CA2649085A1 - A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture - Google Patents

A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture Download PDF

Info

Publication number
CA2649085A1
CA2649085A1 CA002649085A CA2649085A CA2649085A1 CA 2649085 A1 CA2649085 A1 CA 2649085A1 CA 002649085 A CA002649085 A CA 002649085A CA 2649085 A CA2649085 A CA 2649085A CA 2649085 A1 CA2649085 A1 CA 2649085A1
Authority
CA
Canada
Prior art keywords
absorbable
fabric
multilayered
woven
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002649085A
Other languages
French (fr)
Inventor
Dhanuraj S. Shetty
Sanyog Manohar Pendharkar
Anne Jessica Gorman
Simmi Kalirai
Jerry Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon, Inc.
Dhanuraj S. Shetty
Sanyog Manohar Pendharkar
Anne Jessica Gorman
Simmi Kalirai
Jerry Moore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon, Inc., Dhanuraj S. Shetty, Sanyog Manohar Pendharkar, Anne Jessica Gorman, Simmi Kalirai, Jerry Moore filed Critical Ethicon, Inc.
Publication of CA2649085A1 publication Critical patent/CA2649085A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/129Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing macromolecular fillers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/50Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention is directed to a multilayered fabric comprising a first absorbable nonwoven fabric and a second absorbable woven or knitted fabric, and its method of manufacture.

Description

A REINFORCED ABSORBABLE MULTILAYERED FABRIC FOR USE IN
MEDICAL DEVICES AND METHOD OF MANUFACTURE

FIELD OF THE INVENTION
The present invention relates to a reinforced absorbable multilayered fabric that is useful in medical devices and its method of manufacture.

BACKGROUND OF THE INVENTION
It is generally known to use multilayered fabrics in connection with medical procedures. For example, multilayered fabrics are used as all purpose pads, wound dressings, surgical meshes, including hernia repair meshes, adhesion prevention meshes and tissue reinforcement meshes, defect closure devices, and hemostats.

USP 5,593,441 to Lichtenstein et al describes a composite prosthesis preferably having a sheet of polypropylene mesh that allows tissue in-growth, such as Marlex mesh. This reference discloses that other surgical materials that are suitable for tissue reinforcement and defect closure may be utilized, including absorbable meshes such as a polyglactin 910 (Vicryl ) mesh. The composite prosthesis of Lichtenstein et al also has an adhesion barrier, preferably a sheet of silicone elastomer. This reference generally suggests that that an oxidized regenerated cellulose such as Interceed (TC7) absorbable adhesion barrier (commercially available from Ethicon, Inc., in Somerville, New Jersey) may be used as the adhesion barrier to produce a composite prosthesis having short term effectiveness. The composite prosthesis of Lichtenstein et al is described for use in reinforcing and repairing a weakened muscular wall while limiting the incidence of postoperative adhesions.

USP 5,686,090 to Schilder et al describes the use of a fleece in combination with a nonabsorbable or absorbable film to prevent mis-growths to adjacent tissue and to reduce adhesions. Schilder et al generally discloses that polypropylene, polyester, polyglactin, polydioxanone or poliglecaprone 25 may be used as the fleece material or the film material. The term "fleece" as used in this reference is described by its porosity, which is described as being in the range between 100 and 10001/(m2s) gas flow, measured with an inlet pressure of 200 Pa, a test surface of 50 cm2 and a test thickness of 1 mm. The composite of Schilder et al is generally described as being a multilayered implant.

Additionally, multilayered fabrics are useful for tissue engineering and orthopedic applications. The recent emergence of tissue engineering offers numerous approaches to repair and regenerate damaged/diseased tissue. Tissue engineering strategies have explored the use of biomaterials that ultimately can restore or improve tissue function. The use of colonizable and remodelable scaffolding materials has been studied extensively as tissue templates, conduits, barriers and reservoirs. In particular, synthetic and natural materials in the form of foams, sponges, gels, hydrogels, textiles, and nonwovens have been used in vitro and in vivo to reconstruct/regenerate biological tissue, as well as deliver chemotactic agents for inducing tissue growth. The different forms of scaffolds may be laminated to form a multilayered tissue engineering scaffold.

However, the prior art fails to describe or suggest a reinforced absorbable multilayered fabric having a first absorbable nonwoven fabric reinforced by one or more second absorbable woven or knitted fabric.

As used herein, the term "nonwoven fabric" includes, but is not limited to, bonded fabrics, formed fabrics, or engineered fabrics, that are manufactured by processes other than weaving or knitting. More specifically, the term "nonwoven fabric" refers to a porous, textile-like material, usually in flat sheet form, composed primarily or entirely of staple fibers assembled in a web, sheet or batt. The structure of the nonwoven fabric is based on the arrangement of, for example, staple fibers that are typically arranged more or less randomly. The tensile, stress-strain and tactile properties of the nonwoven fabric ordinarily stem from fiber to fiber friction created by entanglement and reinforcement of, for example, staple fibers, and/or from adhesive, chemical or physical bonding. Notwithstanding, the raw materials used to manufacture the nonwoven fabric may be yarns, scrims, netting, or filaments made by processes that include, weaving or knitting.

