (1) the alignment between the moving body, for example the user or vehicle, and the module; and (2) the alignment of the moving body in the navigation frame. The former is referred to as the relative alignment or orientation while the latter is referred to as the absolute alignment. The means for accomplishing this utilized an Extended Kalman filter which estimated the misalignment error states between the moving body and the module. The filter used updates from: physical constraints, namely straight line velocity constraints or non holonomic constraints; the GPS measurements; gravity measurements; and zero velocity periods; to converge to the true values. The misalignment Extended Kalman Filter (EKF) used is provided in section 6.2.4 in Syed's thesis. In conjunction therewith, the core algorithm estimated the errors in the absolute alignment using heading updates taken from the magnetometers and/or derived using instantaneous velocity values from the GPS
information.
[0032] Following are the details of the algorithms used in the prototype.
[0033] For mode detection, the accelerometer and gyroscope information was checked first at the highest frequencies, typically above 1 Hz. The magnetometer information was checked for repetitive attitude changes between 1 and 2 seconds, which would indicate walking. The barometer information was checked over 2 to seconds for repetitive signal changes which would occur during walking due to repetitive height and pressure changes. Lastly, a platform mode was checked based on large velocities of the combined sensor and/or GPS information, beyond what a human could achieve on foot over a non-moving surface. The entire process was always occurring with update rates of 2-4 seconds.
[0034] The mode of conveyance could be:
1. Undetermined ¨ in which case the core algorithm was used without aiding from the mode of conveyance;
2. On-foot (for example on the belt or in the hand of a user walking on an immovable object such as a sidewalk); or 3. On-platform (for example, the system was arbitrarily positioned within a vehicle but without attachment to the vehicle);
4. On-foot on a movable platform (for example, a person walking on a moving train or bus). In this case, the navigation was performed for two motions (on-foot motion which is usually low velocity, and platform motion with higher velocity). The two motions, i.e., on-foot and platform motion, were identified on the basis of underlying frequencies using either Fast Fourier Transform (FFT) or wavelets.
The navigation core gave precedence to the high velocity platform and computed the navigational information. Although not implemented yet, a separate core algorithm (the second copy of core algorithm) can be used to compute the navigational information of the low velocity on-foot motion depending on microprocessor capabilities. In this case, the two solutions (high and low velocity) will be combined to contribute to the overall navigation solution.
[0035] The orientation of the module with respect to the person or platform was also needed, to permit the application of aiding sources and constraints to the navigation core algorithm. A separate orientation algorithm was therefore always running, which provided an estimate of the orientation, along with its perceived accuracy.
The orientation could be:
1. Undetermined;
2. Determined person to module;
3. Determined platform to module; or 4. Determined platform to person to module.
[0036] The detail implementation of the orientation of misalignment algorithm used, along with the equations, is given in section 6.2.4 of Syed's PhD thesis.
Furthermore, in the case that the orientation is undetermined, the produced navigation solution will be with respect to the navigation system and will not provide all the information about the person's positioning.
[0037] Once the mode of conveyance was established and the standard deviation dropped below pre-defined thresholds for the orientation algorithm, the aiding sources could be applied appropriately. Even after this condition, the orientation algorithm was applied continuously, to determine the module's orientation during the periods of motion, with accurate GPS updates and estimates of roll and pitch when it was stationary.
[0038] The following constraints were used in connection with the prototype:
1. Nonholonomic constraints that keep a person or a vehicle moving in a straight line, or prevent the vehicle from jumping off the ground. Both the mode of conveyance and the orientation between the module and the vehicle/person have to be resolved before this constraint can be applied.
2. Level ground constraint for the stride length for on-foot mode of travel.
Appropriate stride lengths can be estimated using either available techniques such as walking frequency or pre-training of the system, and fixed for computations when walking on level ground. The mode of conveyance has to be resolved to apply this stride length constraint for level ground.
[0039] The following aids were provided to the core algorithm:
1. Map aiding was applied to both on-foot and in-vehicle modes of conveyance.
The mode of conveyance had to be resolved for this position update to use appropriate maps/algorithms.
2. Zero velocity update, where the navigation core algorithm was aided by the physical state of the platform. The algorithm applied no motion as updates to improve the navigation solution. The mode of conveyance needed to be determined to trigger appropriate no-motion constraints for different modes of conveyance.
3. Odometer aiding was also applied during in-vehicle navigation mode, if the signals were available to the processor. The odometer aiding has shown over two times improvements of navigation solution when used with the collected sensor signals. The processing was done in a post-processing configuration.
[0040] Variants:
It is contemplated that various equivalent means can be substituted for the following elements:
= Cellular phone, WiFi or Bluetooth piconet positioning capabilities can substitute the GNSS positioning capabilities if GNSS is unavailable; and = Any type of inertial sensors (not just limited to MEMS based) are potentially useful.

