CA2656827A1 - Sealing device - Google Patents

Sealing device Download PDF

Info

Publication number
CA2656827A1
CA2656827A1 CA002656827A CA2656827A CA2656827A1 CA 2656827 A1 CA2656827 A1 CA 2656827A1 CA 002656827 A CA002656827 A CA 002656827A CA 2656827 A CA2656827 A CA 2656827A CA 2656827 A1 CA2656827 A1 CA 2656827A1
Authority
CA
Canada
Prior art keywords
sealing
sleeve
sealing device
locking
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002656827A
Other languages
French (fr)
Inventor
Tom Henning Bode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seawell Oil Tools AS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2656827A1 publication Critical patent/CA2656827A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/01Sealings characterised by their shape
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/06Sleeve valves

Abstract

The present invention relates to a sealing device comprising a sealing (1) which is threaded onto a sleeve (7), where the sleeve (7) is located in a base tube (11) comprising valve ports (12), and where the sealing device shall seal between the sleeve (7) and the base tube (11). The invention is characterized in that the sealing (1) is held in place by support rings (2), where the support rings is held in place by locking rings (3), where the lockings rings (3) fit into an inner suitable locking groove (6) in the sleeve (7), where the sleeve (7) comprises a threaded portion (8), where a locking nut (5) comprising an outer suitable locking groove (6) is arranged to be screwed over the sleeves (7) threaded portion (8) and to be tightened sufficiently to hold the locking rings (3), support rings (2) and sealing (1) in place outside the sleeve (7).