SUMMARY OF THE INVENTION
The present invention is directed to a reinforced absorbable multilayered fabric comprising a first absorbable nonwoven fabric reinforced by one or more second absorbable woven or knitted fabric, and its method of manuafacture. More particularly, the first absorbable nonwoven fabric comprises fibers comprising aliphatic polyester polymers, copolymers, or blends thereof; while the second absorbable woven or knitted fabric comprises oxidized regenerated cellulose fibers.

DETAILED DESCRIPTION OF THE INVENTION
The reinforced absorbable multilayered fabric generally comprises a nonwoven fabric and one or more reinforcement fabric. The reinforcement fabric provides a backing to which the nonwoven fabric may be attached, either directly or indirectly.

The nonwoven fabric functions as the first absorbable nonwoven fabric of the reinforced absorbable multilayered fabric described herein. The first absorbable nonwoven fabric is comprised of fibers comprising aliphatic polyester polymers, copolymers, or blends thereof. The aliphatic polyesters are typically synthesized in a ring opening polymerization of monomers including, but not limited to, lactic acid, lactide (including L-, D-, meso and D, L mixtures), glycolic acid, glycolide, s-caprolactone, p-dioxanone (1,4-dioxan-2-one), and trimethylene carbonate (1,3-dioxan-2-one).

Preferably, the first absorbable nonwoven fabric comprises a copolymer of glycolide and lactide, in an amount ranging from about 70 to 95% by molar basis of glycolide and the remainder lactide.

In an alternative embodiment, the first absorbable nonwoven fabric comprises fibers comprised of aliphatic polyester polymers, copolymers, or blends thereof, alone or in combination with oxidized polysaccharide fibers.

Preferably, the nonwoven fabric is made by processes other than, weaving or knitting. For example, the nonwoven fabric may be prepared from yarn, scrims, netting or filaments that have been made by processes that include, weaving or knitting. The yarn, scrims, netting and/or filaments are crimped to enhance entanglement with each other and attachment to the second absorbable woven or knitted fabric. Such crimped yarn, scrims, netting and/or filaments may then be cut into staple that is long enough to entangle. The staple may be between about 0.1 and 3.0 inches long, preferably between about 0.75 and 2.5 inches, and most preferably between about 1.5 and 2.0 inches. The staple may be carded to create a nonwoven batt, which may be then needlepunched or calendared into the first absorbable nonwoven fabric. Additionally, the staple may be kinked or piled.

Other methods known for the production of nonwoven fabrics may be utilized and include such processes as air laying, wet forming and stitch bonding. Such procedures are generally discussed in the Encyclopedia of Polymer Science and Engineering, Vol. 10, pp. 204-253 (1987) and Introduction to Nonwovens by Albin Turbank (Tappi Press, Atlanta GA 1999), both incorporated herein in their entirety by reference.

The thickness of the nonwoven fabric may range from about 0.25 to 2 mm. The basis weight of the nonwoven fabric ranges from about 0.01 to 0.2 g/in2;
preferably from about 0.03 to 0.1 g/in2; and most preferably from about 0.04 to 0.08 g/in2. The weight percent of first absorbable nonwoven fabric may range from about 10 to percent, based upon the total weight of the reinforced absorbable multilayered fabric.
The second absorbable woven or knitted fabric functions as the reinforcement fabric and comprises oxidized polysaccharides, in particular oxidized cellulose and the neutralized derivatives thereof. For example, the cellulose may be carboxylic-oxidized or aldehyde-oxidized cellulose. More preferably, oxidized regenerated polysaccharides including, but without limitation, oxidized regenerated cellulose may be used to prepare the second absorbable woven or knitted fabric. Regenerated cellulose is preferred due to its higher degree of uniformity versus cellulose that has not been regenerated.

Regenerated cellulose and a detailed description of how to make oxidized regenerated cellulose are set forth in USP 3,364,200, USP 5,180,398 and USP 4,626,253, the contents each of which is hereby incorporated by reference as if set forth in its entirety.
Examples of fabrics that may be utilized as the reinforcement fabric include, but are not limited to, Interceed absorbable adhesion barrier, Surgicel absorbable hemostat, Surgicel Nu-Knit absorbable hemostat and Surgicel Fibrillar absorbable hemostat (each available from Johnson & Johnson Wound Management Worldwide or Gynecare Worldwide, each a division of Ethicon, Inc., Somerville, New Jersey).

The reinforcement fabric utilized in the present invention may be woven or knitted, provided that the fabric possesses the physical properties necessary for use in contemplated applications. Such fabrics, for example, are described in USP
4,626,253, USP 5,002,551 and USP 5,007,916, the contents of which are hereby incorporated by reference herein as if set forth in its entirety. In preferred embodiments, the reinforcement fabric is a warp knitted tricot fabric constructed of bright rayon yarn that is subsequently oxidized to include carboxyl or aldehyde moieties in amounts effective to provide the fabrics with biodegradability.

