CA2577183C - Mutated hiv nef for modulating immunity - Google Patents

Mutated hiv nef for modulating immunity Download PDF

Info

Publication number
CA2577183C
CA2577183C CA2577183A CA2577183A CA2577183C CA 2577183 C CA2577183 C CA 2577183C CA 2577183 A CA2577183 A CA 2577183A CA 2577183 A CA2577183 A CA 2577183A CA 2577183 C CA2577183 C CA 2577183C
Authority
CA
Canada
Prior art keywords
seq
nef
protein
amino acid
immunosuppressive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2577183A
Other languages
French (fr)
Other versions
CA2577183A1 (en
Inventor
Martial Renard
Marianne Mangeney
Thierry Heidmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut Gustave Roussy (IGR)
Universite Paris Saclay
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut Gustave Roussy (IGR)
Universite Paris Sud Paris 11
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut Gustave Roussy (IGR), Universite Paris Sud Paris 11 filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CA2577183A1 publication Critical patent/CA2577183A1/en
Application granted granted Critical
Publication of CA2577183C publication Critical patent/CA2577183C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/162Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus human T-cell leukaemia-lymphoma virus
    • C07K14/155Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
    • C07K14/16HIV-1 ; HIV-2
    • C07K14/161HIV-1 ; HIV-2 gag-pol, e.g. p55, p24/25, p17/18, p7, p6, p66/68, p51/52, p31/34, p32, p40
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus human T-cell leukaemia-lymphoma virus
    • C07K14/155Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
    • C07K14/16HIV-1 ; HIV-2
    • C07K14/162HIV-1 ; HIV-2 env, e.g. gp160, gp110/120, gp41, V3, peptid T, CD4-Binding site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus human T-cell leukaemia-lymphoma virus
    • C07K14/155Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
    • C07K14/16HIV-1 ; HIV-2
    • C07K14/163Regulatory proteins, e.g. tat, nef, rev, vif, vpu, vpr, vpt, vpx
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16311Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
    • C12N2740/16322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus, feline leukaemia virus, human T-cell leukaemia-lymphoma virus
    • G01N2333/155Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
    • G01N2333/16HIV-1, HIV-2
    • G01N2333/163Regulatory proteins, e.g. tat, nef, rev, vif, vpu, vpr, vpt, vpx

Abstract

The present invention relates to the use of a mutation of at least one amino acid in the immunosuppressive domain of a HIV or SIV accessory protein, for modulating the immunosuppressive property of said protein.

Description

MUTATED HIV NEF FOR MODULATING IMMUNITY
The present invention relates to the use of the immunosuppressive function of an accessory protein of the human or simian immunodeficiency virus for the preparation of a vaccine. In particular, the present invention relates to vaccine compositions comprising a Nef protein.
Although more than 20 years of scientific research have been devoted to finding a vaccine against HIV (Human Immunodeficiency Virus), a convincing prophylactic means to fight HIV is still awaiting to be discovered. Thus, more than 20 clinical trials of anti-HIV
vaccines have been launched, and as of today, none of them has shown sufficient efficacy in preventing infections.
Nef (negative regulatory factor), is a 27 to 35 kDa regulatory protein of HIV
or SW.
Among its various functions, Nef is in particular involved in the down-regulation of the expression of Class I MEC (Major Histocompatibility Complex) molecules (MHC-I) of the A
and B types in humans (HLA-A and HLA-B). This property of Nef has been shown to be sensitive to mutations, however, mutations of 11IV-1 Nef at the amino acid position 93 have proved inefficient at modulating its MHC-I down-regulation properties (Ali et al. (2003) J.
Immunol. 171:3999-4005). Nef is also involved in the down-regulation of CD4 molecules normally expressed at the surface of T helper cells. Furthermore, Nef also down-regulates the expression of mature Class II MEIC molecules and up-regulates the expression of immature Class II MHC molecules. All these regulations are a consequence of Nef interference with normal cellular trafficking and in particular with the endocytosis-degradation pathway (Le Gall et al. (1998) Immunity 8:483-495).
Nef, as one of the antigens of HIV or SW, has been included in several vaccine compositions, alone or in combination with other antigens, such as described, for example, in
2 or in WO 03/011334. However, these approaches have not been demonstrated to be effective either. The lack of an effective immune response against FIN
or SW, as a result of Nef administration, might relate to an as yet unidentified function of Nef, whereas generation of an active vaccine against HIV or SW most probably requires an effective immune response to be raised against Nef.
CONFIRMATION COPY

Thus, an object of the present invention is to relate immunosuppressive properties of HIV or SIV to the Nef protein.
Another object of the invention relates to the identification of an immunosuppressive domain in the Nef protein.
A further object of the invention is to provide pharmaceutical or vaccine compositions comprising a modified Nef protein.
The present invention relates to the use, in particular to the in vitro or to the ex vivo use, of a mutation of at least one amino acid in the immunosuppressive domain of a Nef protein, for modulating the immunosuppressive property of said protein.
In vivo, the Nef protein is in particular found in HIV (such as HIV-1 or HIV-2) infected individuals or in SW infected apes.
As intended herein, a mutation either relates to the substitution, the insertion or the deletion of at least one amino acid purposely brought to a Nef protein, or to the naturally occurring substitution, insertion or deletion of at least one amino acid in a given Nef protein with respect to the majority of Nef proteins (i.e. at least about 80% of the identified Nef proteins).
According to the invention, a given protein is said to hold an immunosuppressive property, if it is liable to inhibit the immune system of an organism in which it is present. In particular, the immunosuppressive property of said given protein can be measured by following the general procedure described in Mangeney & Heidmann (1998) Proc.
Natl.
Acad. Sci. U.S.A. 95:14920-5 and Mangeney et al. (2001) J Gen.Virol. 82:2515-8. That is, stable tumor cell lines expressing, or in particular excreting, said given protein in the intra- or extracellular space are established and engrafted onto mice, and the size of the tumors (Apmtein) is compared, after several days, to the size of tumors (Anone) obtained from mice engrafted with tumor cell lines which do not express, or in particular excrete, said given protein. If the size of the tumors which express, or in particular excrete, the given protein is significantly greater than the size of the non-expressing, or in particular the non-excreting tumors, the given protein is said to be immunosuppressive. The immunosuppressive property of a given protein can also be characterized by its immunosuppression index [(Aprotein-Anone)/Anone]. If the immunosuppression index of a given protein is positive then the given protein is said to be immunosuppressive, and if its immunosuppression index is equal to zero or negative, the given protein is said to have essentially no immunosuppressive activity.
The present invention results from the relation which has been established by the Inventors between the immunosuppressive properties of HIV or SIV and the Nef protein. In
3 other temis, the present invention results from the identification of the immunosuppressive function of the Nef protein, which is furthermore shown to be both an intra and an extracellular function. Further, the Inventors have shown that the immunosuppressive function of Nef is independent from the Nef-induced downregulation of CD4 or MHC-1.
Thus, in a preferred embodiment, the invention relates to the use of a mutation of at least one amino acid in the immunosuppressive domain of a Nef protein, for modulating the immunosuppressive property of said protein, provided that the resulting mutated protein presents substantially preserved CD4 and/or MHC-I down-regulation functions with respect to the non-mutated Nef protein.
As intended herein the expression "substantially preserved CD4 and/or MHC-I
down-regulation functions" means that at least 60%, in particular at least 80% of the CD4 and/or MHC-I downregulation functions of a given Nef protein is preserved in the corresponding Nef protein carrying a mutation according to the invention.
The donwregulation of CD4 and MHC-I can be determined by measuring the fluorescence of CD4 or MHC-I expressing cells transformed with increasing amounts of nucleic acids encoding said given protein and contacted with fluorescent anti-CD4 or anti-MHC-I antibodies. Such methods are well known to the man skilled in the art and are in particular described in the following examples.
The immunosuppressive domain of an immunosuppressive protein is defined as being the region of said protein which is responsible for conferring its immunosuppressive activity to said protein and, in particular, it is constituted of all the amino acids, the mutation of which is liable to modulate the immunosuppressive property of said protein.
As intended herein, the expression "modulating the immunosuppressive property"
of a given protein relates to an increase or a decrease in the immunosuppressive property of said protein.
In a preferred embodiment, the invention relates to the above defined use of a mutation of at least one amino acid in the immunosuppressive domain of a Nef protein, for inhibiting the immunosuppressive property of said protein. According to this embodiment the Nef protein presents an imunosuppressive property.
As intended in the present invention, the inhibiting of the immunosuppressive property of a given protein, yields a protein with substantially no immunosuppressive activity, that is having an immunosuppression index equal to zero or negative.
Nef proteins devoid of inu-nunosuppressivity are particularly advantageous for the manufacture of anti-HIV or anti-SIV vaccines. Indeed, vaccine compositions containing Nef
4 proteins devoid of immunosuppressivity according to the present invention are particularly effective at preventing HIV or SW infections since they potently stimulate the immune response and in particular the production of antibodies directed against the Nef protein and the elicitation of a cellular immune response against infected cells which express the Nef protein. This stimulation of the immune response therefore prevents the subsequent immunosuppressive action of Nef when it is liberated in the organism or expressed by infected cells during the initial steps of HIV or SW infection. Thus, the absence of immunosuppression conveyed by the Nef protein, which results from the immune response elicited against Nef, prevents the HIV or SW precocious infectious cycles from being effective and favour the elimination of the virus by the immune system.
In particular, vaccine compositions according to the invention are more effective than Nef-containing compositions of the prior art to induce an anti-HIV or anti-SW
response from the immune system, since it is herein disclosed that non-mutated Nef is in itself an inhibitor of the immune system.
In another preferred embodiment, the invention relates to the above defined use, to obtain a Nef protein mutated in its immunosuppressive domain, or a fragment thereof, provided said fragment comprises the mutated immunosuppressive domain of said Nef protein, for the manufacture of a medicament or a vaccine intended for the prevention and/or the treatment of viral diseases. =
As intended herein, viral diseases encompass all diseases or syndromes resulting from a viral infection, such as AIDS for instance. Besides, vaccines according to the invention are meant to be used prophylactically or therapeutically.
In yet another preferred embodiment, the invention relates to the above defined use, wherein the structure of the Nef protein is substantially preserved.
The substantial preservation of the structure of a Nef protein mutated in its immunosuppressive domain with respect to its natural counterpart can be for instance determined by comparing the circular dichroism spectra, the RMN spectra, the X-ray diffraction pattern, or any other physicochemical property of said mutated Nef protein with that of the natural Nef protein from which it derives, according to methods well known to the man skilled in the art. It is to be noted that, as intended herein, the natural Nef protein from which the mutated Nef protein is deriving presents an immunosuppressive activity.
In a further preferred embodiment, the invention relates to the above defined use, wherein the epitopes, in particular the conformational epitopes, of the Nef protein are substantially preserved. In particular, B-cell epitopes as well as T-cell epitopes are preserved.

