CA2639732A1 - Sprayable compositions - Google Patents

Sprayable compositions Download PDF

Info

Publication number
CA2639732A1
CA2639732A1 CA2639732A CA2639732A CA2639732A1 CA 2639732 A1 CA2639732 A1 CA 2639732A1 CA 2639732 A CA2639732 A CA 2639732A CA 2639732 A CA2639732 A CA 2639732A CA 2639732 A1 CA2639732 A1 CA 2639732A1
Authority
CA
Canada
Prior art keywords
chromium
nickel
metal substrate
weight percent
ceramic particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2639732A
Other languages
French (fr)
Inventor
Karel Hajmrle
Anthony Peter Chilkowich
Petr Fiala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco Canada Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA2639732A priority Critical patent/CA2639732A1/en
Publication of CA2639732A1 publication Critical patent/CA2639732A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

The present invention provides a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition, including nickel, chromium, iron, and silicon. The sprayable composition may be a composite particle, a blend, or a cored wire. The present invention further provides an abradable coating formed on a metal substrate according to a method comprising the step of depositing a bond coat on the metal substrate by thermal spraying of a bond coat composition comprising nickel, chromium and optionally aluminum and yttrium on the metal substrate and depositing the abradable coating on the bond coat by thermal spraying of a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition, including nickel, chromium, iron and silicon. The sprayable composition may be a composite particle, a blend, or a cored wire. The abradable coating may be applied to the top of the bond coat that is applied to a metal substrate such as steel, nickel-based alloys, and titanium.

Description

= 7-1 SPRAYABLE COMPOSITION

This is a Continuation-In-Part of patent application Serial No. 10/490,735 filed April 8, 2004 which is now pending.

Field of the Invention This invention relates to sprayable compositions, particularly to sprayable compositions for use in forming abradable coatings, as well as to metal substrates coated with such abradable coatings and to a method of producing abradable coatings.
Background of the Invention Abradable seals have originally been developed for jet engine applications.
Recently, the technology developed in the past is being adapted to land based rotating equipment, such as gas turbines and steam turbines. Further challenges are encountered in those applications. Jet engines used in aircraft applications are refurbished more often than the counterpart land based equipment. In the former case, expected service life is typically 5000-10,000 hrs., whereas in the latter case, expected service life is at least 50,000 hours, and in many cases, substantially more.
This imposes new requirements on the land based coatings, namely durability.
In this respect, the coatings must retain their mechanical properties, including abradability, even after long exposure at elevated temperatures.

Summary of the Invention The present invention provides a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition including nickel, chromium, iron, and silicon.

The present invention also provides an abradable coating formed on a metal substrate according to a method comprising the step of depositing the abradable coating on the metal substrate by thermal spraying of a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition including nickel, chromium, iron and silicon. The abradable coating may be deposited on a metal substrate.

Even further, the present invention provides an abradable coating formed on a metal substrate according to a method comprising the steps of: depositing a bond coat on the substrate by thermal spraying, and depositing an abradable coating on the bond coat by thermal spraying a sprayable composition comprising a ceramic particulate including albite, illite, and quartz and a metallic composition including nickel, chromium, iron and silicon. The abradable coating may be deposited on the metal substrate. However, a bond coat comprised of 60 to 85 wt% nickel, 15 to 25 wt%
chromium, 0 to 15 wt% aluminum and 0 to 2 wt% yttrium thenmally sprayed on a metal substrate has been found to provide improved perfonmance of the abradable coating at elevated temperatures.

The present invention further provides a metal substrate including an abradable coating adhered thereto, the abradable coating becoming adhered to the metal substrate according to a method comprising the step of depositing the abradable coating on the metal substrate by then!nal spraying of a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition including nickel, chromium, iron and silicon.

The present invention also provides a metal substrate including an abradable coating adhered thereto, the abradable coating becoming adhered to the metal substrate according to a method comprising the steps of: depositing a bond coat on the substrate comprising nickel, chromium and optionally aluminum and yttrium, and depositing an abradable coating on the bond coat by thermal spraying a sprayable composition comprising a ceramic particulate including albite, illite, and quartz and a metallic composition including nickel, chromium, iron and silicon.