In an alternative embodiment, the second absorbable woven or knitted fabric comprises oxidized polysaccharide fibers in combination with fibers comprised of aliphatic polyester polymers, copolymers, or blends thereof.

The second absorbable woven or knitted fabric preferably comprises oxidized regenerated cellulose and may have a basis weight ranging from about 0.001 to 0.2 g/in2, preferably in the range of about 0.01 to 0.1 g/in2, and most preferably in the range of about 0.04 to 0.07 g/in2.

The first absorbable nonwoven fabric is attached to the second absorbable woven or knitted fabric, either directly or indirectly. For example, the nonwoven fabric may be incorporated into the second absorbable woven or knitted fabric via needlepunching, calendaring, embossing or hydroentanglement, or chemical or thermal bonding. The staple of the first absorbable nonwoven fabric may be entangled with each other and imbedded in the second absorbable woven or knitted fabric. More particularly, for methods other than chemical or thermal bonding, the first absorbable nonwoven fabric may be attached to the second absorbable woven or knitted fabric such that at least about 1% of the staple of the first absorbable nonwoven fabric are exposed on the other side of the second absorbable woven or knitted fabric, preferably about 10-20% and preferably no greater than about 50%. This ensures that the first absorbable nonwoven fabric and the second absorbable woven or knitted fabric remain joined and do not delaminate under normal handling conditions. The reinforced absorbable multilayered fabric is uniform such that substantially none of the second absorbable woven or knitted fabric is visibly devoid of coverage by the first absorbable nonwoven fabric.

One method of making the multilayered fabric described herein is by the following process. Absorbable polymer fibers, having a denier per fiber of about 1 to 4, may be consolidated to about 80 to 120 denier multifilament yarn and then to about 800 to 1200 denier yarns, thermally crimped and then cut to a staple having a length between about 0.75 and 1.5 inch. The staple may be fed into a multiroller dry lay carding machine one or more times and carded into a uniform nonwoven batt, while humidity is controlled between about 20-60% at a room temperature of 15 to 24 C. For example, the uniform nonwoven batt may be made using a single cylinder roller-top card, having a main cylinder covered by alternate rollers and stripper rolls, where the batt is doffed from the surface of the cylinder by a doffer roller and deposited on a collector roll. The batt may be further processed via needlepunching or any other means such as calendaring. Thereafter, the first absorbable nonwoven fabric may be attached to the second absorbable woven or knitted fabric by various techniques such as needlepunching. The reinforced absorbable multilayered fabric may then be scoured by washing in an appropriate solvent and dried under mild conditions for 10- 30 minutes.
It is desirable to control process parameters such as staple length, opening of the staple, staple feed rate, and relative humidity. For example, the consolidated yarns may have from about 5 to 50 crimps per inch, and preferably from about 10 to 30 crimps per inch. Efficient cutting of the crimped yarns is desirable, as any long and incompletely cut staple tends to stick on the carding machine and cause pilling. A
preferred range of the staple length is from about 0.75 to 2.5 inches, and more preferably from about 1.5 to 2.0 inches.

To optimize uniformity and minimize the build-up of static electricity, the relative humidity may be controlled during batt processing, preferably during carding to form the uniform nonwoven batt. Preferably, the nonwoven batt is processed using a dry lay carding process at a relative humidity of at least about 20% at a room temperature of about 15 to 24 C. More preferably, the nonwoven batt is processed at a relative humidity of from about 40% to 60%.
The multilayered fabric is scoured using solvents suitable to dissolve any spin finish. Solvents include, but are not limited to, isopropyl alcohol, hexane, ethyl acetate, and methylene chloride. The multilayered fabric is then dried under conditions to provide sufficient drying while minimizing shrinkage.
The reinforced absorbable multilayered fabric may have an average thickness of between about 0.5 and 3.0 mm, preferably between about 1.00 and 2.5 mm, and most preferably between about 1.2 and 2.0 mm. The reported thickness is dependent upon the method of thickness measurement. Preferred methods are the ASTM methods (ASTM D5729-97 and ASTM D1777-64) conventionally used for the textile industry in general and non-woven in particular. Such methods can be slightly modified and appropriately adopted in the present case as described below. The basis weight of the reinforced absorbable multilayered fabric is between about 0.05 and 0.25 g/in2, preferably between about 0.08 and 0.2 g/in2, and most preferably between about 0.1 and 0.18 g/in2. The reinforced absorbable multilayered fabric is uniform such that there is no more than about 10% variation (relative standard deviation of the mean) in the basis weight or thickness across each square inch.

Additionally, the nonwoven fabric may comprise biologically active agents, such as hemostatic agents. Hemostatic agents that may be used include, without limitation, procoagulant enzymes, proteins and peptides, either naturally occurring, recombinant, or synthetic. More specifically, prothrombin, thrombin, fibrinogen, fibrin, fibronectin, Factor X/Xa, Factor VIUVIIa, Factor IX/IXa, Factor XI/XIa, Factor XII/XIIa, tissue factor, von Willebrand Factor, collagen, elastin, gelatin, synthetic peptides having hemostatic activity, derivatives of the above and any combination thereof, may be utilized. Preferred hemostatic agents are thrombin and/or fibrinogen and fibrin.