Claims (11)

1. A portable navigation system module within a moving body, the module comprising:
a) a receiver for receiving navigational information from an external source and producing an output of absolute navigational information pertaining to the module, in the form of signals indicative thereof;
b) an assembly of sensors in the module for generating navigational information at the module and producing an output in the form of signals indicative thereof, wherein the sensor assembly comprises accelerometer means for measuring module accelerations and gyroscope means for measuring module turning rates; and c) a processor coupled to receive the outputs from the receiver and sensor assembly and operative to use the navigational information provided thereby to establish a mode of conveyance of the module and a variable relative orientation between the sensors and the moving body in the form of information indicative thereof, wherein the relative orientation is a difference between a frame of the sensors in the module and a frame of the moving body and is obtained from the accelerometer means and the gyroscope means, using an estimation filter with measurement updates from physical constraints and the absolute navigational information, wherein the mode of conveyance comprises the detection of on-foot mode or in-vehicle mode, wherein said detection of on-foot mode or in-vehicle mode uses an analysis of the signals from the accelerometer means and the gyroscope means, wherein the module may be tethered or non-tethered to the moving body, said processor further being operative to use the navigational information derived from the receiver and sensors, the mode of conveyance information and the relative orientation information to determine and produce a navigation solution.
2. The module as set forth in claim 1 wherein the processor is programmed to use a conveyance algorithm operative to determine the mode of conveyance, a relative orientation algorithm operative to determine the relative orientation between the sensors and the moving body and a core algorithm operative to determine a filtered navigation solution.
3. The module as set forth in claim 1 wherein:
the processor uses a core algorithm to process the navigational information and aids the core algorithm using the mode of conveyance and the relative orientation information.
4. The module as set forth in claim 1 wherein:
the processor uses a core algorithm to process the navigational information and aids the core algorithm with platform specific aiding and constraints using the mode of conveyance and the relative orientation information.
5. The module as set forth in claim 1, 2, 3 or 4 wherein the processor is operative to produce the navigation solution in the event that the receiver is temporarily inoperative.
6. The module as set forth in claim 1, 2, 3 or 4 wherein the receiver is a GPS
receiver and the processor is operative to produce the navigation solution.
7. The module as set forth in any one of claims 1, 2, 3 or 4 wherein:
the receiver is a GPS receiver;
the sensor assembly comprises means for measuring module accelerations, means for measuring module turning rates, means for measuring magnetic field strength for use in determining module heading and means for measuring pressure at the module for use in determining altitude changes of the module; and the processor is operative to produce the navigation solution automatically and seamlessly.
8. The module as set forth in any one of claims 1, 2, 3 or 4 wherein:
the receiver is a GPS receiver;
the sensor assembly comprises three orthogonal accelerometers for measuring module accelerations, three orthogonal gyroscopes for measuring module turning rates, three orthogonal magnetometers for measuring magnetic field strength for use in determining module heading and a barometer for measuring pressure at the module for use in determining altitude changes of the module; and the processor is operative to produce the navigation solution seamlessly.
9. The module as set forth in claim 2 wherein:

the core algorithm is an Extended Kalman filter operative to determine and produce seamlessly a filtered navigation solution.
10. A method for producing a navigation solution using a portable navigation system module within a moving body, wherein the module may be tethered or non-tethered to the moving body, the method comprising:
receiving navigational information at the module from an external source and producing signals indicative thereof;
generating navigational information at the module using sensors in the module, comprising accelerometer means for measuring module accelerations and gyroscope means for measuring module turning rates, and producing sensor signals indicative thereof;
determining a mode of conveyance of the module using navigational information derived from sensor signal frequencies or the received navigational information and sensor signal frequencies and producing information indicative thereof, wherein the mode of conveyance comprises the detection of on-foot mode or in-vehicle mode, wherein said detection of on-foot mode or in-vehicle mode uses an analysis of the signals from the accelerometer means and the gyroscope means;
determining a variable relative orientation between the sensors and the moving body and producing information indicative thereof, wherein the relative orientation is a difference between a frame of the sensors in the module and a frame of the moving body and_is obtained from the accelerometer means and gyroscope means using an estimation filter with measurement updates from physical constraints and absolute navigational information; and processing the navigational information, the mode of conveyance information and the relative orientation information as a composite whole to determine and seamlessly produce a filtered navigation solution pertaining to the module.
11. A method for producing a navigation solution using a portable navigation system module within a moving body, wherein the module may be tethered or non-tethered to the moving body, the method comprising:
providing and using a composite of navigational information, derived from an external source and measured at the module with sensors in the module, wherein the sensors comprise accelerometer means and gyroscope means, wherein the composite of navigational information is used to determine a mode of conveyance of the module and a variable relative orientation between the sensors and the moving body, wherein the relative orientation is a difference between a frame of the sensors in the module and a frame of the moving body and is obtained from the composite of navigational information using an estimation filter with measurement updates from physical constraints and absolute navigation information, wherein the mode of conveyance comprises the detection of on-foot mode or in-vehicle mode based at least in part on uses an analysis of readings from an accelerometer and a gyroscope; and using the composite navigational information, the mode of conveyance information and the relative orientation information to produce a navigation solution pertaining to the module, wherein the navigation solution can be vehicle navigation or on-foot navigation.
CA2691171A 2010-01-26 2010-01-26 Portable navigation system Active CA2691171C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2691171A CA2691171C (en) 2010-01-26 2010-01-26 Portable navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2691171A CA2691171C (en) 2010-01-26 2010-01-26 Portable navigation system

Publications (2)

Publication Number Publication Date
CA2691171A1 CA2691171A1 (en) 2011-07-26
CA2691171C true CA2691171C (en) 2017-10-03

Family

ID=44318265

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2691171A Active CA2691171C (en) 2010-01-26 2010-01-26 Portable navigation system

Country Status (1)

Country Link
CA (1) CA2691171C (en)

Also Published As

Publication number Publication date
CA2691171A1 (en) 2011-07-26

Similar Documents

Publication Publication Date Title
US9651387B2 (en) Portable navigation system
KR102111104B1 (en) Route smoothing
US20160146616A1 (en) Vehicle positioning by map matching as feedback for ins/gps navigation system during gps signal loss
JP3602095B2 (en) Terrain navigation device for legged animals traveling on terrain
US20130196688A1 (en) Gps odometer
JP4476943B2 (en) Route guide device and method based on walking
Ladetto et al. In step with INS navigation for the blind, tracking emergency crews
US11162795B2 (en) Method and device for detecting pedestrian stride length and walking path
JP5602070B2 (en) POSITIONING DEVICE, POSITIONING METHOD OF POSITIONING DEVICE, AND POSITIONING PROGRAM
EP2948735A1 (en) Method and apparatus for improved navigation for cycling
JP6083279B2 (en) Movement status information calculation method and movement status information calculation device
KR20110043538A (en) Method and systems for the building up of a roadmap and for the determination of the position of a vehicle
JP2009288022A (en) Abnormality determination device of earth magnetism sensor, travel azimuth specification device, computer program, and abnormality determination method of earth magnetism sensor
JP2001221652A (en) Inertial guide apparatus and method for navigation system for car
TW200916730A (en) Augmented navigation system and method of a moving object
KR20150106004A (en) Method and apparatus for handling vertical orientations of devices for constraint free portable navigation
WO2012045484A1 (en) Gps-calibrated pedometer
JP5742794B2 (en) Inertial navigation device and program
KR100575933B1 (en) Method and apparatus for measuring speed of land vehicle using accelerometer and route guidance information data
TWI680277B (en) Method and system for determining a direction of movement of an object
WO2008035827A1 (en) Pedestrian navigation method and apparatus for using geographic information system
Su et al. Sensor-aided personal navigation systems for handheld devices
JP2007309803A (en) Dead reckoning apparatus
CA2691171C (en) Portable navigation system
Meng et al. Pedestrian Navigation Method based on PDR/INS KF fusion and Height Update for Three-Dimensional Positioning

Legal Events

Date Code Title Description
EEER Examination request