CA2594064A1 - Pneumatic base for facilitating the installation and tensioning of a drive belt - Google Patents

Pneumatic base for facilitating the installation and tensioning of a drive belt Download PDF

Info

Publication number
CA2594064A1
CA2594064A1 CA002594064A CA2594064A CA2594064A1 CA 2594064 A1 CA2594064 A1 CA 2594064A1 CA 002594064 A CA002594064 A CA 002594064A CA 2594064 A CA2594064 A CA 2594064A CA 2594064 A1 CA2594064 A1 CA 2594064A1
Authority
CA
Canada
Prior art keywords
belt
pneumatic actuator
air
pressure
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002594064A
Other languages
French (fr)
Inventor
Gilles Larouche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Alcan International Ltd Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan International Ltd Canada filed Critical Alcan International Ltd Canada
Priority to CA002594064A priority Critical patent/CA2594064A1/en
Priority to AU2007203411A priority patent/AU2007203411A1/en
Priority to CL2008002030A priority patent/CL2008002030A1/en
Priority to PCT/CA2008/001306 priority patent/WO2009009893A1/en
Priority to PE2008001223A priority patent/PE20090452A1/en
Publication of CA2594064A1 publication Critical patent/CA2594064A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/14Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of a driving or driven pulley

Abstract

A belt tensioner comprises a belt trained on a drive pulley driven by a drive unit mounted on a base supported on an air-spring bellows linearly extendable under fluid pressure from a collapsed position to an extended position to cause joint movement of the base, the drive unit and the drive pulley and thereby change the tension in the belt. A pressure regulator is operatively connected to the air-spring bellows for regulating the fluid pressure in the air-spring bellows such as to maintain the tension substantially constant in the belt during use.

Description

PNEUMATIC BASE FOR FACILITATING THE INSTALLATION AND
TENSIONING OF A DRIVE BELT

FIELD OF THE INVENTION

The present invention generally relates to drive belt transmissions and, more particularly, to belt tensioning devices.

BACKGROUND ART

In belt drive systems, the tension in the drive belt must be maintained above a predetermined level to avoid slippage between the belt and the pulleys.
During use, various factors, such as wear, heat and vibrations may have an impact on the level of tension in the belt. Accordingly, various belt tensioners have been developed over the years to maintain a desired tension in the belt. Such belt tensioners are typically provided in the form of a belt engaging roller mounted at the distal end portion of an actuator and disposed to engage the belt between two pulleys.
The actuator is set to urge the roller in contact with the belt in a belt tensioning direction with a force selected to appropriately tension the belt.

Such system suffers from several drawbacks. For instance, they do not provide for easy installation and removal of a drive belt. Also, they tend to neutralize the vibrations transmitted to the belt by the drive unit instead of suppressing the vibrations at the source. Finally, conventional belt tensioners are provided as additional parts to be installed for the single purpose of tensioning the belt and as such they contribute to increase the installation costs and times.

SUMMARY
It is therefore an aim of the present invention to address the above mentioned concerns.

Therefore, in accordance with a general aspect, there is provided a power transmission belt arrangement comprising a power unit mounted on a pneumatic base, the pneumatic base comprising at least one pneumatic actuator and a power unit mounting plate mounted for pivotal movement about a pivot axis, the pneumatic actuator being displaceable between a collapsed position and an extended position to cause pivotal movement of the power unit mounting plate with the power unit fixedly mounted thereon, a drive pulley mounted to a rotating output shaft of said power unit, a belt trained on the drive pulley and extending around a driven pulley for transmitting a torque from said output shaft to said driven pulley, whereby pivotal movement of said power unit mounting plate via actuation of said pneumatic actuator provides for the adjustment of the distance between the drive pulley and the driven pulley and therefore for the adjustment of the tension in the belt.

In accordance with another general aspect, there is provided a belt tensioner comprising a belt trained on a drive pulley driven by a drive unit mounted on a base supported on at least one air-spring bellows linearly extendable under fluid pressure from a collapsed position to an extended position to cause joint movement of the base, the drive unit and the drive pulley and thereby change the tension in the belt; and a pressure regulator operatively connected to said at least one air-spring bellows for regulating the fluid pressure in said air-spring bellows at a fixed value such as to maintain the tension substantially constant in said belt during use.