More particularly, the invention relates to the above defined use, wherein the epitopes, in particular the conformational epitopes, located outside of the immunosuppressive domain of the Nef protein are substantially preserved.
The substantial preservation of the epitopes for a Nef protein mutated in its In another further preferred embodiment, the invention relates to the above defined use, wherein the intracellular functional properties of the Nef protein other than its More preferably, the invention relates to the above defined use, wherein the and/or MHC-I down-regulation functions of the Nef protein are substantially preserved.
The intracellular functional properties of the Nef protein other than its immunosuppressive properties relate to the non-immunosuppressive functions of the protein The down-regulation of CD4 and MHC-I expression by a given protein can be determined by measuring the fluorescence of CD4 or MI-IC-I expressing cells transformed with increasing amounts of nucleic acids encoding said given protein and contacted with The present invention also relates to a process for cancelling the immunosuppressive property of a Nef protein, comprising:
- mutating the immunosuppressive domain of said Nef protein by deletion, substitution or - checking the cancelling of said immunosuppressive activity by an in vivo immunosupressivity assay, The in vivo immunosuppressivity assay corresponds to the above described assay.
A preferred embodiment of the above mentioned process comprises a further step of Another preferred embodiment of the above mentioned process comprises a further step of checking that the structure and/or the epitopes, in particular the epitopes located outside the immunosuppressive domain, and/or the CD4 and/or MHC-I down-regulation functions, of the Nef protein are substantially preserved.
The substantial preservation of the structure and/or the epitopes, and/or the and/or MHC-I down-regulation functions, of the Nef protein can be deteunined as described above.
The present invention relates in particular to a pharmaceutical or vaccine composition, comprising as active substance, a protein or a polypeptide comprising or being constituted of a Nef protein or a fragment thereof, wherein = the immunosuppressive domain of said Nef protein is mutated by deletion, substitution and/or insertion of at least one amino acid, provided that said Nef protein has substantially no immunosuppressive activity, and = said fragment comprises the mutated immunosuppressive domain of said Nef protein and has substantially no immunosuppressive activity, in association with a pharmaceutically acceptable carrier.
In particular, the sequences adjacent to the respective N-terminal and C-terminal ends of said fragment can be identical to the sequences adjacent to the respective N-terminal end and C-terminal end of said fragment in the Nef protein from which it derives.
In a particular embodiment of the above mentioned pharmaceutical or vaccine composition the protein or polypeptide comprising a fragment of Nef protein is such that the sequences adjacent to the respective N-terminal and/or C-terminal end of said fragment are different from the sequences adjacent to the respective N-terminal end and/or C-terminal end of said fragment in the Nef protein from which it derives.
More particularly, in another embodiment of the above mentioned pharmaceutical or vaccine composition, the protein or polypeptide comprising a fragment of Nef protein is such that:
= the sequence adjacent to the N-terminal end of said fragment is different from the sequences adjacent to the N-terminal end of said fragment in the Nef protein from which it derives, or = the sequence adjacent to the C-terminal end of said fragment is different from the sequences adjacent to the C-terminal end of said fragment in the Nef protein from which it derives, or = the sequence adjacent to the respective N-terminal and C-terminal ends of said fragment are different from the sequences adjacent to the respective N-terminal and C-terminal ends of said fragment in the Nef protein from which it derives.

