CA2661559C - Method for identifying language of text in a handheld electronic device and a handheld electronic device incorporating the same - Google Patents

Method for identifying language of text in a handheld electronic device and a handheld electronic device incorporating the same Download PDF

Info

Publication number
CA2661559C
CA2661559C CA2661559A CA2661559A CA2661559C CA 2661559 C CA2661559 C CA 2661559C CA 2661559 A CA2661559 A CA 2661559A CA 2661559 A CA2661559 A CA 2661559A CA 2661559 C CA2661559 C CA 2661559C
Authority
CA
Canada
Prior art keywords
text
electronic device
language
linguistic objects
handheld electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2661559A
Other languages
French (fr)
Other versions
CA2661559A1 (en
Inventor
Vadim Fux
Sergey Kolomiets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlackBerry Ltd
Original Assignee
Research in Motion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research in Motion Ltd filed Critical Research in Motion Ltd
Publication of CA2661559A1 publication Critical patent/CA2661559A1/en
Application granted granted Critical
Publication of CA2661559C publication Critical patent/CA2661559C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/263Language identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)

Abstract

A handheld electronic device has at least one application for receiving text from a source external to the handheld device. The handheld device also has available thereto a plurality of indicator lists with each indicator list comprising a number of linguistic objects which are indicative of a preselected language and which are in a different language from the linguistic objects of the other indicator lists. The handheld device analyzes the text to at least preliminarily determine an encoding of the text, and compares linguistic objects of the text to at least some of the linguistic objects of at least some of the indicator lists to identify the language of the text and to verify the encoding of the text.

Description

METHOD FOR IDENTIFYING LANGUAGE OF TEXT IN A HANDHELD
ELECTRONIC DEVICE AND A HANDHELD ELECTRONIC DEVICE
INCORPORATING THE SAME
BACKGROUND
Technical Field Aspects of the disclosure relate to identifying language of text in a handheld electronic device.
Background Information Generating text in a handheld electronic device examples of which include, for instance, personal data assistants (PDA's), handheld computers, two-way pagers, cellular telephones, text messaging devices, and the like, has become a complex process. This is due at least partially to the trend to make these handheld electronic devices smaller and lighter in weight. A limitation in making them smaller has been the physical size of the keypad if the keys are to be actuated directly by human fingers. Generally, there have been two approaches to solving this problem. One is to adapt the ten digit keypad indigenous to mobile phones for text input. This requires each key to support input of multiple characters. The second approach seeks to shrink the traditional full keypad, such as the QWERTY keyboard by doubling up characters to reduce the number of keys.
In both cases, the input generated by actuation of a key representing multiple characters is ambiguous. Various schemes have been devised to disambiguate inputs from these multi-character keys.

A problem exists with regard to handheld electronic devices that have a full keypad or a reduced keypad in that the device cannot always accurately identify language of received text since a number of languages share the same encoding. As such, the potential exists for processing errors in the handheld electronic device in determining the identity of the language of the e-mail. If the handheld electronic device cannot accurately identify the language of the e-mail, the characters of the e-mail may be improperly displayed to the end-user or the handheld electronic device may add linguistic objects of the e-mail to the wrong list of commonly used linguistic objects that are used from the list for disambiguation.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a front view of an exemplary handheld electronic device incorporating aspects of the disclosed and claimed concepts;
FIG. 2 is a front view of an alternate exemplary handheld electronic device incorporating aspects of the disclosed and claimed concepts;
FIG. 3 is a functional diagram in block form illustrating aspects of the disclosed and claimed concepts; and FIG. 4 is a flow chart illustrating operation of aspects of the disclosed and claimed concepts.