In accordance with a further general aspect, there is provided a method of maintaining a desired tension in a drive belt extending around a drive pulley and at least one driven pulley, the drive pulley being mounted on a rotating shaft of a drive unit; the method comprising: mounting the drive unit on a pneumatic base including at least one pneumatic actuator displaceable between a retracted position and an extended position, the movement of the pneumatic actuator varying the distance between the drive pulley and the driven pulley, and setting the pressure of the pneumatic actuator at a fixed value corresponding to the desired tension in the belt, whereby belt tension fluctuations are automatically compensated by a corresponding extension variation of the pneumatic actuator.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a perspective view of a drive belt arrangement in accordance with one embodiment of the present invention; and Fig. 2 is an end view of the drive belt arrangement shown in Fig. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig. 1 shows a power transmission or drive belt arrangement comprising an endless belt 12 extending over a drive pulley 14 and a driven pulley 15. The drive pulley 14 is keyed or otherwise secured to the output shaft 16 of a motor 18. The motor 18 is fixedly mounted on a pneumatic base comprising a horizontally disposed mounting plate 20 which is, in turn, pivotally mounted along a first side 22 to a vertically oriented stationary plate 24. As shown in Fig.
2, the pivot can be provided in the form of a hinge mounted between the undersurface of the mounting plate 20 and the vertically oriented stationary plate 24. The hinge provides a fixed horizontal pivotal axis for the mounting plate 20. Other suitable orientation and pivot arrangement could be used as well.

The pneumatic base of the motor 18 further comprises at least one fluidly driven actuator, such as the air-spring bellows 28 shown in Fig.l. The air-spring bellows 28 is installed underneath the mounting plate 20. The air-spring bellows 28 can be inflated and deflated between extended and collapsed positions to cause upward or downward pivotal movement of the mounting plate 20. By so pivoting the mounting plate 20, the drive pulley 14 can be displaced towards or away from the driven pulley 15, thereby providing for the adjustment of the tension in the drive belt 12. The air-spring bellows 28 is mounted between a stationary bottom surface 30 and the mounting plate 20 at a second side of the mounting plate opposite the first side 22 thereof (i.e. opposite the pivot). The air-spring bellows 28 could, for instance, consists of Air Spring model Y1-1S3 manufactured by ENDINE Inc...
AirstokeTM actuators or AirmountIM isolators manufactured by Firestone Industrial Product Company could be used as well. It is noted that the expression "air-spring bellows" is herein intended to broadly refer to elastomeric or rubber-like bellows adapted to contain a column of a compressed fluid. A wide variety of actuation media such as air, water, nitrogen and other suitable pressurized liquid or gas could be used.
Therefore, the expressions "air-spring bellows" or "pneumatic" should not be construed as only referring to air as the actuation media.

A pressure regulator 30 is operatively connected to the air-spring bellows 28 to adjust the pressure therein according to the desired level of tension in the drive belt 12. The pressure regulator 30 is mounted in a fluid line of a fluid pressure source (typically a source of compressed gas, such as compressed air). The pressure regulator 30 is of standard construction and typically comprises a valve set to maintain the pressure constant in the air-spring bellows irrespective of the volume variations of the bellows.

In use, the air-spring bellows 28 is first deflated or at least partly deflated to permit easy installation of the belt over the pulleys 14 and 15.
Then, the air-spring bellows 28 is inflated to cause the mounting plate 20 to pivot upwardly so as to increase the distance between the pulleys 14 and 15 until reaching the desired tension in the belt 12. The tension in the belt 12 is electronically measured using any appropriate sensing tool. Once the desired tension in the belt has been obtained, the regulator 30 is adjusted to constantly maintain the air-spring bellows 28 at an internal pressure corresponding to the desired tension in the belt 12. Belt wear, heat variations, vibrations as well as other factors may produce variations in the length of the belt 12, which length variations are automatically compensated by a corresponding variation of the volume and, thus, of the height of the air-spring bellows 28. For instance, in the event of an increase of the length of the belt 12, the pressure exerted on the air-spring bellows 28 will decrease and since the internal pressure of the air-spring bellows 28 is maintained at a predetermined set value by the pressure regulator 30, the volume of the air-spring bellows 28 will automatically expand, thereby increasing the distance between the pulleys 14 and 15 and compensating for the belt length increase. In this way, the tension in the belt 12 can be maintained constant at all time irrespective of belt length variations and that without the intervention of an operator. This prevents slippage between the belt 12 and the pulleys 14 and 15. A worn belt can be readily replaced by simply releasing pressure from the air-spring bellows to displace same towards its collapsed position.
The worn belt can then be removed from the pulleys 14 and 15 and a new one installed therearound without requiring any other adjustments.