Additionally, the nonwoven fabric may comprise pharmacologically and biologically active agents, including but not limited to, wound healing agents, antibacterial agents, antimicrobial agents, growth factors, analgesic and anesthetic agents. When used as a tissue scaffold, the reinforced absorbable multilayer fabric may be seeded or cultured with appropriate cell types prior to implantation for the targeted tissue.

Example 1. Nonwoven PGL fabric with ORC fabric.
Poly (glycolide-co-lactide) (PGL, 90/10 mol/mol) was melt-spun into fiber. A
multi-filament yarn was consolidated, crimped and cut into staple having a length of 1.75 inches. The staple was carded to create a nonwoven batt and then compacted to a thickness of about 1.25 mm and a density of about 98.1 mg/cc. The nonwoven fabric was then needlepunched into a knitted carboxylic-oxidized regenerated cellulose (ORC) fabric, available from Ethicon, Inc., under the tradename Interceed , to secure the nonwoven fabric to the ORC fabric. The final multilayered fabric comprised about 60 weight percent of the nonwoven fabric.

Example 2. Nonwoven PGL fabric with ORC fabric.
Poly (glycolide-co-lactide) (PGL, 90/10 mol/mol) was melt-spun into fiber. A
multi-filament yarn was consolidated, crimped and cut into staple having a length of 1.75 inches. The staple was carded to create a nonwoven batt and then compacted to a thickness of about 1.22 mm and a density of about 103.4 mg/cc. The nonwoven fabric was then needlepunched into a knitted carboxylic-oxidized regenerated cellulose fabric (ORC), available from Ethicon, Inc., under the tradenanxe Surgicel NuKnitto secure the nonwoven fabric to the ORC fabric. The final multilayered fabric comprised about 25 weight percent of the nonwoven fabric.

Example 3. Nonwoven PGL fabric with ORC fabric.

Poly (glycolide-co-lactide) (PGL, 90/10 mol/mol) was melt-spun into fiber. A
multi-filament yarn was consolidated, crimped and cut into staple having a length of 1.75 inches. The staple was carded to create a nonwoven batt and then compacted a felt having a thickness of about 1.1 mm and a density of about 102.8 mg/cc. The nonwoven fabric was then needlepunched into a knitted carboxylic-oxidized regenerated cellulose fabric (ORC), available from Ethicon, Inc., under the tradename Surgicel , to secure the nonwoven fabric to the ORC fabric. The final multilayered fabric comprised about 60 weight percent of the nonwoven fabric.

Example 4. Nonwoven PGL fabric with ORC fabric.

Poly (glycolide-co-lactide) (PGL, 90/10 mol/mol) was melt-spun into fiber. A
80 denier multifilament yarn was consolidated into a 800 denier consolidated yarn. The consolidated yarn was crimped at approximately 110 C. The crimped yarn was cut into staple having a length of about 1.25" in length. 20 g of the crimped staple was accurately weighed and laid out uniformly on the feed conveyor belt of a multi-roller carding machine. The environmental conditions (temp: 21 C /55% RH) were controlled. The staple was then carded to create a nonwoven batt. The batt was removed from the pick-up roller and cut into 4 equal parts. These were re-fed into= the carder perpendicular to the collection direction. After this second pass the batt was weighed (19.8 g: 99% fabric yield) and then compacted into a felt. The compact felt was precisely laid onto an ORC fabric and firmly attached via 2 passes in the needlepunching equipment. The multilayered fabric was trimmed and scoured in 3 discrete isopropyl alcohol baths to remove spin finish and any machine oils.
The scoured multilayered fabric was dried in an oven at 70 C for 30 minutes, cooled and weighed.

The "thickness" of the multilayered fabric was measured as described herein.
The measurement tools were:
(1) Mitutoyo Absolute gauge Model number ID-C125EB [Code number-- 543-452B]. The 1" diameter foot was used on the gauge.

(2) A magnetic holder was used to lock in place and set the caliper up to the die platen.

(3) Two metal plates - 2.75" x 2" x 0.60", weighing between 40.8g to 41.5g [combined total of -82.18g].

The multilayered fabric was placed on a platen surface that is a smooth and machined surface. The two metal plates were placed on top of each other on the multilayered fabric and gently pressed at their corners to make sure the multilayered fabric is flat.
The gauge foot was placed onto the top of the metal plates and was then re-lifted and re-placed, at which time a reading was made.

12 - 1" X 1" pieces were die-cut from the scoured multilayered fabric and accurately weighed. The thickness of each 1" X 1" piece was measured 4 -5 times in different areas of the metal plate in order to obtain a reliable average. The weight and thickness of each piece is shown in Table 1. The values indicate that the coverage of both layers is similar in all directions.