Description

SEALING DEVICE

The present invention relates to a sealing device to be used in tough condi-tions, such as conditions with strongly varying pressure, conditions with strongly varying temperature and conditions with an chemically stressing environment.
In addition the sealing device according to the present invention shall fullfil the re-quirement of a reliable and maintenancefree function in the long run.
The oil industry uses a great variety of sealing device in all stages of the processes which lead to the conduction of oil and gas from a subterranean reser-voir, up to the surface and on to the end user. The present invention particularly relates to sealing devices to be used underground, but the advantages of the seal-ing devices according to the present invention may also.find their use in other con-text where there is a need for robust sealing devices.
When completing oil and gas wells so-called cementing valves are used in the cementing work. The cementing valves form parts of the production tubing and is arranged in such a way that they can be opened and closed as needed during the cementing work. Cementing valves are subjected to large and varying load-ings, such as large pressure differentials, elevated temperatures and/or large temperature variations, strong physical loadings and also a very tough chemical environment.
One kind of cementing valves comprises an inner sleeve which can be slid back ahd forth to close and open radial valve operiings or -ports in a base tube, respectively, an open cementing valve form communication between the inside and outside of production tubing. The base tube is screwed in as a part of the pro-duction tubing, the cementing valve thereby form a tubing section of the production tubing. .
In order to ensure that the cementing valve is sealed when the inner sleeve is located in its closing position, ring shaped sealing devices are arranged be-tween the outside of the inner sleeve and the inside of the base tube. These .ring shaped sealing devices are usually situated in encircling grooves which are milled out or in another way are arranged in the sleeve. Althoug the sealing device which in this way encircle the sleeve is of a very robust and resistant kind, it has turned out that the great differential pressure which arise at the cementing valves contri-bute to stretching and deforming the sealing devices in such a way that the sealing devices are pulled out of their grooves, are squeezed between the sleeve and the valve ports in the base pipe, and thereby cut totally or partly when the cementing valve is opened or closed. This again leads to a.considerable reduction of the sealing capability of the sealing devices, since they in certain cases also can be washed totally out through the valve ports.
Another shortcoming with conventional sealing devices is that they are sub-jected to so-called scouring. When the valves are opened, i.e. the sleeve is slid re-latively to the base tube, and the sealing is exposed by the valve port, and intense ,o liquid flow over the exposed sealing may lead to a complete or partly wearing down of the sealing, and the sealing will thereby totally or partly loose its sealing function.
There is a limited range of materials which are suitable for use in sealings of this kind. One way to arrange the sealing ring in the sealing groove is to heat 15. expand the sealing ring when it is threaded over the sleeve and into the sealing groove. When the sealing ring is cooled down, it will tighten into place in the seal-ing groove. This method does, however, limit the material choice with a view to strenghts and temperature resistance, chemical resistance and tolerance to pressure.
20 Some of the chemicals the sealing can be exposed to down in the well comprise formic acid, hydrochloric acid, saline solutions, acid gases such as H2, etc. It is a known problem that elevated temperatures can make the sealings brittle. Futher gas may penetrate into the sealing material and form gas bobbles which cause the sealing to "blow up". Depending of the composition of the mud 25 and the material in sealings, sealings can be dissolved in mud. The combination of these factors, which sometimes also occure concurrently, make the choice of seal-ing material difficult. When the sealing in addition must have certain mechanical qualities in order to enable installation, the choice is further limited.
Conventional sealings usually comprise Teflon. Teflon has a tendency to 30 expand and get softer at elevated temperatures, but will again retract when the temperature falls. In order to avoid thermal expansion a material called Devlon V
has inter alia been used. Devlon V is mechanically stronger than Teflon and will endure higher differential pressures than e.g. Teflon. Although Devlon V also ex-pands at elevated temperatures, it does not expand to the same extent as Teflon'.
Devlon V has a melting point of 216 C. If the sealings shall be used in environ-ments with even higher temperatures, there is a material called Peek which en-dure up to 333 C. If Teflon or Peek is used in environments with H2S, the sealings will swell and get brittle over time. There are other materials which can be used, but this may be at the expence of other qualities. Price is also a factor which of course is taken into consideration: Devlon V is considerably more expensive than Teflon and Peek is considerable more expensive than Devlon V, etc..
The sealings must be flexible enought to be threaded over the cementing valve sleeve and down into a groove arranged for that purpose. If the require-ments to mechanical strenghts of the sealing are particularly strict, the sealing of the preferred sealing material will be too hard to be threaded over the sleeve.
With the limitations which exist with respect to mechanical construction and selection of materials, today's conventional sealing systems do not endure a greater differential pressure than approximately 100 bar. In addition the various unfavourable well conditions mentioned above cause today's conventional sealing systemes to quickly deteriorate, and that the above mentioned tolerance to a diffe-rential pressure of approximately 100 bar is quickly reduced to unacceptable low levels.
It is therefore an object with the present invention to provide a sealing de-vice which to a much less extent than de above mentioned conventional sealing devices is encumbered with said drawbacks. According to the present invention this object is achieved with a sealing device which is characterized by the features which appear from the independent claim 1. Futher advantageous features and embodiments appear from the independent claims.
The following is a detailed description of a preferred embodiment with refe=
rence to the appended figures, where Fig. 1 illustrate a conventional sealing system, Fig. 2 and 3 illustrate longitudinal sections of a cementing valve provided 3o with the sealing device according to the present invention, and Fig. 4 and 5 illustrate in closer detail the sealing device according the pre-sent invention.
Fig. 1 illustrates a conventional sealing system in conjunction with a sleeve 20 in a cementing valve. A sealing in the shape of an 0-ring 21 is arranged in a groove 22 which encircles the sleeve 20. The groove 22 in the sleeve 20 is big enough to contain additional rings 23, 24 which purpose is to protect the 0-ring 21, but these additional rings 23, 24 does not contribute to support and retain the 0-ring in place by radially outwardly directed forces. The rings 23, 24 are similar to the 0-ring 21 preferably manufactured from Teflon, and must similar to the 0-ring 21 as a rule be heated and threaded over the sleeve 20 in order to get them in place.
The present invention provides a sealing device 10 (see fig. 2 to 5) which comprises a sealing 1, e.g. in the form of a sealing ring, which is held in place by support rings 2. The support rings 2 functions as shape-adapted keys which both contribute to clamping around the sealing 1 and which themselves are keyed or clamped into position by outer locking rings 3. The outer locking rings 3 are in turn shaped to fit into suitable locking grooves 6 in sleeve 7. Sleeve 7 comprises a threaded portion 8 and also possibly a recessed portion 9 which contribute to re-ducing the diameter 11 of the sleeve. When assembling the sealing device 10, first one outer locking ring 3 is threaded over the recessed portion of sleeve 7, bringing this outer locking ring 3 into abutment and engagement with the locking groove 6.
Then a support ring 2 is threaded over the recessed portion of sleeve 7, bringing support ring 2 into abutment and engagement with the outer locking ring 3.
Then sealing ring 1 is threaded over the recessed portion of sleeve 7, bringing sealing ring 1 into abutment and engagement with locking groove 6. Then follows the other support ring 2 and the other locking ring 3, before a locking nut 5 comprising suitable locking grooves 6 is screwed over the sleeves 7 threaded portion 8 and tightened sufficiently to hold the locking rings 3, support rings 2 and the sealing 1 in place, and possibly apply the sealing ring 1 a predetermined pressure / pre-stress / compression. The sealing device 10 according to the present invention is arranged in such a way that an applied differential pressure will cause the sealing 1, the support rings 2 and the locking rings 3 to interlock and thereby protect against scouring.