The mutated Nef protein or fragment thereof according to the invention is said to be immunosuppressive deficient.
The present invention also relates to a pharmaceutical or vaccine composition, comprising as active substance, a protein or a polypeptide comprising or being constituted of a Nef protein or a fragment thereof, wherein = the immunosuppressive domain of said Nef protein is mutated by deletion, substitution and/or insertion of at least one amino acid, provided that said Nef protein has substantially no immunosuppressive activity and that the CD4 and/or MHC-I down-regulation functions, of the Nef protein are substantially preserved, and = said fragment comprises the mutated immunosuppressive domain of said Nef protein and has substantially no immunosuppressive activity, in association with a pharmaceutically acceptable carrier.
In a. preferred embodiment of the above defined pharmaceutical or vaccine composition, the sequence of the mutated immunosuppressive domain of the Nef protein is comprised in the amino acid sequence extending from the N-terminus of the first a helix to the C-terminus of the second a helix of the Nef protein.
The structure of the Nef protein is in particular described in Arold et at.
(1997) Structure 5:1361-72 and in Grzesiek et al. (1997) Protein Science 6:1248-63.
The nomenclature of the secondary structure elements of the Nef protein, and in particular of its a helices, is based on the structural description of the core domain of the Nef protein, according to Arold et al. (1997) and Grzesiek et at. (1997).
In another preferred embodiment of the above defined pharmaceutical or vaccine composition, the sequence of the mutated immunosuppressive domain of the Nef protein is comprised in a sequence ranging from the amino acid at position 80 to the amino acid at position 150, particularly from the amino acid at position 81 to the amino acid at position 140, of the sequence of said Nef protein, and in particular:
= in a sequence ranging from the amino acid at position 80 to the amino acid at position 120, more particularly from the amino acid at position 81 to the amino acid at position 118, of the sequence of a HIV-1 Nef protein, or = in a sequence ranging from the amino acid at position 104 to the amino acid at position 150, in particular from the amino acid at position 104 to the amino acid at position 140, of the sequence of a HIV-2 Nef protein.
Nef protein sequences can be easily accessed by the man skilled in the art. By way of example, several HIV-1, HIV-2 or SW Nef protein sequences are presented in Figure 4.
More preferably, in the above defined pharmaceutical or vaccine composition, the sequence of the mutated immunosuppressive domain of the EIN-1 Nef protein is comprised in a sequence ranging from the amino acid at position 90 to the amino acid at position 113, in particular from the amino acid at position 90 to the amino acid at position 112, of the sequence of said Nef protein.
In a particular embodiment of the above defined pharmaceutical or vaccine composition, the sequence of the mutated immunosuppressive domain of the Nef protein is comprised in a sequence which is homologous to the amino acid sequence ranging from the amino acid at position 80 to the amino acid at position 120 of SEQ ID NO: 1, in particular from the amino acid at position 81 to the amino acid at position 117 of SEQ ID
NO: 1, more particularly from the amino acid at position 90 to the amino acid at position 112 of SEQ ID
NO: 1.
SEQ ID NO: 1 corresponds to the amino acid sequence of the Nef protein described by Wain-Hobson et al. (1985) Cell 40:9-17 (11IV-1 strain LAI).
According to the invention, two sequences are said to be homologous if they can be aligned by using an algorithm such as defined in Altschul et al., Nucleic Acids Res. (1997) 25:3389 or by using the Clustal W software, well known from the man skilled in the art and described in Thompson et al., Nucleic Acids Res. (1994) 22:4673-4680, for instance.
In particular, two sequences are said to be homologous if the amino acid identity percentage between said two sequences is equal to or larger than about 35%.
By way of example, Figure 4 represents a sequence alignment of several Nef proteins originating from 11IV-1, HIV-2 or SW, as obtained with the Clustal W software.
Sequences homologous to the amino acid sequence ranging from the amino acid at position 81 to the amino acid at position 118 of SEQ JD NO: 1 are boxed.
In another particular embodiment of the above defined pharmaceutical or vaccine composition, the sequence of the mutated immunosuppressive domain of the Nef protein is comprised in a 26 or 27 amino acid-long sequence of said Nef protein, the N-terminal end of said 26 or 27 amino acid-long sequence being the pentapeptide AXiDX2S and the C-terminal end of said 26 or 27 amino acid-long sequence being the amino acid L, in which X1 represents any amino acid, and in particular I, V, L, F, or R, and X2 represents any amino acid, and in particular M, L, or F.
Examples of such sequences are presented in Figure 4.
In yet another particular embodiment of the invention, the above defined pharmaceutical or vaccine composition comprises as active substance a protein or polypeptide comprising or being constituted of a Nef protein or a fragment thereof comprising the following sequence:
AXIDX2SX3X4X5KX6X7GX8LX9G (SEQ ID NO: 3) wherein X1 represents I, L, V, F, or R, X2 represents M, L, or F, X3 represents H, D, or F, X4 represents F or L, X5 represents I or L, X6 represents any amino acid different from E, in particular R, X7 represents K, Q, or R, X8 represents G or no amino acid, X9 represents E, D, or R.
SEQ ID NO: 3 comprises the immunosuppressive domain of Nef.
Examples of such sequences are presented in Figure 4.
According to a particularly preferred embodiment of the invention, the above defined pharmaceutical or vaccine composition comprises as active substance a protein or polypeptide comprising or being constituted of a Nef protein or a fragment thereof, wherein the amino acid homologous to the amino acid at position 93 of SEQ ID NO: 1 is replaced by any amino acid different from E, in particular by W, F, M, Y, R, H or K, more particularly by R, H, or K, and preferably by R.
The amino acid homologous to the amino acid at position 93 of SEQ ID NO: 1 can be determined by aligning the sequence of the above mentioned protein or polypeptide with SEQ
ID NO: 1 (for instance using the Clutal W software) and by selecting the amino acid which is aligned with the amino acid at position 93 of SEQ ID NO: 1. By way of example Figure 4 -represents the amino acid homologous to the amino acid at position 93 of SEQ
ED NO: 1 for several Nef proteins originating from HIV-1, HIV-2 or SIV. Advantageously, the single substitution of the amino acid homologous to the amino acid at position 93 of SEQ ID NO: 1 amino acid yields Nef mutants substantially devoid of immunosuppressivity.
According to another particularly preferred embodiment of the invention, the above defined pharmaceutical or vaccine composition comprises as active substance, a protein or
5 polypeptide comprising or being constituted of a HIV-1 Nef protein or a fragment thereof, wherein the amino acid at position 93 of the sequence of said HIV-1 Nef protein is replaced by any amino acid different from E, in particular by W, F, M, Y, R, H or K, more particularly by R, H, or K, and preferably by R.
According to yet another particularly preferred embodiment of the invention, the 10 above defined pharmaceutical or vaccine composition comprises as active substance a Nef protein, wherein the amino acid homologous to the amino acid at position 93 of SEQ ID NO:
1 is replaced by any amino acid different from E, in particular by W, F, M, Y, R, H or K, more particularly by R, H, or K, and preferably by R.
By way of example, as depicted in Figure 6B, the position homologous to the position 93 of HIV-1 Nef corresponds to position 125 in SW strain mac239 Nef (SEQ ID
NO: 22) and the substitution of the E at position 125 in SW strain mac239 Nef by R yields an immunosuppressive-deficient Nef mutant (SEQ ID NO: 23).
According to a most preferred embodiment of the invention, the above defined pharmaceutical or vaccine composition comprises as active substance a mutated Nef protein corresponding to SEQ ID NO: 2.
In yet another preferred embodiment of the invention, the above defined pharmaceutical or vaccine composition is characterized in that when a Nef protein is comprised in said pharmaceutical or vaccine composition, the structure of the Nef protein is substantially preserved.
In a further preferred embodiment of the invention, the above defined pharmaceutical or vaccine composition is characterized in that when a Nef protein is comprised in said pharmaceutical or vaccine composition, the epitopes, such as B cell or T cell epitopes, in particular the conformational epitopes, of the Nef protein are substantially preserved.
More particularly, the invention relates to the above defined pharmaceutical or vaccine composition, wherein the epitopes, in particular the conformational epitopes, located outside of the immunosuppressive domain of the Nef protein are substantially preserved.
In another further preferred embodiment of the invention, the above defined pharmaceutical or vaccine composition is characterized in that when a Nef protein is .
comprised in said pharmaceutical or vaccine composition, the intracellular functional properties other than the immunosuppressive properties of the Nef protein are substantially preserved.
More preferably, the invention relates to the above defined pharmaceutical or vaccine composition, wherein the CD4 and/or MHC-I down-regulation functions of the Nef protein are substantially preserved.
The present invention also relates to the protein or polypeptide as defined in the above mentioned pharmaceutical or vaccine composition.
In particular, the present invention relates to a protein represented by SEQ
ID NO: 2 or SEQ ID NO: 31.
The present invention also relates to a pharmaceutical or vaccine composition, comprising as active substance a nucleic acid encoding a protein or polypeptide such as defined above.
The present invention also relates to the nucleic acid sequences coding for the protein or the polypeptide as defined in the above mentioned pharmaceutical or vaccine composition.
In particular, the present invention relates to a nucleic acid sequence coding for a protein represented by SEQ ID NO: 2 or SEQ ID NO: 31.
The present invention also relates to the use of a protein or a polypeptide as defined above, or of a nucleic acid as defined above, for the manufacture of a medicament or a vaccine intended for the prevention and/or the treatment of viral diseases, such as HIV
infections.
In a preferred embodiment of the invention, the above defined medicament, or the above defined pharmaceutical or vaccine composition comprising a protein or a polypeptide as defined above as active substance, also comprise at least one HIV protein or lipopeptide, or a fragment thereof, in particular selected from gp41, gp120, gp140, gp160, Env, Gag, Pol, Rev, RT, Vpu or Tat.
In a preferred embodiment of the invention, the above defined medicament, or the above defined pharmaceutical or vaccine composition comprising as active substance a nucleic acid encoding a protein or polypeptide such as defined above, also comprise at least one nucleic acid encoding a HIV protein, or a fragment thereof, in particular selected from a nucleic acid encoding gp120, gp140, gp160, Env, Gag, Pol, Rev, RT, Vpu or Tat.
In another preferred embodiment of the above defined medicament, or the above defined pharmaceutical or vaccine composition comprising as active substance a nucleic acid encoding a protein or polypeptide such as defined above, the nucleic acid is naked or comprised in a vector, in particular selected from a canarypox viral vector, an adenoviral vector, or a measles viral vector.
The present invention also relates to the use of a protein or a polypeptide as defined above, for the preparation of:
- polyclonal or monoclonal antibodies, or fragments thereof, such as Fab or F(ab)'2 fragments, directed against said protein or polypeptide as defined above, scFv polypeptides directed against said protein or polypeptide as defined above, - aptamers directed against said protein or polyp eptide as defined above, - binding peptides directed against said protein or polypeptide as defined above.
The procedures for the preparation of the above mentioned antibodies or fragments of antibodies, scFv polypeptides, aptamers, or binding peptides, are particularly well known to the man skilled in the art. As regards binding peptides, they can also be prepared according to methods well known to the man skilled in the art, such as ribosome or phage display methods.
The present invention also relates to antibodies or fragments thereof, scFv polypeptides, aptamers, or binding peptides, directed against the above defined proteins or polypeptides involved in the invention, provided that said antibodies or fragments thereof, scFv polypeptides, or aptamers do not bind to proteins or polypeptides different from the above defined proteins or polypeptides involved in the invention.
As intended herein, the above defined antibodies or fragments thereof, scFv polypeptides, aptamers, or binding peptides, bind specifically to the proteins or the polypeptides according to the invention, in other words they are specific ligands for the proteins or the polypeptides according to the invention. In particular, the specificity of these ligands is such that they bind to the proteins or polypeptides according to the invention, but not to the proteins from which said proteins or polypeptides according to the invention are derived by mutation.
The present invention also relates to a method for preparing mutants of a Nef protein, wherein:
in a first step, the sequence ranging from the amino acid at position 80 to the amino acid at position 150 of the sequence said Nef protein is mutated by deletion, insertion or substitution of at least one amino acid, in a second step, the immunosuppressive properties of the mutated Nef protein obtained in the first step are checked and mutants lacking immunosuppressive properties are selected.

