CA2576153A1 - Use of n-desmethylclozapine to treat human neuropsychiatric disease - Google Patents
Use of n-desmethylclozapine to treat human neuropsychiatric disease Download PDFInfo
- Publication number
- CA2576153A1 CA2576153A1 CA002576153A CA2576153A CA2576153A1 CA 2576153 A1 CA2576153 A1 CA 2576153A1 CA 002576153 A CA002576153 A CA 002576153A CA 2576153 A CA2576153 A CA 2576153A CA 2576153 A1 CA2576153 A1 CA 2576153A1
- Authority
- CA
- Canada
- Prior art keywords
- clozapine
- desmethylclozapine
- ndmc
- symptoms
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- JNNOSTQEZICQQP-UHFFFAOYSA-N N-desmethylclozapine Chemical compound N=1C2=CC(Cl)=CC=C2NC2=CC=CC=C2C=1N1CCNCC1 JNNOSTQEZICQQP-UHFFFAOYSA-N 0.000 title claims abstract description 505
- 241000282414 Homo sapiens Species 0.000 title claims description 50
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title abstract description 16
- 201000010099 disease Diseases 0.000 title abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 96
- 208000028017 Psychotic disease Diseases 0.000 claims abstract description 37
- 206010012289 Dementia Diseases 0.000 claims abstract description 29
- 208000010412 Glaucoma Diseases 0.000 claims abstract description 26
- 208000019022 Mood disease Diseases 0.000 claims abstract description 26
- 208000004296 neuralgia Diseases 0.000 claims abstract description 26
- 208000021722 neuropathic pain Diseases 0.000 claims abstract description 26
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 claims description 329
- 229960004170 clozapine Drugs 0.000 claims description 309
- 230000000694 effects Effects 0.000 claims description 117
- 208000024891 symptom Diseases 0.000 claims description 100
- 239000003814 drug Substances 0.000 claims description 97
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 claims description 95
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 claims description 94
- 239000000556 agonist Substances 0.000 claims description 79
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 claims description 62
- 239000005557 antagonist Substances 0.000 claims description 49
- 229940079593 drug Drugs 0.000 claims description 43
- 229940124597 therapeutic agent Drugs 0.000 claims description 43
- 230000008484 agonism Effects 0.000 claims description 40
- 239000000164 antipsychotic agent Substances 0.000 claims description 39
- 230000001747 exhibiting effect Effects 0.000 claims description 32
- 229940076279 serotonin Drugs 0.000 claims description 32
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 claims description 28
- 208000017194 Affective disease Diseases 0.000 claims description 22
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 22
- 229940121948 Muscarinic receptor antagonist Drugs 0.000 claims description 19
- 239000002767 noradrenalin uptake inhibitor Substances 0.000 claims description 19
- 229940127221 norepinephrine reuptake inhibitor Drugs 0.000 claims description 19
- 239000003149 muscarinic antagonist Substances 0.000 claims description 18
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 claims description 16
- KLBQZWRITKRQQV-UHFFFAOYSA-N Thioridazine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C KLBQZWRITKRQQV-UHFFFAOYSA-N 0.000 claims description 15
- 229960005017 olanzapine Drugs 0.000 claims description 15
- 239000008194 pharmaceutical composition Substances 0.000 claims description 15
- 230000003542 behavioural effect Effects 0.000 claims description 14
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 claims description 13
- 229960001076 chlorpromazine Drugs 0.000 claims description 13
- 239000003136 dopamine receptor stimulating agent Substances 0.000 claims description 13
- SLVMESMUVMCQIY-UHFFFAOYSA-N mesoridazine Chemical compound CN1CCCCC1CCN1C2=CC(S(C)=O)=CC=C2SC2=CC=CC=C21 SLVMESMUVMCQIY-UHFFFAOYSA-N 0.000 claims description 13
- YVUQSNJEYSNKRX-UHFFFAOYSA-N pimozide Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 YVUQSNJEYSNKRX-UHFFFAOYSA-N 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 13
- 208000028698 Cognitive impairment Diseases 0.000 claims description 12
- 206010026749 Mania Diseases 0.000 claims description 12
- RGCVKNLCSQQDEP-UHFFFAOYSA-N Perphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 RGCVKNLCSQQDEP-UHFFFAOYSA-N 0.000 claims description 12
- 208000010877 cognitive disease Diseases 0.000 claims description 12
- XJGVXQDUIWGIRW-UHFFFAOYSA-N loxapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2OC2=CC=C(Cl)C=C12 XJGVXQDUIWGIRW-UHFFFAOYSA-N 0.000 claims description 12
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 12
- ZTHJULTYCAQOIJ-WXXKFALUSA-N quetiapine fumarate Chemical compound [H+].[H+].[O-]C(=O)\C=C\C([O-])=O.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 ZTHJULTYCAQOIJ-WXXKFALUSA-N 0.000 claims description 12
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 claims description 12
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 claims description 12
- 229940035004 seroquel Drugs 0.000 claims description 12
- 230000019771 cognition Effects 0.000 claims description 11
- 239000003085 diluting agent Substances 0.000 claims description 11
- 230000009977 dual effect Effects 0.000 claims description 11
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 claims description 11
- 239000000952 serotonin receptor agonist Substances 0.000 claims description 11
- 230000003556 anti-epileptic effect Effects 0.000 claims description 10
- 239000001961 anticonvulsive agent Substances 0.000 claims description 10
- 229940082988 antihypertensives serotonin antagonists Drugs 0.000 claims description 10
- 239000003420 antiserotonin agent Substances 0.000 claims description 10
- 229940052760 dopamine agonists Drugs 0.000 claims description 10
- 239000003112 inhibitor Substances 0.000 claims description 10
- PLDUPXSUYLZYBN-UHFFFAOYSA-N Fluphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 PLDUPXSUYLZYBN-UHFFFAOYSA-N 0.000 claims description 9
- 229940088505 compazine Drugs 0.000 claims description 9
- 230000006872 improvement Effects 0.000 claims description 9
- DSKIOWHQLUWFLG-SPIKMXEPSA-N prochlorperazine maleate Chemical compound [H+].[H+].[H+].[H+].[O-]C(=O)\C=C/C([O-])=O.[O-]C(=O)\C=C/C([O-])=O.C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 DSKIOWHQLUWFLG-SPIKMXEPSA-N 0.000 claims description 9
- URKOMYMAXPYINW-UHFFFAOYSA-N quetiapine Chemical compound C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 URKOMYMAXPYINW-UHFFFAOYSA-N 0.000 claims description 9
- 229960004431 quetiapine Drugs 0.000 claims description 9
- 206010012239 Delusion Diseases 0.000 claims description 8
- 231100000868 delusion Toxicity 0.000 claims description 8
- 229940003380 geodon Drugs 0.000 claims description 8
- 229940089527 loxitane Drugs 0.000 claims description 8
- 229940109739 orap Drugs 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 229960000607 ziprasidone Drugs 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 229960003878 haloperidol Drugs 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 229960002784 thioridazine Drugs 0.000 claims description 7
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 claims description 6
- 208000004547 Hallucinations Diseases 0.000 claims description 6
- 229940068796 clozaril Drugs 0.000 claims description 6
- 229950000688 phenothiazine Drugs 0.000 claims description 6
- 229940039925 zyprexa Drugs 0.000 claims description 6
- WSPOMRSOLSGNFJ-AUWJEWJLSA-N (Z)-chlorprothixene Chemical compound C1=C(Cl)C=C2C(=C/CCN(C)C)\C3=CC=CC=C3SC2=C1 WSPOMRSOLSGNFJ-AUWJEWJLSA-N 0.000 claims description 5
- 208000007415 Anhedonia Diseases 0.000 claims description 5
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 claims description 5
- KLPWJLBORRMFGK-UHFFFAOYSA-N Molindone Chemical compound O=C1C=2C(CC)=C(C)NC=2CCC1CN1CCOCC1 KLPWJLBORRMFGK-UHFFFAOYSA-N 0.000 claims description 5
- GFBKORZTTCHDGY-UWVJOHFNSA-N Thiothixene Chemical compound C12=CC(S(=O)(=O)N(C)C)=CC=C2SC2=CC=CC=C2\C1=C\CCN1CCN(C)CC1 GFBKORZTTCHDGY-UWVJOHFNSA-N 0.000 claims description 5
- 230000016571 aggressive behavior Effects 0.000 claims description 5
- 230000009286 beneficial effect Effects 0.000 claims description 5
- 229960001552 chlorprothixene Drugs 0.000 claims description 5
- RMEDXOLNCUSCGS-UHFFFAOYSA-N droperidol Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CC=C(N2C(NC3=CC=CC=C32)=O)CC1 RMEDXOLNCUSCGS-UHFFFAOYSA-N 0.000 claims description 5
- 229960000394 droperidol Drugs 0.000 claims description 5
- 229940095895 haldol Drugs 0.000 claims description 5
- 229960000300 mesoridazine Drugs 0.000 claims description 5
- 229960003634 pimozide Drugs 0.000 claims description 5
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 claims description 5
- 229960003111 prochlorperazine Drugs 0.000 claims description 5
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 claims description 5
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 claims description 4
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 claims description 4
- 229940103472 etrafon Drugs 0.000 claims description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical group [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 4
- 229960000423 loxapine Drugs 0.000 claims description 4
- 238000002483 medication Methods 0.000 claims description 4
- 229940028394 moban Drugs 0.000 claims description 4
- 229960002748 norepinephrine Drugs 0.000 claims description 4
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 claims description 4
- 229940107333 phenergan Drugs 0.000 claims description 4
- 229940080693 reglan Drugs 0.000 claims description 4
- 229940106887 risperdal Drugs 0.000 claims description 4
- 230000008901 benefit Effects 0.000 claims description 3
- 238000010253 intravenous injection Methods 0.000 claims description 3
- IRQVJPHZDYMXNW-UHFFFAOYSA-N metoclopramide dihydrochloride monohydrate Chemical compound O.[Cl-].[Cl-].CC[NH+](CC)CCNC(=O)C1=CC(Cl)=C([NH3+])C=C1OC IRQVJPHZDYMXNW-UHFFFAOYSA-N 0.000 claims 1
- 239000003723 serotonin 1A agonist Substances 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 23
- 108020003175 receptors Proteins 0.000 description 61
- 102000005962 receptors Human genes 0.000 description 60
- 230000004044 response Effects 0.000 description 60
- 150000001875 compounds Chemical class 0.000 description 59
- 230000036515 potency Effects 0.000 description 52
- -1 particularly M Proteins 0.000 description 38
- 238000003556 assay Methods 0.000 description 32
- 230000003389 potentiating effect Effects 0.000 description 32
- 229960004484 carbachol Drugs 0.000 description 27
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 27
- 230000036470 plasma concentration Effects 0.000 description 27
- 239000000472 muscarinic agonist Substances 0.000 description 26
- 241000700159 Rattus Species 0.000 description 25
- 239000003795 chemical substances by application Substances 0.000 description 25
- 238000001727 in vivo Methods 0.000 description 25
- 102000043136 MAP kinase family Human genes 0.000 description 24
- 108091054455 MAP kinase family Proteins 0.000 description 24
- 210000004556 brain Anatomy 0.000 description 23
- 201000000980 schizophrenia Diseases 0.000 description 23
- 230000004913 activation Effects 0.000 description 22
- 102000017927 CHRM1 Human genes 0.000 description 20
- 101150073075 Chrm1 gene Proteins 0.000 description 20
- 229940121743 Muscarinic receptor agonist Drugs 0.000 description 20
- 241000699670 Mus sp. Species 0.000 description 19
- 239000000902 placebo Substances 0.000 description 19
- 229940068196 placebo Drugs 0.000 description 19