More particularly, the method comprises a method of producing an abradable coating adhered to a metal substrate comprising the step of depositing a bond coat on the metal substrate; by thermally spraying a sprayable composition comprising about 60 to about 85 wt% nickel, about 15 to about 25 wt% chromium, 0 to about 15 wt%
aluminum and 0 to 2 wt% yttrium; and depositing an abradable coating on the bond coat by thermal spraying a sprayable composition comprising a ceramic particulate including albite, illite, and quartz; and a metallic composition including nickel, chromium, iron and silicon.

In one aspect, the sprayable composition is a powder composite, wherein the metallic composition is adhered to the ceramic particulate.

In another aspect, the sprayable composition is a powder blend, wherein the ceramic particulate is blended with the metallic composition.

In yet another aspect, the sprayable composition is a cored wire comprising an envelope including the metallic composition, wherein the ceramic particulate is disposed within the envelope.

In yet another aspect, the ceramic particulate of the invention as described above includes about 20 to about 60 wt% albite, about 15 to about 45 wt%
illite, and about 15 to about 45 wt% quartz.

In another aspect, the ceramic particulate of the present invention includes about 40 wt% albite, about 30 wt% illite, and about 30 wt% quartz.

In another aspect, the metallic composition of any of the aspects of the present invention includes about 14 to about 25 wt% chromium, about 1.5 to about 4 wt%
iron, and about 0.1 to about 0.6 wt% silicon, and the balance essentially nickel.

And in a further aspect of the invention, an abradable coating is provided comprising a metal substrate, a bond coat deposited on the metal substrate by thermally spraying a sprayable composition comprising about 60 to about 85 wt%

nickel, about 15 to about 25 wt% chromium, 0 to about 15 wt% aluminum and 0 to about 2 wt% yttrium, and an abradable coating deposited on the bond coat by thermal spraying a sprayable composition comprising a ceramic particulate including albite, illite, and quartz and a metallic composition including nickel, chromium, iron and silicon, more particularly about 14 to about 25 wt% chromium, about 1.5 to about 4 wt% iron, and about 0.1 to about 0.6 wt% silicon, the balance essentially nickel.
Description of the Preferred Embodiment The present invention provides a sprayable composition, for use in thermal spray applications, comprising a ceramic particulate including albite, illite, and quartz and a metallic composition including nickel, chromium, iron and silicon. The sprayable composition may be applied to, or coated or deposited upon a substrate to form an abradable coating or seal.

In another embodiment, the sprayable composition comprises a ceramic particulate including albite or a mineral possessing the characteristics of albite such as anorthite, illite or a mineral possessing the characteristics of illite, and quartz, and a metallic composition including metal, chromium, iron, and silicon.

The sprayable composition of the present invention may be applied to various substrates including those used in the thermal spray industry such as steel, nickel-based alloys and titanium.

The sprayable composition of the present invention may be applied to any of the above-enumerated substrates by thermal spraying. Preferably, a bond coat is first deposited onto the substrate to aid the adhesion of the abradable seal coating. Bond coats are well known in the art. Exemplary bond coats include Metco 450NS
(trade-mark of Perkin-Elmer), nickel chromium coatings, and nickel chromium aluminum yttrium coatings.

Known bond coats such as Metco 450 NS, comprised of 95 wt% nickel and 5 wt% aluminum, are satisfactory for temperatures up to about 500 C. However, for temperatures of up to 650 C and higher such as encountered in steam turbines, known bond coats such as Metco 450 NS have not been satisfactory due to low oxidation resistance of the bond coat. It has been found that conventional bond coats corrode under the top coat and that the top coat/bond coat system may fail by debonding from the substrate. The application of a bond coat comprised of about 60 to about 85 wt% nickel, about 15 to about 25 wt% chromium, 0 to about 15 wt%
aluminum and 0 to about 2 wt% yttrium provides significantly enhanced oxidation resistance and improved performance of the bond coat/abradable top coat system at elevated temperatures.

Bond coats consisting of about 67 wt% nickel, about 22 wt% chromium, about wt% aluminum for example and about 1.0 wt% yttrium, and about 80 wt% nickel and about 20 wt% chromium, are surprisingly effective to raise operating temperatures in a steam environment up to 650 C and above.

10 Thermal spraying involves the softening or melting of a heat fusible material such as metal or ceramic by heat, and propelling the softened or melted material in particulate form against a surface which is to be coated. The heated particles strike the surface where they are cooled and bonded thereto. A conventional thermal spray gun may be used for the purpose of both heating and propelling the particles.