DESCRIPTION
An aspect of the disclosed and claimed concepts is to identify the language of text and to verify the encoding of the text to minimize processing errors in a handheld electronic device. An exemplary external source of text is e-mail messaging.
Additional non-limiting examples include SMS (Short Message Service), MMS (Multi-Media Service) and instant messages.
More particularly, aspects of the disclosed and claimed concepts are directed to a method of identifying language of text in a handheld electronic device. The handheld electronic device has at least one application for receiving text from a source external to the handheld electronic device. The handheld electronic device also has available thereto a plurality of indicator lists with each indicator list comprising a number of linguistic objects which are indicative of a preselected language and which are in a different language from the linguistic objects of the other indicator lists. The general method of the disclosed and claimed concepts includes analyzing the text to at least preliminarily determine an encoding of the text, and comparing linguistic objects of the text to at least some of the linguistic objects of at least some of the indicator lists to identify the language of the text and to verify the encoding of the text.
Aspects of the disclosed and claimed concepts also embrace a handheld electronic device having a processing apparatus. The processing apparatus has a processor and a memory. Stored within the memory is at least one application for receiving text from a source external to the handheld electronic device. Stored within the memory also is a plurality of indicator lists with each indicator list comprising a number of linguistic objects
2
3 PCT/CA2006/001448 which are indicative of a preselected language and which are in a different language from the linguistic objects of the other indicator lists. The memory has stored therein a number of routines which, when executed by the processor, cause the handheld electronic device to perform operations. The general nature of the operations can be stated as analyzing the text to at least preliminarily determine an encoding of the text, and comparing linguistic objects of the text to at least some of the linguistic objects of at least some of the indicator lists to identify the language of the text and to verify the encoding of the text.
FIG. 1 illustrates a wireless handheld electronic device 1, which is but an example of a type of a handheld electronic device to which aspects of the disclosed and claimed concepts can be applied. The exemplary handheld electronic device 1 includes an input device 3 in the form of a keypad 5 and a thumbwheel 7 that are used to control the functions of the handheld electronic device 1 and to generate text and other inputs. The keypad 5 constitutes a reduced QWERTY keyboard in which most of the keys 9 are used to input two letters of the alphabet. It is noted, however, that the keypad 5 may be of other configurations, such as an AZERTY keyboard, a QWERTZ keyboard, or other keyboard arrangement, whether presently known or unknown, and either reduced or not reduced.
Thus, initially the input generated by depressing one of these keys is ambiguous in that it is undetermined as to which letter was intended. Various schemes have been devised for disambiguating the inputs generated by these keys 9 assigned multiple letters for input.
The input provided through the keypad 5 and thumbwheel 7 are displayed on a display 11 as is well known.
FIG. 2 illustrates an alternate wireless handheld electronic device 1, which is but another example of a type of a handheld electronic device to which aspects of the disclosed and claimed concepts can be applied. Elements that are presented in FIG. 2 which are similar to the elements found in FIG. 1 are labeled with the same element number in FIG. 2. The exemplary handheld electronic device 1 includes an input device 3 in the form of a keypad 5 and a navigational tool 8 that is used to control the functions of the handheld electronic device 1 and to generate text and other inputs. The keypad 5 constitutes a reduced QWERTY keyboard in which most of the keys 9 are used to input two letters of the alphabet. It is noted, however, that the keypad 5 may be of other configurations, such as an AZERTY keyboard, a QWERTZ keyboard, or other keyboard arrangement, whether presently known or unknown, and either reduced or not reduced.
Thus, initially the input generated by depressing one of these keys is ambiguous in that it is undetermined as to which letter was intended. Various schemes have been devised for disambiguating the inputs generated by these keys 9 assigned multiple letters for input.
Continuing with FIG. 2, the handheld electronic device 1 also includes the navigational tool 8. In this particular embodiment, the navigational tool 8 is a trackball 10 that can be rotated thereby allowing for the navigation of a cursor which is displayed on a display 11 in various directions including up, down, left, right, and any combination thereof.
Moreover, the trackball 10 can also be depressed. When the trackball 10 is depressed, a selection is made based upon the current location of the cursor. For example, if the cursor is located over a given program icon, that program will be launched when the trackball 10 is depressed. The input provided through the keypad 5 and trackball 10 is displayed on the display 11.
It should be noted, however, that despite FIG. 2 depicting the navigational tool 8 as being disposed on the front face of the handheld electronic device 1, the navigational tool 8 can also be disposed on a side of the handheld electronic device 1 in the form of the thumbwheel 7 as shown in FIG. 1. The thumbwheel 7 of FIG. 1, which is capable of being rotated and depressed, may be disposed on the side of the handheld electronic device I of FIG. 1 in lieu of the trackball 10. Rotation of the thumbwheel 7 can provide a navigation input, while depression of the thumbwheel 7 can provide a selection input.
Accordingly, rotation of the thumbwheel 7 can navigate the cursor over a particular program icon, while depression of the thumbwheel 7 with the cursor located over a given program icon can launch the program.
Turning to FIG. 3, the input device 3 provides keystroke inputs to a processing apparatus 13 which may include, by way of example and not limitation, a memory, an operating system, a processor, a Java virtual machine, a run time environment or the like.
The handheld electronic devices 1 of FIGS. 1-2 each implement a plurality of applications 17. These applications may include, by way of example and not limitation, an address book 19, e-mail 21, a calendar 23, a memo 25, and additional applications, such as, for example, spell check and a phone application. Generally these applications 17 require text input that is implemented by a text input process 27, which forms part of an input system 15.