The positioning of the air-spring bellows underneath the motor is advantageous in that it provide a damping base for the motor which allows reducing the vibrations on all the parts of the system. This contributes to increase the service life of all the parts. It also contributes to reduce the occupational noise in the plant where the belt drive arrangement is installed. The above described pneumatic base thus solves several problems all at once.

The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without department from the scope of the invention disclosed. For instance, it is understood that motor 18 could be replaced with any other suitable types of power or driving units. Also, it is understood that the motor 18 and the air-spring bellows 28 could be vertically oriented as opposed to the illustrated horizontally disposed installation. Other installation angles are contemplated as well. Finally, it is understood that more than one air-spring bellows could be provided underneath the mounting plate 20. Other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.

Claims (12)

1. A power transmission belt arrangement comprising a power unit mounted on a pneumatic base, the pneumatic base comprising at least one pneumatic actuator and a power unit mounting plate mounted for pivotal movement about a pivot axis, the pneumatic actuator being displaceable between a collapsed position and an extended position to cause pivotal movement of the power unit mounting plate with the power unit fixedly mounted thereon, a drive pulley mounted to a rotating output shaft of said power unit, a belt trained on the drive pulley and extending around a driven pulley for transmitting a torque from said output shaft to said driven pulley, whereby pivotal movement of said power unit mounting plate via actuation of said pneumatic actuator provides for the adjustment of the distance between the drive pulley and the driven pulley and therefore for the adjustment of the tension in the belt.
2. The power transmission belt arrangement of claim 1, further comprising a pressure regulator for regulating the pressure of the pneumatic actuator.
3. The power transmission belt arrangement of claim 2, wherein the pressure regulator is mounted between a fluid pressure source and the pneumatic actuator, and wherein the pressure regulator is set at a predetermined pressure corresponding to a desired tension in the belt.
4. The power transmission belt arrangement of claim 1, wherein said pneumatic actuator comprises at least one air-spring bellows.
5. The power transmission belt arrangement of claim 4, wherein said air-spring bellows is mounted underneath said power unit mounting plate at a distance from said pivot axis.
6. A belt tensioner comprising a belt trained on a drive pulley driven by a drive unit mounted on a base supported on at least one air-spring bellows linearly extendable under fluid pressure from a collapsed position to an extended position to cause joint movement of the base, the drive unit and the drive pulley and thereby change the tension in the belt; and a pressure regulator operatively connected to said at least one air-spring bellows for regulating the fluid pressure in said air-spring bellows such as to maintain the tension substantially constant in said belt during use.
7. The belt tensioner of claim 6, wherein said base is pivotally mounted along one side thereof opposite to said air-spring bellows.
8. The belt tensioner of claim 6, wherein a plurality of air-spring bellows are mounted behind said base.
9. A method of maintaining a desired tension in a drive belt extending around a drive pulley and at least one driven pulley, the drive pulley being mounted on a rotating shaft of a drive unit; the method comprising: mounting the drive unit on a pneumatic base including at least one pneumatic actuator displaceable between a retracted position and an extended position, the movement of the pneumatic actuator varying the distance between the drive pulley and the driven pulley, and setting the pressure of the pneumatic actuator at a fixed value corresponding to the desired tension in the belt, whereby belt tension fluctuations are automatically compensated by a corresponding extension variation of the pneumatic actuator.
10. The method of claim 9, wherein setting the pressure comprises regulating the fluid pressure via a pressure regulator mounted between the pneumatic actuator and a source of fluid pressure.
11. The method of claim 10, wherein said pneumatic actuator comprises an inflatable bellows, and wherein setting the pressure comprises initially measuring the tension in the belt while gradually inflating said bellows towards said extended position, and upon reaching the desired tension in the belt, adjusting the pressure regulator to maintain a corresponding level of pressure in the bellows.
12. The method of claim 9, wherein the pneumatic base comprise a drive unit mounting plate, and wherein the method further comprises pivotally mounting the drive unit mounting plate for pivotal movement abut a pivotal axis, and installing the pneumatic actuator underneath said drive unit mounting plate at a location spaced from said pivot axis.
CA002594064A 2007-07-19 2007-07-19 Pneumatic base for facilitating the installation and tensioning of a drive belt Abandoned CA2594064A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002594064A CA2594064A1 (en) 2007-07-19 2007-07-19 Pneumatic base for facilitating the installation and tensioning of a drive belt
AU2007203411A AU2007203411A1 (en) 2007-07-19 2007-07-23 Pneumatic base for facilitating the installation and tensioning of a drive belt
CL2008002030A CL2008002030A1 (en) 2007-07-19 2008-07-11 Transmission system by means of a push belt, to maintain the desired tension in the belt, with an energy unit mounted on a pneumatic base, with a pneumatic actuator and a power unit mounting plate for a pivoting movement around a pivot shaft; a belt tensioner; and method.
PCT/CA2008/001306 WO2009009893A1 (en) 2007-07-19 2008-07-15 Pneumatic base for facilitating the installation and tensioning of a drive belt
PE2008001223A PE20090452A1 (en) 2007-07-19 2008-07-18 PNEUMATIC BASE TO FACILITATE THE INSTALLATION AND TENSION OF A TRANSMISSION BELT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002594064A CA2594064A1 (en) 2007-07-19 2007-07-19 Pneumatic base for facilitating the installation and tensioning of a drive belt

