CA2607822C - Optoelectronic system using spatiochromatic triangulation - Google Patents

Optoelectronic system using spatiochromatic triangulation Download PDF

Info

Publication number
CA2607822C
CA2607822C CA2607822A CA2607822A CA2607822C CA 2607822 C CA2607822 C CA 2607822C CA 2607822 A CA2607822 A CA 2607822A CA 2607822 A CA2607822 A CA 2607822A CA 2607822 C CA2607822 C CA 2607822C
Authority
CA
Canada
Prior art keywords
image
slit
plane
spectrograph
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2607822A
Other languages
French (fr)
Other versions
CA2607822A1 (en
Inventor
Joseph Cohen-Sabban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ovadis Sal (holding)
Original Assignee
EVIRSA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EVIRSA Inc filed Critical EVIRSA Inc
Priority to CA2607822A priority Critical patent/CA2607822C/en
Priority claimed from CA002278332A external-priority patent/CA2278332C/en
Publication of CA2607822A1 publication Critical patent/CA2607822A1/en
Application granted granted Critical
Publication of CA2607822C publication Critical patent/CA2607822C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2509Color coding

Abstract

There is described an optoelectronic device for surface digitization of an object using spatiochromatic triangulation, the device comprising: a polychromatic light source; relay optics positioned in an illuminating plane of the light source for imaging the light source onto a source slit; a concave diffraction grating for illuminating a measuring space with a continuum of monochromatic images along a measuring cutting plane providing in depth chromatic coding of the object, wherein the object located in the measuring space; an imaging spectrograph having a viewing slit whose image plane aligns with an image generated by the intersection of the cutting plane and the surface of the object; and a grayscale imaging array located in the image plane of the spectrograph for registering the image.

Description

OPTOELECTRONIC SYSTEM
USING SPATIOCHROMATIC TRIANGULATION
Background of the Invention 1. Technical Field This invention relates to an optoelectronic system, and more particularly to an optoelectronic device that provides non-contact, real time surface digitization of an object using spatiochromatic triangulation.
2. Discussion of Related Art An increased development of digitization of mock-ups and models for further treatment on CAD systems has led to a need for more effective surface sensing capability in optoelectronic systems. Other measuring and gauging applications, such as scanning machine parts, also requires improved surface digitization.
Optoelectronic devices using monochromatic triangulation techniques are a generally well known means for generating a non-contact surface digitization. These techniques often employ coherent light sources that are able to obtain resolutions up to 1 part in 104 depth of field on most types of material. However, systems using coherent sources are susceptible to interference which may create optical noise in the digitization process. In addition, monochromatic triangulation techniques are sensitive to variations in light intensity due to interference effects and surface conditions.
Therefore, it is desirable to provide a high resolution and cost effective optoelectronic system for use with conventional light sources. An optoelectronic system using spatiochromatic triangulation provides non-contact, real time surface digitization of an object. Furthermore, it is desirable to provide a system with a non- coherent light source that results in a measurement technique that is primarily independent of light intensity. Two basic triangulation configurations of the optoelectronic system may be implemented. An "in plane" and a "v-shape"
configuration, where the latter configuration decreases the triangulation angle between the light source and viewing plane of the spectrograph and thus avoids occlusion problems associated with conventional. triangulation measurement techniques.
Additionally, a surface microstructure compensation technique incorporated into the present optoelectronic system corrects measurement errors caused by surface imperfections.

I

Summary of the Invention In accordance with the teachings of the present invention, an optoelectronic system is provided for surface digitization of an object using spatiochromatic triangulation. The optoelectronic system includes an illuminating subsystem for illuminating a measuring space that contains an object to be measured, as well as a viewing subsystem for collecting the light reflected by this object and for generating a three-dimensional topography of the object using in depth chromatic coding of the object. More specifically, relay optics are used to image a polychromatic light source onto a source slit which in turn passes the slit image onto a dispersing element. The object to be measure is illuminated with a continuum of monochromatic images along a cutting plane (x, z) within the measuring space. A color coded (x, X) representation, generated by the intersection of the cutting plane and the surface of the measured object, is imaged onto a viewing slit of an imaging spectrograph. A relay lens is used for projecting this image onto the viewing slit. A grayscale imaging array located in the image plane of the spectrograph registers the color coded representation, and by using spectrophotometric analysis, an image processor translates this representation into a plane section of the three-dimensional topography of the measured object.