Various types of text input processes 27 can be used that employ lists 29 to facilitate the generation of text. For example, in the exemplary handheld electronic device where the reduced QWERTY keyboard produces ambiguous inputs, the text input process
4 27 utilizes software to progressively narrow the possible combination of letters that could be intended by a specified sequence of keystrokes. Such "disambiguation"
software is known. Typically, such systems employ a plurality of lists 29 of linguistic objects. By linguistic objects, it is meant words and in some languages ideograms. The keystrokes input linguistic elements, which in the case of words, are characters or letters in the alphabet, and in the case of ideograms, strokes that make up the ideogram. The lists 29 of language objects can also include abbreviations, and text shortcuts, which are becoming common with the growing use of various kinds of text messaging. Lists 29 that can be used by the exemplary disambiguation text input process 27 can include a generic list 31 and a new list 33. Additional lists 35 can include learned words and special word lists such as technical terms. Other types of text input processes 27 could include, by way of example and not limitation, prediction programs that anticipate a word intended by a user as it is typed in and thereby complete it, could also use word lists. Such a prediction program might be used with a full keypad.
Known disambiguation programs can assign frequencies of use to the linguistic objects, such as words or ideograms, in the lists 29 it uses to determine the linguistic object intended by the user. Frequencies of use can be initially assigned based on statistics of common usage and can then be modified through actual usage. It is known for disambiguation programs to incorporate "learned" linguistic objects such as words that were not in the initial lists 29, but were inserted by the user to drive the output 37 to the intended new word. It is known to assign such learned words an initial frequency of use that is near the high end of the range of frequencies of use. This initial frequency of use is then modified through actual use as with the initially inserted words.
One source for additional linguistic objects is by e-mail 21. Not only is it likely that new language objects contained in incoming e-mail 21 would be used by the user to generate a reply or other e-mail responses, such new linguistic objects could also be linguistic objects that the user might want to use in generating other text inputs.
A problem associated with using new linguistic objects received by e-mail 21 is that processing errors occur in the handheld electronic devices 1 of FIGS. 1-2 in identifying language of the text that is received. Typically, quantities of text in various languages are transmitted by e-mail with a preselected encoding which is then translated by the handheld electronic device 1 into the text that is shown on display 11 of the handheld electronic device 1. Encoding refers to the coding employed to transmit e-mail
5 to the handheld electronic device 1. Encoding examples include, by way of example and not limitation, Unicode, ASCII and the like. Unfortunately, certain languages share the same encoding among characters, words or ideograms and the potential for processing errors exists in the handheld electronic device 1 in determining the identity of the language of the e-mai121.