The mutants obtained according to this method are immunosuppressive-deficient mutants.
In a preferred embodiment of the above defined method for preparing mutants of a Nef protein, in a third step the CD4 and/or MHC-I downregulation functions of the mutated Nef protein obtained in the second step are checked and mutated Nef proteins having substantially preserved CD4 and/or MHC-I downregulation functions with respect to said Nef protein are selected.
In another preferred embodiment of the above defined method for preparing mutants of a Nef protein, the mutated sequence ranges:
from the amino acid at position 80 to the amino acid at position 120, more particularly from the amino acid at position 90 to the amino acid at position 112, of the sequence of a HIV-1 protein, or from the amino acid at position 104 to the amino acid at position 150 of the sequence of a HIV-2 Nef protein.
In another preferred embodiment of the above defined method for preparing mutants of a Nef protein, the sequence of the Nef protein is mutated by directed mutagenesis of the nucleic acid sequence coding for said Nef protein.
In another preferred embodiment of the above defined method for preparing mutants of a Nef protein, the immunosuppressive properties of the mutated Nef protein are checked according to the general procedure described in Mangeney & Heidmann (1998) Proc. Natl.
Acad. Sci. U.S.A. 95:14920-5 and Mangeney et al. (2001) J. Gen.Virol. 82:2515-8 as defined above, in particular the above-defined immunosuppression index is measured and mutated Nef protein having immunosuppression indexes equal to zero or negative are selected.
The down-regulation of CD4 and MHC-I expression by a given protein can be determined by measuring the fluorescence of CD4 or MHC-I expressing cells transformed with increasing amounts of nucleic acids encoding said given protein and contacted with fluorescent anti-CD4 or anti-MHC-I antibodies. Such methods are well known to the man skilled in the art and are in particular described in the following examples.
The present invention also relates to the mutants of a Nef protein liable to be prepared by the above defined method and to pharmaceutical compositions comprising said mutants of a Nef protein in association with a pharmaceutically acceptable carrier.
The present invention also relates to a new protein or polypeptide comprising or being constituted by the immunosuppressive domain of a Nef protein, provided that if present, the sequences adjacent to the respective N-terminal end and/or C-terminal end of the immunosuppressive domain in said protein or polypeptide are different from the sequences adjacent to the respective N-terminal end and/or C-terminal end of the immunosuppressive domain in the Nef protein from which it derives.
More particularly, in an embodiment of the above defined new protein or polypeptide:
= the sequence adjacent to the N-terminal end of the immunosuppressive domain is different from the sequences adjacent to the N-terminal end of the immunosuppressive domain in the Nef protein from which it derives, or = the sequence adjacent to the C-terminal end of the immunosuppressive domain is different from the sequences adjacent to the C-terminal end of the immunosuppressive domain in the Nef protein from which it derives, or = the sequence adjacent to the respective N-terminal and C-terminal ends of the immunosuppressive domain are different from the sequences adjacent to the respective N-terminal and C-terminal ends of the immunosuppressive domain in the Nef protein from which it derives.
In a particular embodiment of the present invention, the new protein or polypeptide as defined above presents CD4 and/or MHC-I down-regulation functions.
The Nef immunosuppressive domain which constitutes or is comprised in the above defined new protein or polypeptide can be either mutated or not with respect to the immunosuppressive domain of naturally occurring Nef proteins.
Thus, the new protein or polypeptide as defined above can be immunosuppressive, in the general case, if the Nef immunosuppressive domain which it comprises or which it is constituted of, derives without mutations from a naturally occuring Nef protein, which generally presents immunosuppressive properties.
The new protein or polypeptide can also comprise or be constituted of a Nef immunosuppressive domain which is mutated with respect to its natural form.
This mutation can either be silent as concerns the immunosuppressive properties of the Nef immunosuppressive domain, which means, in the general case, that it does not affect the immunosuppressive properties of the Nef immunosuppressive domain, or the mutation can render the immunosuppressive domain immunosuppressive-deficient, as is the case for the above-mentioned mutations affecting Nef immunosuppressive domain.
Further, in certain particular cases, the immunosuppressive domain can also derive from naturally occuring Nef variants devoid of immunosuppressive properties.
In a preferred embodiment of the above defined new protein or polypeptide, the sequence of the immunosuppressive domain of the Nef protein is comprised in the amino acid sequence extending from the N-terminus of the first a helix to the C-terminus of the second a helix of the Nef protein.
In another preferred embodiment of the above defined new protein or polypeptide, the sequence of the immunosuppressive domain of the Nef protein is comprised in a sequence ranging from the amino acid at position 80 to the amino acid at position 150, particularly from the amino acid at position 81 to the amino acid at position 140, of the sequence of said Nef protein, and in particular:
= in a sequence ranging from the amino acid at position 80 to the amino acid at position 120, more particularly from the amino acid at position 81 to the amino acid at position 10 118, of the sequence of a HIV-1 Nef protein = in a sequence ranging from the amino acid at position 104 to the amino acid at position 150, in particular from the amino acid at position 104 to the amino acid at position 140, of the sequence of a HIV-2 Nef protein.
More preferably, in the above defined new protein or polypeptide, the sequence of the immunosuppressive domain of the HIV-1 Nef protein is comprised in a sequence ranging from the amino acid at position 90 to the amino acid at position 113, in particular from the amino acid at position 90 to the amino acid at position 112, of the sequence of said Nef protein.
In another preferred embodiment of the above defined new protein or polypeptide, the sequence of the immunosuppressive domain of the Nef protein is comprised in a sequence which is homologous to the amino acid sequence ranging from the amino acid at position 80 to the amino acid at position 120 of SEQ ID NO: 1, in particular from the amino acid at position 81 to the amino acid at position 117 of SEQ ID NO: 1, more particularly from the amino acid at position 90 to the amino acid at position 112 of SEQ ID NO: 1.
In a particularly preferred embodiment of the above defined new protein or polypeptide, the sequence of the immunosuppressive domain of the Nef protein is comprised in a 26 or 27 amino acid-long sequence, the N-terminal end of said Nef protein, the N-terminal end of said 26 or 27 amino acid-long sequence being the pentapeptide AXIDX2S and the C-terminal end of said 26 or 27 amino acid-long sequence being the amino acid L, in which X1 represents any amino acid, and in particular I, V, L, F, or R, and X2 represents any amino acid, and in particular M, L, or F.
In a preferred embodiment of the present invention, the Nef immunosuppressive domain which constitutes or is comprised in the above defined new protein or polypeptide is not mutated, such a domain is said to be non-mutated, and is derived from a naturally immunosuppressive Nef protein. Advantageously, the new protein or polypeptide which comprises or is constituted of such a non-mutated domain is immunosuppressive.
In another preferred embodiment, the new protein or polypeptide is constituted of one of the following HIV-1 Nef fragments:
80-120 TYKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 32) 81-120 YKAAVDLSHFLICEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 33) 82-120 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 34) 83-120 AAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 35) 84-120 AVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 36) 85-120 VDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 37) 86-120 DLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 38) 87-120 LSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 39) 88-120 SHFLKEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 40) 89-120 IFLICEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 41) 90-120 FLICEKGGLEGLIHSQRRQDILDLWIYHTQGY (SEQ ID NO: 42) 80-119 TYKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 43) 81-119 YICAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 44) 82-119 KAAVDLSHFLKEICGGLEGLIEISQRRQDILDLWIYHTQG (SEQ ID NO: 45) 83-119 AAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ JD NO: 46) 84-119 AVDLSHFLICEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 47) 85-119 VDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 48) 86-119 DLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 49) 87-119 LSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 50) 88-119 SHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 51) 89-119 HFLKEKGGLEGLIHSQRR.QDILDLWIYHTQG (SEQ ID NO: 52) 90-119 FLKEKGGLEGLIHSQRRQDILDLWIYHTQG (SEQ ID NO: 53) 80-118 TYKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 54) 81-118 YKAAVDLSHFLICEKGGLEGLIEISQRRQDILDLWIYHTQ (SEQ ID NO: 55) 82-118 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 56) 83-118 AAVDLSHFLICEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 57) 84-118 AVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 58) 85-118 VDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 59) 86-118 DLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 60) 87-118 LSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 61) 88-118 SHFLKEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 62) 89-118 HFLICEKGGLEGLIHSQRRQDILDLWIYHTQ (SEQ ID NO: 63) 90-118 FLKEKGGLEGLIEISQRRQDILDLWIYHTQ (SEQ ID NO: 64) 80-117 TYKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 65) 81-117 YKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 66) 82-117 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 67) 83-117 AAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 68) 84-117 AVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 69) 85-117 VDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 70) 86-117 DLSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 71) 87-117 LSHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 72) 88-117 SHFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 73) 89-117 HFLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 74) 90-117 FLKEKGGLEGLIHSQRRQDILDLWIYHT (SEQ ID NO: 75) 80-116 TYKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 76) 81-116 YICAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 77) 82-116 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 78) 83-116 AAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 79) 84-116 AVDLSHFLICEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 80) 85-116 VDLSHFLICEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 81) 86-116 DLSHFLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 82) 87-116 LSBYLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 83) 88-116 SHFLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 84) 89-116 HFLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 85) 90-116 FLKEKGGLEGLIHSQRRQDILDLWIYH (SEQ ID NO: 86) 80-115 TYKAAVDLSHFLKEKGGLEGLIEISQRRQDILDLWIY (SEQ ID NO: 87) 81-115 YKAAVDLSHFLKEKGGLEGLIEISQRRQDILDLWIY (SEQ ID NO: 88) 82-115 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIY (SEQ ID NO: 89) 83-115 AAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIY (SEQ ID NO: 90) 84-115 AVDLSHILKEKGGLEGLIEISQRRQDILDLWIY (SEQ ID NO: 91) 85-115 VDLSHFLKEKGGLEGLIHSQRRQDILDLWIY (SEQ ID NO: 92) 86-115 DLSHFLKEKGGLEGLIHSQRRQDILDLWIY (SEQ ID NO: 93) 87-115 LSHFLKEKGGLEGLIEISQRRQDILDLWIY (SEQ ID NO: 94) 88-115 SHFLKEKGGLEGLIHSQRRQDILDLWIY (SEQ ID NO: 95) 89-115 HFLKEKGGLEGLIHSQRRQDILDLWIY (SEQ ID NO: 96) 90-115 FLKEKGGLEGLIHSQRRQDILDLWIY (SEQ ID NO: 97) 80-114 TYICAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 98) 81-114 YKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 99) 82-114 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 100) 83-114 AAVDLSHFLKEKGGLEGLIEISQRRQDILDLWI (SEQ ID NO: 101) 84-114 AVDLSHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 102) 85-114 VDLSHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 103) 86-114 DLSHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 104) 87-114 LSHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 105) 88-114 SHFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 106) 89-114 HFLKEKGGLEGLIHSQRRQDILDLWI (SEQ ID NO: 107) 90-114 FLKEKGGLEGLIEISQRRQDILDLWI (SEQ ID NO: 108) 80-113 TYKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 109) 81-113 YKAAVDLSHFLICEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 110) 82-113 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 111) 83-113 AAVDLSHFLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 112) 84-113 AVDLSHFLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 113) 85-113 VDLSHFLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 114) 86-113 DLSHFLKEKGGLEGLIEISQRRQDILDLW (SEQ ID NO: 115) 87-113 LSHFLKEKGGLEGLIEISQRRQDILDLW (SEQ ID NO: 116) 88-113 SHFLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 117) 89-113 HFLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 118) 90-113 FLKEKGGLEGLIHSQRRQDILDLW (SEQ ID NO: 119) 80-112 TYKAAVDLSHFLKEKGGLEGLIEISQRRQDILDL (SEQ ID NO: 120) 81-112 YKAAVDLSHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 121) 82-112 KAAVDLSHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 122) 83-112 AAVDLSHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 123) 84-112 AVDLSHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 124) 85-112 VDLSHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 125) 86-112 DLSHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 126) 87-112 LSHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 127) 88-112 SHFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 128) 89-112 HFLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 129) 90-112 FLKEKGGLEGLIHSQRRQDILDL (SEQ ID NO: 130) or of homologous peptide sequences presenting at least 80% sequence identity, preferably 90% identity, with said 111V-1 Nef fragments.
The present invention also relates to new proteins or polypeptides comprising said 111V-1 Nef fragments or homologous peptide sequences, provided that if present, the sequences adjacent to the respective N-terminal end and/or C-terminal end of the 11IV-1 Nef fragments in said protein or polypeptide are different from the sequences adjacent to the respective N-terminal end and/or C-terminal end of the 111V-1 Nef fragments in the Nef proteins from which they derive.