The sealing device 10 according to the present invention gives much greater freedom in choice of materials for the sealing 1. Because the support rings 2 and the locking rings 3 are arranged to take up many of the mechanical load-ings, and since the sealing 1 in itself can be put.in place without the need to heat 5 expand it in advance or forcibly threaded over the sleeve 1 and down in a locking groove, materials may be chosen for the sealing 1 which to a much larger extent have good sealing, thermal, chemical, pressure and abrasion properties. The material which the support rings 2 are manufactured from may also be adapted to the use and the material which the sealing 1 is made from, and may also be manu-7o factured from'the same material as the sealing 1. The locking rings 3 will prefer-ably be manufactured from the same material as sleeve 7, but may also be manu-factured from another material, e.g. a material which has properties which can be said to be between the material which sleeve 7 is manufactured from and the material the support ring 2 are manufactured from with respect to hardness, tough-ness, expansibility, etc. The locking nut 5 is as a rule manufactured from the same or equivalent material as sleeve 7.
According to the present invention it is an important feature that the sealing device 10 is allowed to expand when pressure and temperature increase. The sealing device 10 is arranged in such a way that the sealing 1 gets better support the higher pressure the sealing device 10 is subjected to. At higher pressure the support rings 2 will press harder against the sealing, the sealing 1 is thereby squeezed together and expand in radial direction. This again will contribute to an increase in pressure from the sealing 1 against the inside of the base tube 11, which contributes to an improvement of the sealing. The support rings 2 and the shaping between the support rings 2 and the sealing 1 prevents, however, the sealings from being squeezed, scoured or sucked out of the groove the sealing is located in and through the valve openings 12 when the sealing=1 is exposed to these. In addition the support rings 2 arid the shaping between the support rings 2 and the sealing 1 will prevent the sealing 1 from being displaced relative to or be-ing twisted out of the groove the sealing 1 lies in.
According to a preferred embodiment of the present invention the sealing and the support rings 2 are provided with a tongue-and-groove configuration, e.g.
in the form of elevations 13 or "wings" on each side in axial direction of the sealing 1 which match corresponding grooves in the support rings 2 (see fig. 4 and 5), which contribute to holding the sealing 1 in correct location between the support rings 2, both with a view to prevent sucking out and with a view to preventing the sealing 1 from twisting relative to the support rings 2. Other configurations com-prise dovetail 2, U-shaped groove, V-shaped groove, drop-shaped groove, etc., depending on what is regarded being optimal for every single case.
According to another advantageous embodiment of the present invention, the support rings 2 are provided with a lip which partly overlies the sealing 1 (see fig. 4 and 5). The support rings 2 can possibly be shaped in such a way that the support rings 2 partly encircles the sealing 1. Such designs contribute to an even greater extent to holding the sealing 1 in place between the support rings 2.
According to a further advantageous embodiment of the present invention, the support rings 2 and the locking rings 3 are designed such that the support rings 2 are held in place between the locking rings 2, e.g. by the locking rings 3 comprising key-shaped lips which project partly over the support rings 2 and there-by prevent the support ring 2 in bulging too much or bouncing out of its allocated position between the locking rings 3 (see fig. 4 and 5).
According to a further advantageous embodiment of the present invention, the sealing device 10 vil function as a scraper against the inside of the base tube 11, to thereby ensure that the sealing surface between the sealing device 10 and.
the base tube 11 stay free from cement and other unwanted particles. I saline en-vironments salt may crystallize out and settle around the sealing. In such cases the sealing device will also function as a scraper, without the sealing itself being cut or get damaged from the salt crystals.
According to another further aspect of the present invention, the strenght and durability of the sealing device 10 may further be improved by providing the cementing valve with oval ventilation ports 12 (see fig. 2-4). By giving the valve port 12 an oval shaping, the distribution of tension in the base tube 11 vil be impro-ved, something which result in considerably improved tensile strength. The most significant advantage of providing oval ports 12 is nevertheless that the opening as the sealing 1 "sees" is considerably smaller, it thereby has a smaller and finer opening to expand into, even if the area of the valve port in practice become al-most twice as big as for conventional round ports. It is understood that the sealing device 10 is subjected to the greatest mechanical loading during opening or clos-ing of the cement valve and exposing the sealing device 10 for the valve ports 12.
1. addition the valve port 12 may with advantage be designed as an embrasure, so that the edge the sealing 1 bends around get less sharp. A favourable taper angle has turned out to be approximately 20 . In addition the inside of the valve port 12 is somewhat rounded.
The sealing device 10 according to the present invention can be adapted to the environment and the loadings the cementing valve shall be subjected to, by adapting the support rings 2 and the sealings 1 materials and possibly also design to the individual instances of use and conditions of use.
According to the present invention the sealing device 10 may also be retrofit on existing equipment which need robust and maintenancefree sealings.
Tests have shown that the sealing device 10 according to the present in-vention easily endure differential pressures of 250 bar, more than twice as much as todays conventional sealing systems. By choosing other materials it's possible to further increase the strengths considerably.
The present invention provides a stronger, maintenancefree and durable sealing device. By the fact that the support rings 2 and the locking rings 3 are con-figured in such a way that they can take up more of the mechanical forces the sealing 1 is subjected to, by the fact that the configuration with support rings 2 and locking rings 3 ensures that the sealing 1 is held better in place, and by the fact.
that the sealing 1 may be threaded of the sleeve 7 without the sealing 1 need to be flexible, far more materials can be used for the sealing 1. I addition the sealing de-vice 10 in any case configured in such a way that the strenghts, service life and usefulness is radically improved relative to todays conventional solutions.