In accordance with a first broad aspect of the present invention, there is provided an optoelectronic device for surface digitization of an object using spatiochromatic triangulation, the device comprising: a polychromatic light source; relay optics positioned in an illuminating plane of the light source for imaging the light source onto a source slit; a concave diffraction grating for illuminating a measuring space with a continuum of monochromatic images along a measuring cutting plane providing in depth chromatic coding of the object, wherein the object located in the measuring space; an imaging spectrograph having a viewing slit whose image plane aligns with an image generated by the intersection of the cutting plane and the surface of the object; and a grayscale imaging array located in the image plane of the spectrograph for registering the image.

In accordance with a second broad aspect of the present invention, there is provided a method for surface digitization of an object using spatiochromatic triangulation, comprising:
imaging a light source onto a source slit; illuminating a measuring space with a continuum of monochromatic images by passing the slit image through a dispersing element;
providing in depth chromatic coding of the object, where the object located in the measuring space; and registering an image of the surface of the object which aligns with image plane on an image spectrograph.

Brief Description of the Drawings Other objects and advantages of the present invention will be apparent to those skilled in the art upon reading the following detailed description and upon reference to the drawings in which:
Figure 1 is a block diagrani showing a first embodiment of a optoelectronic system employing an "in plane" configuration of the present invention;
Figure 2 illustrates the continuum of monochromatic projections across a measuring space in the first embodiment of the present invention;
Figure 3 shows a three dimensional reconstruction of the surface of a measured object with successive parallel cutting planes defined across its y-axis.
Figure 4 is a diagram showing a second preferred embodiment of an optoelectronic system employing a "v-shape" configuration of the present invention;
Figure 5 illustrates the spectrophotometric profile and gaussian profile from a homogeneously illuminated viewing slit in an imaging spectrograph;
Figure 6 illustrates the effect of microscopic reflectance irregularities (as imaged on a viewing slit) on the spectrophotometric profile and the corresponding measurement errors as registered by an imaging array in a spectrograph;
Figure 7 illustrates the random shift of the gaussian profiles (light intensity profiles) caused by surface irregularities in the measured object;
Figure 8 is a diagram showing a surface microstnicture conlpensation technique incorporated into the viewing subsystem of the optoelectronic device in the present invention;
and Figure 9 illustrates the reconstruction of the real spectral composition from a slit image captured directly from the light intensities on the viewing slit of a spectrograph.

Detailed Description of the Preferred Embodiment The following description of the present invention is merely exemplary in nature and is in no way intended to limit the invention or its uses. Moreover, the following description, while depicting an optoelectronic system using spatiochromatic triangulation for determining a three-dimensional topography of an object, is intended to adequately teach one skilled in the art to make and use an optoelectronic system for a variety of measurement applications using in depth chromatic coding of an object surface.
An optoelectronic system 10, including an illuminating subsystem 12 for illuminating an object 16 across a cutting plane 32 and a viewing subsystem 14 for collecting the light reflected by the object 16 and for generating a three-dimensional topography of the object 16, is illustrated in Figure 1. In this first embodiment of the present invention, the components of optoelectronic system 10 are shown in an "in plane" configuration.
Illuminating subsystem 12 comprises a polychromatic light source 20 that illuminates a continuous spectrum through relay optics 22 which focus the source onto a first slit 24 oriented along the y-axis. Polychromatic light source 20 may be an incandescent light source, an Arc lamp (i.e., Xenon Arc) having a continuous spectrum and functioning in either a continuous or a flash mode, or other light sources optically coupled together in orde.r to provide a large spectral bandwidth (i.e., super radiant diodes or light emitting diodes LEDs). Light source 20 may also be located remotely from illuminating subsystem 12 and delivered through a fiber optic medium or other medium to illuminating subsystem 12.
The image from source slit 24 passes through a dispersing element 26 prior to illuminating a measuring space 30. Dispersing element 26 may comprise a prism, concave diffraction grating, diffraction lens, or other dispersing optics that function to illuminate a three-dimensional measuring space 30 with a continuum of monochromatic images oriented in the y-dimensi.on. Cutting plane 32 is a measuring plane defined by the x-axis and z-axis of a coordinate system located in measuring space 30. Dispersing element 26 may also focus these images at nominal focus points in measuring space 30.
Generic wavelengths from ki to )t,, are shown extending across cutting plane 32 in FIG. 2, and thus providing in depth chromatic coding of the surface of a measured object. The wavelength range of the light beams corresponds to the spread of impinging polychromatic light beam being delivered by light source 20.