- 238000011156 evaluation Methods 0.000 description 18
- 241000282472 Canis lupus familiaris Species 0.000 description 17
- 238000002565 electrocardiography Methods 0.000 description 17
- 230000000144 pharmacologic effect Effects 0.000 description 17
- 210000002966 serum Anatomy 0.000 description 16
- JOLJIIDDOBNFHW-UHFFFAOYSA-N xanomeline Chemical compound CCCCCCOC1=NSN=C1C1=CCCN(C)C1 JOLJIIDDOBNFHW-UHFFFAOYSA-N 0.000 description 16
- 229950006755 xanomeline Drugs 0.000 description 16
- 229940005529 antipsychotics Drugs 0.000 description 15
- 230000002860 competitive effect Effects 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- 238000007920 subcutaneous administration Methods 0.000 description 14
- 238000001990 intravenous administration Methods 0.000 description 13
- 229940044601 receptor agonist Drugs 0.000 description 13
- 239000000018 receptor agonist Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 229940125425 inverse agonist Drugs 0.000 description 12
- 239000002207 metabolite Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 230000000561 anti-psychotic effect Effects 0.000 description 11
- 210000001320 hippocampus Anatomy 0.000 description 11
- 208000013403 hyperactivity Diseases 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 101150049660 DRD2 gene Proteins 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 230000003551 muscarinic effect Effects 0.000 description 10
- 230000000698 schizophrenic effect Effects 0.000 description 10
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 9
- 102000017924 CHRM4 Human genes 0.000 description 9
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 9
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 9
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 9
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 9
- 101100107916 Xenopus laevis chrm4 gene Proteins 0.000 description 9
- 230000007062 hydrolysis Effects 0.000 description 9
- 238000006460 hydrolysis reaction Methods 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 230000004060 metabolic process Effects 0.000 description 9
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 9
- 229960002646 scopolamine Drugs 0.000 description 9
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 8
- 229930003347 Atropine Natural products 0.000 description 8
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 229960004046 apomorphine Drugs 0.000 description 8
- VMWNQDUVQKEIOC-CYBMUJFWSA-N apomorphine Chemical compound C([C@H]1N(C)CC2)C3=CC=C(O)C(O)=C3C3=C1C2=CC=C3 VMWNQDUVQKEIOC-CYBMUJFWSA-N 0.000 description 8
- 229960000396 atropine Drugs 0.000 description 8
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 239000004031 partial agonist Substances 0.000 description 8
- 102000017926 CHRM2 Human genes 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 229940025084 amphetamine Drugs 0.000 description 7
- 239000003693 atypical antipsychotic agent Substances 0.000 description 7
- 230000008499 blood brain barrier function Effects 0.000 description 7
- 210000001218 blood-brain barrier Anatomy 0.000 description 7
- 210000003169 central nervous system Anatomy 0.000 description 7
- 230000009194 climbing Effects 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000000407 monoamine reuptake Effects 0.000 description 7
- 229960001534 risperidone Drugs 0.000 description 7
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 7
- 102000017925 CHRM3 Human genes 0.000 description 6
- 101150060249 CHRM3 gene Proteins 0.000 description 6
- 102000017923 CHRM5 Human genes 0.000 description 6
- 101150064612 CHRM5 gene Proteins 0.000 description 6
- 101150012960 Chrm2 gene Proteins 0.000 description 6
- 102000001554 Hemoglobins Human genes 0.000 description 6
- 108010054147 Hemoglobins Proteins 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 230000008485 antagonism Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 6
- 231100000673 dose–response relationship Toxicity 0.000 description 6
- 210000003743 erythrocyte Anatomy 0.000 description 6
- 230000000971 hippocampal effect Effects 0.000 description 6
- 238000007912 intraperitoneal administration Methods 0.000 description 6
- 210000000265 leukocyte Anatomy 0.000 description 6
- 239000003176 neuroleptic agent Substances 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 229940044551 receptor antagonist Drugs 0.000 description 6
- 239000002464 receptor antagonist Substances 0.000 description 6
- FHPIXVHJEIZKJW-UHFFFAOYSA-N 4'-N-desmethylolanzapine Chemical compound S1C(C)=CC2=C1NC1=CC=CC=C1N=C2N1CCNCC1 FHPIXVHJEIZKJW-UHFFFAOYSA-N 0.000 description 5
- 208000024827 Alzheimer disease Diseases 0.000 description 5
- OGUCZBIQSYYWEF-UHFFFAOYSA-N Clozapine N-oxide Chemical compound C1C[N+](C)([O-])CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 OGUCZBIQSYYWEF-UHFFFAOYSA-N 0.000 description 5
- 241000283984 Rodentia Species 0.000 description 5
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 5
- 229960004373 acetylcholine Drugs 0.000 description 5
- 230000001270 agonistic effect Effects 0.000 description 5
- 229940127236 atypical antipsychotics Drugs 0.000 description 5
- 230000001713 cholinergic effect Effects 0.000 description 5
- QLTXKCWMEZIHBJ-PJGJYSAQSA-N dizocilpine maleate Chemical compound OC(=O)\C=C/C(O)=O.C12=CC=CC=C2[C@]2(C)C3=CC=CC=C3C[C@H]1N2 QLTXKCWMEZIHBJ-PJGJYSAQSA-N 0.000 description 5
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 230000001730 monoaminergic effect Effects 0.000 description 5
- 230000001095 motoneuron effect Effects 0.000 description 5
- 230000000701 neuroleptic effect Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 108010082126 Alanine transaminase Proteins 0.000 description 4
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 4
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 4
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 4
- 238000011740 C57BL/6 mouse Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 102000004420 Creatine Kinase Human genes 0.000 description 4
- 108010042126 Creatine kinase Proteins 0.000 description 4
- 108020004206 Gamma-glutamyltransferase Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000001668 ameliorated effect Effects 0.000 description 4
- HJJPJSXJAXAIPN-UHFFFAOYSA-N arecoline Chemical compound COC(=O)C1=CCCN(C)C1 HJJPJSXJAXAIPN-UHFFFAOYSA-N 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000007012 clinical effect Effects 0.000 description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- 229960004038 fluvoxamine Drugs 0.000 description 4
- CJOFXWAVKWHTFT-XSFVSMFZSA-N fluvoxamine Chemical compound COCCCC\C(=N/OCCN)C1=CC=C(C(F)(F)F)C=C1 CJOFXWAVKWHTFT-XSFVSMFZSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005714 functional activity Effects 0.000 description 4
- 238000002825 functional assay Methods 0.000 description 4
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000012417 linear regression Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 4
- 210000001577 neostriatum Anatomy 0.000 description 4
- 230000000926 neurological effect Effects 0.000 description 4
- 210000001176 projection neuron Anatomy 0.000 description 4
- 210000004129 prosencephalon Anatomy 0.000 description 4
- 238000013222 sprague-dawley male rat Methods 0.000 description 4
- 238000012453 sprague-dawley rat model Methods 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000002562 urinalysis Methods 0.000 description 4
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 3
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 3
- HXTGXYRHXAGCFP-OAQYLSRUSA-N (r)-(2,3-dimethoxyphenyl)-[1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl]methanol Chemical compound COC1=CC=CC([C@H](O)C2CCN(CCC=3C=CC(F)=CC=3)CC2)=C1OC HXTGXYRHXAGCFP-OAQYLSRUSA-N 0.000 description 3
- 108091005436 5-HT7 receptors Proteins 0.000 description 3
- JTEJPPKMYBDEMY-UHFFFAOYSA-N 5-methoxytryptamine Chemical compound COC1=CC=C2NC=C(CCN)C2=C1 JTEJPPKMYBDEMY-UHFFFAOYSA-N 0.000 description 3
- 102000009660 Cholinergic Receptors Human genes 0.000 description 3
- 108010009685 Cholinergic Receptors Proteins 0.000 description 3
- 102000007665 Extracellular Signal-Regulated MAP Kinases Human genes 0.000 description 3
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 3
- 101150104779 HTR2A gene Proteins 0.000 description 3
- 102000004384 Histamine H3 receptors Human genes 0.000 description 3
- 108090000981 Histamine H3 receptors Proteins 0.000 description 3
- UEQUQVLFIPOEMF-UHFFFAOYSA-N Mianserin Chemical compound C1C2=CC=CC=C2N2CCN(C)CC2C2=CC=CC=C21 UEQUQVLFIPOEMF-UHFFFAOYSA-N 0.000 description 3
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 3
- BKRGVLQUQGGVSM-KBXCAEBGSA-N Revanil Chemical compound C1=CC(C=2[C@H](N(C)C[C@H](C=2)NC(=O)N(CC)CC)C2)=C3C2=CNC3=C1 BKRGVLQUQGGVSM-KBXCAEBGSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 3
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 3
- 229960003805 amantadine Drugs 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000000157 blood function Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 229960002802 bromocriptine Drugs 0.000 description 3
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 3
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical compound COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 239000000812 cholinergic antagonist Substances 0.000 description 3
- 229950001684 cinanserin Drugs 0.000 description 3
- RSUVYMGADVXGOU-BUHFOSPRSA-N cinanserin Chemical compound CN(C)CCCSC1=CC=CC=C1NC(=O)\C=C\C1=CC=CC=C1 RSUVYMGADVXGOU-BUHFOSPRSA-N 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- JJCFRYNCJDLXIK-UHFFFAOYSA-N cyproheptadine Chemical compound C1CN(C)CCC1=C1C2=CC=CC=C2C=CC2=CC=CC=C21 JJCFRYNCJDLXIK-UHFFFAOYSA-N 0.000 description 3
- 229960001140 cyproheptadine Drugs 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229960003638 dopamine Drugs 0.000 description 3
- 229960002866 duloxetine Drugs 0.000 description 3
- 229960002464 fluoxetine Drugs 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 229960005417 ketanserin Drugs 0.000 description 3
- FPCCSQOGAWCVBH-UHFFFAOYSA-N ketanserin Chemical compound C1=CC(F)=CC=C1C(=O)C1CCN(CCN2C(C3=CC=CC=C3NC2=O)=O)CC1 FPCCSQOGAWCVBH-UHFFFAOYSA-N 0.000 description 3
- 229960003587 lisuride Drugs 0.000 description 3
- 229960003955 mianserin Drugs 0.000 description 3
- 229960001785 mirtazapine Drugs 0.000 description 3
- RONZAEMNMFQXRA-UHFFFAOYSA-N mirtazapine Chemical compound C1C2=CC=CN=C2N2CCN(C)CC2C2=CC=CC=C21 RONZAEMNMFQXRA-UHFFFAOYSA-N 0.000 description 3
- AGAHNABIDCTLHW-UHFFFAOYSA-N moperone Chemical compound C1=CC(C)=CC=C1C1(O)CCN(CCCC(=O)C=2C=CC(F)=CC=2)CC1 AGAHNABIDCTLHW-UHFFFAOYSA-N 0.000 description 3
- 229960000758 moperone Drugs 0.000 description 3
- 229960004851 pergolide Drugs 0.000 description 3
- YEHCICAEULNIGD-MZMPZRCHSA-N pergolide Chemical compound C1=CC([C@H]2C[C@@H](CSC)CN([C@@H]2C2)CCC)=C3C2=CNC3=C1 YEHCICAEULNIGD-MZMPZRCHSA-N 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- RMHMFHUVIITRHF-UHFFFAOYSA-N pirenzepine Chemical compound C1CN(C)CCN1CC(=O)N1C2=NC=CC=C2NC(=O)C2=CC=CC=C21 RMHMFHUVIITRHF-UHFFFAOYSA-N 0.000 description 3
- 229960004633 pirenzepine Drugs 0.000 description 3
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 2
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 2
- KWGRBVOPPLSCSI-WPRPVWTQSA-N (-)-ephedrine Chemical compound CN[C@@H](C)[C@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WPRPVWTQSA-N 0.000 description 2
- XYIPZQCDLAFBSX-CMPLNLGQSA-N (4ar,9br)-8-methyl-2,3,4,4a,5,9b-hexahydro-1h-pyrido[4,3-b]indole Chemical compound C1CNC[C@H]2C3=CC(C)=CC=C3N[C@@H]21 XYIPZQCDLAFBSX-CMPLNLGQSA-N 0.000 description 2