Sample # Sheet #1 Sheet #2 Weight () Thickness (mm) Weight () Thickness(mm) 1 .132 1.53 .13 1.58 2 .132 1.58 .124 1.57 3 .131 1.59 .13 1.62 4 .129 1.55 .134 1.64 5 .126 1.58 .126 1.56 6 .125 1.5 .131 1.59 7 .129 1.56 .136 1.7 8 .127 1.52 .131 1.62 9 .132 1.55 .131 1.57 10 .123 1.58 .136 1.58 11 .128 1.58 .135 1.65 12 .13 1.51 .133 1.55 Average 0.1287 1.5525 0.1314 1.6025 Std. Dev 0.0029 0.031 0.0037 0.044 CV (%) 2.304 2.002 2.837 2.767 Example 5. Effect of humidity on processing of polyglactin 910 staple.
80 denier polyglactin 910 consolidated yarn was crimped and cut into 1.75 inch staple. Room temperature was maintained between 21-22 C and the relative humidity was controlled by a room humidifier and varied from 36-60%. No additional means of static control were employed for this series of runs. Crimped staple was carded into a batt approximately 32"x8". The percent of staple incorporated into the batt after two passes through the carding machine, i.e., the yield, increased with increasing humidity, and the quality of the batt improved with yield.
Table 2: Effect of Relative Humidity on Processing Staple Batt Batt Weight () %RH Weight () Yield % Quality*
27 36 17 63 3.5 27 38-45 18.4 68 4.0 20.9 40 13.8 66 3.0 20.1 49 14.9 74 4.5 33 49 24.4 74 5.0 25.5 60 21.9 86 5.0 *Quality was rated on a scale of 1-5 based on visual inspection.
1=large areas devoid of polyglactin 910, streaking pilling 3=some small bare spots devoid of polyglactin 910 or very thin spots with minimal polyglactin 910 coverage 5=Uniform by visual inspection - no bare spots, no very thin spots, no pilling Example 6. Effect of Staple Length on processing of polyglactin 910 staple.
80 denier polyglactin 910 consolidated yarn was crimped and cut into 1.25", 1.5" and 1.75" long staple. Room temperature was maintained between 69-71 F
and the relative humidity was controlled at -55% by a room humidifier. No additional means of static control were employed for this series of runs. Crimped staple was carded into a batt approximately 32" x 8".Table 3: Effect of staple length on batting quality and yield at 55%RH

Staple Staple Batt Batt Length (in) Weight () Weight () % Yield Quality*
1.75 25 13.94 56 4.0 1.75 25 16.0 64 5.0 1.5 30.7 28.0 - 91 ND
1.5 25 21.8 87 ND
1.25 25 24.1 96 5.0 1.25 25 24.2 97 5.0 *Quality was rated on a scale of 1-5 based on visual inspection.
1+large areas devoid of polyglactin 910, streaking, pilling 3=some small bare spots devoid of polyglactin 910 or very thin spots with minimal polyglactin 910 coverage 5=Uniform by visual inspection - no bare spots, no very thin spots, no pilling.
Example 7. Poly (glycolide-co-lactide) (PGL, 90/10 mol/mol) was melt-spun into fiber. A 80 denier multifilament yarn was consolidated into a 800 denier consolidated yarn. The consolidated yarn was crimped at approximately 110 C. The crimped yarn was cut into staple having a length of about 1.25" in length. 44 g of the crimped staple was accurately weighed after conditioning the yarn for about 30 minutes in a high humidity environment (>55% RH). The yarn was laid out uniformly on the feed conveyor belt of a multi-roller carding machine. The feed time (5minutes) was accurately controlled to within 30-45 seconds. The environmental conditions (temp:
21 C /25% RH) were recorded. Static bars were employed near the 2d Randomiser roller as well as near the steel pick up roller and were turned on during the run to minimize the detrimental impact of static generation on the uniformity and yield of the resulting batt. The staple was then carded to create a nonwoven batt. Two vacuum inlets were strategically placed near the two edges of the 2 d Randomizer roller to control the width of the ensuing batt. The batt was removed from the pick-up roller and weighed (41g: 91% yield). The uniform batt was precisely laid onto an ORC
fabric and firmly attached via a single pass in the needlepunching equipment. The needle penetration depth was controlled at 12 mm. The multilayered fabric was trimmed and scoured on a rack (along with other similarly produced sheets) suspended in a tank containing isopropyl alcohol to remove spin finish and any machine oils. The scoured multilayered fabric (matrix sheet) was calendered to remove excess solvent and dried in an oven at 70 C for app. 30 minutes, cooled and weighed.

Example 8.

The matrix sheet as described has an off-white/beige color on both sides. One side may be described as the non-woven side where as the other side as the knitted fabric side.
For certain application, it may be vital to identify the non-woven versus knitted surfaces of the matrix. Under difficult environmental conditions, the similarity in color and texture (to some extent) makes it difficult to identify one side from the other. Several means were employed to impart sidedness to the matrix sheet, which enables the observer to distinguish the 2 sides apart. These means include physical (stitching/knitting, braiding, pleating, etc), thermo-mechanical (heat, heat embossing;
laser etching; etc) and chromic (use of a dye) means may be employed to achieve sidedness. The following examples describe some of the means:

8a) The matrix sheet was modified on the knitted fabric side by attaching a lmm wide 4 inch long braided tape of the polyglactin 910 fiber. The tapes although successful in imparting sidedness add to the amount of the longer resorbing Polyglactin 910.