Publications (1)

Publication Number Publication Date
CA2594064A1 true CA2594064A1 (en) 2009-01-19

Family

ID=40259259

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002594064A Abandoned CA2594064A1 (en) 2007-07-19 2007-07-19 Pneumatic base for facilitating the installation and tensioning of a drive belt

Country Status (5)

Country Link
AU (1) AU2007203411A1 (en)
CA (1) CA2594064A1 (en)
CL (1) CL2008002030A1 (en)
PE (1) PE20090452A1 (en)
WO (1) WO2009009893A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781896B2 (en) 2016-07-12 2020-09-22 Wagner Spray Tech Corporation Belt tightening mechanism for a fluid delivery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923210A (en) * 1989-03-28 1990-05-08 Heider Merle J Suspension and leveling system for a vehicle
JP2004511379A (en) * 2000-05-25 2004-04-15 ザ ホランド グループ,インコーポレイテッド Height control system and sensor therefor
US20050113197A1 (en) * 2003-11-25 2005-05-26 Xerox Corporation Bidirectional belt tensioning approach

Also Published As

Publication number Publication date
WO2009009893A1 (en) 2009-01-22
AU2007203411A1 (en) 2009-02-05
CL2008002030A1 (en) 2009-03-27
PE20090452A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US20100087286A1 (en) Pneumatic base for facilitating the installation and tensioning of a drive belt
US6796419B2 (en) Belt tensioning assembly
CN102858660A (en) Belt conveyor
EP2565496A1 (en) Driving force transmission device and method for adjusting same
US20070012520A1 (en) Lift device for industrial vehicle
US20160040759A1 (en) Accessory mounts for tensioning systems
CN211418557U (en) Adjustable conveyor belt tensioning device
CA2594064A1 (en) Pneumatic base for facilitating the installation and tensioning of a drive belt
US20070161444A1 (en) Traction mechanism drive, in particular for an internal combustion engine
JP2005221036A (en) Belt tension regulating device of engine
US3494210A (en) Automatic belt tensioner
US20140051534A1 (en) Belt Tensioner for a Pump Jack
CN204805453U (en) Automatic tensioning ware of adjustable belt of damping
US10781895B2 (en) Belt tensioner for pumpjack
KR200220721Y1 (en) Tension controller of chain belt
CN104913015A (en) Automatic damping-adjustable belt tensioner
KR20100061165A (en) Device for pressing weight in wheel
JP2008101767A (en) Tension adjusting mechanism of power transmission belt to compressor in vehicle air-conditioner
MX2007001932A (en) Method for regulating roller pressure in roller polishers.
US20050066752A1 (en) Test stand for hydraulic oscillator using gas-filled shock absorbers
CN105065592A (en) Automatic belt adjusting and tensioning device
CN203739654U (en) Carrier vehicle and installation device thereof
KR100535414B1 (en) Ascending and descending apparatus
CN218718554U (en) Chain tensioning device of winding machine
CN113830497B (en) Full-automatic hydraulic tensioning device

Legal Events

Date Code Title Description
FZDE Dead