CA2646320A1 - Foamed-wall container having a silvery appearance - Google Patents
Foamed-wall container having a silvery appearance Download PDFInfo
- Publication number
- CA2646320A1 CA2646320A1 CA002646320A CA2646320A CA2646320A1 CA 2646320 A1 CA2646320 A1 CA 2646320A1 CA 002646320 A CA002646320 A CA 002646320A CA 2646320 A CA2646320 A CA 2646320A CA 2646320 A1 CA2646320 A1 CA 2646320A1
- Authority
- CA
- Canada
- Prior art keywords
- container
- preform
- reactive gas
- polymer
- container according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 60
- 230000001413 cellular effect Effects 0.000 claims abstract description 35
- 238000001746 injection moulding Methods 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 12
- 210000000497 foam cell Anatomy 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000000071 blow moulding Methods 0.000 claims abstract description 8
- 238000003303 reheating Methods 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 47
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 20
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- -1 polypropylene Polymers 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 8
- 239000006260 foam Substances 0.000 claims description 7
- 229920000728 polyester Polymers 0.000 claims description 6
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 5
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 230000009477 glass transition Effects 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 description 7
- 238000012856 packing Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 235000014171 carbonated beverage Nutrition 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/38—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
- B65D81/3865—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers
- B65D81/3867—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers formed of foam material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/08—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/0005—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C49/06—Injection blow-moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C2049/023—Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/78—Measuring, controlling or regulating
- B29C49/786—Temperature
- B29C2049/7861—Temperature of the preform
- B29C2049/7862—Temperature of the preform characterised by temperature values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2077/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/041—Microporous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/046—Condition, form or state of moulded material or of the material to be shaped cellular or porous with closed cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
- B29K2105/253—Preform
- B29K2105/258—Tubular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0022—Bright, glossy or shiny surface
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
Abstract
A container comprises a micro cellular foamed polymer, and a non- reactive gas contained within the micro cellular foam cells, wherein the container has a silvery appearance. The process for making the container comprises injection molding a polymer preform having a non-reactive gas entrapped within the walls thereof, cooling the preform to a temperature below the polymer softening temperature, reheating the preform to a temperature above the polymer softening temperature, and blow molding the preform, to prepare a container comprising a micro cellular foamed polymer having a non- reactive gas contained within the micro cellular foam cells.
Description
TITLE
FOAMED-WALL CONTAINER HAVING A SILVERY APPEARANCE-FIELD OF THE INVENTION
[0001] The present invention relates generally to a foamed-wall polymer container having a unique appearance. More particularly, the invention is directed to a container comprising micro cellular foam, wherein the foam micro cells contain a non-reactive gas such as nitrogen, and the container has a silvery appearance. Also contemplated as a part of the present invention is a method of manufacturing the foamed-wall container having a silvery appearance.
BACKGROUND OF THE INVENTION
FOAMED-WALL CONTAINER HAVING A SILVERY APPEARANCE-FIELD OF THE INVENTION
[0001] The present invention relates generally to a foamed-wall polymer container having a unique appearance. More particularly, the invention is directed to a container comprising micro cellular foam, wherein the foam micro cells contain a non-reactive gas such as nitrogen, and the container has a silvery appearance. Also contemplated as a part of the present invention is a method of manufacturing the foamed-wall container having a silvery appearance.
BACKGROUND OF THE INVENTION
[0002] Biaxially oriented single and multi-layered bottles may be manufactured from polymer materials such as, for example, polyethylene terephthalate (PET) using a hot preform process, wherein a single or multi-layered preform is heated to its desired orientation temperature and drawn and blown into conformity with a surrounding mold cavity. The preform may be prepared by any conventional process such as, for example, by extruding a preform comprising single or multiple layers of polymer, or by injecting subsequent layers of polymer over a previously injection molded preform.
Generally, multiple layers are used for beverage containers, to add diffusion barrier properties not generally found in single layer containers.
Generally, multiple layers are used for beverage containers, to add diffusion barrier properties not generally found in single layer containers.
[0003] The various layers of polymers in the prior art multi-layered containers are generally in intimate contact with one another, thereby facilitating the conduct of thermal energy through the walls of the containers.
This allows the chilled contents of the container to quickly warm to the ambient temperature. Accordingly, such containers are often sheathed in, for example, a foamed polystyrene shell to impart thermal insulating properties to the container.