Claims (11)

1. A sealing device comprising a sealing (1) which is threaded onto a sleeve (7), where the sleeve (7) is located in a base tube (11) comprising valve ports (12), and where the sealing device shall seal between the sleeve (7) and the base tube (11), characterized in that the sealing (1) is held in place by support rings (2), where the support rings (2) is held in place by locking rings (3), where the locking rings (3) fit into an inner suitable locking groove (6) in the sleeve (7), where the sleeve (7) comprises a threaded portion (8), where a locking nut (5) comprising an outer suitable locking groove (6) is arranged to be screwed over the sleeves (7) threaded portion and to be tightened sufficiently to keep the locking rings (3), the support rings (2) and the sealing (1) in place outside the sleeve (7).
2. A sealing device according to claim 1, characterized in that the support rings (2) are arranged to function as shape-adapted keys which both contribute to clamping around the sealing (1) and which themselves are keyed or clamped into position by the outer locking rings (3).
3. A sealing device according to claim 2, characterized in that the shape adapted key-shaping comprises a tongue-and-groove configuration, a dovetail groove, a U-shaped groove, a V-shaped groove, and/or a drop-shaped groove.
4. A sealing device according one of the preceding claims, characterized in that the support rings (2) are manufactured from the same or equivalent materials as the sealing (1).
5. A sealing device according one of the preceding claims, characterized in that the locking rings (3) are manufactured from same or equivalent material as the sleeve (7).
6. A sealing device according one of the preceding claims, characterized in that the locking nut (5) is manufactured from the same or equivalent material as the sleeve (7).
7. A sealing device according one of the preceding claims, characterized in that the inner locking groove (6) either is milled into the sleeve (7) or is screwed on or in another way arranged outside the sleeve (7).
8. A sealing device according to claim 7, characterized in that the inner locking groove (6), locking rings (3), support rings (2), the sealing (1) and also the locking nut (5) are all arranged to be screwed onto the sleeve (7).
9. A sealing device according to claim 7, characterized in that the inner locking groove (6), locking rings (3), support rings (2), the sealing (1) and also the locking nut (5) are all arranged to fit into a recess in the sleeve (7).
10. A sealing device according any of the preceding claims, characterized in that the valve port (12) are oval shaped in the longitudi-nal direction of the base tube (11).
11. A sealing device according to claim 10, characterized in that the valve ports (12) are shaped as embrasures with a taper angle of approximately 20°.
CA002656827A 2006-07-14 2007-07-09 Sealing device Abandoned CA2656827A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20063285A NO324763B1 (en) 2006-07-14 2006-07-14 A seal
NO20063285 2006-07-14
PCT/NO2007/000267 WO2008020759A1 (en) 2006-07-14 2007-07-09 Sealing device

Publications (1)

Publication Number Publication Date
CA2656827A1 true CA2656827A1 (en) 2008-02-21

Family

ID=39082247

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002656827A Abandoned CA2656827A1 (en) 2006-07-14 2007-07-09 Sealing device

Country Status (9)