- WSEQXVZVJXJVFP-HXUWFJFHSA-N (R)-citalopram Chemical compound C1([C@@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-HXUWFJFHSA-N 0.000 description 2
- QUNWUDVFRNGTCO-UHFFFAOYSA-N 1,7-dimethylxanthine Chemical compound N1C(=O)N(C)C(=O)C2=C1N=CN2C QUNWUDVFRNGTCO-UHFFFAOYSA-N 0.000 description 2
- KUWPCJHYPSUOFW-YBXAARCKSA-N 2-nitrophenyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1[N+]([O-])=O KUWPCJHYPSUOFW-YBXAARCKSA-N 0.000 description 2
- FTOAOBMCPZCFFF-UHFFFAOYSA-N 5,5-diethylbarbituric acid Chemical compound CCC1(CC)C(=O)NC(=O)NC1=O FTOAOBMCPZCFFF-UHFFFAOYSA-N 0.000 description 2
- 102000049773 5-HT2A Serotonin Receptor Human genes 0.000 description 2
- 108091005477 5-HT3 receptors Proteins 0.000 description 2
- 108091005435 5-HT6 receptors Proteins 0.000 description 2
- JJMDCOVWQOJGCB-UHFFFAOYSA-N 5-aminopentanoic acid Chemical compound [NH3+]CCCCC([O-])=O JJMDCOVWQOJGCB-UHFFFAOYSA-N 0.000 description 2
- NZDVQIKGLZNHOC-UHFFFAOYSA-N 5h-benzo[d][1,2]benzodiazepine Chemical compound N1N=CC2=CC=CC=C2C2=CC=CC=C12 NZDVQIKGLZNHOC-UHFFFAOYSA-N 0.000 description 2
- ASXGJMSKWNBENU-UHFFFAOYSA-N 8-OH-DPAT Chemical compound C1=CC(O)=C2CC(N(CCC)CCC)CCC2=C1 ASXGJMSKWNBENU-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 229940122578 Acetylcholine receptor agonist Drugs 0.000 description 2
- 206010001540 Akathisia Diseases 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 208000020925 Bipolar disease Diseases 0.000 description 2
- KORNTPPJEAJQIU-KJXAQDMKSA-N Cabaser Chemical compound C1=CC([C@H]2C[C@H](CN(CC=C)[C@@H]2C2)C(=O)N(CCCN(C)C)C(=O)NCC)=C3C2=CNC3=C1 KORNTPPJEAJQIU-KJXAQDMKSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 2
- 229940123603 Dopamine D2 receptor antagonist Drugs 0.000 description 2
- 108091008681 GABAA receptors Proteins 0.000 description 2
- 102000027484 GABAA receptors Human genes 0.000 description 2
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 2
- RPTUSVTUFVMDQK-UHFFFAOYSA-N Hidralazin Chemical compound C1=CC=C2C(NN)=NN=CC2=C1 RPTUSVTUFVMDQK-UHFFFAOYSA-N 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108010028554 LDL Cholesterol Proteins 0.000 description 2
- 238000008214 LDL Cholesterol Methods 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 102000007207 Muscarinic M1 Receptor Human genes 0.000 description 2
- 108010008406 Muscarinic M1 Receptor Proteins 0.000 description 2
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 2
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 102000003946 Prolactin Human genes 0.000 description 2
- 108010057464 Prolactin Proteins 0.000 description 2
- 208000001431 Psychomotor Agitation Diseases 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- 206010039424 Salivary hypersecretion Diseases 0.000 description 2
- 208000008630 Sialorrhea Diseases 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 206010044565 Tremor Diseases 0.000 description 2
- ZZHLYYDVIOPZBE-UHFFFAOYSA-N Trimeprazine Chemical compound C1=CC=C2N(CC(CN(C)C)C)C3=CC=CC=C3SC2=C1 ZZHLYYDVIOPZBE-UHFFFAOYSA-N 0.000 description 2
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 2
- 230000009798 acute exacerbation Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 230000003281 allosteric effect Effects 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 230000001022 anti-muscarinic effect Effects 0.000 description 2
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 2
- 210000004227 basal ganglia Anatomy 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- GIJXKZJWITVLHI-PMOLBWCYSA-N benzatropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(C=1C=CC=CC=1)C1=CC=CC=C1 GIJXKZJWITVLHI-PMOLBWCYSA-N 0.000 description 2
- 229960001081 benzatropine Drugs 0.000 description 2
- 229940049706 benzodiazepine Drugs 0.000 description 2
- 150000001557 benzodiazepines Chemical class 0.000 description 2
- BLGXFZZNTVWLAY-UHFFFAOYSA-N beta-Yohimbin Natural products C1=CC=C2C(CCN3CC4CCC(O)C(C4CC33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-UHFFFAOYSA-N 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 229960004596 cabergoline Drugs 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 239000000544 cholinesterase inhibitor Substances 0.000 description 2
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 2
- DERZBLKQOCDDDZ-JLHYYAGUSA-N cinnarizine Chemical compound C1CN(C(C=2C=CC=CC=2)C=2C=CC=CC=2)CCN1C\C=C\C1=CC=CC=C1 DERZBLKQOCDDDZ-JLHYYAGUSA-N 0.000 description 2
- 229960000876 cinnarizine Drugs 0.000 description 2
- 229960001653 citalopram Drugs 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000003920 cognitive function Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000002124 endocrine Effects 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- VAIOZOCLKVMIMN-PRJWTAEASA-N eplivanserin Chemical compound C=1C=CC=C(F)C=1\C(=N/OCCN(C)C)\C=C\C1=CC=C(O)C=C1 VAIOZOCLKVMIMN-PRJWTAEASA-N 0.000 description 2
- 229950000789 eplivanserin Drugs 0.000 description 2
- 229960004341 escitalopram Drugs 0.000 description 2
- WSEQXVZVJXJVFP-FQEVSTJZSA-N escitalopram Chemical compound C1([C@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-FQEVSTJZSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 230000036449 good health Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000004410 intraocular pressure Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 108010000849 leukocyte esterase Proteins 0.000 description 2
- 229960004194 lidocaine Drugs 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000003137 locomotive effect Effects 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 208000024714 major depressive disease Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- YECBIJXISLIIDS-UHFFFAOYSA-N mepyramine Chemical compound C1=CC(OC)=CC=C1CN(CCN(C)C)C1=CC=CC=N1 YECBIJXISLIIDS-UHFFFAOYSA-N 0.000 description 2
- 229960000582 mepyramine Drugs 0.000 description 2
- RHCSKNNOAZULRK-UHFFFAOYSA-N mescaline Chemical compound COC1=CC(CCN)=CC(OC)=C1OC RHCSKNNOAZULRK-UHFFFAOYSA-N 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- NDVZIUGCCMZHLG-UHFFFAOYSA-N n-methyl-3-(2-methylsulfanylphenoxy)-3-phenylpropan-1-amine Chemical group C=1C=CC=CC=1C(CCNC)OC1=CC=CC=C1SC NDVZIUGCCMZHLG-UHFFFAOYSA-N 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- 210000001009 nucleus accumben Anatomy 0.000 description 2
- 206010029864 nystagmus Diseases 0.000 description 2
- WYWIFABBXFUGLM-UHFFFAOYSA-N oxymetazoline Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C)=C1CC1=NCCN1 WYWIFABBXFUGLM-UHFFFAOYSA-N 0.000 description 2
- XQYZDYMELSJDRZ-UHFFFAOYSA-N papaverine Chemical compound C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 XQYZDYMELSJDRZ-UHFFFAOYSA-N 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 229960002296 paroxetine Drugs 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000001050 pharmacotherapy Methods 0.000 description 2
- CPJSUEIXXCENMM-UHFFFAOYSA-N phenacetin Chemical compound CCOC1=CC=C(NC(C)=O)C=C1 CPJSUEIXXCENMM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- FASDKYOPVNHBLU-ZETCQYMHSA-N pramipexole Chemical compound C1[C@@H](NCCC)CCC2=C1SC(N)=N2 FASDKYOPVNHBLU-ZETCQYMHSA-N 0.000 description 2
- 229960003089 pramipexole Drugs 0.000 description 2
- 210000002442 prefrontal cortex Anatomy 0.000 description 2
- 230000003414 procognitive effect Effects 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 229940097325 prolactin Drugs 0.000 description 2
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 2
- 229960003770 reboxetine Drugs 0.000 description 2
- CBQGYUDMJHNJBX-RTBURBONSA-N reboxetine Chemical compound CCOC1=CC=CC=C1O[C@H](C=1C=CC=CC=1)[C@@H]1OCCNC1 CBQGYUDMJHNJBX-RTBURBONSA-N 0.000 description 2
- 230000036387 respiratory rate Effects 0.000 description 2
- 210000001995 reticulocyte Anatomy 0.000 description 2
- 229950009626 ritanserin Drugs 0.000 description 2
- JUQLTPCYUFPYKE-UHFFFAOYSA-N ritanserin Chemical compound CC=1N=C2SC=CN2C(=O)C=1CCN(CC1)CCC1=C(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 JUQLTPCYUFPYKE-UHFFFAOYSA-N 0.000 description 2
- UHSKFQJFRQCDBE-UHFFFAOYSA-N ropinirole Chemical compound CCCN(CCC)CCC1=CC=CC2=C1CC(=O)N2 UHSKFQJFRQCDBE-UHFFFAOYSA-N 0.000 description 2
- 229960001879 ropinirole Drugs 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 208000022610 schizoaffective disease Diseases 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229960002073 sertraline Drugs 0.000 description 2
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 2
- 229960004425 sibutramine Drugs 0.000 description 2
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000008925 spontaneous activity Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 150000003571 thiolactams Chemical class 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 229960004688 venlafaxine Drugs 0.000 description 2
- PNVNVHUZROJLTJ-UHFFFAOYSA-N venlafaxine Chemical compound C1=CC(OC)=CC=C1C(CN(C)C)C1(O)CCCCC1 PNVNVHUZROJLTJ-UHFFFAOYSA-N 0.000 description 2
- PJDFLNIOAUIZSL-UHFFFAOYSA-N vigabatrin Chemical compound C=CC(N)CCC(O)=O PJDFLNIOAUIZSL-UHFFFAOYSA-N 0.000 description 2
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 1
- XEEQGYMUWCZPDN-DOMZBBRYSA-N (-)-(11S,2'R)-erythro-mefloquine Chemical compound C([C@@H]1[C@@H](O)C=2C3=CC=CC(=C3N=C(C=2)C(F)(F)F)C(F)(F)F)CCCN1 XEEQGYMUWCZPDN-DOMZBBRYSA-N 0.000 description 1
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- IGLYMJRIWWIQQE-QUOODJBBSA-N (1S,2R)-2-phenylcyclopropan-1-amine (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@H]1C[C@@H]1C1=CC=CC=C1.N[C@@H]1C[C@H]1C1=CC=CC=C1 IGLYMJRIWWIQQE-QUOODJBBSA-N 0.000 description 1
- IUMQXQJZIHWLIN-HSZRJFAPSA-N (2R)-2-[[oxo-(2-phenyl-4-quinolinyl)methyl]amino]-2-phenylacetic acid methyl ester Chemical compound N([C@@H](C(=O)OC)C=1C=CC=CC=1)C(=O)C(C1=CC=CC=C1N=1)=CC=1C1=CC=CC=C1 IUMQXQJZIHWLIN-HSZRJFAPSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- HNGIZKAMDMBRKJ-LBPRGKRZSA-N (2S)-2-acetamido-3-(1H-indol-3-yl)propanamide Chemical compound C1=CC=C2C(C[C@H](NC(=O)C)C(N)=O)=CNC2=C1 HNGIZKAMDMBRKJ-LBPRGKRZSA-N 0.000 description 1
- UADPGHINQMWEAG-FROQITRMSA-N (2e)-2-[(5s)-5-hydroxy-5,7,8,9-tetrahydrobenzo[7]annulen-6-ylidene]acetic acid Chemical compound C1CC\C(=C/C(O)=O)[C@H](O)C2=CC=CC=C21 UADPGHINQMWEAG-FROQITRMSA-N 0.000 description 1
- YWPHCCPCQOJSGZ-LLVKDONJSA-N (2r)-2-[(2-ethoxyphenoxy)methyl]morpholine Chemical compound CCOC1=CC=CC=C1OC[C@@H]1OCCNC1 YWPHCCPCQOJSGZ-LLVKDONJSA-N 0.000 description 1
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- OOEMZCZWZXHBKW-SCFUHWHPSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-[6-[(2-methylphenyl)methylamino]purin-9-yl]oxolane-3,4-diol Chemical compound CC1=CC=CC=C1CNC1=NC=NC2=C1N=CN2[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 OOEMZCZWZXHBKW-SCFUHWHPSA-N 0.000 description 1
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- GOTMKOSCLKVOGG-OAHLLOKOSA-N (5R)-8-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol Chemical compound C1([C@@H]2C3=CC(O)=C(Cl)C=C3CCN(C2)C)=CC=CC=C1 GOTMKOSCLKVOGG-OAHLLOKOSA-N 0.000 description 1
- GBBSUAFBMRNDJC-MRXNPFEDSA-N (5R)-zopiclone Chemical compound C1CN(C)CCN1C(=O)O[C@@H]1C2=NC=CN=C2C(=O)N1C1=CC=C(Cl)C=N1 GBBSUAFBMRNDJC-MRXNPFEDSA-N 0.000 description 1
- KPJZHOPZRAFDTN-ZRGWGRIASA-N (6aR,9R)-N-[(2S)-1-hydroxybutan-2-yl]-4,7-dimethyl-6,6a,8,9-tetrahydroindolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@H](CO)CC)C2)=C3C2=CN(C)C3=C1 KPJZHOPZRAFDTN-ZRGWGRIASA-N 0.000 description 1