This allows the chilled contents of the container to quickly warm to the ambient temperature. Accordingly, such containers are often sheathed in, for example, a foamed polystyrene shell to impart thermal insulating properties to the container.
[0004] It would be desirable to prepare an improved plastic container which is opaque with unique visual properties without the addition of a coloring agent. Further, it is deemed desirable to impart thermal insulating properties to the improved plastic container. Also, it would be desirable to prepare an improved plastic container having a silvery appearance without requiring the addition of a coloring agent which would adversely effect the recycling characteristics of the container.
SUMMARY OF THE INVENTION
SUMMARY OF THE INVENTION
[0005] Accordant with the present invention, a foamed-wall container having a unique appearance has surprisingly been discovered. The container comprises a micro cellular foamed polymer, and a non-reactive gas contained within the micro cellular foam cells, wherein the container has a silvery appearance without the addition of a coloring agent.
[0006] Also contemplated as an embodiment of the invention is a process for preparing a foamed-wall container having a unique appearance. The process comprises the steps of injection molding a polymer preform having a non-reactive gas entrapped within the walls thereof, cooling the preform to a temperature below the polymer softening temperature, reheating the preform to a temperature above the polymer softening temperature, and blow molding the preform, to prepare a container comprising a micro cellular foamed polymer having a non-reactive gas contained within the micro cellular foam cells, wherein the container has a silvery appearance.
[0007] The container according to the present invention is particularly useful for packaging carbonated beverages.
DETAILED DESCRIPTION OF THE PREFERRED'EMBODIMENT
DETAILED DESCRIPTION OF THE PREFERRED'EMBODIMENT
[0008] The present invention is directed to a foamed-wall container having a unique appearance, comprising a micro cellular foamed polymer, and a non-reactive gas contained within the micro cellular foam cells, wherein the container has a silvery appearance.
[0009] Another embodiment of the present invention is directed to a process for making a foamed-wall container having a unique appearance, comprising injection molding a polymer preform having a non-reactive gas entrapped within the walls thereof, cooling the preform to a temperature below the polymer softening temperature, reheating the preform to a temperature above the polymer softening temperature, and blow molding the preform, to prepare a container comprising a micro cellular foamed polymer having a non-reactive gas contained within the micro cellular foam cells, wherein the container has a silvery appearance.
[0010] Suitable polymers from which the container may be prepared include, but are not necessarily limited to, polyethylene terephthalate (PET) and other polyesters, polypropylene, acrylonitrile acid esters, vinyl chlorides, polyolefins, polyamides, and the like, as well as derivatives, blends, and copolymers thereof. A suitable polymer for commercial purposes is PET.
[0011] Polymer flakes are melted in a conventional plasticizing screw extruder, to prepare a homogeneous stream of hot polymer melt at the extruder discharge. Typically, the temperature of the polymer melt stream discharged from the extruder ranges from about 225 degrees Centigrade to about 325 degrees Centigrade. One ordinarily skilled in the art will appreciate that the temperature of the polymer melt stream will be determined by several factors, including the kind of polymer flakes used, the energy supplied to the extruder screw, etc. As an example, PET is conventionally extruded at a temperature from about 260 degrees Centigrade to about 290 degrees Centigrade. A non-reactive gas is injected under pressure into the extruder mixing zone, to ultimately cause the entrapment of the gas as micro cellular voids within the polymer material. By the term "non-reactive gas" as it is used.
herein is meant a gas that is substantially inert vis-d-vis the polymer.
Preferred non-reactive gases comprise carbon dioxide, nitrogen, and argon, as well as mixtures of these gases with each other or with other gasses.
herein is meant a gas that is substantially inert vis-d-vis the polymer.
Preferred non-reactive gases comprise carbon dioxide, nitrogen, and argon, as well as mixtures of these gases with each other or with other gasses.
[0012] According to the present invention, the extrudate is injection molded to form a polymer preform having the non-reactive gas entrapped within the walls thereof. Methods and apparatus for injection molding a polymer preform are well-known in the art.