8 b) A web made of dyed nylon fiber was placed under the knitted fabric and the non-woven batt during the needle-punching step. The web is secured to the knitted fabric side due to the needling process. The web affords excellent sidedness and if available in an absorbable material, could be used to make completely resorbable, implantable matrix sheets. The web (mesh) can be secured similarly on the non-woven side.
Other means of securing the web may be thermo-mechanical in nature. Inclusion of such a web can be for the reason of mechanical enforcement as well. ln such cases the web could be secured on either side or even between the two layers. Such a reinforced structure may have multiple applications.

8 c) The small amount of Polyglactin 910 that resides on the knitted fabric side (due to the needle-punching step) of the matrix sheet can be thermally modified to create sidedness. This can include heating under pressure such that a shiny film of Polyglactin 910 is formed. Other options include heat embossing a discernible pattern.
Both approaches achieve sidedness but may result in thermal degradation of the polymer/construct 8 d). The knitted ORC fabric, prior to the needle-punching step is pleated (vertical or horizontal pleats). The pleats are stabilized by using heat and pressure. The pleated fabric is then used in place of the regular fabric for the rest of the process as described in Example 7. The resulting matrix sheet has distinct stripes that achieve the sidedness.
8 e) Dyed Polyglactin 910 creates matrix sheet that is colored on the non-woven side and off-white/beige on the other. This construct achieves sidedness. A dye can be used similarly by employing a dyed suture thread etc. on the knitted side. The suture (braided into a tape or used as is) may be sewed in or thermally bonded.

Example 9. Rotator cuff repair using reinforced absorbable multilayered fabric.
In the case of a rotator cuff problem, the surgeon first looks at the extent of an injury using an arthroscope. Then, under general anesthesia, the patient undergoes open surgery to repair the tear.

After the anesthetic has been administered and the shoulder has been prepared, a cosmetic incision is made over the top front corner of the shoulder.
This incision allows access to the seam between the front and middle parts of the deltoid muscle. Splitting this seam allows access to the rotator cuff without detaching or damaging the important deltoid muscle, which is responsible for a significant portion of the shoulder's power. All scar tissue is removed from the space beneath the deltoid and the acromion (part of the shoulder blade to which the deltoid attaches). Thickened bursa and the rough edges of the rotator cuff and humerus (upper arm bone) are also smoothed to make sure that they pass smoothly beneath the acromion and deltoid.

The edges of the cuff tendons are identified and the quality and quantity of the cuff tissue is determined. The goal of the repair is to reattach good quality tendon to the location on the arm bone from which it was torn. A groove or trough is fashioned in the normal attachment site for the cuff. To support the tendon and aid in healing, the surgeon sutures a patch of reinforced absorbable multilayered fabric into place over it. Sutures (lengths of surgical thread) draw the edge of the tendon securely into the groove to which it is to heal.

The surgeon then completes the surgery by closing the deltoid muscle and the skin incision. Over time, the body creates new tissue in the area that matches surrounding tissue. The body also absorbs the implanted patch in two to four months.

Example 10. Knee cartilage repair using reinforced absorbable multilayered fabric.
First, the surgeon examines the knee through an arthroscope - a small device that allows the doctor to see into your knee joint. If a lesion is detected, a surgical procedure is performed.

After the anesthetic has been administered and the knee has been prepared, a cosmetic incision is made through the skin over the top front corner of the patella.
First, the damaged cartilage is removed. The reinforced absorbable multilayered fabric is then implanted into the lesion. The fabric may be attached to the lesion site with sutures, tacks, or any of a number of biocompatible glues.

The surgeon then completes the surgery by closing the skin incision. Cartilage cells migrate into and multiply in the implanted fabric, and the cell/fabric implant intergrates with surrounding cartilage. With time, the cells will mature and fill-in the lesion with hyaline cartilage.

While the examples demonstrate certain embodiments of the invention, they are not to be interpreted as limiting the scope of the invention, but rather as contributing to a complete description of the invention. All reinforcement fabrics described in the examples below are the nonsterile materials of the corresponding commercial products referred by their tradenames.

