CA2610821C - Organic salts of .beta.-alanine - Google Patents

Organic salts of .beta.-alanine Download PDF

Info

Publication number
CA2610821C
CA2610821C CA2610821A CA2610821A CA2610821C CA 2610821 C CA2610821 C CA 2610821C CA 2610821 A CA2610821 A CA 2610821A CA 2610821 A CA2610821 A CA 2610821A CA 2610821 C CA2610821 C CA 2610821C
Authority
CA
Canada
Prior art keywords
alanine
beta
organic acid
salt
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2610821A
Other languages
French (fr)
Other versions
CA2610821A1 (en
Inventor
Michele Molino
Joseph Macdougall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northern Innovations Holding Corp
Original Assignee
Northern Innovations and Formulations Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Innovations and Formulations Corp filed Critical Northern Innovations and Formulations Corp
Priority to CA2610821A priority Critical patent/CA2610821C/en
Publication of CA2610821A1 publication Critical patent/CA2610821A1/en
Application granted granted Critical
Publication of CA2610821C publication Critical patent/CA2610821C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/06Anabolic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/08Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/15Fumaric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid

Abstract

The present invention relates to stable salts of .beta.-alanine and an organic acid endowed with enhanced nutritional and/or therapeutical efficacy in respect to their individual effects and to solid compositions containing such salts, particularly suited to oral administration. A method of preparation is also provided.

Description

Organic salts of Q-Alanine Field of the Invention The present invention relates to a structure and method for producing stable salts of fl-alanine and organic acids. More specifically, formed salts of the present invention are particularly well suited for oral administration thereby the formed salts may provide enhanced nutritional andlor therapeutical efficacy in relation to the individual components alone.

Background of the Invention It is commonly known that increased muscle mass, strength and extended muscular performance occur in the most effective manner when exercise routines are done to complete exhaustion. However, during extended periods of exercise, metabolites from the breakdown of adenosine triphosphate (ATP), mainly hydrogen ions (H+), begin to accumulate leading to a decline in the pH
levels of blood and muscle, which can be problematic or undesirable. The increase in acidity of the muscle, as a result of the accumulation of H+ ions, is directly linked to muscle fatigue, which ultimately causes a decrease in the duration of intensive bouts of exercise (Cooke R, Pate E. The effects of ADP
and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789-98). This fatigue is a result of inhibition of enzymes, by decreased pH, which are vital for energy production and the force-producing capacity of muscles (Febbraio MA, Dancey J. Skeletal muscle energy metabolism during prolonged, fatiguing exercise. J Appl Physiol. 1999 Dec;87(6):2341-7).

Carnosine is one of the most effective buffers, or pH stabilizers, in human skeletal muscle, and as such is very efficient at mopping up excess H+ ions.
25 When carnosine is ingested as food, it must be broken down to its constituent amino acids (.8-aianine and histidine) in order cross cell membranes, after which it is then reassembled. Due to lack of absorption, in addition to the financial cost of the raw material, carnosine, administration of the constituent amino acids has been explored. For example, administration of exogenous 8-alanine has been 30 shown to increase the levels of carnosine in skeletal muscle cells (Bate-Smith EC. The buffering of muscle in rigour: protein, phosphate, and carnosine. J
Physiol. 1938;92:336-43).

Additionally, other methods for increasing the duration of exercise have been explored. One such method is the administering of compounds that are 35 essential for ATP synthesis and are depleted during exhaustive exercise, such as malic acid. Malic acid is a naturally occurring compound found in a large number of fruits and vegetables, as well as all living cells; which plays a key role in the transportation of NADH from the cytosol to the mitochondria for energy production (ATP production). Malic acid is part of the initiation of the Krebs cycle 40 and is one of the only metabolites that actually decrease in concentration during exercise. Thus, administration of exogenous malic acid will result in increased ATP production as a result of attenuation of malic acid depletion.

Supplementation with other deprotonated organic acids can be used for attenuation of metabolic acidosis. For example, citrate lacks all of its acidic 45 protons, yielding three carboxylate functionalities that can readily take up free
2 protons. Since all of acidic protons are removed, the citrate has three sites which are capable of taking up free protons in serum and working muscle. Therefore, administration of deprotonated organic acids can inhibit the decrease in pH, which is a result of ATP hydrolysis, thereby leading to less fatigue resulting from 50 the inhibition of enzymes that are vital for energy production and the force-producing capacity of muscles.

Summary of the Invention In the present invention, compounds and methods for their production are disclosed. Specifically, the compounds are salts comprising an organic acid and 55 Q-alanine, and having a structure of Formula.1:

Formula 1 NH3 0 ~ AO
~OH
wherein:

A" represents a deprotonated organic acid selected from the group 60 consisting of: malate, citrate and fumarate; and where A- is malate or fumarate, n = 2, and where A- is citrate; n = 3.