[0093] It is well-known that the density of amorphous PET is 1.335 grams per cubic centimeter. It is also known that the density of PET in the melt phase is about 1.200 grams per cubic centimeter. Thus, if the preform injection cavity is filled completely with molten PET and allowed to cool, the resulting preform would not exhibit the proper weight and would have many serious deficiencies, such as sink marks. The prior art injection molding literature teaches that, in order to offset the difference in the densities of amorphous and molten PET, a smail amount of polymer material must be added to the part after the cavity has been filled and as the material is cooling.
This is called the packing pressure. Thus, about ten per cent more material must be added during the packing pressure phase of the injection molding cycle in order to insure that a preform made by injection molding is filled adequately and fully formed. The packing pressure phase of the injection molding operation is likewise used for polymer materials other than PET.
[0014] According to the present invention however, the polymer preform is injection molded and simultaneously foamed using a non-reactive gas. The gas is entrained in the material during the injection phase. Contrary to the prior art injection molding process, wherein additional polymer material is injected during the packing phase, the present invention utilizes minimal packing pressure. As the polymer material is still in a molten state, the partial pressure of'the non-reactive gas is sufficient to permit the release of the dissolved gas from the polymer into the gas phase where it forms the micro cellular foam structure. Thus, the preform made by the inventive process weighs less than, but has the same form and geometry as, the polymer preforms produced by the conventional injection molding operations that employ the packing process.
[0015] The micro cells may contain one or more of a variety of gases typically used in processes for making micro cellular foam structures. In one commercially acceptable embodiment, the non-reactive gas comprises carbon dioxide in a concentration of at least ten percent by weight of the total weight of the non-reactive gas. This level of carbon dioxide concentration provides adequate partial pressure to retard the diffusion of carbon dioxide from a carbonated beverage within the inventive container to the exterior atmosphere. The micro cellular foam tends to act as an effective thermal insulator, to retard the conduct of heat energy from the atmosphere to the chilled carbonated beverage within the container [0016] Upon completion of the injection molding step, the preform is cooled to a temperature below the polymer softening temperature. For example, the softening temperature for PET is approximately 70 degrees Centigrade.
Thus, the entrapped non-reactive gas is retained within the walls of the polymer preform. This cooling step conditions the polymer and preserves its desirable properties for the successful preparation of a blow molded container. This cooling step is also useful when employing polymers such as polyesters, which cannot be blow molded directly from an extruded parison.
This cooling step may be effected by any conventional process used in the polymer forming art such as, for example, by passing a stream of a cooling gas over the surfaces of the preform, or cooling the preform while in-mold by cooling the forming mold.
[0017] The preform is thereafter reheated to a temperature above the polymer softening temperature. This heating step may be effected by well-known means such as, for example, by exposure of the preform to a hot gas stream, by flame impingement, by exposure to infra-red energy, by passing the preform through a conventional oven, or the like. PET is generally reheated to a temperature twenty to twenty-five degrees above its softening temperature for the subsequent blow molding operation. If PET is reheated too far above its glass transition temperature, or held at a temperature above its softening temperature for an excessive period of time, the PET undesirably will begin to crystallize and turn white. Likewise, if the preform is heated to a temperature above which the mechanical properties of the material are exceeded by the increasing pressure of the non-reactive gas in the micro cells, the micro cells undesirably will begin to expand thus distorting the preform.
[0018] Finally, the preform is blow molded, to prepare a container, consisting essentially of a micro cellular foamed polymer having a non-reactive gas contained within the micro cellular foam cells. Methods and apparatus for blow molding a container from a polymer preform are well-known.
[0019] The blow molded foamed-wall polymer container so produced has a silvery appearance; as though the container were made of metal. The blow molded container is silvery in color, and may exhibit Pantone Color Formula Guide numbers in the range of about 420 through 425, 877, 8001, 8400, and 8420. While not wishing to be bound by any particular theory regarding the reason that the ultimately produced container has a unique silvery appearance, it is believed that, as the preform cavity is being filled with polymer, bubbles of gas are formed at the flow front of the polymer due to the pressure drop between the dissolved gas and the relatively lower pressure in the preform cavity. The bubbles formed at the flow front of the polymer material as it is introduced into the preform cavity are subsequently deposited on the outside and inside surfaces of the preform.
t00201 From the forgoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of the invention, and without departing from its spirit and scope, can make various changes and modifications to adapt the invention to various uses and conditions.