- DZUOQMBJJSBONO-CQSZACIVSA-N (6ar)-10-methoxy-6-methyl-5,6,6a,7-tetrahydro-4h-dibenzo[de,g]quinoline-11-ol Chemical compound CN1CCC2=CC=CC3=C2[C@H]1CC1=CC=C(OC)C(O)=C13 DZUOQMBJJSBONO-CQSZACIVSA-N 0.000 description 1
- MHPQCGZBAVXCGA-GFCCVEGCSA-N (6ar)-5,6,6a,7-tetrahydro-4h-dibenzo[de,g]quinoline-10,11-diol Chemical compound N1CCC2=CC=CC3=C2[C@H]1CC1=CC=C(O)C(O)=C13 MHPQCGZBAVXCGA-GFCCVEGCSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- XJLSEXAGTJCILF-RXMQYKEDSA-N (R)-nipecotic acid zwitterion Chemical compound OC(=O)[C@@H]1CCCNC1 XJLSEXAGTJCILF-RXMQYKEDSA-N 0.000 description 1
- QHGUCRYDKWKLMG-QMMMGPOBSA-N (R)-octopamine Chemical compound NC[C@H](O)C1=CC=C(O)C=C1 QHGUCRYDKWKLMG-QMMMGPOBSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- PVHUJELLJLJGLN-INIZCTEOSA-N (S)-nitrendipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC([N+]([O-])=O)=C1 PVHUJELLJLJGLN-INIZCTEOSA-N 0.000 description 1
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 1
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical compound NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 description 1
- TYNKKGLBKXZIHX-XLOMBBFOSA-N (z)-but-2-enedioic acid;(5r)-7,8-dimethoxy-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepine Chemical compound OC(=O)\C=C/C(O)=O.C1([C@H]2CN(C)CCC=3C=C(C(=CC=32)OC)OC)=CC=CC=C1 TYNKKGLBKXZIHX-XLOMBBFOSA-N 0.000 description 1
- DYJVZTAMQYDCLP-VCSAJMHUSA-N (z)-but-2-enedioic acid;3-hydroxybutan-2-yl (6ar,9r,10ar)-7-methyl-4-propan-2-yl-6,6a,8,9,10,10a-hexahydroindolo[4,3-fg]quinoline-9-carboxylate Chemical compound OC(=O)\C=C/C(O)=O.C1=CC([C@H]2C[C@H](CN(C)[C@@H]2C2)C(=O)OC(C)C(O)C)=C3C2=CN(C(C)C)C3=C1 DYJVZTAMQYDCLP-VCSAJMHUSA-N 0.000 description 1
- UGLLZXSYRBMNOS-UHFFFAOYSA-N 1,2,3,4-tetrahydro-isoquinoline-7-sulfonic acid amide Chemical compound C1CNCC2=CC(S(=O)(=O)N)=CC=C21 UGLLZXSYRBMNOS-UHFFFAOYSA-N 0.000 description 1
- USFUFHFQWXDVMH-UHFFFAOYSA-N 1-(1-methylindol-5-yl)-3-(3-methyl-1,2-thiazol-5-yl)urea Chemical compound S1N=C(C)C=C1NC(=O)NC1=CC=C(N(C)C=C2)C2=C1 USFUFHFQWXDVMH-UHFFFAOYSA-N 0.000 description 1
- JWDYCNIAQWPBHD-UHFFFAOYSA-N 1-(2-methylphenyl)glycerol Chemical compound CC1=CC=CC=C1OCC(O)CO JWDYCNIAQWPBHD-UHFFFAOYSA-N 0.000 description 1
- VHFVKMTVMIZMIK-UHFFFAOYSA-N 1-(3-chlorophenyl)piperazine Chemical compound ClC1=CC=CC(N2CCNCC2)=C1 VHFVKMTVMIZMIK-UHFFFAOYSA-N 0.000 description 1
- DKMFBWQBDIGMHM-UHFFFAOYSA-N 1-(4-fluorophenyl)-4-(4-methyl-1-piperidinyl)-1-butanone Chemical compound C1CC(C)CCN1CCCC(=O)C1=CC=C(F)C=C1 DKMFBWQBDIGMHM-UHFFFAOYSA-N 0.000 description 1
- SWWQQSDRUYSMAR-UHFFFAOYSA-N 1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol;hydrochloride Chemical group Cl.C1=CC(O)=CC=C1CC1C2=CC(O)=C(O)C=C2CCN1 SWWQQSDRUYSMAR-UHFFFAOYSA-N 0.000 description 1
- OZOMQRBLCMDCEG-CHHVJCJISA-N 1-[(z)-[5-(4-nitrophenyl)furan-2-yl]methylideneamino]imidazolidine-2,4-dione Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(O1)=CC=C1\C=N/N1C(=O)NC(=O)C1 OZOMQRBLCMDCEG-CHHVJCJISA-N 0.000 description 1
- BFUJHVVEMMWLHC-UHFFFAOYSA-N 1-[4-(1,3-benzodioxol-5-ylmethyl)-1-piperazinyl]-2-(4-chlorophenoxy)ethanone Chemical compound C1=CC(Cl)=CC=C1OCC(=O)N1CCN(CC=2C=C3OCOC3=CC=2)CC1 BFUJHVVEMMWLHC-UHFFFAOYSA-N 0.000 description 1
- IVVNZDGDKPTYHK-JTQLQIEISA-N 1-cyano-2-[(2s)-3,3-dimethylbutan-2-yl]-3-pyridin-4-ylguanidine Chemical compound CC(C)(C)[C@H](C)N=C(NC#N)NC1=CC=NC=C1 IVVNZDGDKPTYHK-JTQLQIEISA-N 0.000 description 1
- NZLVRVYNQYGMAB-UHFFFAOYSA-N 1-methyl-4-(9-thioxanthenylidene)piperidine Chemical compound C1CN(C)CCC1=C1C2=CC=CC=C2SC2=CC=CC=C21 NZLVRVYNQYGMAB-UHFFFAOYSA-N 0.000 description 1
- CFJMRBQWBDQYMK-UHFFFAOYSA-N 1-phenyl-1-cyclopentanecarboxylic acid 2-[2-(diethylamino)ethoxy]ethyl ester Chemical compound C=1C=CC=CC=1C1(C(=O)OCCOCCN(CC)CC)CCCC1 CFJMRBQWBDQYMK-UHFFFAOYSA-N 0.000 description 1
- JUDKOGFHZYMDMF-UHFFFAOYSA-N 1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol Chemical compound C1=2C=C(O)C(O)=CC=2CCNCC1C1=CC=CC=C1 JUDKOGFHZYMDMF-UHFFFAOYSA-N 0.000 description 1
- QQJYLLIIPXDRGF-UHFFFAOYSA-N 11h-benzo[b][1,4]benzodiazepin-6-amine Chemical compound NC1=NC2=CC=CC=C2NC2=CC=CC=C12 QQJYLLIIPXDRGF-UHFFFAOYSA-N 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- YFGHCGITMMYXAQ-UHFFFAOYSA-N 2-[(diphenylmethyl)sulfinyl]acetamide Chemical compound C=1C=CC=CC=1C(S(=O)CC(=O)N)C1=CC=CC=C1 YFGHCGITMMYXAQ-UHFFFAOYSA-N 0.000 description 1
- JKYJSFISYHSNOE-UHFFFAOYSA-N 2-[3-[1-[[2-(3,4-dichlorophenyl)-1-oxoethyl]-methylamino]-2-(1-pyrrolidinyl)ethyl]phenoxy]acetic acid Chemical compound C=1C=C(Cl)C(Cl)=CC=1CC(=O)N(C)C(C=1C=C(OCC(O)=O)C=CC=1)CN1CCCC1 JKYJSFISYHSNOE-UHFFFAOYSA-N 0.000 description 1
- ZGGNJJJYUVRADP-ACJLOTCBSA-N 2-[4-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(Cl)C=CC=1)C1=CC=C(OCC(O)=O)C=C1 ZGGNJJJYUVRADP-ACJLOTCBSA-N 0.000 description 1
- NJMYODHXAKYRHW-BLLMUTORSA-N 2-[4-[(3e)-3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl]piperazin-1-yl]ethanol Chemical compound C1CN(CCO)CCN1CC\C=C/1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C2\1 NJMYODHXAKYRHW-BLLMUTORSA-N 0.000 description 1
- PTKSEFOSCHHMPD-SNVBAGLBSA-N 2-amino-n-[(2s)-2-(2,5-dimethoxyphenyl)-2-hydroxyethyl]acetamide Chemical compound COC1=CC=C(OC)C([C@H](O)CNC(=O)CN)=C1 PTKSEFOSCHHMPD-SNVBAGLBSA-N 0.000 description 1
- CJAWPFJGFFNXQI-UHFFFAOYSA-N 2-chloro-6-(1-piperazinyl)pyrazine Chemical compound ClC1=CN=CC(N2CCNCC2)=N1 CJAWPFJGFFNXQI-UHFFFAOYSA-N 0.000 description 1
- GNXFOGHNGIVQEH-UHFFFAOYSA-N 2-hydroxy-3-(2-methoxyphenoxy)propyl carbamate Chemical compound COC1=CC=CC=C1OCC(O)COC(N)=O GNXFOGHNGIVQEH-UHFFFAOYSA-N 0.000 description 1
- SGUAFYQXFOLMHL-UHFFFAOYSA-N 2-hydroxy-5-{1-hydroxy-2-[(4-phenylbutan-2-yl)amino]ethyl}benzamide Chemical compound C=1C=C(O)C(C(N)=O)=CC=1C(O)CNC(C)CCC1=CC=CC=C1 SGUAFYQXFOLMHL-UHFFFAOYSA-N 0.000 description 1
- HQGWKNGAKBPTBX-UHFFFAOYSA-N 2-methoxyidazoxan Chemical compound C1OC2=CC=CC=C2OC1(OC)C1=NCCN1 HQGWKNGAKBPTBX-UHFFFAOYSA-N 0.000 description 1
- FSKFPVLPFLJRQB-UHFFFAOYSA-N 2-methyl-1-(4-methylphenyl)-3-(1-piperidinyl)-1-propanone Chemical compound C=1C=C(C)C=CC=1C(=O)C(C)CN1CCCCC1 FSKFPVLPFLJRQB-UHFFFAOYSA-N 0.000 description 1
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 1
- WAOQONBSWFLFPE-VIFPVBQESA-N 3,5-dichloro-N-[[(2S)-1-ethyl-2-pyrrolidinyl]methyl]-2-hydroxy-6-methoxybenzamide Chemical compound CCN1CCC[C@H]1CNC(=O)C1=C(O)C(Cl)=CC(Cl)=C1OC WAOQONBSWFLFPE-VIFPVBQESA-N 0.000 description 1
- HPOIPOPJGBKXIR-UHFFFAOYSA-N 3,6-dimethoxy-10-methyl-galantham-1-ene Natural products O1C(C(=CC=2)OC)=C3C=2CN(C)CCC23C1CC(OC)C=C2 HPOIPOPJGBKXIR-UHFFFAOYSA-N 0.000 description 1
- PTVWPYVOOKLBCG-UHFFFAOYSA-N 3-(4-phenyl-1-piperazinyl)propane-1,2-diol Chemical compound C1CN(CC(O)CO)CCN1C1=CC=CC=C1 PTVWPYVOOKLBCG-UHFFFAOYSA-N 0.000 description 1
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 1
- GUJRSXAPGDDABA-NSHDSACASA-N 3-bromo-N-[[(2S)-1-ethyl-2-pyrrolidinyl]methyl]-2,6-dimethoxybenzamide Chemical compound CCN1CCC[C@H]1CNC(=O)C1=C(OC)C=CC(Br)=C1OC GUJRSXAPGDDABA-NSHDSACASA-N 0.000 description 1
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 description 1
- PMXMIIMHBWHSKN-UHFFFAOYSA-N 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCC(O)C4=NC=3C)=NOC2=C1 PMXMIIMHBWHSKN-UHFFFAOYSA-N 0.000 description 1
- PCTRYMLLRKWXGF-UHFFFAOYSA-N 4-(butylamino)-1-ethyl-6-methyl-5-pyrazolo[3,4-b]pyridinecarboxylic acid ethyl ester Chemical compound CCCCNC1=C(C(=O)OCC)C(C)=NC2=C1C=NN2CC PCTRYMLLRKWXGF-UHFFFAOYSA-N 0.000 description 1
- UMQUQWCJKFOUGV-VIFPVBQESA-N 4-[(2s)-3-(tert-butylamino)-2-hydroxypropoxy]-1,3-dihydrobenzimidazol-2-one Chemical compound CC(C)(C)NC[C@H](O)COC1=CC=CC2=C1NC(=O)N2 UMQUQWCJKFOUGV-VIFPVBQESA-N 0.000 description 1
- PTGXAUBQBSGPKF-UHFFFAOYSA-N 4-[1-hydroxy-2-(4-phenylbutan-2-ylamino)propyl]phenol Chemical compound C=1C=C(O)C=CC=1C(O)C(C)NC(C)CCC1=CC=CC=C1 PTGXAUBQBSGPKF-UHFFFAOYSA-N 0.000 description 1
- UYNVMODNBIQBMV-UHFFFAOYSA-N 4-[1-hydroxy-2-[4-(phenylmethyl)-1-piperidinyl]propyl]phenol Chemical compound C1CC(CC=2C=CC=CC=2)CCN1C(C)C(O)C1=CC=C(O)C=C1 UYNVMODNBIQBMV-UHFFFAOYSA-N 0.000 description 1
- JYJFNDQBESEHJQ-UHFFFAOYSA-N 5,5-dimethyloxazolidine-2,4-dione Chemical compound CC1(C)OC(=O)NC1=O JYJFNDQBESEHJQ-UHFFFAOYSA-N 0.000 description 1
- REOYOKXLUFHOBV-UHFFFAOYSA-N 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-n-piperidin-1-ylpyrazole-3-carboxamide;hydron;chloride Chemical compound Cl.CC=1C(C(=O)NN2CCCCC2)=NN(C=2C(=CC(Cl)=CC=2)Cl)C=1C1=CC=C(Cl)C=C1 REOYOKXLUFHOBV-UHFFFAOYSA-N 0.000 description 1
- 108010072564 5-HT2A Serotonin Receptor Proteins 0.000 description 1
- 108010072553 5-HT2C Serotonin Receptor Proteins 0.000 description 1
- 102000006902 5-HT2C Serotonin Receptor Human genes 0.000 description 1
- 102100022738 5-hydroxytryptamine receptor 1A Human genes 0.000 description 1
- 101710138638 5-hydroxytryptamine receptor 1A Proteins 0.000 description 1
- 102100036321 5-hydroxytryptamine receptor 2A Human genes 0.000 description 1
- 102100040368 5-hydroxytryptamine receptor 6 Human genes 0.000 description 1
- 101710150235 5-hydroxytryptamine receptor 6 Proteins 0.000 description 1
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 1
- 229940097276 5-methoxytryptamine Drugs 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- BLYMJBIZMIGWFK-UHFFFAOYSA-N 7-(dipropylamino)-5,6,7,8-tetrahydronaphthalen-2-ol Chemical compound C1=C(O)C=C2CC(N(CCC)CCC)CCC2=C1 BLYMJBIZMIGWFK-UHFFFAOYSA-N 0.000 description 1
- JVGBTTIJPBFLTE-UHFFFAOYSA-N 8-(2,3-dihydro-1,4-benzodioxin-3-ylmethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one Chemical compound C1CN(CC2OC3=CC=CC=C3OC2)CCC11C(=O)NCN1C1=CC=CC=C1 JVGBTTIJPBFLTE-UHFFFAOYSA-N 0.000 description 1
- QOYHHIBFXOOADH-UHFFFAOYSA-N 8-[4,4-bis(4-fluorophenyl)butyl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC2(C(NCN2C=2C=CC=CC=2)=O)CC1 QOYHHIBFXOOADH-UHFFFAOYSA-N 0.000 description 1
- ZFZPJDFBJFHYIV-UHFFFAOYSA-N 8-[4-[4-(1,2-benzothiazol-3-yl)piperazin-1-yl]butyl]-8-azaspiro[4.5]decane-7,9-dione Chemical compound C1C(=O)N(CCCCN2CCN(CC2)C=2C3=CC=CC=C3SN=2)C(=O)CC21CCCC2 ZFZPJDFBJFHYIV-UHFFFAOYSA-N 0.000 description 1
- XFTVOHWWEQGXLS-UHFFFAOYSA-N 8-bromo-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol Chemical compound C1N(C)CCC2=CC(Br)=C(O)C=C2C1C1=CC=CC=C1 XFTVOHWWEQGXLS-UHFFFAOYSA-N 0.000 description 1
- GUDVQJXODNJRIJ-CALCHBBNSA-N 9-[3-[(3S,5R)-3,5-dimethyl-1-piperazinyl]propyl]carbazole Chemical compound C1[C@@H](C)N[C@@H](C)CN1CCCN1C2=CC=CC=C2C2=CC=CC=C21 GUDVQJXODNJRIJ-CALCHBBNSA-N 0.000 description 1
- MSJODEOZODDVGW-UHFFFAOYSA-N 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine Chemical compound N=1N2C(N)=NC3=CC=C(Cl)C=C3C2=NC=1C1=CC=CO1 MSJODEOZODDVGW-UHFFFAOYSA-N 0.000 description 1
- OZWXDWVFTIFZHS-UHFFFAOYSA-N 9-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepine-7,8-diol Chemical compound C1N(C)CCC2=C(Cl)C(O)=C(O)C=C2C1C1=CC=CC=C1 OZWXDWVFTIFZHS-UHFFFAOYSA-N 0.000 description 1
- GHWJEDJMOVUXEC-UHFFFAOYSA-N 9-chloro-5-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol Chemical compound C1NCCC=2C(Cl)=C(O)C(O)=CC=2C1C1=CC=CC=C1 GHWJEDJMOVUXEC-UHFFFAOYSA-N 0.000 description 1
- 229930008281 A03AD01 - Papaverine Natural products 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- XYLJNLCSTIOKRM-UHFFFAOYSA-N Alphagan Chemical compound C1=CC2=NC=CN=C2C(Br)=C1NC1=NCCN1 XYLJNLCSTIOKRM-UHFFFAOYSA-N 0.000 description 1
- ITPDYQOUSLNIHG-UHFFFAOYSA-N Amiodarone hydrochloride Chemical compound [Cl-].CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCC[NH+](CC)CC)C(I)=C1 ITPDYQOUSLNIHG-UHFFFAOYSA-N 0.000 description 1
- OVCDSSHSILBFBN-UHFFFAOYSA-N Amodiaquine Chemical compound C1=C(O)C(CN(CC)CC)=CC(NC=2C3=CC=C(Cl)C=C3N=CC=2)=C1 OVCDSSHSILBFBN-UHFFFAOYSA-N 0.000 description 1