FIG. 4 illustrates a flow chart of a routine 39 for identifying language of text in the handheld electronic device 1. The processor apparatus 13 of the handheld electronic device 1 has a processor and a memory. Stored within the memory is at least one application for receiving text from a source external to the handheld electronic device 1.
Stored within the memory also is a plurality of indicator lists 41 with each indicator list 41 comprising a number of linguistic objects which are indicative of a preselected language and which are in a different language from the linguistic objects of the other indicator lists 41. Each indicator list 41 may contain a set of most frequently found linguistic objects of the preselected language of the indicator list 41. For example, the indicator list 41 may have 20 or more linguistic objects stored within the memory. The linguistic objects may be, by way of example and not limitation, words or ideograms. Also, the different languages may consist of different dialects of a same language used in one or more countries.

The incoming e-mails 43 are placed in a queue 45 for processing as permitted by the processing burden on the handheld electronic device 1. Processing begins with scanning the e-mail to parse 47 the message into text. The parsed message is then filtered at 49 to remove unwanted components, such as numbers, dates, and the like. At least a portion of the message is then analyzed 51 for the frequency of use of characters in the text to at least preliminarily determine an encoding of the text. Encoding examples include, by way of example and not limitation, Unicode, ASCII and the like.
The encoding of the text may dictate the language of the text but, in other circumstances, a plurality of languages will share the same encoding for various characters, words or ideograms which leads to processing problems in the handheld electronic device 1.
As such, in the routine 39, linguistic objects of the text are then compared 53 to at least some of the linguistic objects of indicator lists 41 to identify the language of the text and to verify the encoding of the text. In certain instances, the linguistic objects of the text may be compared 53 with at least some of the linguistic objects of all of the indicator lists 41. The handheld electronic device 1 then determines 55 if a proportion of the quantity of
6 linguistic objects of the text that are also found in a given indicator list 41 to the total quantity of linguistic objects of text reaches a preselected threshold. If, for example, the linguistic objects of the text are also in a particular indicator list 41 at a proportion of 10%
or more, the routine 39 determines 55 that the language of the text is the preselected language of a particular indicator list 41. The identification of a language would verify that the encoding of the text was correctly analyzed at 51. If, for example, the linguistic objects of the text are in a particular indicator list 41 at a proportion of less than 10%, the routine 39 determines that the language of the text has not yet been identified. If no language can be identified for the text, the routine 39 concludes that the encoding of the text has not been determined accurately so the linguistic objects of the text are routed to be analyzed 51 or compared 53 again.
Once the routine 39 determines that the language of the text is the preselected language of a particular indicator list 41, the routine 39 may end. Once the language has been determined properly, the linguistic objects of the text may be added to lists 29 that facilitate the generation of text in various disambiguation schemes. In certain circumstances, once the language has been determined properly, the linguistic objects of the text may be shown on display 11. For example, in certain languages, the encoding of certain letters or ideograms are the same. A user of the handheld electronic device 1 in Japan may not enjoy viewing Chinese characters appearing on display 11 because the processor did not have the ability to differentiate between the encoding of a Japanese and Chinese ideogram.
The above method identifies the language in a received e-mail. In addition to identifying the language of e-mails, other text received from sources outside the handheld electronic device 1 can also be scanned for new words. This can include identifying the language used in instant messages, SMS (short message service), MMS
(multimedia service), and the like.