[0093] It is well-known that the density of amorphous PET is 1.335 grams per cubic centimeter. It is also known that the density of PET in the melt phase is about 1.200 grams per cubic centimeter. Thus, if the preform injection cavity is filled completely with molten PET and allowed to cool, the resulting preform would not exhibit the proper weight and would have many serious deficiencies, such as sink marks. The prior art injection molding literature teaches that, in order to offset the difference in the densities of amorphous and molten PET, a smail amount of polymer material must be added to the part after the cavity has been filled and as the material is cooling.
This is called the packing pressure. Thus, about ten per cent more material must be added during the packing pressure phase of the injection molding cycle in order to insure that a preform made by injection molding is filled adequately and fully formed. The packing pressure phase of the injection molding operation is likewise used for polymer materials other than PET.
[0014] According to the present invention however, the polymer preform is injection molded and simultaneously foamed using a non-reactive gas. The gas is entrained in the material during the injection phase. Contrary to the prior art injection molding process, wherein additional polymer material is injected during the packing phase, the present invention utilizes minimal packing pressure. As the polymer material is still in a molten state, the partial pressure of'the non-reactive gas is sufficient to permit the release of the dissolved gas from the polymer into the gas phase where it forms the micro cellular foam structure. Thus, the preform made by the inventive process weighs less than, but has the same form and geometry as, the polymer preforms produced by the conventional injection molding operations that employ the packing process.
[0015] The micro cells may contain one or more of a variety of gases typically used in processes for making micro cellular foam structures. In one commercially acceptable embodiment, the non-reactive gas comprises carbon dioxide in a concentration of at least ten percent by weight of the total weight of the non-reactive gas. This level of carbon dioxide concentration provides adequate partial pressure to retard the diffusion of carbon dioxide from a carbonated beverage within the inventive container to the exterior atmosphere. The micro cellular foam tends to act as an effective thermal insulator, to retard the conduct of heat energy from the atmosphere to the chilled carbonated beverage within the container [0016] Upon completion of the injection molding step, the preform is cooled to a temperature below the polymer softening temperature. For example, the softening temperature for PET is approximately 70 degrees Centigrade.
Thus, the entrapped non-reactive gas is retained within the walls of the polymer preform. This cooling step conditions the polymer and preserves its desirable properties for the successful preparation of a blow molded container. This cooling step is also useful when employing polymers such as polyesters, which cannot be blow molded directly from an extruded parison.
This cooling step may be effected by any conventional process used in the polymer forming art such as, for example, by passing a stream of a cooling gas over the surfaces of the preform, or cooling the preform while in-mold by cooling the forming mold.
[0017] The preform is thereafter reheated to a temperature above the polymer softening temperature. This heating step may be effected by well-known means such as, for example, by exposure of the preform to a hot gas stream, by flame impingement, by exposure to infra-red energy, by passing the preform through a conventional oven, or the like. PET is generally reheated to a temperature twenty to twenty-five degrees above its softening temperature for the subsequent blow molding operation. If PET is reheated too far above its glass transition temperature, or held at a temperature above its softening temperature for an excessive period of time, the PET undesirably will begin to crystallize and turn white. Likewise, if the preform is heated to a temperature above which the mechanical properties of the material are exceeded by the increasing pressure of the non-reactive gas in the micro cells, the micro cells undesirably will begin to expand thus distorting the preform.
[0018] Finally, the preform is blow molded, to prepare a container, consisting essentially of a micro cellular foamed polymer having a non-reactive gas contained within the micro cellular foam cells. Methods and apparatus for blow molding a container from a polymer preform are well-known.
[0019] The blow molded foamed-wall polymer container so produced has a silvery appearance; as though the container were made of metal. The blow molded container is silvery in color, and may exhibit Pantone Color Formula Guide numbers in the range of about 420 through 425, 877, 8001, 8400, and 8420. While not wishing to be bound by any particular theory regarding the reason that the ultimately produced container has a unique silvery appearance, it is believed that, as the preform cavity is being filled with polymer, bubbles of gas are formed at the flow front of the polymer due to the pressure drop between the dissolved gas and the relatively lower pressure in the preform cavity. The bubbles formed at the flow front of the polymer material as it is introduced into the preform cavity are subsequently deposited on the outside and inside surfaces of the preform.
t00201 From the forgoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of the invention, and without departing from its spirit and scope, can make various changes and modifications to adapt the invention to various uses and conditions.