- 206010002942 Apathy Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 description 1
- IYGYMKDQCDOMRE-QRWMCTBCSA-N Bicculine Chemical compound O([C@H]1C2C3=CC=4OCOC=4C=C3CCN2C)C(=O)C2=C1C=CC1=C2OCO1 IYGYMKDQCDOMRE-QRWMCTBCSA-N 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- VMIYHDSEFNYJSL-UHFFFAOYSA-N Bromazepam Chemical compound C12=CC(Br)=CC=C2NC(=O)CN=C1C1=CC=CC=N1 VMIYHDSEFNYJSL-UHFFFAOYSA-N 0.000 description 1
- RKLNONIVDFXQRX-UHFFFAOYSA-N Bromperidol Chemical compound C1CC(O)(C=2C=CC(Br)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 RKLNONIVDFXQRX-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- PAOANWZGLPPROA-RQXXJAGISA-N CGS-21680 Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(O)=O)=CC=3)=NC(N)=C2N=C1 PAOANWZGLPPROA-RQXXJAGISA-N 0.000 description 1
- DKHJWWRYTONYHB-UHFFFAOYSA-N CPP Chemical compound OC(=O)C(C)OC1=CC=C(Cl)C=C1 DKHJWWRYTONYHB-UHFFFAOYSA-N 0.000 description 1
- 102000013830 Calcium-Sensing Receptors Human genes 0.000 description 1
- 108010050543 Calcium-Sensing Receptors Proteins 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- LPCKPBWOSNVCEL-UHFFFAOYSA-N Chlidanthine Natural products O1C(C(=CC=2)O)=C3C=2CN(C)CCC23C1CC(OC)C=C2 LPCKPBWOSNVCEL-UHFFFAOYSA-N 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- YAORIDZYZDUZCM-UHFFFAOYSA-N Cirazoline Chemical compound N=1CCNC=1COC1=CC=CC=C1C1CC1 YAORIDZYZDUZCM-UHFFFAOYSA-N 0.000 description 1
- WPSYTTKBGAZSCX-UHFFFAOYSA-N Clofilium Chemical compound CCCCCCC[N+](CC)(CC)CCCCC1=CC=C(Cl)C=C1 WPSYTTKBGAZSCX-UHFFFAOYSA-N 0.000 description 1
- GDLIGKIOYRNHDA-UHFFFAOYSA-N Clomipramine Chemical compound C1CC2=CC=C(Cl)C=C2N(CCCN(C)C)C2=CC=CC=C21 GDLIGKIOYRNHDA-UHFFFAOYSA-N 0.000 description 1
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 1
- KAAZGXDPUNNEFN-UHFFFAOYSA-N Clotiapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2SC2=CC=C(Cl)C=C12 KAAZGXDPUNNEFN-UHFFFAOYSA-N 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 description 1
- 229930182832 D-phenylalanine Natural products 0.000 description 1
- FFBDFADSZUINTG-UHFFFAOYSA-N DPCPX Chemical compound N1C=2C(=O)N(CCC)C(=O)N(CCC)C=2N=C1C1CCCC1 FFBDFADSZUINTG-UHFFFAOYSA-N 0.000 description 1
- PKSODCLCMBUCPW-LVNBQDLPSA-N DSLET Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)NC(=O)CNC(=O)[C@@H](CO)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 PKSODCLCMBUCPW-LVNBQDLPSA-N 0.000 description 1
- 101100028130 Danio rerio ora1 gene Proteins 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- WDJUZGPOPHTGOT-OAXVISGBSA-N Digitoxin Natural products O([C@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@@](C)([C@H](C6=CC(=O)OC6)CC5)CC4)CC3)CC2)C[C@H]1O)[C@H]1O[C@@H](C)[C@H](O[C@H]2O[C@@H](C)[C@@H](O)[C@@H](O)C2)[C@@H](O)C1 WDJUZGPOPHTGOT-OAXVISGBSA-N 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 1
- 108090001111 Dopamine D2 Receptors Proteins 0.000 description 1
- 102000004980 Dopamine D2 Receptors Human genes 0.000 description 1
- 108090000357 Dopamine D4 receptors Proteins 0.000 description 1
- 102000015554 Dopamine receptor Human genes 0.000 description 1
- 108050004812 Dopamine receptor Proteins 0.000 description 1
- 229940098778 Dopamine receptor agonist Drugs 0.000 description 1
- 101100382606 Drosophila melanogaster caz gene Proteins 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- VWLHWLSRQJQWRG-UHFFFAOYSA-O Edrophonum Chemical compound CC[N+](C)(C)C1=CC=CC(O)=C1 VWLHWLSRQJQWRG-UHFFFAOYSA-O 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000020897 Formins Human genes 0.000 description 1
- 108091022623 Formins Proteins 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- WDZVGELJXXEGPV-YIXHJXPBSA-N Guanabenz Chemical compound NC(N)=N\N=C\C1=C(Cl)C=CC=C1Cl WDZVGELJXXEGPV-YIXHJXPBSA-N 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- FMPNFDSPHNUFOS-HQEQRHKESA-N Himbacine Natural products C(/[C@@H]1[C@H]2CCCC[C@@H]2C[C@@H]2C(=O)O[C@H]([C@H]12)C)=C\[C@@H]1CCC[C@H](C)N1C FMPNFDSPHNUFOS-HQEQRHKESA-N 0.000 description 1
- 102000004187 Histamine H4 receptors Human genes 0.000 description 1
- 108090000796 Histamine H4 receptors Proteins 0.000 description 1
- 101001016833 Homo sapiens Histamine H3 receptor Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 101150013372 Htr2c gene Proteins 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- NYMGNSNKLVNMIA-UHFFFAOYSA-N Iproniazid Chemical compound CC(C)NNC(=O)C1=CC=NC=C1 NYMGNSNKLVNMIA-UHFFFAOYSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- KRVDMABBKYMBHG-UHFFFAOYSA-N Isoguvacine Chemical compound OC(=O)C1=CCNCC1 KRVDMABBKYMBHG-UHFFFAOYSA-N 0.000 description 1
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 102100035792 Kininogen-1 Human genes 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- ZZJYIKPMDIWRSN-HWBMXIPRSA-N LSM-20934 Chemical compound C12=CC=CC=C2CCC2=CC=CC3=C2[C@H]1CN1CC[C@](C(C)(C)C)(O)C[C@H]13 ZZJYIKPMDIWRSN-HWBMXIPRSA-N 0.000 description 1
- VGIGHGMPMUCLIQ-UHFFFAOYSA-N LSM-2183 Chemical compound C1=CC(F)=CC=C1N1CCN(CCCN2S(C=3C=CC=C4C=CC=C2C=34)(=O)=O)CC1 VGIGHGMPMUCLIQ-UHFFFAOYSA-N 0.000 description 1
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 1
- OZYUPQUCAUTOBP-QXAKKESOSA-N Levallorphan Chemical compound C([C@H]12)CCC[C@@]11CCN(CC=C)[C@@H]2CC2=CC=C(O)C=C21 OZYUPQUCAUTOBP-QXAKKESOSA-N 0.000 description 1
- JAQUASYNZVUNQP-USXIJHARSA-N Levorphanol Chemical compound C1C2=CC=C(O)C=C2[C@]23CCN(C)[C@H]1[C@@H]2CCCC3 JAQUASYNZVUNQP-USXIJHARSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- ZPXSCAKFGYXMGA-UHFFFAOYSA-N Mazindol Chemical compound N12CCN=C2C2=CC=CC=C2C1(O)C1=CC=C(Cl)C=C1 ZPXSCAKFGYXMGA-UHFFFAOYSA-N 0.000 description 1
- OCJYIGYOJCODJL-UHFFFAOYSA-N Meclizine Chemical compound CC1=CC=CC(CN2CCN(CC2)C(C=2C=CC=CC=2)C=2C=CC(Cl)=CC=2)=C1 OCJYIGYOJCODJL-UHFFFAOYSA-N 0.000 description 1
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 1
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 1
- JLVHTNZNKOSCNB-YSVLISHTSA-N Mesulergine Chemical compound C1=CC([C@H]2C[C@@H](CN(C)[C@@H]2C2)NS(=O)(=O)N(C)C)=C3C2=CN(C)C3=C1 JLVHTNZNKOSCNB-YSVLISHTSA-N 0.000 description 1
- RLJFTICUTYVZDG-UHFFFAOYSA-N Methiothepine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2CC1N1CCN(C)CC1 RLJFTICUTYVZDG-UHFFFAOYSA-N 0.000 description 1
- WJAJPNHVVFWKKL-UHFFFAOYSA-N Methoxamine Chemical compound COC1=CC=C(OC)C(C(O)C(C)N)=C1 WJAJPNHVVFWKKL-UHFFFAOYSA-N 0.000 description 1
- NOFOWWRHEPHDCY-DAUURJMHSA-N Methylergonovine Maleate Chemical compound OC(=O)\C=C/C(O)=O.C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@H](CO)CC)C2)=C3C2=CNC3=C1 NOFOWWRHEPHDCY-DAUURJMHSA-N 0.000 description 1
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 1
- 241001647769 Mirza Species 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 229940122547 Muscarinic M1 receptor agonist Drugs 0.000 description 1
- 102000007202 Muscarinic M3 Receptor Human genes 0.000 description 1
- 108010008405 Muscarinic M3 Receptor Proteins 0.000 description 1
- 229940122949 Muscarinic M4 receptor agonist Drugs 0.000 description 1
- IJHNSHDBIRRJRN-UHFFFAOYSA-N N,N-dimethyl-3-phenyl-3-(2-pyridinyl)-1-propanamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=CC=C1 IJHNSHDBIRRJRN-UHFFFAOYSA-N 0.000 description 1
- GYSZUJHYXCZAKI-UHFFFAOYSA-N N-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-2-(2,6-dimethoxyphenoxy)ethanamine Chemical compound COC1=CC=CC(OC)=C1OCCNCC1OC2=CC=CC=C2OC1 GYSZUJHYXCZAKI-UHFFFAOYSA-N 0.000 description 1
- QKDDJDBFONZGBW-UHFFFAOYSA-N N-Cyclohexy-4-(imidazol-4-yl)-1-piperidinecarbothioamide Chemical compound C1CC(C=2NC=NC=2)CCN1C(=S)NC1CCCCC1 QKDDJDBFONZGBW-UHFFFAOYSA-N 0.000 description 1
- FMPNFDSPHNUFOS-UHFFFAOYSA-N N-Methyl-himandravin Natural products C12C(C)OC(=O)C2CC2CCCCC2C1C=CC1CCCC(C)N1C FMPNFDSPHNUFOS-UHFFFAOYSA-N 0.000 description 1
- HUNIPYLVUPMFCZ-UHFFFAOYSA-N N-[2-(diethylamino)ethyl]-2-(4-methoxyphenoxy)acetamide Chemical compound CCN(CC)CCNC(=O)COC1=CC=C(OC)C=C1 HUNIPYLVUPMFCZ-UHFFFAOYSA-N 0.000 description 1
- JTVPZMFULRWINT-UHFFFAOYSA-N N-[2-(diethylamino)ethyl]-2-methoxy-5-methylsulfonylbenzamide Chemical compound CCN(CC)CCNC(=O)C1=CC(S(C)(=O)=O)=CC=C1OC JTVPZMFULRWINT-UHFFFAOYSA-N 0.000 description 1
- DZTHIGRZJZPRDV-LBPRGKRZSA-N N-acetyl-L-tryptophan Chemical compound C1=CC=C2C(C[C@H](NC(=O)C)C(O)=O)=CNC2=C1 DZTHIGRZJZPRDV-LBPRGKRZSA-N 0.000 description 1
- WJJGAKCAAJOICV-UHFFFAOYSA-N N-dimethyltyrosine Natural products CN(C)C(C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-UHFFFAOYSA-N 0.000 description 1
- HOKKHZGPKSLGJE-UHFFFAOYSA-N N-methyl-D-aspartic acid Natural products CNC(C(O)=O)CC(O)=O HOKKHZGPKSLGJE-UHFFFAOYSA-N 0.000 description 1
- HRRBJVNMSRJFHQ-UHFFFAOYSA-N Naftopidil Chemical compound COC1=CC=CC=C1N1CCN(CC(O)COC=2C3=CC=CC=C3C=CC=2)CC1 HRRBJVNMSRJFHQ-UHFFFAOYSA-N 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 1
- 208000001294 Nociceptive Pain Diseases 0.000 description 1
- PHVGLTMQBUFIQQ-UHFFFAOYSA-N Nortryptiline Chemical compound C1CC2=CC=CC=C2C(=CCCNC)C2=CC=CC=C21 PHVGLTMQBUFIQQ-UHFFFAOYSA-N 0.000 description 1
- ZVOOGERIHVAODX-UHFFFAOYSA-N O-demycinosyltylosin Natural products O=CCC1CC(C)C(=O)C=CC(C)=CC(CO)C(CC)OC(=O)CC(O)C(C)C1OC1C(O)C(N(C)C)C(OC2OC(C)C(O)C(C)(O)C2)C(C)O1 ZVOOGERIHVAODX-UHFFFAOYSA-N 0.000 description 1
- ZZQNEJILGNNOEP-UHFFFAOYSA-N Ocaperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC3=C(C)N=C4N(C3=O)C=CC=C4C)=NOC2=C1 ZZQNEJILGNNOEP-UHFFFAOYSA-N 0.000 description 1
- QHGUCRYDKWKLMG-MRVPVSSYSA-N Octopamine Natural products NC[C@@H](O)C1=CC=C(O)C=C1 QHGUCRYDKWKLMG-MRVPVSSYSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010031127 Orthostatic hypotension Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- FTLDJPRFCGDUFH-UHFFFAOYSA-N Oxethazaine Chemical compound C=1C=CC=CC=1CC(C)(C)N(C)C(=O)CN(CCO)CC(=O)N(C)C(C)(C)CC1=CC=CC=C1 FTLDJPRFCGDUFH-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- DPWPWRLQFGFJFI-UHFFFAOYSA-N Pargyline Chemical compound C#CCN(C)CC1=CC=CC=C1 DPWPWRLQFGFJFI-UHFFFAOYSA-N 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- BYPFEZZEUUWMEJ-UHFFFAOYSA-N Pentoxifylline Chemical compound O=C1N(CCCCC(=O)C)C(=O)N(C)C2=C1N(C)C=N2 BYPFEZZEUUWMEJ-UHFFFAOYSA-N 0.000 description 1
- PWRPUAKXMQAFCJ-UHFFFAOYSA-N Perlapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2CC2=CC=CC=C12 PWRPUAKXMQAFCJ-UHFFFAOYSA-N 0.000 description 1
- XPFRXWCVYUEORT-UHFFFAOYSA-N Phenacemide Chemical compound NC(=O)NC(=O)CC1=CC=CC=C1 XPFRXWCVYUEORT-UHFFFAOYSA-N 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- QZVCTJOXCFMACW-UHFFFAOYSA-N Phenoxybenzamine Chemical compound C=1C=CC=CC=1CN(CCCl)C(C)COC1=CC=CC=C1 QZVCTJOXCFMACW-UHFFFAOYSA-N 0.000 description 1
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- PIJVFDBKTWXHHD-UHFFFAOYSA-N Physostigmine Natural products C12=CC(OC(=O)NC)=CC=C2N(C)C2C1(C)CCN2C PIJVFDBKTWXHHD-UHFFFAOYSA-N 0.000 description 1
- LHNKBXRFNPMIBR-UHFFFAOYSA-N Picrotoxin Natural products CC(C)(O)C1(O)C2OC(=O)C1C3(O)C4OC4C5C(=O)OC2C35C LHNKBXRFNPMIBR-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- GMZVRMREEHBGGF-UHFFFAOYSA-N Piracetam Chemical compound NC(=O)CN1CCCC1=O GMZVRMREEHBGGF-UHFFFAOYSA-N 0.000 description 1
- MWQCHHACWWAQLJ-UHFFFAOYSA-N Prazepam Chemical compound O=C1CN=C(C=2C=CC=CC=2)C2=CC(Cl)=CC=C2N1CC1CC1 MWQCHHACWWAQLJ-UHFFFAOYSA-N 0.000 description 1
- ZGUGWUXLJSTTMA-UHFFFAOYSA-N Promazinum Chemical compound C1=CC=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZGUGWUXLJSTTMA-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 206010037180 Psychiatric symptoms Diseases 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- PPTYJKAXVCCBDU-UHFFFAOYSA-N Rohypnol Chemical compound N=1CC(=O)N(C)C2=CC=C([N+]([O-])=O)C=C2C=1C1=CC=CC=C1F PPTYJKAXVCCBDU-UHFFFAOYSA-N 0.000 description 1