Detailed Description of the Invention In the following description, for the purposes of explanations, numerous 65 specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details.
3 The present invention is directed towards the structures and synthesis of salts of a-alanine and organic acids.

70 The present invention provides for the production of stable salts, which may afford a combination of,B-alanine and an organic acid, free of physiologically unsafe additives to an individual upon administration to said individual.
Furthermore, the present invention is particularly well suited for use in tablets, capsules, powders, granules, powdered beverage mixes and other forms known 75 in the art of dietary supplements.

,8-alanine combined with an organic acid forms a non-hygroscopic crystalline powder, which is stable in storage and can be processed without special precautions. Due to the non-hygroscopic nature of the /3-alanine salt it would be understood by one of skill in the art, that the salt is easy to process and 80 is particularly suitable for processing with rapidly running machines, since it does not tend to stick together or become lumpy.

As used herein, '/3-alanine' refers to the chemical beta-alanine, also known as 3-aminopropionic acid. Additionally, as used herein, ',8-aianine' also includes derivatives of fl-alanine such as esters, amides, and salts, as well as other 85 derivatives, including derivatives having pharmacoproperties upon metabolism to an active form.

As used herein, 'malic acid' refers to the chemical 1-Hydroxy-1,2-ethanedicarboxylic acid, (CAS Registry No. 6915-15-17), also known as, hydroxybutanedioic acid, hydroxysuccinic acid, malate, or 2-90 hydroxybutanedioate. Additionally, as used herein, 'malic acid' also includes
4 derivatives of malate such as esters, amides, and salts, as well as other derivatives, including derivatives having pharmacoproperties upon metabolism to an active form.

As used herein, 'citric acid' refers to the chemical 2-hydroxy-1,2,3-95 propane-tricarboxylic acid, (CAS Registry No. 77-92-9), also known as, ,6-hydroxytricarboxylic acid . Additionally, as used herein, 'citric acid' also includes derivatives of citrate such as esters, amides, and salts, as well as other derivatives, including derivatives having pharmacoproperties upon metabolism to an active form.

100 As used herein, 'fumaric acid' refers to the chemical (E)-2-butenedioic acid, (CAS Registry No. 110-17-8), also known as, trans-1,2-ethylenedicarboxylic acid, allomaleic acid, and boletic acid. Additionally, as used herein, 'fumaric acid' also includes derivatives of fumarate such as esters, amides, and salts, as well as other derivatives, including derivatives having pharmacoproperties upon 105 metabolism to an active form.

As used herein, the term 'organic acid' refers to organic compounds which contain carboxylic acids (-C(O)OH). Typical examples of organic acids include, but are not limited to; malic acid, fumaric acid, citric acid, orotic acid, lactic acid, pyruvic acid, and tartaric acid.

110 As used herein, the term 'pharmaceutically acceptable excipients' refers to substances added to produce quality tablets, chewable tablets, capsules, granulates or powders, but which do not provide nutritive value. A non-exhaustive list of examples of excipients includes monoglycerides, magnesium stearate, modified food starch, gelatin, microcrystalline cellulose, glycerin, stearic 115 acid, silica, yellow beeswax, lecithin, hydroxypropyicel lu lose, croscarmellose sodium, and crosprovidone.

According to the present invention, the compounds disclosed herein comprise molecules of Q-alanine combined with an organic acid to form a salt having a structure according to Formula 1. The aforementioned compound being 120 prepared according to the reaction as set forth for the purposes of the description in Scheme 1:

Scheme 1 1) Heat ~ AO
NH2 0 2) Cool (RT to 4 C) NH3 0 '-~A+ HA ~
OH Lower Alcohol OH n With reference to Scheme 1, in the first step of the reaction the fl-alanine 125 (1) is dissolved in an excess of hot lower alcohol. The lower alcohol is considered to be hot, as would be known by one of ordinary skill in the art.
Preferably the lower alcohol is considered to be hot when heated to a temperature about 5 C below the boiling point of the corresponding lower alcohol.

130 In various embodiments of the present invention, the lower alcohol is selected from the group consisting of methanol, ethanol, propanol, and isopropanol. These lower alcohols may be used singly or in admixture containing two or more alcohols.

Concurrently, in the second step of the reaction the organic acid (2) is 135 dissolved into an excess of hot lower alcohol. The lower alcohol is considered to be hot, as would be known by one of ordinary skill in the art. Preferably the lower alcohol is considered to be hot when heated to a temperature about 5 C below the boiling point of the corresponding lower alcohol.

Both solutions above are then mixed together and heated to about the 140 boiling point of the corresponding lower alcohol. If there are solids still present after heating, the solution is filtered while hot to remove any unreacted starting materials. The solution is then allowed to cool to room temperature, covered and refrigerated or cooled until crystallization occurs, preferably for between about 24 to about 48 hours. The resultant crystals are filtered under vacuum and washed 145 with ice cold lower alcohol, yielding a crystalline powder, the a-alanine organic acid salt (3).