Referring to FIG. 1, for the "in plane" configuration a pinhole may be used in place of slit 24, resulting in a continuum of monochromatic point images together forming a plane in measuring space 30. This approach illuminates only that part of the object 16 visible to the viewing subsystem 14, placing higher tolerances on mutual alignment of illuminating subsystem 12 and viewing subsystem 16, while reducing optical power required of light source 20 and reducing possible interference effects from light not directly viewed by 14.
Object 16 to be measured may be partially or completely located inside measuring space 30. To displace cutting plane 32 along the surface of object 16, the object in the preferred embodiment is firmly fastened to a motorized mechanical means 34. Mechanical means 34 then operates to translate object 16 along the y-axis and/or to rotate object 16 about any given axis in order to acquire successively all of the views of the surface of object 16 necessary to complete its examination/representation. Those skilled in the art will appreciate that mechanical means may include a variety of drive assemblies and motors, for exatnple, the ATS 100TM
series manufactured by Aerotech, Inc. of Pittsburgh, Pa. An encoder/control module 36 is also coupled to mechanical means 34 for electronically driving and synchronizing mechanical means 34.
Viewing subsystem 14 comprises an imaging spectrograph having a viewing slit 42 in parallel alignment with the x-axis of measuring space 30. The image plane of spectrograph 40 aligns with an image created by the intersection of cutting plane 32 and the measuring surface of object 16. A relay lens 50 having a large deptli of field serves to demagnify this image onto viewing slit 42 of spectrograph 40. Internal to spectrograph 40, a dispersing element 44 projects this image onto a grayscale imaging array 46 which is located in the image plane of spectrograph 40. To improve resolution, imaging array 46 should map the height of its array to the full spectrum of wavelengths used in the system. A charge coupled device (CCD) or other similar device known in the art may be employed as the imaging array 46. An image data processor 48, such as a digital signal processor or a general purpose computer, is coupled to spectrograph 40 for recording, processing and visualizing measurements of object 16 as registered by imaging array 46.

Imaging optics 50 may be positioned inside and/or outside of spectrograph 40.
Since telecentric optics are not practical for imaging large measuring spaces (e.
g., high quality lens >1 inch in size are expensive to manufacture), viewing subsystem 14 may be configured without telecentric optics. Classic relay lens or other non-telecentric optics may replace telecentric optics in the present invention provided a complementary pupil transport is added in front of viewing slit 42. Since telecentric optics are used to ensure a constant magnification over the entire depth of field, a software implemented correction is preferably used in conjunction with non-telecentric optics.
In operation, measured object 16 is placed into measuring space 30 which is illuminated with a continuum of monochromatic images from light source 20 that has passed through dispersing element 26. As a result, an in depth chromatic coding of the surface of measuring object 16 occurs and the wavelength of the light reflected by measured object 16 will translate into an z-axis measurement. In other words, a color coded (x, X) representation of cutting plane (x, z) is imaged onto slit 42 of spectrograph 40 and then registered by grayscale imaging array 46. Due to perspective and optical distortion, the image is only representative of the surface of the measured object 16. However, through the use of a mathematical mapping generated during a calibration process of optoelectronic system 10, image processor 48 can reconstruct a digitized contour line equivalent to the surface of object 16 along cutting plane 32.
For a given contour line the signal on imaging array 46 appears as a curved line with a transverse gaussian profile whose position along imaging array 46 depends on the spectral content of the corresponding point on the surface of object 16. Various signal processing techniques may be employed by image processor 48 to determine the barycenter of the gaussian profile and thus determine a corresponding z measurement.
Although some applications of optoelectronic system 10 may only utilize a single contour line from the surface of an object, other applications will need a digitized reconstruction of its entire surface area. As best seen in Figure 3, since only one cutting plane 70 aligns with the image plane 72 of spectrograph (not shown), additional measurements along successive parallel cutting planes will be needed to reconstruct the surface of object 16.
Therefore, in order to measure the entire surface area, mechanical means 34 n7ust translate object 16 (along the y-axis) with respect to the image plane of a fixed spectrograph. In an alternate approach to measuring this surface area, measured object 16 may be fastened to an immovable holding member so that viewing subsystem 14 is translated (along the y-axis) with respect to fixed object 16. In either case, spectrophotometric analysis of each successive cutting plane image leads to the three dimensional topography of object 16.
In the first embodiment of the present invention, optoelectronic system 10 is referred to as an "in plane" configuration. In this "in plane" configuration, referring back to Figure 2, the resolution of the left side of measuring space 30 is limited to the wavelengtlis from ki to k;, and similarly the right side of measuring space 30 is ~- to ~,,,. To improve resolution in the present invention, a broad range of wavelengths should correlate to z measurements along the x-axis.
Although increasing the triangulation angle will increase the resolution for this z-axis measurement, it also contributes to an occlusion problem caused by the object relief obstructing the illuminating image.
A second preferred embodiment, in Figure 4, utilizes a"v-shape" configuration to reduce the triangulation angle in the optoelectronic system 100 of the present invention. In this preferred embodiment, a source slit 101 and viewing slit 103 are both in parallel alignment with the y-axis of measuring space 30. By turning the viewing subsystem 103 and 104 90 about the z-axis the resolution of z measurements takes advantage of the entire spectrum of wavelengths in the system. Furthermore, triangulation angle 110 can be significantly reduced without losing the full advantage of the entire spectrum of wavelengths from k1 to ~,,,.
Optoelectronic system 100 can otherwise include all of the basic system components (or variations) as discussed in Figure 1.
For the "v-shape" configuration correction for perspective distortions can be made by orienting the grayscale imaging array 46 in such a manner as to have the wavelength oriented along the columns and the x-axis oriented along the rows. If telecentric optics were used the measured position of z is a function of row number R and the measured points along the x-axis are approximately a linear function of the column nunlber C. That is, Z=f,(R)=ao + a2R
X=fX(C)=bo+bi C