- QJQORSLQNXDVGE-UHFFFAOYSA-N SB 206553 Chemical compound C1CC=2C=C3N(C)C=CC3=CC=2N1C(=O)NC1=CC=CN=C1 QJQORSLQNXDVGE-UHFFFAOYSA-N 0.000 description 1
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 description 1
- SUGVYNSRNKFXQM-XRHWURSXSA-N SR 144528 Chemical compound C1=CC(C)=CC=C1CN1C(C=2C=C(C)C(Cl)=CC=2)=CC(C(=O)N[C@@H]2C([C@@H]3CC[C@@]2(C)C3)(C)C)=N1 SUGVYNSRNKFXQM-XRHWURSXSA-N 0.000 description 1
- SKZKKFZAGNVIMN-UHFFFAOYSA-N Salicilamide Chemical compound NC(=O)C1=CC=CC=C1O SKZKKFZAGNVIMN-UHFFFAOYSA-N 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 229940121991 Serotonin and norepinephrine reuptake inhibitor Drugs 0.000 description 1
- 206010041243 Social avoidant behaviour Diseases 0.000 description 1
- 208000011963 Substance-induced psychotic disease Diseases 0.000 description 1
- 231100000393 Substance-induced psychotic disorder Toxicity 0.000 description 1
- UNRHXEPDKXPRTM-UHFFFAOYSA-N Sultopride Chemical compound CCN1CCCC1CNC(=O)C1=CC(S(=O)(=O)CC)=CC=C1OC UNRHXEPDKXPRTM-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- JOAHPSVPXZTVEP-YXJHDRRASA-N Terguride Chemical compound C1=CC([C@H]2C[C@@H](CN(C)[C@@H]2C2)NC(=O)N(CC)CC)=C3C2=CNC3=C1 JOAHPSVPXZTVEP-YXJHDRRASA-N 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 description 1
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 1
- HWHLPVGTWGOCJO-UHFFFAOYSA-N Trihexyphenidyl Chemical group C1CCCCC1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 HWHLPVGTWGOCJO-UHFFFAOYSA-N 0.000 description 1
- UFLGIAIHIAPJJC-UHFFFAOYSA-N Tripelennamine Chemical compound C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CC=C1 UFLGIAIHIAPJJC-UHFFFAOYSA-N 0.000 description 1
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 1
- ICMGLRUYEQNHPF-UHFFFAOYSA-N Uraprene Chemical compound COC1=CC=CC=C1N1CCN(CCCNC=2N(C(=O)N(C)C(=O)C=2)C)CC1 ICMGLRUYEQNHPF-UHFFFAOYSA-N 0.000 description 1
- 206010046555 Urinary retention Diseases 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- HQVHOQAKMCMIIM-HXUWFJFHSA-N WIN 55212-2 Chemical compound C([C@@H]1COC=2C=CC=C3C(C(=O)C=4C5=CC=CC=C5C=CC=4)=C(N1C3=2)C)N1CCOCC1 HQVHOQAKMCMIIM-HXUWFJFHSA-N 0.000 description 1
- BLGXFZZNTVWLAY-CCZXDCJGSA-N Yohimbine Natural products C1=CC=C2C(CCN3C[C@@H]4CC[C@@H](O)[C@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-CCZXDCJGSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 238000011360 adjunctive therapy Methods 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000000695 adrenergic alpha-agonist Substances 0.000 description 1
- 239000000808 adrenergic beta-agonist Substances 0.000 description 1
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 1
- 230000036626 alertness Effects 0.000 description 1
- 229960003790 alimemazine Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- VLSMHEGGTFMBBZ-UHFFFAOYSA-N alpha-Kainic acid Natural products CC(=C)C1CNC(C(O)=O)C1CC(O)=O VLSMHEGGTFMBBZ-UHFFFAOYSA-N 0.000 description 1
- LYPCGXKCQDYTFV-UHFFFAOYSA-N alpha-methylserotonin Chemical compound C1=C(O)C=C2C(CC(N)C)=CNC2=C1 LYPCGXKCQDYTFV-UHFFFAOYSA-N 0.000 description 1
- 229960004538 alprazolam Drugs 0.000 description 1
- XSDQTOBWRPYKKA-UHFFFAOYSA-N amiloride Chemical compound NC(=N)NC(=O)C1=NC(Cl)=C(N)N=C1N XSDQTOBWRPYKKA-UHFFFAOYSA-N 0.000 description 1
- 229960002576 amiloride Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000007098 aminolysis reaction Methods 0.000 description 1
- 229960005260 amiodarone Drugs 0.000 description 1
- NTJOBXMMWNYJFB-UHFFFAOYSA-N amisulpride Chemical compound CCN1CCCC1CNC(=O)C1=CC(S(=O)(=O)CC)=C(N)C=C1OC NTJOBXMMWNYJFB-UHFFFAOYSA-N 0.000 description 1
- 229960000836 amitriptyline Drugs 0.000 description 1
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 1
- 229960001444 amodiaquine Drugs 0.000 description 1
- QWGDMFLQWFTERH-UHFFFAOYSA-N amoxapine Chemical compound C12=CC(Cl)=CC=C2OC2=CC=CC=C2N=C1N1CCNCC1 QWGDMFLQWFTERH-UHFFFAOYSA-N 0.000 description 1
- 229960002519 amoxapine Drugs 0.000 description 1
- NNAIYOXJNVGUOM-UHFFFAOYSA-N amperozide Chemical compound C1CN(C(=O)NCC)CCN1CCCC(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 NNAIYOXJNVGUOM-UHFFFAOYSA-N 0.000 description 1
- 229950000388 amperozide Drugs 0.000 description 1
- RNLQIBCLLYYYFJ-UHFFFAOYSA-N amrinone Chemical compound N1C(=O)C(N)=CC(C=2C=CN=CC=2)=C1 RNLQIBCLLYYYFJ-UHFFFAOYSA-N 0.000 description 1
- 229960002105 amrinone Drugs 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000002932 anti-schizophrenic effect Effects 0.000 description 1
- 229940125682 antidementia agent Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 229940005530 anxiolytics Drugs 0.000 description 1
- BLUAFEHZUWYNDE-NNWCWBAJSA-N artemisinin Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2OC(=O)[C@@H]4C BLUAFEHZUWYNDE-NNWCWBAJSA-N 0.000 description 1
- 229960004191 artemisinin Drugs 0.000 description 1
- 229930101531 artemisinin Natural products 0.000 description 1
- GXDALQBWZGODGZ-UHFFFAOYSA-N astemizole Chemical compound C1=CC(OC)=CC=C1CCN1CCC(NC=2N(C3=CC=CC=C3N=2)CC=2C=CC(F)=CC=2)CC1 GXDALQBWZGODGZ-UHFFFAOYSA-N 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- 229960000794 baclofen Drugs 0.000 description 1
- 229960002319 barbital Drugs 0.000 description 1
- UIEATEWHFDRYRU-UHFFFAOYSA-N bepridil Chemical compound C1CCCN1C(COCC(C)C)CN(C=1C=CC=CC=1)CC1=CC=CC=C1 UIEATEWHFDRYRU-UHFFFAOYSA-N 0.000 description 1
- 229960003665 bepridil Drugs 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- AACMFFIUYXGCOC-UHFFFAOYSA-N bicuculline Natural products CN1CCc2cc3OCOc3cc2C1C4OCc5c6OCOc6ccc45 AACMFFIUYXGCOC-UHFFFAOYSA-N 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 208000028683 bipolar I disease Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 229960002624 bretylium tosilate Drugs 0.000 description 1
- KVWNWTZZBKCOPM-UHFFFAOYSA-M bretylium tosylate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.CC[N+](C)(C)CC1=CC=CC=C1Br KVWNWTZZBKCOPM-UHFFFAOYSA-M 0.000 description 1
- 229960002729 bromazepam Drugs 0.000 description 1
- 229960004037 bromperidol Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229960003455 buphenine Drugs 0.000 description 1
- QWCRAEMEVRGPNT-UHFFFAOYSA-N buspirone Chemical compound C1C(=O)N(CCCCN2CCN(CC2)C=2N=CC=CN=2)C(=O)CC21CCCC2 QWCRAEMEVRGPNT-UHFFFAOYSA-N 0.000 description 1
- 229960002495 buspirone Drugs 0.000 description 1
- 229950006479 butaclamol Drugs 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229950011318 cannabidiol Drugs 0.000 description 1
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 description 1
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 1
- 229960002504 capsaicin Drugs 0.000 description 1
- 235000017663 capsaicin Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229960004205 carbidopa Drugs 0.000 description 1
- TZFNLOMSOLWIDK-JTQLQIEISA-N carbidopa (anhydrous) Chemical compound NN[C@@](C(O)=O)(C)CC1=CC=C(O)C(O)=C1 TZFNLOMSOLWIDK-JTQLQIEISA-N 0.000 description 1
- OFZCIYFFPZCNJE-UHFFFAOYSA-N carisoprodol Chemical compound NC(=O)OCC(C)(CCC)COC(=O)NC(C)C OFZCIYFFPZCNJE-UHFFFAOYSA-N 0.000 description 1
- 229960004587 carisoprodol Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229960002327 chloral hydrate Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 229960004782 chlordiazepoxide Drugs 0.000 description 1
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 1
- WEQAYVWKMWHEJO-UHFFFAOYSA-N chlormezanone Chemical compound O=S1(=O)CCC(=O)N(C)C1C1=CC=C(Cl)C=C1 WEQAYVWKMWHEJO-UHFFFAOYSA-N 0.000 description 1
- 229960002810 chlormezanone Drugs 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 229960002155 chlorothiazide Drugs 0.000 description 1
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 description 1
- 229960003291 chlorphenamine Drugs 0.000 description 1
- DBOUGBAQLIXZLV-UHFFFAOYSA-N chlorproethazine Chemical compound C1=C(Cl)C=C2N(CCCN(CC)CC)C3=CC=CC=C3SC2=C1 DBOUGBAQLIXZLV-UHFFFAOYSA-N 0.000 description 1
- 229960003030 chlorproethazine Drugs 0.000 description 1
- 229960001761 chlorpropamide Drugs 0.000 description 1
- TZFWDZFKRBELIQ-UHFFFAOYSA-N chlorzoxazone Chemical compound ClC1=CC=C2OC(O)=NC2=C1 TZFWDZFKRBELIQ-UHFFFAOYSA-N 0.000 description 1
- 229960003633 chlorzoxazone Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- PUFQVTATUTYEAL-UHFFFAOYSA-N cinchocaine Chemical compound C1=CC=CC2=NC(OCCCC)=CC(C(=O)NCCN(CC)CC)=C21 PUFQVTATUTYEAL-UHFFFAOYSA-N 0.000 description 1
- 229960001747 cinchocaine Drugs 0.000 description 1
- KMPWYEUPVWOPIM-KODHJQJWSA-N cinchonidine Chemical compound C1=CC=C2C([C@H]([C@H]3[N@]4CC[C@H]([C@H](C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-KODHJQJWSA-N 0.000 description 1
- KMPWYEUPVWOPIM-UHFFFAOYSA-N cinchonidine Natural products C1=CC=C2C(C(C3N4CCC(C(C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-UHFFFAOYSA-N 0.000 description 1
- 229950008137 cirazoline Drugs 0.000 description 1
- NJMYODHXAKYRHW-DVZOWYKESA-N cis-flupenthixol Chemical compound C1CN(CCO)CCN1CC\C=C\1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C2/1 NJMYODHXAKYRHW-DVZOWYKESA-N 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- CXOXHMZGEKVPMT-UHFFFAOYSA-N clobazam Chemical compound O=C1CC(=O)N(C)C2=CC=C(Cl)C=C2N1C1=CC=CC=C1 CXOXHMZGEKVPMT-UHFFFAOYSA-N 0.000 description 1
- 229960001403 clobazam Drugs 0.000 description 1
- UCAIEVHKDLMIFL-UHFFFAOYSA-N clobenpropit Chemical compound C1=CC(Cl)=CC=C1CNC(=N)SCCCC1=CNC=N1 UCAIEVHKDLMIFL-UHFFFAOYSA-N 0.000 description 1
- 229960004606 clomipramine Drugs 0.000 description 1
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 description 1
- 229960003120 clonazepam Drugs 0.000 description 1
- 229960002896 clonidine Drugs 0.000 description 1
- BTFHLQRNAMSNLC-UHFFFAOYSA-N clorgyline Chemical compound C#CCN(C)CCCOC1=CC=C(Cl)C=C1Cl BTFHLQRNAMSNLC-UHFFFAOYSA-N 0.000 description 1
- XRYLGRGAWQSVQW-UHFFFAOYSA-N clorotepine Chemical compound C1CN(C)CCN1C1C2=CC(Cl)=CC=C2SC2=CC=CC=C2C1 XRYLGRGAWQSVQW-UHFFFAOYSA-N 0.000 description 1
- 229950011192 clorotepine Drugs 0.000 description 1
- 229960003864 clotiapine Drugs 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 238000011278 co-treatment Methods 0.000 description 1
- 230000007278 cognition impairment Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000037411 cognitive enhancing Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000037011 constitutive activity Effects 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 210000003618 cortical neuron Anatomy 0.000 description 1
- JURKNVYFZMSNLP-UHFFFAOYSA-N cyclobenzaprine Chemical compound C1=CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 JURKNVYFZMSNLP-UHFFFAOYSA-N 0.000 description 1
- 229960003572 cyclobenzaprine Drugs 0.000 description 1
- IYGYMKDQCDOMRE-UHFFFAOYSA-N d-Bicucullin Natural products CN1CCC2=CC=3OCOC=3C=C2C1C1OC(=O)C2=C1C=CC1=C2OCO1 IYGYMKDQCDOMRE-UHFFFAOYSA-N 0.000 description 1
- POZRVZJJTULAOH-LHZXLZLDSA-N danazol Chemical compound C1[C@]2(C)[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=CC2=C1C=NO2 POZRVZJJTULAOH-LHZXLZLDSA-N 0.000 description 1
- 229960000766 danazol Drugs 0.000 description 1
- 229960001987 dantrolene Drugs 0.000 description 1
- JWPGJSVJDAJRLW-UHFFFAOYSA-N debrisoquin Chemical compound C1=CC=C2CN(C(=N)N)CCC2=C1 JWPGJSVJDAJRLW-UHFFFAOYSA-N 0.000 description 1
- 229960004096 debrisoquine Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 229960000632 dexamfetamine Drugs 0.000 description 1
- 229960001985 dextromethorphan Drugs 0.000 description 1
- 229960002069 diamorphine Drugs 0.000 description 1