In another preferred embodiment, the new protein or polypeptide is constituted of one of the following HIV-2 Nef fragments:
104-150 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 131) 105-150 VPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 132) __ 106-150 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 133) 107-150 LREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 134) 108-150 REMTYRLARDMSHLIKEICGGLEGLYYSDRRR_RVLDIYLEICEEG (SEQ ID NO: 135) 109-150 EMTYRLARDMSHLIKEKGGLEGLYY SDRRRRVLD1YLEKEEG (SEQ ID NO: 136) 110-150 MTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 137) __ 111-150 TYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 138) 112-150 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 139) 113-150 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 140) 114-150 LARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 141) 115-150 ARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ED NO: 142) __ 116-150 RDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 143) 117-150 DMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 144) 118-150 MSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 145) 119-150 SHLIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 146) 120-150 HLIKEKGGLEGLYYSDRERRVLDIYLEICEEG (SEQ ID NO: 147) __ 121-150 LIKEKGGLEGLYYSDRRRRVLDIYLEKEEG (SEQ ID NO: 148) 104-149 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 149) 105-149 VPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 150) 106-149 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 151) 107-149 LREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 152) __ 108-149 REMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEICEE (SEQ ID NO: 153) 109-149 EMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 154) 110-149 MTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 155) 111-149 TYRLARDMSHLEKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 156) 112-149 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 157) __ 113-149 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEICEE (SEQ ID NO: 158) 114-149 LARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 159) =
115-149 ARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 160) 116-149 RDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 161) 117-149 DMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 162) __ 118-149 MSHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 163) 119-149 SHLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 164) 120-149 HLIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 165) 121-149 LIKEKGGLEGLYYSDRRRRVLDIYLEKEE (SEQ ID NO: 166) 104-148 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 167) __ 105-148 VPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 168) 106-148 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 169) 107-148 LREMTYRLARDMSHLLKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 170) 108-148 REMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 171) 109-148 EMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 172) __ 110-148 MTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 173) 111-148 TYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 174) 112-148 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 175) 113-148 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 176) 114-148 LARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 177) __ 115-148 ARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 178) 116-148 RDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 179) 117-148 DMSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 180) 118-148 MSHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 181) 119-148 SHLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 182) __ 120-148 HLIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 183) 121-148 LIKEKGGLEGLYYSDRRRRVLDIYLEKE (SEQ ID NO: 184) = 104-147 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 185) 105-147 VPLREMTYRLARDMSHLIKEKGGLEGL'YYSDRRRRVLDLYLEK (SEQ ID NO: 186) 106-147 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 187) 107-147 LREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 188) 108-147 REMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 189) 109-147 EMTYRLARDMSHLIICEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 190) 110-147 MTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 191) 111-147 TYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 192) 112-147 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 193) 113-147 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 194) 114-147 LARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 195) 115-147 ARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 196) 116-147 RDMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 197) 117-147 DMSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 198) 118-147 MSHLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 199) 119-147 SHLIKEKGGLEGLYYSDRRRRVLDIYLEIC (SEQ ID NO: 200) 120-147 HLIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ 1D NO: 201) 121-147 LIKEKGGLEGLYYSDRRRRVLDIYLEK (SEQ ID NO: 202) 104-146 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 203) 105-146 VPLREMTYRL,ARDMSHL1KEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 204) 106-146 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 205) 107-146 LREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 206) 108-146 REMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 207) 109-146 EMTYRLARDMSHLEKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 208) 110-146 MTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY LE (SEQ ID NO: 209) 111-146 TYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 210) 112-146 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 211) 113-146 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 212) 114-146 LARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 213) 115-146 ARDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 214) 116-146 RDMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 215) 117-146 DMSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 216) 118-146 MSHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 217) 119-146 SHLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 218) 120-146 HLIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 219) 121-146 LIKEKGGLEGLYYSDRRRRVLDIYLE (SEQ ID NO: 220) 104-145 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 221) 105-145 VPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 222) 106-145 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 223) 107-145 LREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 224) 108-145 REMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 225) 109-145 EMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 226) 110-145 MTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 227) 111-145 TYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 228) 112-145 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 229) 113-145 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 230) 114-145 LARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 231) 115-145 ARDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 232) 116-145 RDMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 233) 117-145 DMSHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 234) 118-145 MSHLLKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 235) 119-145 SHLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 236) 120-145 HLIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 237) 121-145 LIKEKGGLEGLYYSDRRRRVLDIYL (SEQ ID NO: 238) 104-144 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 239) 105-144 VPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 240) 106-144 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 241) 107-144 LREMTYRLARDI4SHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 242) 108-144 REMTYRLARDMSHIECEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 243) 109-144 EMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 244) 110-144 MTYRLARDMSHLIICEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 245) 111-144 TYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 246) 112-144 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 247) 113-144 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 248) 114-144 LARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 249) 115-144 ARDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 250) 116-144 RDMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 251) 5 117-144 DMSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 252) 118-144 MSHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 253) 119-144 SHLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 254) 120-144 HLIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 255) 121-144 LIKEKGGLEGLYYSDRRRRVLDIY (SEQ ID NO: 256) 10 104-143 RVPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ II) NO: 257) 105-143 VPLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 258) 106-143 PLREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 259) 107-143 LREMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 260) 108-143 REMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 261) 15 109-143 EMTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 262) 110-143 MTYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 263) 111-143 TYRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 264) 112-143 YRLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 265) 113-143 RLARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 266) 20 114-143 LARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 267) 115-143 ARDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 268) 116-143 RDMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 269) 117-143 DMSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 270) 118-143 MSHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 271) 119-143 SHLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 272) 120-143 HLIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 273) 121-143 LIKEKGGLEGLYYSDRRRRVLDI (SEQ ID NO: 274) or of homologous peptide sequences presenting at least 80% sequence identity, preferably 90% identity, with said HIV-2 Nef fragments.
The present invention also relates to new proteins or polypeptides comprising said HIV-2 Nef fragments or homologous peptide sequences, provided that if present, the sequences adjacent to the respective N-terminal end and/or C-terminal end of the HIV-2 Nef fragments in said protein or polypeptide are different from the sequences adjacent to the respective N-terminal end and/or C-terminal end of the HIV-2 Nef fragments in the Nef proteins from which they derive.
=
In another particularly preferred embodiment of the above defined new protein or polypeptide, the immunosuppressive domain is mutated by deletion, substitution and/or insertion of at least one amino acid, and in particular the amino acid homologous to the amino acid at position 93 of SEQ ID NO: 1 is replaced by any amino acid different from E, in particular by W, F, M, Y, R, H or K, more particularly by R, H, or K, and preferably by R.
Advantageously, such a new protein or polypeptide is devoid of immunosuppressive activity.
In yet another particularly preferred embodiment of the above defined new protein or polypeptide, the immunosuppressive domain of a HIV-1 Nef protein is mutated by the substitution of the amino acid at position 93 of the sequence of said HIV-1 Nef protein by any amino acid different from E, in particular by W, F, M, Y, R, H or K, more particularly by R, H, or K, and preferably by R.