where x and z = measured points in the field of view R and C = row and column of a point in image array These equations are only strictly true for telecentric optics. For an embodiment of the present invention using non-telecentric imaging optics, perspective distortions must be compensated for by adding some x-dependence into the calculation of f, as well as adding some z-dependence into the calculation of f,, Therefore, the general modelling of this problem is represented by:
Z=f,(R,C)ao+a, C+aZR+a3RC
X=fX(R,C)=bo+b1 C+b2R+b3RC
Polynomials of the above form can solve the perspective problem in a non-telecentric system.
Positioning a calibration target in front of a sensor at n positions will provide samples of Z,... Z,,, Y,... Y, R,... Rõ and C, ... C, and thus provide sufficient information to provide a least-squares solution to identify the aj and b; coefficients. Additional nonlinear components, such as a;RjCk and/or b;RjCk, may be added to the above equation to compensate for other optical/geometric distortions. Accordingly, as will readily be recognized by those skilled in the art, a software-implemented correction modelled from the above equations can be used to resolve the perspective problem in the absence of telescopic optics in the present invention. A similar process may be implemented to correct for distortions in the "in-plane"
configuration.
Optoelectronic system 100 of the preferred embodiment has been realized in a 267 x 172mm x 68mm sensor weighing 3 kg. The sensor uses a 50W Tungsten Halogen lamp as its light source and a 1/2"hyper HADTM type CCD from Sony having 646 (spectral direction) *484 pixel resolution. The viewing slit is 20 micrometers wide and 5 millimeters high and is made of a chromium plated thin glass plate (1.5mm x 15mm). The slit is imaged through the spectrograph onto the CCD by a telecentric combination of two achromatic doublets (73mm focal length and 17mm in diameter). The mean dispersion is 0.62 nanometer per pixel on the CCD
thus allowing 400 nanometers spectral range (comprised between 500 and 900 nanometers) to be imaged on the CCD. Using a "v-shape" configuration, optoelectronic system 100 achieves spatial resolution of 100* 130 gm for x, y and less than 10 tn for z measurements.
In an imaging spectrograph, the entrance slit width is assumed to be homogeneously illuminated, and when illuminated by a light source having a small spectral width (-Nk) its image on a monochromatic imaging array will have a gaussian profile as seen in Figure 5. Unlike monochromatic triangulation methods, the performance of an optoelectronic system based on spatiochromatic triangulation is affected by the width of the spectrograph slit and the surface imperfections on the measured surface. If the slit is too narrow, the signal passed is too low;
whereas if the slit is made wider, more light passes through the slit, but the image becomes increasingly "lumpy". The light reflected from the target surface includes "lumpy" distortions caused by surface imperfection in the measured object. To illustrate this problem, consider a flat target, with a checkerboard pattern as shown in Figure 6, as viewed by a spectrograph. The location of the mean (barycenter) of the light distribution within the slit varies along the slit, and thus leads to misinterpretation of the signal when imaged through the spectrograph. The top profile from Figure 6 is centered as the light is distributed evenly on the slit; whereas the bottom three profiles each exhibit asymmetrical offsets due to a variation in the light intensity imaged at the slit. The position of the light requires centering in the slit for an accurate mapping of the light onto the spectrograph, otherwise these offset variations will be translated into measurement errors. Similarly, measuring a surface with microscopic reflectance irregularities will create measurement errors when digitizing the topography of an object. For example, in the "v-plane"
configuration of the present in.vention, a flat target surface should result in an image with the same wavelength (i. e., same color). However, the presence of surface i.mperfections can cause an apparent red shift or blue shiift in the iinaged signal which is incorrectly interpreted as depth variations in the flat target surface.
The optoelectronic system according to the present invention preferably uses a surface microstructure compensation technique to overcome this problem. In particular, as shown in Figure 8, the optoelectronic system of the present invention further includes a set of beam splitters interposed into the image plane of a spectrograph 122. A first splitter 126 is located between a viewing slit 124 of spectrograph 122 and dispersing elements 130;
whereas a second splitter 128 is positioned between dispersing elements 130 and a monochromatic imaging array 132. First splitter 126 and second splitter 128 are used to generate a slit image 140 directly from the light intensities on viewing slit 124. By allocating part of imaging array 132 to slit iunage 140, one single imaging array can be used for profiling slit image 140 and the image 142 passed through spectrograph 122. Relay lens 134 may also be incorporated into viewing subsystem 120.
Referring to Figure 7, a random spectrophotometric microstructure from the measured surface results in a random shift of gaussian profiles as registered by the imaging array of a spectrograph. Tn Figure 9, measurements of the light intensity from viewing slit 1.24 as captured in slit image 140 are then used to reconstruct the actual spectral composition of each point along viewing slit 124. As will be apparent to one skilled in the art, an image processor 150 may be used to read the centers of light intensities from slit image 140 and then to use this infonnation to remove the apparent red and blue shifts that occur in spectrograph image 142.
As a result of this surface microstructure compensation technique, image processor 150 can produce a corrected image 144. In an alternative approach, a second imaging array (not shown) may be placed before the second splitter 128 for registering split image 140.
A method for surface digitization of an object using spatiochromatic triangulation will now be described. First, a polychromatic light source, that may also pass through a relay lens, is imaged onto a source slit. Next, the slit image passes through a dispersing element, and thus providing in depth chromatic coding of the object by illuminating a measuring space (containing the object) with a continuuni of monochromatic images. The image plane of an imaging spectrograph aligns with the surface of the object and an imaging array located in the image plane registers an image of the object. Finally, an image processor generates a digitized contour line from the object.
The foregoing discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the present invention.