Claims (30)
1. A container, comprising:
a micro cellular foamed polymer; and a non-reactive gas contained within the micro cellular foam cells;
wherein the container has a silvery appearance.
a micro cellular foamed polymer; and a non-reactive gas contained within the micro cellular foam cells;
wherein the container has a silvery appearance.
2. The container according to Claim 1, wherein the polymer comprises one or more of a polyester, polypropylene, acrylonitrile acid ester, vinyl chloride, polyolefin, polyamide, or a derivative or copolymer thereof.
3. The container according to Claim 1, wherein the polymer comprises polyethylene terephthalate.
4. The container according to Claim 1, wherein the non-reactive gas comprises one or more of carbon dioxide, nitrogen, or argon.
5. The container according to Claim 1, wherein the non-reactive gas comprises nitrogen.
6. The container according to Claim 1, wherein the non-reactive gas comprises nitrogen at a concentration of at least 10% by weight.
7. The container according to Claim 1, wherein the color of the container is about Pantone Color Formula Guide number 420, 421, 422, 423, 424, 425, 877, 8001, 8400, or 8420.
8. The container according to Claim 1, wherein the color of the container is about Pantone Color Formula Guide number 420, 421, 422, 423, 424, or 425.
9. The container according to Claim 1, wherein the color of the container is about Pantone Color Formula Guide number 877.
10. A container, comprising:
a micro cellular foamed polymer, comprising one or more of a polyester, polypropylene, acrylonitrile acid ester, vinyl chloride, polyolefin, polyamide, or a derivative or copolymer thereof; and a non-reactive gas comprising one or more of carbon dioxide, nitrogen, or argon;
wherein the color of the container is about Pantone Color Formula Guide number 420, 421, 422, 423, 424, 425, 877, 8001, 8400, or 8420.
a micro cellular foamed polymer, comprising one or more of a polyester, polypropylene, acrylonitrile acid ester, vinyl chloride, polyolefin, polyamide, or a derivative or copolymer thereof; and a non-reactive gas comprising one or more of carbon dioxide, nitrogen, or argon;
wherein the color of the container is about Pantone Color Formula Guide number 420, 421, 422, 423, 424, 425, 877, 8001, 8400, or 8420.
11. The container according to Claim 10, wherein the polymer comprises polyethylene terephthalate.
12. The container according to Claim 10, wherein the non-reactive gas comprises nitrogen.
13. The container according to Claim 10, wherein the color of the container is about Pantone Color Formula Guide number 420, 421, 422, 423, 424, 425, or 877.
14. A container, comprising:
a micro cellular foamed polyethylene terephthalate; and a non-reactive gas comprising nitrogen contained within the micro cellular foam cells;
wherein the color of the container is about Pantone Color Formula Guide number 877.
a micro cellular foamed polyethylene terephthalate; and a non-reactive gas comprising nitrogen contained within the micro cellular foam cells;
wherein the color of the container is about Pantone Color Formula Guide number 877.
15. A process for preparing a container, comprising the steps of:
injection molding a polymer preform having a non-reactive gas entrapped within the walls thereof;
cooling the preform to a temperature below the polymer softening temperature;
reheating the preform to a temperature greater than the polymer softening temperature; and blow molding the preform, to prepare a container consisting essentially of a micro cellular foamed polymer having a non-reactive gas contained within the micro cellular foam cells;
wherein the container has a silvery appearance.
injection molding a polymer preform having a non-reactive gas entrapped within the walls thereof;
cooling the preform to a temperature below the polymer softening temperature;
reheating the preform to a temperature greater than the polymer softening temperature; and blow molding the preform, to prepare a container consisting essentially of a micro cellular foamed polymer having a non-reactive gas contained within the micro cellular foam cells;
wherein the container has a silvery appearance.
16. The process for preparing a container according to Claim 15, wherein the polymer comprises one or more of a polyester, polypropylene, acrylonitrile acid ester, vinyl chloride, polyolefin, polyamide, or a derivative or copolymer thereof.
17. The process for preparing a container according to Claim 15, wherein the polymer comprises polyethylene terephthalate.
18. The process for preparing a container according to Claim 15, wherein the non-reactive gas comprises one or more of carbon dioxide, nitrogen, or argon.
19. The process for preparing a container according to Claim 15, wherein the non-reactive gas comprises nitrogen.
20. The process for preparing a container according to Claim 15, wherein the non-reactive gas comprises nitrogen at a concentration of at least 10% by weight.