While specific embodiments of the disclosed and claimed concepts have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the disclosed and claimed concepts which is to be given the full breadth of the claims appended and any and all equivalents thereof.
7

Claims (20)

Claims:
1. A method of identifying language of text in a handheld electronic device having at least one application for receiving text from a source external to the handheld electronic device and having available thereto a plurality of indicator lists with each indicator list comprising a number of linguistic objects which are indicative of a preselected language and which are in a different language from the linguistic objects of the other indicator lists, the method comprising:
analyzing received text to at least preliminarily determine an encoding of the text;
comparing linguistic objects of the received text to at least some of the linguistic objects of at least some of the indicator lists to determine if a proportion of the quantity of linguistic objects of the received text that are found in a particular indicator list reaches a preselected threshold; and upon determining that the preselected threshold has been reached, identifying the language of the received text.
2. The method of claim 1, further comprising analyzing frequency of use of characters in the text to at least preliminarily determine the encoding of the text.
3. The method of claim 1, wherein said comparing comprises checking the linguistic objects of the text with at least some of the linguistic objects of all of the indicator lists.
4. The method of claim 1, wherein the handheld electronic device has stored therein the plurality of indicator lists with each indicator list comprising linguistic objects that are indicative of the preselected language, and wherein the linguistic objects that are indicative of the preselected language comprise a set of most frequently found linguistic objects of the preselected language of the indicator list.
5. The method of claim 1, wherein the handheld electronic device has stored therein the plurality of indicator lists with each indicator list comprising linguistic objects that are indicative of the preselected language that are in a different language from the linguistic objects of the other indicator lists, and wherein the different language comprises a different dialect of a same language used in one or more countries.
6. The method of claim 1, further comprising determining that the indicator lists do not identify that language of the text and, responsive thereto, applying an alternate encoding to the text, and comparing linguistic objects of the text to at least some of the linguistic objects of at least some of the indicator lists to identify the language of the text and to verify the alternate encoding of the text.
7. The method of claim 6, wherein the alternate encoding is determined by reanalyzing the text to at least preliminarily determine an alternate encoding of the text.
8. The method of claim 6, wherein said determining further comprises calculating that the proportion of the linguistic objects of the text that are also in a particular indicator list does not exceed the predetermined threshold.
9. The method of claim 1, further comprising employing adding linguistic objects of the text to a list to facilitate the generation of text.
10. The method of claim 1, further comprising displaying linguistic objects of the text on a display of a handheld electronic device.
11. A handheld electronic device comprising a processing apparatus comprising a processor and a memory having stored therein at least one application for receiving text from a source external to the handheld electronic device and a plurality of indicator lists with each indicator list comprising a number of linguistic objects which are indicative of a preselected language and which are in a different language from the linguistic objects of the other indicator lists, the memory having stored therein a number of routines which, when executed by the processor, cause the handheld electronic device to perform operations comprising:
analyzing received text to at least preliminarily determine an encoding of the text;
comparing linguistic objects of the received text to at least some of the linguistic objects of at least some of the indicator lists to determine if a proportion of the quantity of linguistic objects of the received text that are found in a particular indicator list reaches a preselected threshold; and upon determining that the preselected threshold has been reached, identifying the language of the received text.
12. The handheld electronic device of claim 11, further comprising analyzing frequency of use of characters in the text to at least preliminarily determine the encoding of the text.
13. The handheld electronic device of claim 11, wherein said comprising comprises checking the linguistic objects of the text with at least some of the linguistic objects of all of the indicator lists.
14. The handheld electronic device of claim 11, wherein the handheld electronic device has stored therein the plurality of indicator lists with each indicator list comprising linguistic objects that are indicative of the preselected language, and wherein the linguistic objects that are indicative of the preselected language comprise a set of most frequently found linguistic objects of the preselected language of the indicator list.
15. The handheld electronic device of claim 11, wherein the handheld electronic device has stored therein the plurality of indicator lists with each indicator list comprising linguistic objects that are indicative of the preselected language that are in a different language from the linguistic objects of the other indicator lists, and wherein the different language comprises a different dialect of a same language used in one or more countries.
16. The handheld electronic device of claim 11, further comprising determining that the indicator lists do not identify that language of the text and, responsive thereto, applying an alternate encoding to the text, and comparing linguistic objects of the text to at least some of the linguistic objects of at least some of the indicator lists to identify the language of the text and to verify the alternate encoding of the text.
17. The handheld electronic device of claim 16, wherein the alternate encoding is determined by re-analyzing the text to at least preliminarily determine an alternate encoding of the text.
18. The handheld electronic device of claim 16, wherein said determining further comprises calculating that the proportion of the linguistic objects of the text that are also in a particular indicator list does not exceed the predetermined threshold.
19. The handheld electronic device of claim 11, further comprising employing adding linguistic objects of the text to a list to facilitate the generation of text.
20 The handheld electronic device of claim 11, further comprising displaying linguistic objects of the text on a display of a handheld electronic device.
CA2661559A 2006-09-01 2006-09-01 Method for identifying language of text in a handheld electronic device and a handheld electronic device incorporating the same Active CA2661559C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2006/001448 WO2008025123A1 (en) 2006-09-01 2006-09-01 Method for identifying language of text in a handheld electronic device and a handheld electronic device incorporating the same