- 229960004042 diazoxide Drugs 0.000 description 1
- JSYGRUBHOCKMGQ-UHFFFAOYSA-N dichloramine Chemical compound ClNCl JSYGRUBHOCKMGQ-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960000648 digitoxin Drugs 0.000 description 1
- WDJUZGPOPHTGOT-XUDUSOBPSA-N digitoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)CC5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O WDJUZGPOPHTGOT-XUDUSOBPSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 1
- LIMAOLZSWRJOMG-HJPBWRTMSA-N dihydroergocristine Chemical compound C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@](C(N21)=O)(NC(=O)[C@H]1CN(C)[C@H]2[C@@H](C3=CC=CC4=NC=C([C]34)C2)C1)C(C)C)C1=CC=CC=C1 LIMAOLZSWRJOMG-HJPBWRTMSA-N 0.000 description 1
- 229960004318 dihydroergocristine Drugs 0.000 description 1
- 229960004704 dihydroergotamine Drugs 0.000 description 1
- HESHRHUZIWVEAJ-JGRZULCMSA-N dihydroergotamine Chemical compound C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@@](C(N21)=O)(C)NC(=O)[C@H]1CN([C@H]2[C@@H](C3=CC=CC4=NC=C([C]34)C2)C1)C)C1=CC=CC=C1 HESHRHUZIWVEAJ-JGRZULCMSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- OLHQOJYVQUNWPL-UHFFFAOYSA-N dimaprit Chemical compound CN(C)CCCSC(N)=N OLHQOJYVQUNWPL-UHFFFAOYSA-N 0.000 description 1
- 229950004446 dimethadione Drugs 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 1
- 229960002768 dipyridamole Drugs 0.000 description 1
- 229960001066 disopyramide Drugs 0.000 description 1
- UVTNFZQICZKOEM-UHFFFAOYSA-N disopyramide Chemical compound C=1C=CC=NC=1C(C(N)=O)(CCN(C(C)C)C(C)C)C1=CC=CC=C1 UVTNFZQICZKOEM-UHFFFAOYSA-N 0.000 description 1
- 229960001089 dobutamine Drugs 0.000 description 1
- 229960001253 domperidone Drugs 0.000 description 1
- FGXWKSZFVQUSTL-UHFFFAOYSA-N domperidone Chemical compound C12=CC=CC=C2NC(=O)N1CCCN(CC1)CCC1N1C2=CC=C(Cl)C=C2NC1=O FGXWKSZFVQUSTL-UHFFFAOYSA-N 0.000 description 1
- 239000000442 dopamine 2 receptor blocking agent Substances 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- RUZYUOTYCVRMRZ-UHFFFAOYSA-N doxazosin Chemical compound C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 RUZYUOTYCVRMRZ-UHFFFAOYSA-N 0.000 description 1
- 229960001389 doxazosin Drugs 0.000 description 1
- 229960005426 doxepin Drugs 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- HCFDWZZGGLSKEP-UHFFFAOYSA-N doxylamine Chemical compound C=1C=CC=NC=1C(C)(OCCN(C)C)C1=CC=CC=C1 HCFDWZZGGLSKEP-UHFFFAOYSA-N 0.000 description 1
- 229960005178 doxylamine Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 229960004722 dropropizine Drugs 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 201000002545 drug psychosis Diseases 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 229950007357 ebalzotan Drugs 0.000 description 1
- UEAKCKJAKUFIQP-OAHLLOKOSA-N ebalzotan Chemical compound C1=CC(C(=O)NC(C)C)=C2C[C@@H](N(C(C)C)CCC)COC2=C1 UEAKCKJAKUFIQP-OAHLLOKOSA-N 0.000 description 1
- XACKNLSZYYIACO-DJLDLDEBSA-N edoxudine Chemical compound O=C1NC(=O)C(CC)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XACKNLSZYYIACO-DJLDLDEBSA-N 0.000 description 1
- 229960002030 edoxudine Drugs 0.000 description 1
- 229960003748 edrophonium Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000004406 elevated intraocular pressure Effects 0.000 description 1
- 229950006047 eltoprazine Drugs 0.000 description 1
- WVLHGCRWEHCIOT-UHFFFAOYSA-N eltoprazine Chemical compound C1CNCCN1C1=CC=CC2=C1OCCO2 WVLHGCRWEHCIOT-UHFFFAOYSA-N 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960002179 ephedrine Drugs 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- NGKZFDYBISXGGS-UHFFFAOYSA-N epinine Chemical compound CNCCC1=CC=C(O)C(O)=C1 NGKZFDYBISXGGS-UHFFFAOYSA-N 0.000 description 1
- GXRZIMHKGDIBEW-UHFFFAOYSA-N ethinamate Chemical compound NC(=O)OC1(C#C)CCCCC1 GXRZIMHKGDIBEW-UHFFFAOYSA-N 0.000 description 1
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 1
- 229960001596 famotidine Drugs 0.000 description 1
- 229950002951 fananserin Drugs 0.000 description 1
- 229960003472 felbamate Drugs 0.000 description 1
- WKGXYQFOCVYPAC-UHFFFAOYSA-N felbamate Chemical compound NC(=O)OCC(COC(N)=O)C1=CC=CC=C1 WKGXYQFOCVYPAC-UHFFFAOYSA-N 0.000 description 1
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 1
- 229960001395 fenbufen Drugs 0.000 description 1
- 229960004389 fipexide Drugs 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004381 flumazenil Drugs 0.000 description 1
- OFBIFZUFASYYRE-UHFFFAOYSA-N flumazenil Chemical compound C1N(C)C(=O)C2=CC(F)=CC=C2N2C=NC(C(=O)OCC)=C21 OFBIFZUFASYYRE-UHFFFAOYSA-N 0.000 description 1
- 229960000326 flunarizine Drugs 0.000 description 1
- SMANXXCATUTDDT-QPJJXVBHSA-N flunarizine Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)N1CCN(C\C=C\C=2C=CC=CC=2)CC1 SMANXXCATUTDDT-QPJJXVBHSA-N 0.000 description 1
- 229960002200 flunitrazepam Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229960002690 fluphenazine Drugs 0.000 description 1
- 229960003528 flurazepam Drugs 0.000 description 1
- SAADBVWGJQAEFS-UHFFFAOYSA-N flurazepam Chemical compound N=1CC(=O)N(CCN(CC)CC)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F SAADBVWGJQAEFS-UHFFFAOYSA-N 0.000 description 1
- 229960003532 fluspirilene Drugs 0.000 description 1
- 229960005102 foscarnet Drugs 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229960002870 gabapentin Drugs 0.000 description 1
- 229960003980 galantamine Drugs 0.000 description 1
- BGLNUNCBNALFOZ-WMLDXEAASA-N galanthamine Natural products COc1ccc2CCCC[C@@]34C=CCC[C@@H]3Oc1c24 BGLNUNCBNALFOZ-WMLDXEAASA-N 0.000 description 1
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 1
- 229960003054 gallamine Drugs 0.000 description 1
- ICLWTJIMXVISSR-UHFFFAOYSA-N gallamine Chemical compound CCN(CC)CCOC1=CC=CC(OCCN(CC)CC)=C1OCCN(CC)CC ICLWTJIMXVISSR-UHFFFAOYSA-N 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000007160 gastrointestinal dysfunction Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960004580 glibenclamide Drugs 0.000 description 1
- 229960001381 glipizide Drugs 0.000 description 1
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 description 1
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 description 1
- 229960004553 guanabenz Drugs 0.000 description 1
- 229960003602 guanethidine Drugs 0.000 description 1
- ACGDKVXYNVEAGU-UHFFFAOYSA-N guanethidine Chemical compound NC(N)=NCCN1CCCCCCC1 ACGDKVXYNVEAGU-UHFFFAOYSA-N 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- FMPNFDSPHNUFOS-LPJDIUFZSA-N himbacine Chemical compound C(/[C@@H]1[C@H]2CCCC[C@@H]2C[C@@H]2C(=O)O[C@H]([C@H]12)C)=C\[C@H]1CCC[C@H](C)N1C FMPNFDSPHNUFOS-LPJDIUFZSA-N 0.000 description 1
- 210000004295 hippocampal neuron Anatomy 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229960002474 hydralazine Drugs 0.000 description 1
- 229960002003 hydrochlorothiazide Drugs 0.000 description 1
- 230000000917 hyperalgesic effect Effects 0.000 description 1
- 229940005608 hypericin Drugs 0.000 description 1
- MPGWGYQTRSNGDD-UHFFFAOYSA-N hypericin Chemical compound OC1=CC(O)=C(C2=O)C3=C1C1C(O)=CC(=O)C(C4=O)=C1C1=C3C3=C2C(O)=CC(C)=C3C2=C1C4=C(O)C=C2C MPGWGYQTRSNGDD-UHFFFAOYSA-N 0.000 description 1
- PHOKTTKFQUYZPI-UHFFFAOYSA-N hypericin Natural products Cc1cc(O)c2c3C(=O)C(=Cc4c(O)c5c(O)cc(O)c6c7C(=O)C(=Cc8c(C)c1c2c(c78)c(c34)c56)O)O PHOKTTKFQUYZPI-UHFFFAOYSA-N 0.000 description 1
- 229960003998 ifenprodil Drugs 0.000 description 1
- PEHSVUKQDJULKE-UHFFFAOYSA-N imetit Chemical compound NC(=N)SCCC1=CNC=N1 PEHSVUKQDJULKE-UHFFFAOYSA-N 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 229950008889 indatraline Drugs 0.000 description 1
- SVFXPTLYMIXFRX-BBRMVZONSA-N indatraline Chemical compound C1([C@@H]2C[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 SVFXPTLYMIXFRX-BBRMVZONSA-N 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 238000011850 initial investigation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940070023 iproniazide Drugs 0.000 description 1
- 229940039009 isoproterenol Drugs 0.000 description 1
- 229960002479 isosorbide Drugs 0.000 description 1
- VLSMHEGGTFMBBZ-OOZYFLPDSA-N kainic acid Chemical compound CC(=C)[C@H]1CN[C@H](C(O)=O)[C@H]1CC(O)=O VLSMHEGGTFMBBZ-OOZYFLPDSA-N 0.000 description 1
- 229950006874 kainic acid Drugs 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229960001632 labetalol Drugs 0.000 description 1
- 229960001848 lamotrigine Drugs 0.000 description 1
- PYZRQGJRPPTADH-UHFFFAOYSA-N lamotrigine Chemical compound NC1=NC(N)=NN=C1C1=CC=CC(Cl)=C1Cl PYZRQGJRPPTADH-UHFFFAOYSA-N 0.000 description 1
- URLZCHNOLZSCCA-UHFFFAOYSA-N leu-enkephalin Chemical compound C=1C=C(O)C=CC=1CC(N)C(=O)NCC(=O)NCC(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=CC=C1 URLZCHNOLZSCCA-UHFFFAOYSA-N 0.000 description 1
- 229960000263 levallorphan Drugs 0.000 description 1
- GJJFMKBJSRMPLA-DZGCQCFKSA-N levomilnacipran Chemical compound C=1C=CC=CC=1[C@]1(C(=O)N(CC)CC)C[C@H]1CN GJJFMKBJSRMPLA-DZGCQCFKSA-N 0.000 description 1
- 229960003406 levorphanol Drugs 0.000 description 1
- 238000000670 ligand binding assay Methods 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 210000001853 liver microsome Anatomy 0.000 description 1
- 229960001571 loperamide Drugs 0.000 description 1
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 1
- IYVSXSLYJLAZAT-NOLJZWGESA-N lycoramine Natural products CN1CC[C@@]23CC[C@H](O)C[C@@H]2Oc4cccc(C1)c34 IYVSXSLYJLAZAT-NOLJZWGESA-N 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960004090 maprotiline Drugs 0.000 description 1
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 description 1
- ZKZFPRUSWCYSGT-UHFFFAOYSA-N mazapertine Chemical compound CC(C)OC1=CC=CC=C1N1CCN(CC=2C=C(C=CC=2)C(=O)N2CCCCC2)CC1 ZKZFPRUSWCYSGT-UHFFFAOYSA-N 0.000 description 1
- 229950004476 mazapertine Drugs 0.000 description 1
- 229960000299 mazindol Drugs 0.000 description 1
- 229960001474 meclozine Drugs 0.000 description 1
- 229950007518 mefexamide Drugs 0.000 description 1
- 229960001962 mefloquine Drugs 0.000 description 1
- 229960003987 melatonin Drugs 0.000 description 1
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 1
- 229960001861 melperone Drugs 0.000 description 1
- BUGYDGFZZOZRHP-UHFFFAOYSA-N memantine Chemical compound C1C(C2)CC3(C)CC1(C)CC2(N)C3 BUGYDGFZZOZRHP-UHFFFAOYSA-N 0.000 description 1
- 229960004640 memantine Drugs 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229960003861 mephenesin Drugs 0.000 description 1
- 229960004815 meprobamate Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229950008693 mesulergine Drugs 0.000 description 1
- 238000010197 meta-analysis Methods 0.000 description 1
- LMOINURANNBYCM-UHFFFAOYSA-N metaproterenol Chemical compound CC(C)NCC(O)C1=CC(O)=CC(O)=C1 LMOINURANNBYCM-UHFFFAOYSA-N 0.000 description 1
- WZHJKEUHNJHDLS-QTGUNEKASA-N metergoline Chemical compound C([C@H]1CN([C@H]2[C@@H](C=3C=CC=C4N(C)C=C(C=34)C2)C1)C)NC(=O)OCC1=CC=CC=C1 WZHJKEUHNJHDLS-QTGUNEKASA-N 0.000 description 1
- 229960004650 metergoline Drugs 0.000 description 1
- 229940028370 methergine Drugs 0.000 description 1
- 229960002330 methocarbamol Drugs 0.000 description 1
- 229960005192 methoxamine Drugs 0.000 description 1
- 229960001186 methysergide Drugs 0.000 description 1
- 229960004503 metoclopramide Drugs 0.000 description 1
- AQCHWTWZEMGIFD-UHFFFAOYSA-N metolazone Chemical compound CC1NC2=CC(Cl)=C(S(N)(=O)=O)C=C2C(=O)N1C1=CC=CC=C1C AQCHWTWZEMGIFD-UHFFFAOYSA-N 0.000 description 1
- 229960002817 metolazone Drugs 0.000 description 1
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 1
- 229960002237 metoprolol Drugs 0.000 description 1
- 229950004191 metrifudil Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- 210000001589 microsome Anatomy 0.000 description 1