21. The process for preparing a container according to Claim 15, wherein the color of the container is about Pantone Color Formula Guide number 420, 421, 422, 423, 424, 425, 877, 8001, 8400, or 8420
22. A process for preparing a container, comprising the steps of:
injection molding a preform comprising one or more of a polyester, polypropylene, acrylonitrile acid ester, vinyl chloride, polyolefin, polyamide, or a derivative or copolymer thereof, the preform having a non-reactive gas comprising one or more of carbon dioxide, nitrogen, or argon entrapped within the walls thereof;
cooling the preform to a temperature below about 70 degrees Centigrade;
reheating the preform to a temperature above about 70 degrees Centigrade; and blow molding the preform, to prepare a container comprising the micro cellular foamed polymer having the non-reactive gas contained within the micro cellular foam cells;
wherein the container has a silvery appearance.
injection molding a preform comprising one or more of a polyester, polypropylene, acrylonitrile acid ester, vinyl chloride, polyolefin, polyamide, or a derivative or copolymer thereof, the preform having a non-reactive gas comprising one or more of carbon dioxide, nitrogen, or argon entrapped within the walls thereof;
cooling the preform to a temperature below about 70 degrees Centigrade;
reheating the preform to a temperature above about 70 degrees Centigrade; and blow molding the preform, to prepare a container comprising the micro cellular foamed polymer having the non-reactive gas contained within the micro cellular foam cells;
wherein the container has a silvery appearance.
23. The process for preparing a container according to Claim 22, wherein the polymer comprises polyethylene terephthalate.
24. The process for preparing a container according to Claim 22, wherein the non-reactive gas comprises nitrogen.
25. The process for preparing a container according to Claim 22, wherein the non-reactive gas comprises nitrogen at a concentration of at least 10% by weight.
26. The process for preparing a container according to Claim 22, wherein the color of the container is about Pantone Color Formula Guide number 420, 421, 422, 423, 424, 425, or 877.
27. A process for preparing a micro cellular preform comprising the steps of:
injection molding a micro cellular polymer preform having a non-reactive gas entrapped within the walls thereof;
cooling the preform to a temperature below the polymer softening temperature; and reheating the preform to a temperature above the glass transition temperature of the polymer and below the temperature at which the increasing pressure of the micro cellular gas bubbles exceeds that of the ability of the material properties to resist and the micro cellular bubbles expand to result in a distorted preform.
injection molding a micro cellular polymer preform having a non-reactive gas entrapped within the walls thereof;
cooling the preform to a temperature below the polymer softening temperature; and reheating the preform to a temperature above the glass transition temperature of the polymer and below the temperature at which the increasing pressure of the micro cellular gas bubbles exceeds that of the ability of the material properties to resist and the micro cellular bubbles expand to result in a distorted preform.
28. A container produced from a preform prepared by the process according to Claim 27 including the steps of:
blow molding the heated preform to prepare a container consisting essentially of a micro cellular foamed polymer having a non-reactive gas container within the micro cellular foam cells;
wherein the container has a silvery appearance.
blow molding the heated preform to prepare a container consisting essentially of a micro cellular foamed polymer having a non-reactive gas container within the micro cellular foam cells;
wherein the container has a silvery appearance.
29. A container produced according to Claim 28 wherein the insulating properties of the container are proportional to the percentage of micro cellular foam in the preform.