Publications (2)

Publication Number Publication Date
CA2661559A1 CA2661559A1 (en) 2008-03-06
CA2661559C true CA2661559C (en) 2013-07-16

Family

ID=39135451

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2661559A Active CA2661559C (en) 2006-09-01 2006-09-01 Method for identifying language of text in a handheld electronic device and a handheld electronic device incorporating the same

Country Status (4)

Country Link
CA (1) CA2661559C (en)
DE (1) DE112006004015T5 (en)
GB (1) GB2454147B (en)
WO (1) WO2008025123A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672209B2 (en) 2012-06-21 2017-06-06 International Business Machines Corporation Dynamic translation substitution
CN111160015B (en) * 2019-12-24 2024-03-05 北京明略软件系统有限公司 Method, device, computer storage medium and terminal for realizing text analysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125001A (en) * 2001-10-19 2003-04-25 Matsushita Graphic Communication Systems Inc Electronic mail communication apparatus and electronic mail communication method
US7865355B2 (en) * 2004-07-30 2011-01-04 Sap Aktiengesellschaft Fast text character set recognition
US7996208B2 (en) * 2004-09-30 2011-08-09 Google Inc. Methods and systems for selecting a language for text segmentation

Also Published As

Publication number Publication date
GB2454147B (en) 2014-03-12
DE112006004015T5 (en) 2009-07-02
GB0903317D0 (en) 2009-04-08
WO2008025123A1 (en) 2008-03-06
GB2454147A (en) 2009-04-29
CA2661559A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US8423908B2 (en) Method for identifying language of text in a handheld electronic device and a handheld electronic device incorporating the same
US7548849B2 (en) Method for generating text that meets specified characteristics in a handheld electronic device and a handheld electronic device incorporating the same
US9508028B2 (en) Converting text strings into number strings, such as via a touchscreen input
US9851983B2 (en) Method for generating text in a handheld electronic device and a handheld electronic device incorporating the same
US8539350B2 (en) Automatic language selection for improving text accuracy
US20040260536A1 (en) Method and apparatus for recognizing language input mode and method and apparatus for automatically switching language input modes using the same
US20080182599A1 (en) Method and apparatus for user input
US9009624B2 (en) Keyboard gestures for character string replacement
JP4891438B2 (en) Eliminate ambiguity in keypad text entry
EP1722294B1 (en) Method for generating text in a handheld electronic device and a handheld electronic device incorporating the same
CN112154442A (en) Text entry and conversion of phrase-level abbreviations
CA2563233C (en) Automatic language selection for improving text accuracy
CA2606328C (en) Method for generating text that meets specified characteristics in a handheld electronic device and a handheld electronic device incorporating the same
CA2661559C (en) Method for identifying language of text in a handheld electronic device and a handheld electronic device incorporating the same
Shahzadi et al. Urdu word prediction system for mobile phones
CN112925469A (en) Content display method, content display device, storage medium and electronic equipment
CA2692558C (en) Handheld electronic device and associated methods for obtaining new language objects for use by a routine on the device

Legal Events

Date Code Title Description
EEER Examination request