Claims (31)

1. A multilayered fabric comprising a first absorbable nonwoven fabric and one or more second absorbable woven or knitted fabric.
2. The multilayered fabric of claim 1, where the first absorbable nonwoven fabric comprises fibers comprised of aliphatic polyester polymers or copolymers of one or more monomers selected from the group consisting of lactic acid, lactide (including L-, D-, meso and D, L mixtures), glycolic acid, glycolide, .epsilon.-caprolactone, p-dioxanone, and trimethylene carbonate.
3. The multilayered fabric of claim 2, where the first absorbable nonwoven fabric comprises glycolide/lactide copolymer.
4. The multilayered fabric of claim 2, where the second absorbable woven or knitted fabric comprises oxidized polysaccharides.
5. The multilayered fabric of claim 4, where the second absorbable woven or knitted fabric comprises oxidized cellulose.
6. The multilayered fabric of claim 5, where the second absorbable woven or knitted fabric comprises oxidized regenerated cellulose.
7. The multilayered fabric of claim 5, where the second absorbable woven or knitted fabric is an absorbable knitted fabric comprising oxidized regenerated cellulose.
8. The multilayered fabric of claim 1, where the first absorbable nonwoven fabric comprises glycolide/lactide copolymer, and the second absorbable woven or knitted fabric comprises oxidized regenerated cellulose.
9. The multilayered fabric of claim 8, where the first absorbable nonwoven fabric comprises staple having a length from about 0.75 to 2.5 inches.
10. The multilayered fabric of claim 9, where the staple is crimped.
11. The multilayered fabric of claim 8, where the first absorbable nonwoven fabric comprises staple having a length from about 1.5 to 2 inches.
12. The multilayered fabric of claim 11, where the staple is crimped.
13. The multilayered fabric of claim 8, where the first absorbable nonwoven fabric comprises from about 70 to 95% by molar basis polyglycolide and the remainder polylactide, and the second absorbable woven or knitted fabric comprises oxidized regenerated cellulose.
14. The multilayered fabric of claim 11, where the staple is derived from fiber of about 0.001 to 4 denier per filament.
15. The multilayered fabric of claim 14, where the first absorbable nonwoven fabric has a basis weight of about 0.01 to 0.2 g/in2; and the second absorbable woven or knitted fabric has a basis weight of about 0.00 1 to 0.2 g/in2.
16. A multilayered fabric comprising a first absorbable nonwoven fabric, a second absorbable woven or knitted fabric, and at least one agent selected from the group consisting of antibacterial agents, antimicrobial agents, growth factors, analgesic and anesthetic agents.
17. A method for making the multilayered fabric of claim 1, comprising the steps of.

(a) crimping absorbable polymer fibers or yarns in the range of about 10 to 30 crimps per inch;

(b) cutting the crimped fibers or yarns to a staple length between about 0.1 and 2.5 inch;

(c) carding the staple to form the first absorbable nonwoven fabric;

(d) attaching the first absorbable nonwoven fabric to the second absorbable woven or knitted fabric; while (e) controlling the humidity of the environment for step (c) to about 20 to 60%, at a room temperature of about 15 to 24°C.
18. The method of claim 17, wherein the humidity of the environment for step (c) is from about 40 to 60%, at a room temperature of about 15 to 24°C.
19. The method of claim 17, where the first absorbable nonwoven fabric comprises fibers comprised of aliphatic polyester polymers or copolymers of one or more monomers selected from the group consisting of lactic acid, lactide (including L-, D-, meso and D, L mixtures), glycolic acid, glycolide, 6-caprolactone, p-dioxanone, and trimethylene carbonate.
20. The method of claim 19, where the first absorbable nonwoven fabric comprises glycolide/lactide copolymer.
21. The method of claim 19, where the second absorbable woven or knitted fabric comprises oxidized polysaccharides.
22. The method of claim 21, where the second absorbable woven or knitted fabric comprises oxidized cellulose.
23. The method of claim 22, where the second absorbable woven or knitted fabric comprises oxidized regenerated cellulose.
24. The method of claim 22, where the second absorbable woven or knitted fabric is an absorbable knitted fabric comprising oxidized regenerated cellulose.
25. The method of claim 17, where the first absorbable nonwoven fabric comprises glycolide/lactide copolymer, and the second absorbable woven or knitted fabric comprises oxidized regenerated cellulose.
26. The method of claim 25, where the first absorbable nonwoven fabric comprises staple having a length from about 0.75 to 2.5 inches.
27. The method of claim 26, where the first absorbable nonwoven fabric comprises staple having a length from about 1.5 to 2.0 inches.
28. The method of claim 25, where the first absorbable nonwoven fabric comprises a copolymer of glycolide and lactide, in an amount ranging from about 70 to 95% by molar basis of glycolide and the remainder lactide, and the second absorbable woven or knitted fabric comprises oxidized regenerated cellulose.
29. The method of claim 28, where the first absorbable nonwoven fabric is attached to the second absorbable woven or knitted fabric via needlepunching.
30. The method of claim 29, where the absorbable polymer fibers range from about 0.001 to 4 denier per filament.
31. The method of claim 30, where the first absorbable nonwoven fabric has a basis weight of about 0.01 to 0.2 g/in2; and the second absorbable woven or knitted fabric has a basis weight of about 0.001 to 0.2 g/in2.
CA002649085A 2006-04-10 2006-04-10 A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture Abandoned CA2649085A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/013284 WO2007117238A1 (en) 2006-04-10 2006-04-10 A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture

Publications (1)