In larger scale preparations of the present invention, diethyl ether can be added until the cloud point, as would be known to one of skill in the art, is reached after the mixture is cooled to room temperature, after which the solution 150 is refrigerated or cooled to allow crystallization to complete. This will facilitate greater precipitation of the product thus yielding more of the a-alanine organic acid salt (3), which would be desired in industrial settings.

,Q-alanine organic acid salts are used advantageously alone or with additional active ingredients, such as, trace elements, vitamins, mineral 155 substances, or other amino acids as well as, optionally, excipients usually used for the preparation of the respective forms of administration. The forms of administration include, particularly, all varieties of tablets, both those that are swallowed without being chewed, and tablets to be chewed or dissolved in the mouth of an individual, as well as those that are dissolved in a liquid before being 160 ingested by an individual. The tablet forms include uncoated tablets, one-layer or multilayer or encased forms or effervescent tablets. Further preferred forms of administration are capsules of hard and soft gelatin, the latter being particularly suitable to include a liquid core. Additionally, 8-alanine organic acid salts can be used advantageously for the preparation of solutions and suspensions and as a 165 powder, either effervescent or granulated.

The examples given below explain the execution of the invention with respect to the production of /3-alanine organic acid salts. Provided below is a basic method for producing fl-alanine organic acid salts. However, those of skill in the art will appreciate certain changes may be made in the process of "scaling-170 up" the reaction to manufacture larger batches of B-alanine organic acid salts which may be required for commercial uses and supply requirements. Other methods of synthesis may also be apparent to those of skill in the art.

Examples Example 1 1) Heat NH2 0 HO O OH 2) Cool (RT to 4 C) NH3 O O 0 ~
+ ~ 0 (,-OH -~ EtOH

178.18 g (2 mol) of fl-alanine (1) is dissolved into 400mL of hot ethanol, 180 solution 1. Concurrently, 134.09 g (1 mol) of malic acid (2) is dissolved in 200mL
of hot ethanol, solution 2. Solution 2 is added to solution I with stirring and the resultant solution is heated to the boiling point. If there are solids still present the solution is filtered at this temperature to remove unreacted starting materials.
The solution is then allowed to cool to room temperature and then covered and 185 refrigerated to allow crystallization to complete; about 24 hours. The resultant crystals are filtered under vacuum and washed with ice cold ethanol, yielding a crystalline powder, the,8-alanine malate (3).

Example 2 1) Heat NH2 0 + 0/ OH 2) Cool (RT to 4 C) NH3 O = 0I/ O
~OH HO~ ~~ O
0 Propanol OH 2 O

178.18 g (2 mol) of ,r33-alanine (1) is dissolved into 400mL of hot propanol, solution 1. Concurrently, 116.07 g (1 mol) of fumaric acid (2) is dissolved in 200mL of hot propanol, solution 2. Solution 2 is added to solution I with stirring and the resultant solution is heated to the boiling point. If there are solids still 195 present the solution is filtered at this temperature to remove unreacted starting materials. The solution is then allowed to cool to room temperature and refrigerated to allow crystallization to complete; about 24 hours. The resultant crystals are filtered under vacuum and washed with ice cold ethanol, yielding a crystalline powder, the fl-alanine fumarate (3).

Example 3 1) Heat NH2 0 HO OH 2) Cool (RT to 4 C) NH3 [ OH]3[!HO]
- OH + sHO
OO

267.27 g (3 mol) of a-alanine (1) is dissolved into 600mL of hot isopropanol, solution 1. Concurrently, 192.12 g (1 moI) of citric acid (2) is 205 dissolved in 300mL of hot isopropanol, solution 2. Solution 2 is added to solution I with stirring and the resultant solution is heated to the boiling point. If there are solids still present the solution is filtered at this temperature to remove unreacted starting materials. The solution is then allowed to cool to room temperature and refrigerated to allow crystallization to complete; about 24 hours. The resultant 210 crystals are filtered under vacuum and washed with ice cold ethanol, yielding a crystalline powder, the,8-alanine citrate (3).

Extensions and Alternatives 215 In the foregoing specification, the invention has been described with a specific embodiment thereof; however, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention.