A thermal spray gun normally utilizes a combustion or plasma flame or electric arc to produce the heat for melting of the powder particles. In a powder type combustion thermal spray gun, the carrier gas, which entrains and transports the powder, is typically an inert gas such as nitrogen. In a plasma spray gun, the primary plasma gas is generally nitrogen or argon. Hydrogen or helium is usually added to the primary gas, and the carrier gas is generally the same as the primary plasma gas.
Other thermal spray methods could also be used. A good general description of thermal spraying is provided in U.S. Patent No. 5,049,450.

There is also provided an abradable coating formed on a metal substrate according to a method comprising the step of depositing the abradable coating on the metal substrate by thermal spraying of a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition including nickel, chromium, iron and silicon. In another embodiment, an abradable coating formed on a metal substrate according to a method comprising the steps of depositing a bond coat on the substrate, and depositing an abradable coating on the bond coat by thermal spraying a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition including nickel, chromium, iron and silicon.

In this respect, the present invention also provides a metal substrate including an abradable coating adhered thereto, the abradable coating becoming adhered to the metal substrate according to a method comprising the step of depositing the abradable coating on the metal substrate by thermal spraying of a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition including nickel, chromium, iron and silicon. In another embodiment, the present invention provides a metal substrate including an abradable coating adhered thereto, the abradable coating becoming adhered to the metal substrate according to a method comprising the steps of depositing a bond coat on the substrate, the depositing an abradable coating on the bond coat by thermal spraying a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition including nickel, chromium, iron and silicon. The bond coat comprised of about 60 to about 85 wt% nickel, about 15 to about 25 wt%
chromium, 0 to about 15 wt% aluminum and 0 to about 2 wt% yttrium is applied by thermal spraying onto the metal substrate.

The present invention further provides a metal substrate including an abradable coating adhered thereto or onto a bond coat, the abradable coating comprising a matrix including a metallic composition including nickel, chromium, iron and silicon, and a ceramic particulate including albite, illite, and quartz, wherein the ceramic particulate is dispersed within the matrix.

In one embodiment, the sprayable composition is a blend of a ceramic particulate including albite, illite, and quartz and a metallic composition, such as a particulate, including nickel, chromium, iron, and silicon.

In another embodiment, the sprayable composition is a cored wire comprising an envelope including the metallic composition, wherein the ceramic particulate is disposed within the envelope.

In another embodiment, the sprayable composition is a composite powder, wherein the metallic composition is adhered to a surface of the ceramic particulate. In one aspect, the metallic composition encapsulates the ceramic particulate.

By including albite, illite, and quartz, the ceramic particulate imparts desirable mechanical properties to the abradable coating, such as good erosion resistance combined with good abradability.

In another embodiment, the ceramic particulate includes about 20 to about 60 wt% albite, about 15 to about 45 wt% illite, and about 15 to about 45 wt %
quartz. In a further embodiment, the ceramic particulate includes about 40 wt% albite, about 30 wt% illite, and about 30 wt% quartz.

In a further embodiment, the ceramic particulate consists essentially of albite, illite and quartz. Other materials may be present in the ceramic particulate in small quantities. These other materials are present as impurities introduced into the ceramic particulate as by-products arising during processing or from the raw materials. These other materials are present in amounts which are not sufficiently significant to affect the desirable properties of the ceramic particulate. In particular, the impurities are present in amounts which do not compromise the desired abradability and long term stability of the abradable coating.

In another embodiment, the metallic composition or particulate includes about 14 to about 25 wt% chromium, about 1.5 to about 4.0 wt% iron, and about 0.1 to about 0.6 wt% silicon, and the balance essentially nickel.

In a further embodiment, the metallic composition or particulate includes about 15.0 to about 18.1 wt% chromium, about 2.45 to about 2.71 wt% iron, about 0.43 to about 0.45 wt% silicon, and the balance essentially nickel. The coating derived from this embodiment particularly provides superior coating oxidation resistance in air up to about 6500C. The oxidation weight gain stabilizes at about 8000 hours in air. The mechanical properties of the coating derived from this composition are also stable under the same conditions. The resultant coating has a combination of excellent mechanical properties and oxidation resistance.

Nevertheless, such specific intrinsic properties are not critical or necessary for the practice of each of the embodiments of this invention.