The present invention also relates to a nucleic acid, characterized in that it codes for a new protein or polypeptide as defined above.
The present invention also relates to peptidomimetics of the new proteins or polypeptides as defined above.
The present invention also relates to antibodies or fragments thereof, scFv polypeptides, aptamers, or binding peptides, directed against a sequence ranging from the amino acid at position 80 to the amino acid at position 150 of a Nef protein, and in particular:
= against a sequence ranging from the amino acid at position 80 to the amino acid at position 120, more particularly from the amino acid at position 90 to the amino acid at position 120, of the sequence of a HIV-1 Nef protein = against a sequence ranging from the amino acid at position 104 to the amino acid at position 150 of the sequence of a HIV-2 Nef protein.
The present invention also relates to antibodies or fragments thereof, scFv polypeptides, aptamers, or binding peptides, directed against the new proteins or polypeptides as defined above, provided that said antibodies or fragments thereof, scFv polypeptides, or aptamers do not bind to Nef proteins wherein the immunosuppressive domains corresponds to that of said new proteins or polypeptides as defined above.
As intended herein the above defined antibodies or fragments thereof, scFv polypeptides, aptamers, or binding peptides, are specific for the new proteins or polypeptides according to the invention (i.e. proteins or polypeptides comprising the immunosuppressive domain of the Nef protein according to the invention). In particular, these antibodies or fragments thereof, scFv polypeptides, or aptamers do not bind to the immunosuppressive domain of the Nef protein in its natural setting, that is, these antibodies or fragments thereof, scFv polypeptides, or aptamers do not bind to natural Nef proteins.
The present invention also relates to a pharmaceutical or vaccine composition, comprising as active substance an above defined new protein or polypeptide, or an above defined nucleic acid encoding said new protein or polypeptide, in association with a pharmaceutically acceptable carrier.
The present invention also relates to the use of a protein or a polypeptide comprising or being constituted of a Nef protein or fragments thereof, wherein said protein or polypeptide presents an immunosuppressive activity, for the manufacture of a medicament intended for the prevention or the treatment of pathologies requiring an inhibition of the immune system, such as allergies, autoirnmune diseases or graft rejections.

In an advantageous embodiment, the invention relates to the above mentioned use of a new protein or polypeptide as defined above, wherein said new protein or polypeptide presents an immunosuppressive property, for the manufacture of a medicament intended for the prevention or the treatment of pathologies requiring an inhibition of the immune system, such as allergies, autoimmune diseases or graft rejections.
The present invention also relates to the use of a protein or a polypeptide comprising or being constituted of a Nef protein or fragments thereof, for screening compounds liable to inhibit the immunosuppressive activity of Nef proteins.
The present invention also relates to the use of a new protein or polypeptide as defined above, for screening compounds liable to inhibit the immunosuppressive activity of Nef proteins.
Advantageously, such compounds which are liable to inhibit the immunosuppressive activity of Nef proteins, can be used as anti-viral agents.
As intended herein the compounds to screen can be of any chemical nature. In particular, the compounds to screen are included in chemical compound libraries.
In a preferred embodiment of the above defmed use of a new protein or polypeptide as defined above, the sequence of the immunosuppressive domain of the Nef protein corresponds to a non-mutated sequence.
The present invention also relates to compounds liable to inhibit the immunosuppressive activity of Nef proteins. Such compounds may be useful for the manufacture of pharmaceutical compositions, in particular intended for the prevention or the treatment of viral diseases, such as HIV or SW infections.
The immunosuppressive-inhibitory activity of these compounds can be determined by measuring the immunosuppression index of a given Nef protein in the absence or in the presence of the compounds. A compound will be said to possess an immunosuppressive-inhibitory activity when the immunosuppression index of a given Nef protein in the presence of said compound is decreased with respect to the the immunosuppression index of the same Nef protein in the absence of said compound.
The present invention also relates to the use of ligands of the immunosuppressive domain of Nef proteins, such as antibodies or fragments thereof, scFv polypeptides, aptamers, or binding peptides, to screen for compounds liable to inhibit the immunosuppressive activity of Nef proteins.
The present invention also relates to a method to screen for compounds liable to inhibit the immunosuppressive activity of Nef proteins, comprising the following steps:

- contacting a Nef protein, or a fragment thereof comprising the immunosuppressive domain of a Nef protein, or a new protein or polypeptide as defined above, with compounds to screen, - selecting the compounds which bind to the immunosuppressive domain of the Nef protein, or of the fragment thereof comprising the immunosuppressive domain of said Nef protein, or of the new protein or polypeptide as defined above, - optionally checking that the selected compounds inhibit the immunosuppressive activity of Nef proteins.
In a preferred embodiment of the invention, the above mentioned screening method comprises the following steps:
- contacting a Nef protein, or a fragment thereof comprising the immunosuppressive domain of a Nef protein, or a new protein or polypeptide as defined above, with a compounds to screen and with a ligand of the immunosuppressive domain, such as an antibody, a scFv polypeptide, an aptamer, or a binding peptide, - selecting the compounds which prevent the binding of the ligand to the Nef protein, or to the Nef fragment, or to a new protein or polypeptide as defined above and which do not bind to said ligand, - optionally checking that the selected compounds inhibit the immunosuppressive activity of Nef proteins.
The present invention also relates to a screening method for compounds liable to inhibit the immunosuppressive activity of Nef proteins, wherein compounds which bind to a Nef protein or a fragment thereof are selected and it is checked that said selected compounds inhibit the immunosuppressive activity of said Nef protein.
The present invention also relates to the compounds which are selected according to the above defined screening method of the invention.
DESCRIPTION OF THE FIGURES
Figure 1 Figure 1 represents the immunosuppression index (vertical axis) of wild type Nef (white column) and of its E93R mutant (grey column).
Figure Figure 2 represents the downregulation of CD4 expression (vertical axis, arbitrary units) by HeLa cells transformed with the indicated amount (horizontal axis, in pig) of wild type Nef expressing vectors (black circles, plain lines) or E93R Nef mutant expressing vectors (white circles, dotted lines).
Figure 3 Figure 3 represents the downregulation of MHC-I expression (vertical axis, arbitrary units, left for Nef, right for the E93R Nef mutant) by 293T cells transformed with the indicated amount (horizontal axis, in jig) of wild type Nef expressing vectors (black circles, plain lines) or E93R Nef mutant expressing vectors (white circles, dotted lines).
Figure 4 Figure 4 represents a sequence alignment generated by the Clustal W software of Nef amino-acid sequences from independent HIV-1, HIV-2 and SIV isolates. The part of the sequences of the Nef proteins comprising the immunosuppressive domain is boxed. The amino acids corresponding or homologous to E93 of SEQ ID NO: 1 (NEF HIVB1) are in bold.
The stars represent positions for which amino acids are conserved; single points, positions for which amino acids are substantially conserved; and double points, positions for which amino acids possess similar physicochemical properties.
Figure 5 Figure 5 represents the immunosuppression index of HIV-1 strain LAI Nef and of three of its fragments (1-89, 80-120 and 113-206). The partial sequence of HIV-1 strain LAI
is presented on top of the figure with the position of several amino acids as well as the positions of the fragments. The presence (+) or absence (¨) of an immunosuppressive activity for wild type Nef and for each fragment is indicated on the right (immunosuppression index).
Figure 6A and Figure 6B
Figure 6A represents the immunosuppression index (vertical axis) of HIV-1 strain Al Nef (left column) and for HIV-2 strain ST Nef (right column).
Figure 6B represents the immunosuppression index (vertical axis) of SW strain mac239 Nef (left column) and of the corresponding E125R mutant (right column).