30. A plastic container having a foamed structure wherein the insulating characteristics of the container are proportional to the foam in the preform from which the container is produced.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/384,979 | 2006-03-20 | ||
US11/384,979 US7790255B2 (en) | 2006-03-20 | 2006-03-20 | Foamed-wall container having a silvery appearance |
PCT/US2007/006264 WO2007109009A2 (en) | 2006-03-20 | 2007-03-12 | Foamed-wall container having a silvery appearance |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2646320A1 true CA2646320A1 (en) | 2007-09-27 |
CA2646320C CA2646320C (en) | 2014-09-16 |
Family
ID=39760539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2646320A Expired - Fee Related CA2646320C (en) | 2006-03-20 | 2007-03-12 | Foamed-wall container having a silvery appearance |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1999517A4 (en) |
JP (1) | JP2009530205A (en) |
AU (1) | AU2007227660C1 (en) |
BR (1) | BRPI0708939A2 (en) |
CA (1) | CA2646320C (en) |
MX (1) | MX2008011900A (en) |
WO (1) | WO2007109009A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX353176B (en) * | 2012-03-26 | 2018-01-05 | Toyo Seikan Group Holdings Ltd | Stretched foam plastic molded article having metallic appearance. |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3558751A (en) * | 1964-07-22 | 1971-01-26 | Owens Illinois Inc | Method of making a foamed container having an integral neck portion |
JPS6019511A (en) * | 1983-07-14 | 1985-01-31 | Orion Kasei Kk | Preparation of hollow heat insulating container |
JPS6153021A (en) * | 1984-08-23 | 1986-03-15 | Mitsubishi Gas Chem Co Inc | Manufacture of foamed container |
US6352426B1 (en) * | 1998-03-19 | 2002-03-05 | Advanced Plastics Technologies, Ltd. | Mold for injection molding multilayer preforms |
AU1768799A (en) * | 1997-12-23 | 1999-07-19 | Coraltech Limited | Thermoforming or blow moulding of injection moulded preforms |
US6169266B1 (en) * | 1998-03-25 | 2001-01-02 | Xirom, Inc. | Etching of multi-layered coated surfaces to add graphic and text elements to an article |
US6939071B1 (en) * | 2000-02-29 | 2005-09-06 | Fragrance Systems International | Roll-on applicator |
US20020122838A1 (en) * | 2001-01-04 | 2002-09-05 | Anderson Jere R. | Blow molding method and system |
JP4391887B2 (en) * | 2004-05-31 | 2009-12-24 | 株式会社吉野工業所 | Laminated molded body |
US6794117B2 (en) * | 2002-10-28 | 2004-09-21 | Kodak Polychrome Graphics | Process to produce a custom-color overlay |
US20050181161A1 (en) * | 2004-02-17 | 2005-08-18 | Semersky Frank E. | Container having a foamed wall |
MXPA06014381A (en) * | 2004-06-10 | 2007-04-16 | Advanced Plastics Technologies | Methods and systems for controlling mold temperatures. |
-
2007
- 2007-03-12 BR BRPI0708939-2A patent/BRPI0708939A2/en not_active IP Right Cessation
- 2007-03-12 JP JP2009501453A patent/JP2009530205A/en active Pending
- 2007-03-12 EP EP07752928A patent/EP1999517A4/en not_active Withdrawn
- 2007-03-12 WO PCT/US2007/006264 patent/WO2007109009A2/en active Application Filing
- 2007-03-12 CA CA2646320A patent/CA2646320C/en not_active Expired - Fee Related
- 2007-03-12 AU AU2007227660A patent/AU2007227660C1/en not_active Ceased
- 2007-03-12 MX MX2008011900A patent/MX2008011900A/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP1999517A2 (en) | 2008-12-10 |
MX2008011900A (en) | 2008-10-17 |
AU2007227660A1 (en) | 2007-09-27 |
BRPI0708939A2 (en) | 2011-06-14 |
AU2007227660B2 (en) | 2012-04-05 |
WO2007109009A2 (en) | 2007-09-27 |
JP2009530205A (en) | 2009-08-27 |
WO2007109009A3 (en) | 2007-11-29 |
CA2646320C (en) | 2014-09-16 |
AU2007227660C1 (en) | 2012-09-20 |
EP1999517A4 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1727658B1 (en) | Process for preparing a container having a foamed wall | |
US20080251487A1 (en) | Overmolded container having a foam layer | |
US7790255B2 (en) | Foamed-wall container having a silvery appearance | |
US20100227092A1 (en) | Overmolded container having an inner foamed layer | |
CA2646320C (en) | Foamed-wall container having a silvery appearance | |
CA2678123C (en) | Foamed-wall container having a non-transparent appearance | |
US20100323139A1 (en) | Foamed-wall container having a non-transparent appearance | |
US20100264052A1 (en) | Foamed-wall container with foamed and unfoamed regions | |
US20090072427A1 (en) | Process for varying the appearance of a container having a foamed wall | |
US20110189417A1 (en) | Process for preparing container having a foamed wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20190312 |
|
MKLA | Lapsed |
Effective date: 20190312 |
|
MKLA | Lapsed |
Effective date: 20190312 |