In a further embodiment, the metallic composition or particulate consists essentially of nickel, chromium, iron, and silicon. When the term "essentially" is used with respect to any of the above-described embodiments of the metallic composition or particulate of the present invention, this means that other materials may be present in the metallic composition in small quantities. These other materials are present as impurities introduced into the metallic composition as by-products arising during processing or from the raw materials. These other materials are present in amounts which are not sufficiently significant to effect the desired properties of the metallic composition. In particular, the impurities are present in amounts which do not compromise oxidation resistance and mechanical properties of the resultant coating.
The sprayable composition of the present invention is sufficiently flexible to provide coatings tailored to a specific application. When a coarser powder particle size is used, say, -80 mesh +115 mesh (-180 micrometers +125 micrometers), soft coatings can be produced to rub against hardware that are susceptible to damage by interaction with softer coatings. Examples of such hardware are blades and knife edges. If more robust hardware is used, then harder, more erosion-resistant coatings can be produced using finer powder where most of the particles are in the -100 mesh +325 mesh range (-150 micrometers + 44 micrometers).

The ceramic particulate can be produced by agglomerating individual fine ceramic particle constituents (albite, illite, and quartz) using organic or inorganic binders and then milling the individual components in an attrition mill.
Suitable organic binders include Derakane 470-36TM produced by Dow Chemical. The ceramic-binder mixture is then cured at room temperature for about 18 hours and the particles are subsequently screened to the desired particle size or size range required for the application.

After the ceramic particulate is sized, a metal composition is deposited thereon. As a first step, the ceramic particulate may be clad with Ni via hydrometallurgical processing. In this respect, dissolved Ni complexes are precipitated out of solution onto nucleation sites on the ceramic particulate via hydrogen reduction cycles at about 1800C and 500psig H2. After the Ni is precipitated onto the ceramic particulate, the resultant particles are washed and dried.

The Ni-clad ceramic particulate is then alloyed with Cr using any one of a number of diffusion processes, such as chemical vapor deposition. Without wishing to be bound by theory, it is believed that Fe and Si diffuse from the ceramic particulate core, and particularly the illite constituent, into the metal composition during the heat treatment.

It will be understood, of course, that modifications can be made in the embodiments of the invention described herein without departing from the scope and purview of the invention as defined by the appended claims.

Claims (17)

CLAIMS:
1. A method of producing an abradable coating adhered to a metal substrate comprising the steps of:

depositing a bond coat on the metal substrate by thermally spraying a sprayable composition comprising about 60 to about 85 wt% nickel, about 15 to about 25 wt% chromium, about 0 to about 15 wt% aluminum and about 0 to about 2 wt% yttrium; and depositing an abradable coating on the bond coat by thermal spraying a sprayable abradable composition comprising:
a ceramic particulate including albite, illite, and quartz; and a metallic composition including nickel, chromium, iron and silicon.
2. The method as claimed in claim 1, in which the bond coat comprises about 67 wt% nickel, about 22 wt% chromium, about 10 wt% aluminum and about 1.0 wt%
yttrium.
3. The method as claimed in claim 1, in which the bond coat comprises about 80 wt% nickel and about 20 wt% chromium.
4. The method as claimed in claims 1, 2 or 3, wherein the sprayable abradable composition is a composite powder and the metallic composition is adhered to a surface of the ceramic particulate.
5. The method as claimed in any one of claims 1 to 4, wherein the ceramic particulate consists essentially of albite, illite, and quartz.
6. The method as claimed in any of claims 1 to 4, wherein the ceramic particulate includes about 20 to about 60 weight percent albite, about 15 to about 45 weight percent illite, and about 15 to about 45 weight percent quartz.
7. The method as claimed in any of claims 1 to 4, wherein the ceramic particulate includes about 40 weight percent albite, about 30 weight percent illite, and about 30 weight percent quartz.
8. The method as claimed in any one of claims 1 to 7, wherein the metallic composition includes about 14 to about 25 weight percent chromium, about 1.5 to about 4 weight percent iron, and about 0.1 to about 0.6 weight percent silicon, and the balance essentially nickel.
9. The method as claimed in any one of claims 1 to 7, wherein the metallic composition comprises 15.0 to 18.1 wt% chromium, 2.45 to 2.71 wt% iron, 0.43 to 0.45 wt% silicon, and the balance essentially nickel.
10. A metal substrate including an abradable coating adherently bonded to the metal substrate comprising a bond coat deposited on the metal substrate, said bond coat comprising about 60 to about 85 wt% nickel, about 15 to about 25 wt%
chromium, about 0 to about 15 wt% aluminum and 0 to about 2 wt% yttrium, and the abradable coating adherently bonded to the bond coat, said abradable coating comprising:

a matrix including a metallic composition, the metallic composition including nickel, chromium, iron and silicon; and a ceramic particulate, including albite, illite, and quartz;
wherein the ceramic particulate is dispersed within the matrix.
11. The metal substrate as claimed in claim 10, in which the bond coat comprises about 67 wt% nickel, about 22 wt% chromium, about 10 wt% aluminum and about 1.0 wt% yttrium.
12. The metal substrate as claimed in claim 10, in which the bond coat comprises about 80 wt% nickel and about 20 wt% chromium.
13. The metal substrate as claimed in any one of claims 10 to 12, wherein the ceramic particulate consists essentially of albite, illite, and quartz.
14. The metal substrate as claimed in any one of claims 10 to 12, wherein the ceramic particulate includes about 20 to about 60 weight percent albite, about 15 to about 45 weight percent illite, and about 15 to about 45 weight percent quartz.
15. The metal substrate as claimed in any one of claims 10 to 12, wherein the ceramic particulate includes about 40 weight percent albite, about 30 weight percent illite, and about 30 weight percent quartz.
16. The metal substrate as claimed in any one of claims 10 to 15, wherein the metallic composition includes about 14 to about 25 weight percent chromium, about 1.5 to about 4 weight percent iron, and about 0.1 to about 0.6 weight percent silicon, and the balance essentially nickel.
17. The metal substrate as claimed in any one of claims 10 to 15, wherein the metallic composition comprises 15.0 to 18.1 wt% chromium, 2.45 to 2.71 wt%
iron, 0.43 to 0.45 wt% silicon, and the balance essentially nickel.
CA2639732A 2008-09-19 2008-09-19 Sprayable compositions Abandoned CA2639732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2639732A CA2639732A1 (en) 2008-09-19 2008-09-19 Sprayable compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2639732A CA2639732A1 (en) 2008-09-19 2008-09-19 Sprayable compositions

Publications (1)

Publication Number Publication Date
CA2639732A1 true CA2639732A1 (en) 2010-03-19

Family

ID=42040227

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2639732A Abandoned CA2639732A1 (en) 2008-09-19 2008-09-19 Sprayable compositions

Country Status (1)

Country Link
CA (1) CA2639732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075769A1 (en) * 2011-11-22 2013-05-30 Märkisches Werk GmbH Process for producing a protective chromium layer
US9103013B2 (en) 2010-01-26 2015-08-11 Oerlikon Metco (Us) Inc. Abradable composition and method of manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103013B2 (en) 2010-01-26 2015-08-11 Oerlikon Metco (Us) Inc. Abradable composition and method of manufacture
WO2013075769A1 (en) * 2011-11-22 2013-05-30 Märkisches Werk GmbH Process for producing a protective chromium layer
CN104053809A (en) * 2011-11-22 2014-09-17 米尔基希斯沃克有限责任公司 Process for producing protective chromium layer

Similar Documents

Publication Publication Date Title
EP1583850B1 (en) Thermal spray composition and method of deposition for abradable seals
US7179507B2 (en) Thermal spray compositions for abradable seals
US20070218309A1 (en) Sprayable composition
JP3370676B2 (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
US6410159B1 (en) Self-bonding MCrAly powder
US5976695A (en) Thermally sprayable powder materials having an alloyed metal phase and a solid lubricant ceramic phase and abradable seal assemblies manufactured therefrom
TWI228151B (en) Oxidation and fatigue resistant metallic coating
JPH04254567A (en) Film for preventing titanium from oxidation
JPS6136061B2 (en)
EP2309019B1 (en) Method of deposition of metallic coatings using atomized spray
JP2002504628A (en) Method of making corrosion resistant and oxidized slurry layer
JP2008169476A (en) Microwave method for forming coating
AU2002328738A1 (en) Sprayable composition
CA2639732A1 (en) Sprayable compositions
US20170081753A1 (en) Thermal barrier coating system and processes for forming a thermal barrier coating system
US7670648B2 (en) Method of forming a diffusion barrier on a titanium alloy substrate
JPH07278721A (en) Particulate alloy composition for coating metallic substrateand method of coating therewith
JP3315246B2 (en) Metal coating material

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20130819

FZDE Dead

Effective date: 20161003