EXAMPLES

Cloning of the genes encoding wild type Nef and the E93R Nef mutant HIV-1 strain LAI Nef was retrieved from pCDNA3-Nef (Peden K., Emerman M. and Montagnier L. 1991, Virology 185(2):661-672) (gift from 0. Schwartz, Institut Pasteur, France) by PCR with high-fidelity Pfx Platinum polymerase (Invitrogen) and the following primers:
5'-ATACATGGCCCAGCCGGCCGGTGGCAAGTGGTCAAAAAGTAGT-3' (SEQ II) NO: 4) 10 and 5'-ATACATGGATCCACGCGTTCAGCAGTTCTTGAAGTACTCCGG-3' (SEQ ID NO: 5).
The amplification product was digested with SfiI and BamHI and ligated in the pSecTag2A
vector (Invitrogen) opened with the same enzymes. Nef preceded with the export signal sequence of the vector was then amplified with the following primers:
15 5'-ATACATACCGGTATGGAGACAGACACACTCCTGCTATG-3' (SEQ ID NO: 6), and 5'-ATACATGGATCCACGCGTTCAGCAGTTCTTGAAGTACTCCGG-3' (SEQ ID NO: 7).
The product was digested with Agel and M/uI and ligated into the retroviral vector pDFG-MoTMtag (Mangeney & Heidmann (1998) Proc. Natl. Acad. Sci. U.S.A. 95:14920-5) digested with the same enzymes to obtain pDFG-expNef (SEQ lD NO: 16), expressing the exported 20 version of HIV-Nef (SEQ ID NO: 17).
The mutation E93R was then introduced in pDFG-expNef by ligation of the three following fragments to yield pDFG-expNefE93R (SEQ ID NO: 18), expressing the exported version of E93R Nef (SEQ lID NO: 19):
1) the Agel-Mlul fragment of the vector;
25 2) a PCR product obtained with primers 5'-ATACATACCGGTATGGAGACAGACACACTC-3' (SEQ ID NO: 8) and 5'-ATACATCTTAAGAAAGTGGCTAAGATCTACAGCTGCC-3' (SEQ ID NO: 9) and digested with Af/II;
3) a PCR product obtained with primers 5'-ATACATCTTAAGCGAAAGGGGGGACTGGAAGGG-3' (SEQ ID NO: 10) and 5'-ATACATACGCGTTCAGCAGTTCTTGAA-3 (SEQ ID NO: 11) digested with Aflif and M/uI.

Nef and its mutant E93R were then retrieved from the pDFG-expNef vectors with the following primers:
5'-ATACATGTCGACCCAACTAGAACCATGGGTGGCAAGTGGTCAAAAAGTAG-3' (SEQ
ID NO: 12), and 5'-ATACATACGCGTTCAGCAGTTCTTGAA-3' (SEQ ID NO: 13).
The product was digested with Sall and MluI and ligated into phCMV-envT
(Blaise et al.
(2003) Proc. Natl. Acad. Sci. 100:13013-8) digested with Xhol and M/uI, to yield respectively phCMV-Nef (SEQ ID NO: 20), expressing Nef (SEQ ID NO: 1), and phCMV-NefE93R
(SEQ ID
NO: 21), expressing E93R Nef (SEQ ID NO: 2).
Similarly, the sequences coding for Nef and the E93R Nef mutant with the export signal sequence were respectively extracted from pDFG-expNef and pDFG-expNefE93R and inserted into phCMV to yield phCMV-expNef (SEQ ID NO: 14) and phCMV-expNefE93R

(SEQ NO: 15).

Determination of the immunosuppression index of wild type Nef and of the E93R
Nef mutant The immunosuppression index of Nef and of its E93R mutant were measured following the general procedure described in Mangeney & Heidmann (1998) Proc.
Natl.
Acad. Sci. U.S.A. 95:14920-5 and Mangeney et al. (2001)J. Gen.Virol. 82:2515-8.
Briefly, MCA205 cells were stably transformed by plasmids pDFG-expNef and pDFG-expNefE93R, or optionally by plasmids phCMV-expNef and phCMV-expNefE93R, respectively. 106 MCA cells expressing either wild type Nef, the E93R Nef mutant or no exogenous protein were then injected into Balb/c mice and tumor areas were measured every other day. After 7 to 8 days the immunosuppression index was determined.
The immunosuppression index of a protein was calculated as (Aprotein-Anone)/Anone, where A_ - -protein and Anone are the peak tumor areas obtained with MCA cells expressing the proteins of interest (i.e. Nef or the E93R Nef mutant) and no exogenous protein, respectively.
The results are presented in Figure 1. As can be seen, the immunosuppression index of Nef is approximately 0.6, which indicates that the size of the Nef expressing tumors is 1.6 times bigger than normal tumors, thus demonstrating that Nef is an immunosuppressive protein which inhibits the anti-tumor immune response. In contrast, the immunosuppressive index of the E93R Nef mutant is negative, thus demonstrating that this mutant has no immunosuppressive activity, and that tumors expressing this Nef mutant are more easily recognized and eliminated by the immune system than normal tumors.

Down-regulation of CD4 expression by Nef and its E93R mutant HeLa cells were cotransfected with 1 pg of CMV-CD4 (Janvier et al. (2001) J.
Virol.
75:3971-6) and the indicated amount of phCMV-Nef or phCMV-NefE93R. CD4 expression was then measured by FACS using a PC5-coupled anti-human CD4 antibody (IN12636, Immunotech). The results presented in Figure 2 indicate that wild type Nef and the E93R Nef mutant downregulate CD4 expression to a similar extent. This implies that the structure of the E93R Nef mutant is unchanged with respect to that of wild type Nef.

Down-regulation of MHC-I expression by Nef and its E93R mutant 293T cells were cotransfected with 1 jig of CMV-HLA A2 (Le Gall et al. (2000) J.
Virol. 74:9256-66) and the indicated amount of phCMV-Nef or phCMV-Neffi93R.
MHC-I
expression was measured by FACS with PE-coupled anti human MHC-I antibody (eBioscience).
The results presented in Figure 3 indicate that wild type Nef and the E93R Nef mutant downregulate MHC-I expression to a similar extent. This also implies that the structure of the E93R Nef mutant is unchanged with respect to that of wild type Nef.

Determination of the localization of the immunosuppressive domain of wild type Nef Based on the three-dimensional structure of Nef, three fragments of the Nef protein of HIV-1 strain LAI have been designed in order to determine the localization of the immunosuppressive domain of Nef:
1) a fragment extending from residue number 1 to residue number 89 2) a fragment extending from residue number 80 to residue number 120 3) a fragment extending from residue number 113 to residue number 206 Fragment 2 comprises the putative immunosuppressive domain, while fragments number 1 and 3 do not comprise this domain. Fragment 2 extents both ways from the putative immunosuppressive domain of Nef in order to include the whole two alpha-helical domains containing the putative immunosuppressive domain of Nef, according to the known core structure of the HIV-1 Nef protein (PBD entry lEFN).
The DNAs coding for those fragments were generated by PCR using the Nef gene cloned into the pCDNA3 vector (Peden K., Emerman M. and Montagnier L. 1991, Virology 185(2):661-672) as a template and the following primers pairs:
= for fragment 1:
- atacatggcccagccggccggtggcaagtggtcaaaaagtagt (SEQ ID NO: 22) - atacatacgcgtt.cagtggctaagatctacagctgcctt (SEQ ID NO: 23) = for fragment 2:
- atacatggcccagccggccacttacaaggcagctgtagatcttagc (SEQ ED NO: 24) - atacatacgt.cgttcagccttgtgtgtggtagatccac (SEQ ID NO: 25) = for fragment 3:
- atacatggcccagccggccgatatccttgatctgtggatctaccac (SEQ ID NO: 26) atacataacgcgtt.cagcagttettgaagtactccgg (SEQ ID NO: 27) The PCR products were= digested with SfiI and MluI and cloned into pDFG-expNef opened with the same enzymes, resulting in the genetic fusion of the fragments with the extracellular exportation signal peptide of the human ID( light chain. Thus, the obtained constructs expressed extracellularly localized fragments of Fi1V-1 Nef. They were used in an in vivo immunosuppression assay as described in Example 2. A positive index (+) indicates that the considered fragment has in vivo immunosuppressive properties, whereas an index .
inferior or equal to zero (-) indicates that the considered fragment is devoid of such properties.
As illustrated in Figure 5, the fragment extending from residue 90 to residue 120 of HIV-1 Nef protein displays an immunosuppressive property in vivo. This fragment thus comprises the immunosuppressive domain of Nef. Fragments 1 and 3 indicate that this immunosuppressive domain could be further reduced to amino acids 90 to 112.

Determination of the immunosuppression index of additional wild type Nef proteins The immunosuppression index of Nef was determined as described in Example 2 for HIV-1 strain Al Nef (SEQ ID NO: 28) and for HIV-2 strain ST Nef (SEQ NO: 29).
As expected, the results indicate that these Nef proteins are also immunosuppressive (Figure 6A).

Determination of the immunosuppression index of a SIV Nef and of its E125R
mutant The immunosuppression index was determined for the SIV strain mac239 wild type Nef (SEQ ID NO: 30) and its E125R mutant (SEQ ID NO: 31) as described in Example 2.
The E125R mutation in SIV mac239 Nef is homologous to the above defined E93R
mutation of HIV-1 LAI and was introduced following a procedure similar to that described in Example 1.
The results indicate that the SW Nef protein possesses an immunosuppressive activity while the E¨q2, mutant is completely devoid of such an activity (Figure 6B).