Publication Number Publication Date
CA2649085A1 true CA2649085A1 (en) 2007-10-18

Family

ID=37440979

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002649085A Abandoned CA2649085A1 (en) 2006-04-10 2006-04-10 A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture

Country Status (7)

Country Link
EP (1) EP2018449A1 (en)
JP (1) JP2009533568A (en)
CN (1) CN101460670A (en)
AU (1) AU2006341589A1 (en)
BR (1) BRPI0621587A2 (en)
CA (1) CA2649085A1 (en)
WO (1) WO2007117238A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2451490A1 (en) 2009-07-06 2012-05-16 Coloplast A/S Biodegradable scaffold for soft tissue regeneration and use thereof
US8273369B2 (en) * 2010-05-17 2012-09-25 Ethicon, Inc. Reinforced absorbable synthetic matrix for hemostatic applications
US20120115384A1 (en) 2010-11-10 2012-05-10 Fitz Benjamin D Resorbable Laparoscopically Deployable Hemostat
KR101304253B1 (en) * 2012-05-15 2013-09-05 주식회사 소포스 Complex sheet for industrial safety uniform and process of producing thereof
US10357248B2 (en) * 2015-10-29 2019-07-23 Ethicon Llc Extensible buttress assembly for surgical stapler
CN107281553A (en) * 2016-03-31 2017-10-24 伏卫霞 Paste formula absorbable medical complex tissue material
CA3104840A1 (en) 2018-07-05 2020-01-09 Teijin Pharma Limited Endoscope hemostatic material
KR102499084B1 (en) * 2021-06-11 2023-02-13 한국섬유개발연구원 method for manufacturing an all-in-one lightweight screen for heating and cooling a greenhouse with excellent durability

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL262878A (en) * 1960-03-28
US5002551A (en) * 1985-08-22 1991-03-26 Johnson & Johnson Medical, Inc. Method and material for prevention of surgical adhesions
JPS63103643A (en) * 1986-10-16 1988-05-09 Matsushita Electric Works Ltd Manufacture of coreless armature
JP2585707B2 (en) * 1988-04-21 1997-02-26 三井石油化学工業株式会社 Laminated non-woven fabric
JP2988641B2 (en) * 1991-04-09 1999-12-13 宇部日東化成株式会社 Polyolefin-based composite fiber for nonwoven fabric and nonwoven fabric
CA2114290C (en) * 1993-01-27 2006-01-10 Nagabushanam Totakura Post-surgical anti-adhesion device
GB2280372B (en) * 1993-07-28 1997-12-03 Johnson & Johnson Medical Composite surgical material
US5393594A (en) * 1993-10-06 1995-02-28 United States Surgical Corporation Absorbable non-woven fabric
JPH07207560A (en) * 1994-01-12 1995-08-08 Honshu Paper Co Ltd Production of pulp for producing dry nonwoven fabric
JPH08302553A (en) * 1995-05-10 1996-11-19 Daiwabo Co Ltd Bulky nonwoven fabric and its production
GB2314842B (en) * 1996-06-28 2001-01-17 Johnson & Johnson Medical Collagen-oxidized regenerated cellulose complexes
JPH11170413A (en) * 1997-12-11 1999-06-29 Asahi Chem Ind Co Ltd Unwoven fabric composite low-density fabric
JP4314421B2 (en) * 2000-02-28 2009-08-19 グンゼ株式会社 HELP
US20040101547A1 (en) * 2002-11-26 2004-05-27 Pendharkar Sanyog Manohar Wound dressing containing aldehyde-modified regenerated polysaccharide
US7824701B2 (en) * 2002-10-18 2010-11-02 Ethicon, Inc. Biocompatible scaffold for ligament or tendon repair
WO2004054635A1 (en) * 2002-12-16 2004-07-01 Gunze Limited Medical film
JP2004232160A (en) * 2003-02-03 2004-08-19 Solotex Corp Nonwoven fabric
ES2537088T3 (en) * 2004-10-20 2015-06-02 Ethicon, Inc. Absorbable reinforced multilayer fabric for use in medical devices and manufacturing method
EP2052746B1 (en) * 2004-10-20 2014-11-26 Ethicon, Inc. Absorbable hemostat

Also Published As

Publication number Publication date
CN101460670A (en) 2009-06-17
EP2018449A1 (en) 2009-01-28
AU2006341589A1 (en) 2007-10-18
JP2009533568A (en) 2009-09-17
BRPI0621587A2 (en) 2011-12-13
WO2007117238A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
CA2584717C (en) A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
US20060258995A1 (en) Method for making a reinforced absorbable multilayered fabric for use in medical devices
US20130136781A1 (en) Reinforced absorbable multilayered hemostatic wound dressing
US20060257458A1 (en) Reinforced absorbable multilayered hemostatis wound dressing
US20060257457A1 (en) Method for making a reinforced absorbable multilayered hemostatic wound dressing
CA2649085A1 (en) A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
CA2649081A1 (en) A reinforced absorbable multilayered hemostatic wound dressing and method of making
KR20090014273A (en) A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
CA2592198C (en) A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20131126