Country Link
US (1) US20100187763A1 (en)
EP (1) EP2041392B8 (en)
BR (1) BRPI0713246A2 (en)
CA (1) CA2656827A1 (en)
DK (1) DK2041392T3 (en)
MX (1) MX2009000011A (en)
NO (1) NO324763B1 (en)
TN (1) TNSN08524A1 (en)
WO (1) WO2008020759A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1676391A (en) * 1926-05-14 1928-07-10 Reed Roller Bit Co Pump
US4131287A (en) * 1977-07-11 1978-12-26 Exxon Production Research Company Annular seal
US4811959A (en) * 1987-11-27 1989-03-14 Otis Engineering Corporation Seal assembly for well locking mandrel
US5156220A (en) * 1990-08-27 1992-10-20 Baker Hughes Incorporated Well tool with sealing means
US5246236A (en) * 1992-01-21 1993-09-21 Halliburton Company Seal for long-time exposures in oil and gas well tools
US5263683A (en) * 1992-05-05 1993-11-23 Grace Energy Corporation Sliding sleeve valve
US5826652A (en) * 1997-04-08 1998-10-27 Baker Hughes Incorporated Hydraulic setting tool
US6176310B1 (en) * 1999-02-19 2001-01-23 Erc Industries, Inc. Assembly for sealing the annulus between concentric cylindrical surfaces
US20020070503A1 (en) * 2000-12-08 2002-06-13 Zimmerman Patrick J. High temperature and pressure element system
US6763892B2 (en) * 2001-09-24 2004-07-20 Frank Kaszuba Sliding sleeve valve and method for assembly
US6869079B2 (en) * 2002-02-15 2005-03-22 Fmc Technologies, Inc. Stackable metallic seal and method of using same
US6799635B2 (en) * 2002-08-13 2004-10-05 Halliburton Energy Services, Inc. Method of cementing a tubular string in a wellbore
US7363981B2 (en) * 2003-12-30 2008-04-29 Weatherford/Lamb, Inc. Seal stack for sliding sleeve
US7191843B2 (en) * 2004-06-24 2007-03-20 Petroquip Energy Services, Inc. Valve apparatus with seal assembly
US7445047B2 (en) * 2005-10-24 2008-11-04 Baker Hughes Incorporated Metal-to-metal non-elastomeric seal stack
US7434617B2 (en) * 2006-04-05 2008-10-14 Stinger Wellhead Protection, Inc. Cup tool with three-part packoff for a high pressure mandrel

Also Published As

Publication number Publication date
EP2041392B8 (en) 2017-03-15
EP2041392B1 (en) 2017-01-04
DK2041392T3 (en) 2017-04-10
TNSN08524A1 (en) 2010-04-14
NO20063285A (en) 2007-12-10
EP2041392A4 (en) 2014-08-27
US20100187763A1 (en) 2010-07-29
BRPI0713246A2 (en) 2012-10-09
MX2009000011A (en) 2009-04-06
NO324763B1 (en) 2007-12-10
WO2008020759A1 (en) 2008-02-21
EP2041392A1 (en) 2009-04-01

Similar Documents

Publication Publication Date Title
CA2685396C (en) Threaded joint with energizable seal
US4711474A (en) Pipe joint seal rings
NO325875B1 (en) Valve with self-cleaning plug / seat unit.
US6698712B2 (en) Ball valve assembly
US4505290A (en) Valve seat assembly and valve
US20070222162A1 (en) Back-up ring and sealing assembly
US10041325B2 (en) High pressure seal with composite anti-extrusion mechanism
US4595219A (en) Gas tightly sealed joint in oil field tubular goods
US6179002B1 (en) Hydraulic coupling with pressure-energized dovetail seal
US20110260088A1 (en) Ball valve having complex valve seat
CA2902069C (en) Composite dynamic valve seal assembly for high temperature control valves
NO340867B1 (en) Lock valve and method for controlling a flow of a wellbore fluid with a lock valve
GB2453843A (en) A gasket designed to withstand pressure differentials in subsea environments
NO155742B (en) VALVE SEAT.
US6409176B2 (en) Wellhead housing seal assembly with backup feature
US7604056B2 (en) Downhole valve and method of making
CA2656827A1 (en) Sealing device
AU2322301A (en) Undersea hydraulic coupling member
US20090255597A1 (en) Probe seal having spring-energized sealing elements for female hydraulic coupling member
RU2811641C1 (en) O-ring
AU713875B3 (en) A seal
RU2814892C1 (en) Automatic seal assembly cleaner
NO840611L (en) ORGANIZATION FOR AA CREATED BETWEEN SURFACES
WO2007069216A2 (en) A coupling and rigid pipe
PL190675B1 (en) Fire-protected cock

Legal Events

Date Code Title Description
FZDE Dead

Effective date: 20130709