Claims (7)

30
1. A pharmaceutical or vaccine composition, comprising a mutated Nef protein obtained by the substitution of one amino acid within a non mutated Nef protein, said non mutated Nef protein being as set forth in SEQ ID NO: 1, SEQ ID NO: 275, SEQ ID

NO: 276, SEQ ID NO: 277, SEQ ID NO: 278, SEQ ID NO: 279, SEQ ID NO: 280, SEQ ID NO: 281, SEQ ID NO: 282, SEQ ID NO: 283, SEQ ID NO: 284, SEQ ID NO :
285, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, SEQ ID NO: 289, SEQ ID
NO: 290, SEQ ID NO: 291, SEQ ID NO: 292 or SEQ ID NO: 293, said mutated Nef protein having (a) (i) a preserved CD4 downregulation function; (ii) a preserved MHC-I downregulation function; or (iii) preserved CD4 and MHC-I
downregulation functions, with respect to the non mutated Nef protein; and (b) a reduced immunosuppressive activity, wherein - the amino acid at position 93 of SEQ ID NO: 1, SEQ ID NO: 275, SEQ ID NO:
277, SEQ ID NO: 278, SEQ ID NO: 279 or SEQ ID NO: 282, or - the amino acid at position 94 of SEQ ID NO: 276, or - the amino acid at position 96 of SEQ ID NO: 281, or - the amino acid at position 103 of SEQ ID NO: 280, or - the amino acid at position 109 of SEQ ID NO: 291, or - the amino acid at position 112 of SEQ ID NO: 292, or - the amino acid at position 114 of SEQ ID NO: 293, or - the amino acid at position 124 of SEQ ID NO: 287, or - the amino acid at position 125 of SEQ ID NO: 283, SEQ ID NO: 284, SEQ ID
NO: 285, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 289 or SEQ ID NO:
290, is substituted by R, H or K, in association with a pharmaceutically acceptable carrier.
2. The pharmaceutical or vaccine composition according to claim 1, wherein - the amino acid at position 93 of SEQ ID NO: 1, SEQ ID NO: 275, SEQ
ID
NO: 277, SEQ ID NO: 278, SEQ ID NO: 279 or SEQ ID NO: 282, or - the amino acid at position 94 of SEQ ID NO: 276, or - the amino acid at position 96 of SEQ ID NO: 281, or - the amino acid at position 103 of SEQ ID NO: 280, or - the amino acid at position 109 of SEQ ID NO: 291, or - the amino acid at position 112 of SEQ ID NO: 292, or - the amino acid at position 114 of SEQ ID NO: 293, or - the amino acid at position 124 of SEQ ID NO: 287, or - the amino acid at position 125 of SEQ ID NO: 283, SEQ ID NO: 284, SEQ
ID
NO : 285, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 289 or SEQ ID
NO: 290, is substituted by R.
3. The pharmaceutical or vaccine composition according to claim 1 or 2, comprising a mutated Nef protein consisting of SEQ ID NO: 2.
4. A pharmaceutical or vaccine composition, comprising a nucleic acid encoding said mutated Nef protein as defined in any one of claims 1 to 3, and a pharmaceutically acceptable carrier.
5. The use of said mutated Nef protein as defined in any one of claims 1 to 3, or of said nucleic acid as defined in claim 4, for the manufacture of a medicament or a vaccine for the prevention or the treatment of an SIV or HIV infection.
6. A protein as set forth in SEQ ID NO: 2 or SEQ ID NO: 31.
7. A nucleic acid encoding a protein as set forth in SEQ ID NO: 2 or SEQ ID
NO: 31.
CA2577183A 2004-08-17 2005-08-17 Mutated hiv nef for modulating immunity Active CA2577183C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04292056.1 2004-08-17
EP04292056 2004-08-17
PCT/EP2005/008907 WO2006018289A1 (en) 2004-08-17 2005-08-17 Mutated hiv nef for modulating immunity

Publications (2)

Publication Number Publication Date
CA2577183A1 CA2577183A1 (en) 2006-02-23
CA2577183C true CA2577183C (en) 2014-02-18

Family

ID=34931346

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2577183A Active CA2577183C (en) 2004-08-17 2005-08-17 Mutated hiv nef for modulating immunity

Country Status (13)

Country Link
US (1) US8795685B2 (en)
EP (2) EP2420248A1 (en)
JP (1) JP4926060B2 (en)
CN (1) CN101027084B (en)
AU (1) AU2005274324B2 (en)
BR (1) BRPI0514447B8 (en)
CA (1) CA2577183C (en)
DK (1) DK1778282T3 (en)
ES (1) ES2572132T3 (en)
IL (1) IL180921A (en)
MX (1) MX2007001916A (en)
WO (1) WO2006018289A1 (en)
ZA (1) ZA200701180B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2616341T3 (en) * 2006-03-10 2017-06-12 Peptcell Limited HIV regulatory or accessory protein peptides, compositions and their use
MX350689B (en) 2011-12-07 2017-09-13 Viroxis S A S Mutated lentiviral env proteins and their use as drugs.
US9777042B2 (en) * 2011-12-15 2017-10-03 Morehouse School Of Medicine Method of purifying HIV/SIV Nef from exosomal fusion proteins
CN109836480B (en) * 2017-11-29 2023-03-14 陈松明 Recombinant immunosuppressive protein
JP2021532742A (en) * 2018-07-26 2021-12-02 ナンジン レジェンド バイオテック カンパニー, リミテッドNanjing Legend Biotech Co., Ltd. T cells containing NEF and their production methods
JP7454645B2 (en) 2019-07-16 2024-03-22 ギリアード サイエンシーズ, インコーポレイテッド HIV vaccine and its production and use methods
JP2024502658A (en) 2021-01-13 2024-01-22 ヴィロキシ Measles-HIV or measles-HTLV vaccine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079342A (en) * 1986-01-22 1992-01-07 Institut Pasteur Cloned DNA sequences related to the entire genomic RNA of human immunodeficiency virus II (HIV-2), polypeptides encoded by these DNA sequences and use of these DNA clones and polypeptides in diagnostic kits
DE3855947T2 (en) * 1987-01-16 1997-12-11 Pasteur Institut Peptides with the immunological properties of HIV-2
US5221610A (en) * 1988-05-26 1993-06-22 Institut Pasteur Diagnostic method and composition for early detection of HIV infection
US5223423A (en) * 1989-03-31 1993-06-29 United States Of America Characterization of replication competent human immunodeficiency type 2 proviral clone hiv-2sbl/isy
WO1994026776A1 (en) * 1993-05-18 1994-11-24 Biomolecular Research Institute Ltd. Therapeutic compounds
US5519114A (en) * 1993-10-29 1996-05-21 University Of Florida Research Foundation, Inc. Retroviral superantigens, superantigen peptides, and methods of use
FR2756843B1 (en) * 1996-12-09 1999-01-22 Inst Nat Sante Rech Med NON-M NON-O HIV-1 STRAINS, FRAGMENTS AND APPLICATIONS
ES2250151T3 (en) 1999-06-29 2006-04-16 Glaxosmithkline Biologicals S.A. USE OF CPG AS A VACCINE ASSISTANT AGAINST HIV.
JP2004535369A (en) * 2001-03-01 2004-11-25 アメリカ合衆国 Immunogenic HIV peptides for use as reagents and vaccines
GB0118367D0 (en) 2001-07-27 2001-09-19 Glaxosmithkline Biolog Sa Novel use
US7312305B2 (en) * 2002-03-20 2007-12-25 Morehouse School Of Medicine Tumor cytotoxicity induced by modulators of the CXCR4 receptor

Also Published As

Publication number Publication date
BRPI0514447A (en) 2008-06-10
EP2420248A1 (en) 2012-02-22
ES2572132T3 (en) 2016-05-30
IL180921A (en) 2013-07-31
CN101027084A (en) 2007-08-29
DK1778282T3 (en) 2016-06-06
EP1778282A1 (en) 2007-05-02
WO2006018289A1 (en) 2006-02-23
IL180921A0 (en) 2007-07-04
BRPI0514447B1 (en) 2021-03-02
CA2577183A1 (en) 2006-02-23
JP4926060B2 (en) 2012-05-09
US8795685B2 (en) 2014-08-05
BRPI0514447B8 (en) 2021-05-25
JP2008509691A (en) 2008-04-03
MX2007001916A (en) 2007-07-11
AU2005274324A1 (en) 2006-02-23
EP1778282B1 (en) 2016-03-30
ZA200701180B (en) 2008-11-26
CN101027084B (en) 2012-02-22
AU2005274324B2 (en) 2011-06-23
US20080220008A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
CA2577183C (en) Mutated hiv nef for modulating immunity
US7811577B2 (en) Covalently stabilized chimeric coiled-coil HIV gp41 N-peptides with improved antiviral activity
Krebs et al. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA
Moseri et al. An optimally constrained V3 peptide is a better immunogen than its linear homolog or HIV-1 gp120
Bhattacharyya et al. Design of a non-glycosylated outer domain-derived HIV-1 gp120 immunogen that binds to CD4 and induces neutralizing antibodies
EP3589315A1 (en) Compositions and methods for inducing hiv-1 antibodies
WO2017152146A2 (en) Compositions and methods for inducing hiv-1 antibodies
US9731002B2 (en) HIV-1 GP 120 V1/V2 antigens and immunological uses thereof
US10005819B2 (en) Method of purifying authentic trimeric HIV-1 GP140 envelope glycoproteins comprising a long linker and tag
Mathew et al. Display of the HIV envelope protein at the yeast cell surface for immunogen development
US11318197B2 (en) Compositions and methods for inducing HIV-1 antibodies
Morales V1/V2 domain scaffolds to improve the magnitude and quality of protective antibody responses to HIV-1
Kreusel et al. Mouse monoclonal antibodies recognizing the activation domains of HIV-1 rev transactivator

Legal Events

Date Code Title Description
EEER Examination request