Claims (12)

1. An optoelectronic device for surface digitization of an object using spatiochromatic triangulation, said device comprising:
a polychromatic light source;
relay optics positioned in an illuminating plane of said light source for imaging said light source onto a source slit;
a concave diffraction grating for illuminating a measuring space with a continuum of monochromatic images along a measuring cutting plane providing in depth chromatic coding of said object, wherein said object located in said measuring space;
an imaging spectrograph having a viewing slit whose image plane aligns with an image generated by the intersection of said cutting plane and the surface of said object; and a grayscale imaging array located in said image plane of said spectrograph for registering said image.
2. The optoelectronic system of claim 1 wherein said source slit is further defined as a pinhole for forming point images.
3. The optoelectronic system of claim 1 further comprising a telecentric relay lens for projecting said image onto said viewing slit.
4. The optoelectronic system of claim 1 further comprising a relay lens for projecting said image onto said viewing slit and an image processor for correcting perspective distortion.
5. The optoelectronic system of claim 1 further comprising an image processor coupled to said imaging array for processing said registered image using spectrophotometric analysis and generating a digitized contour line from said object.
6. The optoelectronic system of claim 1 further comprising a mechanical means for translating said object within said measuring space and an electronic controller for driving and synchronizing said mechanical means, wherein said object is fastened to said mechanical means and by translating said object a plurality of images are registered along successive parallel cutting planes to reconstruct a topography of said object.
7. A method for surface digitization of an object using spatiochromatic triangulation, comprising:
imaging a light source onto a source slit;