Claims (13)

Claims What is claimed:
1. A salt of .beta.-alanine and an organic acid, having the general formula:

wherein:

A- is malate, citrate, fumarate, orotate, pyruvate or tartarate; and where A- is orotate or pyruvate, n = 1, where A- is malate, fumarate or tartarate, n= 2, and where A- is citrate; n= 3.
2. A composition comprising the salt of .beta.-alanine and an organic acid of claim 1, wherein the composition further comprises pharmaceutically acceptable excipients.
3. The composition of claim 2 wherein the pharmaceutically acceptable excipients are monoglycerides, magnesium stearate, modified food starch, gelatin, microcrystalline cellulose, glycerin, stearic acid, silica, yellow beeswax, lecithin, hydroxypropylcellulose, croscarmellose sodium or crosprovidone.
4. The salt of .beta.-alanine and an organic acid of claim 1 wherein said salt is provided in a dosage form of tablets, chewable tablets, capsules, granulates or powders.
5. The composition of claim 2 wherein the composition is provided in a dosage form of tablets, chewable tablets, capsules, granulates or powders.
6. The salt of .beta.-alanine and an organic acid of claim 4 wherein said salt is suitable for administration to a mammal.
7. The composition of claims 2, 3 or 5 wherein the composition is suitable for administration to a mammal.
8. A .beta.-alanine organic acid salt having the molecular structure of:
wherein A- is malate and n = 2.
9. A .beta.-alanine organic acid salt having the molecular structure of:
wherein A- is orotate and n = 1.
10. A .beta.-alanine organic acid salt having the molecular structure of:
wherein A- is pyruvate and n = 1.
11. A .beta.-alanine organic acid salt having the molecular structure of:
wherein A- is fumarate and n = 2.
12. A .beta.-alanine organic acid salt having the molecular structure of:
wherein A- is tartarate and n = 2.
13. A .beta.-alanine organic acid salt having the molecular structure of:
wherein A- is citrate and n= 3.
CA2610821A 2007-12-12 2007-12-12 Organic salts of .beta.-alanine Active CA2610821C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2610821A CA2610821C (en) 2007-12-12 2007-12-12 Organic salts of .beta.-alanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2610821A CA2610821C (en) 2007-12-12 2007-12-12 Organic salts of .beta.-alanine

Publications (2)

Publication Number Publication Date
CA2610821A1 CA2610821A1 (en) 2008-11-14
CA2610821C true CA2610821C (en) 2010-03-23

Family

ID=39971176

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2610821A Active CA2610821C (en) 2007-12-12 2007-12-12 Organic salts of .beta.-alanine

Country Status (1)

Country Link
CA (1) CA2610821C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603603B (en) * 2021-08-05 2023-09-15 西北大学 Method for preparing beta glycine by solution freezing and antisolvent washing

Also Published As

Publication number Publication date
CA2610821A1 (en) 2008-11-14

Similar Documents

Publication Publication Date Title
AU718308B2 (en) Stable, non-hygroscopic salts of L(-)carnitine and alkanoyl L(-)carnitines, a process for their preparation and solid, orally administrable compositions containing such salts
US20090156648A1 (en) Preparations containing pyridoxine and alpha-hydroxyisocaproic acid (HICA)
CA2288287C (en) Solid compositions suitable for oral administration comprising l-carnitine or alkanoyl-l-carnitine magnesium fumarate
US8546369B2 (en) Salts of creatine imino sugar amides
WO2008080287A1 (en) L-carnitine calcium fumarate, preparation method and application for the same
US7956218B2 (en) Organic salts of β-alanine
US20080254198A1 (en) Method of Preparing Creatine Ester Salts and Uses Thereof
CA2610821C (en) Organic salts of .beta.-alanine
CA2453516C (en) Alpha-ketoglutarates of l-carnitine and alkanoyl l-carnitine and compositions thereof
JP4430301B2 (en) Double salt of fumaric acid with carnitine and amino acid, and food supplement, nutritional supplement and drug containing the salt
EP0971879B1 (en) Solid compositions suitable for oral administration comprising l-carnitine and alkanoyl-l-carnitine magnesium tartrate
EP2231588A1 (en) Organic salts of -alanine
EP0971880B1 (en) Solid compositions suitable for oral administration comprising non hygroscopic salts of l-carnitine and alkanoyl-l-carnitine with 2-aminoethanesulfonic acid
CA2610818C (en) Preparations containing pyridoxine and .alpha.-hydroxyisocaproic acid (hica)
ITRM990550A1 (en) NON HYGROSCOPIC SALTS OF ACTIVE INGREDIENTS FOR THERAPEUTIC AND / OR NUTRITIONAL ACTIVITIES AND COMPOSITIONS SUITABLE FOR ORAL ADMINISTRATION CONTAINING
EP2231604A1 (en) Preparations containing pyridoxine and alpha-hydroxyisocaproic acid (hica)
CA2256712C (en) Stable, non-hygroscopic salts of l(-)carnitine and alkanoyl l(-)carnitines, a process for their preparation and solid, orally administrable compositions containing such salts
MXPA98010098A (en) Stable non-hygroscopic salts of l (-) carnitine and alcanoil-l (-) carnitines, a procedure for their preparation, and solid oral organically administrative compositions containing dichas sa

Legal Events

Date Code Title Description
EEER Examination request