illuminating a measuring space with a continuum of monochromatic images by passing said slit image through a dispersing element;
providing in depth chromatic coding of said object, where said object located in said measuring space; and registering an image of the surface of said object which aligns with image plane on an image spectrograph.
8. The method of claim 7 wherein said imaging spectrograph includes an imaging array located in said image plane for registering said image.
9. The method of claim 7 further comprising the step of generating a digitized contour line from said object using spectrophotometric analysis.
10. The method of claim 10 wherein an image processor is coupled to said imaging array for processing said image into a digitized contour line.
11. The method of claim 7 further comprising the step of translating said object within a measuring space using a mechanical means, whereby translating said object a plurality of images are registered along successive parallel cutting planes to reconstruct a topography of said object.
12
CA2607822A 1997-11-06 1997-11-06 Optoelectronic system using spatiochromatic triangulation Expired - Lifetime CA2607822C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2607822A CA2607822C (en) 1997-11-06 1997-11-06 Optoelectronic system using spatiochromatic triangulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002278332A CA2278332C (en) 1997-11-06 1997-11-06 Optoelectronic system using spatiochromatic triangulation
CA2607822A CA2607822C (en) 1997-11-06 1997-11-06 Optoelectronic system using spatiochromatic triangulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002278332A Division CA2278332C (en) 1997-11-06 1997-11-06 Optoelectronic system using spatiochromatic triangulation

Publications (2)

Publication Number Publication Date
CA2607822A1 CA2607822A1 (en) 1999-05-20
CA2607822C true CA2607822C (en) 2010-03-16

Family

ID=38988233

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2607822A Expired - Lifetime CA2607822C (en) 1997-11-06 1997-11-06 Optoelectronic system using spatiochromatic triangulation

Country Status (1)

Country Link
CA (1) CA2607822C (en)

Also Published As

Publication number Publication date
CA2607822A1 (en) 1999-05-20

Similar Documents

Publication Publication Date Title
US6573998B2 (en) Optoelectronic system using spatiochromatic triangulation
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
USRE46012E1 (en) Non-contact probe
US5085502A (en) Method and apparatus for digital morie profilometry calibrated for accurate conversion of phase information into distance measurements in a plurality of directions
US5135308A (en) Method and apparatus for non-contact measuring of object surfaces
KR100858521B1 (en) Method for manufacturing a product using inspection
US7532333B2 (en) Method and apparatus for determining the shape and the local surface normals of specular surfaces
US5135309A (en) Method and apparatus for non-contact measuring of object surfaces
US6538751B2 (en) Image capturing apparatus and distance measuring method
KR100815283B1 (en) System for simultaneous projections of multiple phase-shifted patterns for the three-dimensional inspection of an object
Kühmstedt et al. 3D shape measurement with phase correlation based fringe projection
US20080117438A1 (en) System and method for object inspection using relief determination
JPH0792372B2 (en) Method for measuring an optical surface feature of a mirror and apparatus for determining the feature
TW201732263A (en) Method and system for optical three-dimensional topography measurement
CA2334225C (en) Method and device for opto-electrical acquisition of shapes by axial illumination
EP0985133B1 (en) Apparatus for position determination
JP2533514B2 (en) Depth / thickness measuring device
CA2607822C (en) Optoelectronic system using spatiochromatic triangulation
US20050226533A1 (en) Method for measuring the location of an object by phase detection
CN110296666B (en) Three-dimensional measuring device
KR100641885B1 (en) light phase interferrometry method and system for horizontal scanning type
KR20000069937A (en) Optoelectronic system using spatiochromatic triangulation
JP3349235B2 (en) Interference measurement method
US20080186474A1 (en) Method and Apparatus for Measurement of Chromatic Aberrations of Optical Systems
JP4097421B2 (en) Optical shape measuring device

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20171106