- 229960001094 midodrine Drugs 0.000 description 1
- 229960004758 minaprine Drugs 0.000 description 1
- LDMWSLGGVTVJPG-UHFFFAOYSA-N minaprine Chemical compound CC1=CC(C=2C=CC=CC=2)=NN=C1NCCN1CCOCC1 LDMWSLGGVTVJPG-UHFFFAOYSA-N 0.000 description 1
- 229960003632 minoxidil Drugs 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229960001165 modafinil Drugs 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229960004938 molindone Drugs 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- 239000000359 muscarinic M1 receptor agonist Substances 0.000 description 1
- HSRPTPAPMBHRRJ-UHFFFAOYSA-N n-(2,6-dichloro-4-iodophenyl)-4,5-dihydro-1h-imidazol-2-amine Chemical compound ClC1=CC(I)=CC(Cl)=C1NC1=NCCN1 HSRPTPAPMBHRRJ-UHFFFAOYSA-N 0.000 description 1
- IDEHCMNLNCJQST-UHFFFAOYSA-N n-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide Chemical compound C1=CC=C2C(S(=O)(=O)NCCCCCCN)=CC=CC2=C1Cl IDEHCMNLNCJQST-UHFFFAOYSA-N 0.000 description 1
- 229950005705 naftopidil Drugs 0.000 description 1
- NETZHAKZCGBWSS-CEDHKZHLSA-N nalbuphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]1(O)CC[C@@H]3O)CN2CC1CCC1 NETZHAKZCGBWSS-CEDHKZHLSA-N 0.000 description 1
- 229960000805 nalbuphine Drugs 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 1
- 229960003086 naltrexone Drugs 0.000 description 1
- DKJCUVXSBOMWAV-PCWWUVHHSA-N naltrindole Chemical compound N1([C@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CC2=C3[CH]C=CC=C3N=C25)O)CC1)O)CC1CC1 DKJCUVXSBOMWAV-PCWWUVHHSA-N 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 229960002362 neostigmine Drugs 0.000 description 1
- LULNWZDBKTWDGK-UHFFFAOYSA-M neostigmine bromide Chemical compound [Br-].CN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 LULNWZDBKTWDGK-UHFFFAOYSA-M 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000007107 neurocognitive deficit Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 230000003557 neuropsychological effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960001783 nicardipine Drugs 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960000715 nimodipine Drugs 0.000 description 1
- 229960001454 nitrazepam Drugs 0.000 description 1
- KJONHKAYOJNZEC-UHFFFAOYSA-N nitrazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1 KJONHKAYOJNZEC-UHFFFAOYSA-N 0.000 description 1
- 229960005425 nitrendipine Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003040 nociceptive effect Effects 0.000 description 1
- 229960001073 nomifensine Drugs 0.000 description 1
- XXPANQJNYNUNES-UHFFFAOYSA-N nomifensine Chemical compound C12=CC=CC(N)=C2CN(C)CC1C1=CC=CC=C1 XXPANQJNYNUNES-UHFFFAOYSA-N 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 239000002664 nootropic agent Substances 0.000 description 1
- HKOIXWVRNLGFOR-KOFBORESSA-N norcodeine Chemical compound O[C@H]([C@@H]1O2)C=C[C@H]3[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4 HKOIXWVRNLGFOR-KOFBORESSA-N 0.000 description 1
- 229950004392 norcodeine Drugs 0.000 description 1
- HKOIXWVRNLGFOR-UHFFFAOYSA-N norcodeine Natural products O1C2C(O)C=CC3C4CC5=CC=C(OC)C1=C5C23CCN4 HKOIXWVRNLGFOR-UHFFFAOYSA-N 0.000 description 1
- DXESFJJJWBHLJX-UHFFFAOYSA-N norcyclazocine Chemical compound C1C2=CC=C(O)C=C2C2(C)C(C)C1NCC2 DXESFJJJWBHLJX-UHFFFAOYSA-N 0.000 description 1
- 229960002640 nordazepam Drugs 0.000 description 1
- AKPLHCDWDRPJGD-UHFFFAOYSA-N nordazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)CN=C1C1=CC=CC=C1 AKPLHCDWDRPJGD-UHFFFAOYSA-N 0.000 description 1
- 229960001158 nortriptyline Drugs 0.000 description 1
- 229950010634 ocaperidone Drugs 0.000 description 1
- 229960001576 octopamine Drugs 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 229960000381 omeprazole Drugs 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229960002657 orciprenaline Drugs 0.000 description 1
- QVYRGXJJSLMXQH-UHFFFAOYSA-N orphenadrine Chemical compound C=1C=CC=C(C)C=1C(OCCN(C)C)C1=CC=CC=C1 QVYRGXJJSLMXQH-UHFFFAOYSA-N 0.000 description 1
- 229960003941 orphenadrine Drugs 0.000 description 1
- 229940054010 other antipsychotics in atc Drugs 0.000 description 1
- 229960004535 oxazepam Drugs 0.000 description 1
- ADIMAYPTOBDMTL-UHFFFAOYSA-N oxazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1 ADIMAYPTOBDMTL-UHFFFAOYSA-N 0.000 description 1
- 229960001528 oxymetazoline Drugs 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- HFHZKZSRXITVMK-UHFFFAOYSA-N oxyphenbutazone Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 HFHZKZSRXITVMK-UHFFFAOYSA-N 0.000 description 1
- 229960001789 papaverine Drugs 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000008701 parasympathetic activation Effects 0.000 description 1
- 230000001734 parasympathetic effect Effects 0.000 description 1
- 210000001002 parasympathetic nervous system Anatomy 0.000 description 1
- 230000001499 parasympathomimetic effect Effects 0.000 description 1
- 229960001779 pargyline Drugs 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- NRNCYVBFPDDJNE-UHFFFAOYSA-N pemoline Chemical compound O1C(N)=NC(=O)C1C1=CC=CC=C1 NRNCYVBFPDDJNE-UHFFFAOYSA-N 0.000 description 1
- 229960000761 pemoline Drugs 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960001639 penicillamine Drugs 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- XDRYMKDFEDOLFX-UHFFFAOYSA-N pentamidine Chemical compound C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 XDRYMKDFEDOLFX-UHFFFAOYSA-N 0.000 description 1
- 229960004448 pentamidine Drugs 0.000 description 1
- 229960001476 pentoxifylline Drugs 0.000 description 1
- 229960003436 pentoxyverine Drugs 0.000 description 1
- WEYVCQFUGFRXOM-UHFFFAOYSA-N perazine Chemical compound C1CN(C)CCN1CCCN1C2=CC=CC=C2SC2=CC=CC=C21 WEYVCQFUGFRXOM-UHFFFAOYSA-N 0.000 description 1
- 229960002195 perazine Drugs 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229950009253 perlapine Drugs 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- VSGNGLJPOGUDON-UHFFFAOYSA-N phaclofen Chemical compound OP(=O)(O)CC(CN)C1=CC=C(Cl)C=C1 VSGNGLJPOGUDON-UHFFFAOYSA-N 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 229960003396 phenacemide Drugs 0.000 description 1
- 229960003893 phenacetin Drugs 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 229960000964 phenelzine Drugs 0.000 description 1
- 229960001190 pheniramine Drugs 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 229960003418 phenoxybenzamine Drugs 0.000 description 1
- 229960001999 phentolamine Drugs 0.000 description 1
- MRBDMNSDAVCSSF-UHFFFAOYSA-N phentolamine Chemical compound C1=CC(C)=CC=C1N(C=1C=C(O)C=CC=1)CC1=NCCN1 MRBDMNSDAVCSSF-UHFFFAOYSA-N 0.000 description 1
- CUQCMXFWIMOWRP-UHFFFAOYSA-N phenyl biguanide Chemical compound NC(N)=NC(N)=NC1=CC=CC=C1 CUQCMXFWIMOWRP-UHFFFAOYSA-N 0.000 description 1
- 229960002036 phenytoin Drugs 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003906 phosphoinositides Chemical class 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229960001697 physostigmine Drugs 0.000 description 1
- PIJVFDBKTWXHHD-HIFRSBDPSA-N physostigmine Chemical compound C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C PIJVFDBKTWXHHD-HIFRSBDPSA-N 0.000 description 1
- VJKUPQSHOVKBCO-AHMKVGDJSA-N picrotoxin Chemical compound O=C([C@@]12O[C@@H]1C[C@]1(O)[C@@]32C)O[C@@H]3[C@H]2[C@@H](C(=C)C)[C@@H]1C(=O)O2.O=C([C@@]12O[C@@H]1C[C@]1(O)[C@@]32C)O[C@@H]3[C@H]2[C@@H](C(C)(O)C)[C@@H]1C(=O)O2 VJKUPQSHOVKBCO-AHMKVGDJSA-N 0.000 description 1
- 229960001416 pilocarpine Drugs 0.000 description 1
- 229960000399 pimethixene Drugs 0.000 description 1
- 229960002310 pinacidil Drugs 0.000 description 1
- 229960002508 pindolol Drugs 0.000 description 1
- PHUTUTUABXHXLW-UHFFFAOYSA-N pindolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=NC=C[C]12 PHUTUTUABXHXLW-UHFFFAOYSA-N 0.000 description 1
- 229960004526 piracetam Drugs 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229960004856 prazepam Drugs 0.000 description 1
- IENZQIKPVFGBNW-UHFFFAOYSA-N prazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 IENZQIKPVFGBNW-UHFFFAOYSA-N 0.000 description 1
- 229960001289 prazosin Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229960001807 prilocaine Drugs 0.000 description 1
- MVFGUOIZUNYYSO-UHFFFAOYSA-N prilocaine Chemical compound CCCNC(C)C(=O)NC1=CC=CC=C1C MVFGUOIZUNYYSO-UHFFFAOYSA-N 0.000 description 1
- 229960005179 primaquine Drugs 0.000 description 1
- INDBQLZJXZLFIT-UHFFFAOYSA-N primaquine Chemical compound N1=CC=CC2=CC(OC)=CC(NC(C)CCCN)=C21 INDBQLZJXZLFIT-UHFFFAOYSA-N 0.000 description 1
- DBABZHXKTCFAPX-UHFFFAOYSA-N probenecid Chemical compound CCCN(CCC)S(=O)(=O)C1=CC=C(C(O)=O)C=C1 DBABZHXKTCFAPX-UHFFFAOYSA-N 0.000 description 1
- 229960003081 probenecid Drugs 0.000 description 1
- 229960000244 procainamide Drugs 0.000 description 1
- REQCZEXYDRLIBE-UHFFFAOYSA-N procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960003598 promazine Drugs 0.000 description 1
- 229960003910 promethazine Drugs 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 229960003908 pseudoephedrine Drugs 0.000 description 1
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 description 1
- SSKVDVBQSWQEGJ-UHFFFAOYSA-N pseudohypericin Natural products C12=C(O)C=C(O)C(C(C=3C(O)=CC(O)=C4C=33)=O)=C2C3=C2C3=C4C(C)=CC(O)=C3C(=O)C3=C(O)C=C(O)C1=C32 SSKVDVBQSWQEGJ-UHFFFAOYSA-N 0.000 description 1
- 210000002763 pyramidal cell Anatomy 0.000 description 1
- WKSAUQYGYAYLPV-UHFFFAOYSA-N pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 1
- 229960000611 pyrimethamine Drugs 0.000 description 1
- 229960001404 quinidine Drugs 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 229950001037 quinpirole Drugs 0.000 description 1
- FTSUPYGMFAPCFZ-ZWNOBZJWSA-N quinpirole Chemical compound C([C@H]1CCCN([C@@H]1C1)CCC)C2=C1C=NN2 FTSUPYGMFAPCFZ-ZWNOBZJWSA-N 0.000 description 1
- 229950001518 raclopride Drugs 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- BLGXFZZNTVWLAY-DIRVCLHFSA-N rauwolscine Chemical compound C1=CC=C2C(CCN3C[C@H]4CC[C@H](O)[C@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-DIRVCLHFSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229960003448 remoxipride Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229950004933 rimcazole Drugs 0.000 description 1
- IOVGROKTTNBUGK-SJCJKPOMSA-N ritodrine Chemical compound N([C@@H](C)[C@H](O)C=1C=CC(O)=CC=1)CCC1=CC=C(O)C=C1 IOVGROKTTNBUGK-SJCJKPOMSA-N 0.000 description 1
- 229960001634 ritodrine Drugs 0.000 description 1
- HJORMJIFDVBMOB-UHFFFAOYSA-N rolipram Chemical compound COC1=CC=C(C2CC(=O)NC2)C=C1OC1CCCC1 HJORMJIFDVBMOB-UHFFFAOYSA-N 0.000 description 1
- 229950005741 rolipram Drugs 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229960002052 salbutamol Drugs 0.000 description 1
- 229960000581 salicylamide Drugs 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 1
- 230000020341 sensory perception of pain Effects 0.000 description 1
- 239000002399 serotonin 2A agonist Substances 0.000 description 1
- 108010006590 serotonin 5 receptor Proteins 0.000 description 1
- 229960000652 sertindole Drugs 0.000 description 1
- GZKLJWGUPQBVJQ-UHFFFAOYSA-N sertindole Chemical compound C1=CC(F)=CC=C1N1C2=CC=C(Cl)C=C2C(C2CCN(CCN3C(NCC3)=O)CC2)=C1 GZKLJWGUPQBVJQ-UHFFFAOYSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 1
- AEQFSUDEHCCHBT-UHFFFAOYSA-M sodium valproate Chemical compound [Na+].CCCC(C([O-])=O)CCC AEQFSUDEHCCHBT-UHFFFAOYSA-M 0.000 description 1
- 229950001675 spiperone Drugs 0.000 description 1
- DKGZKTPJOSAWFA-UHFFFAOYSA-N spiperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCC2(C(NCN2C=2C=CC=CC=2)=O)CC1 DKGZKTPJOSAWFA-UHFFFAOYSA-N 0.000 description 1
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 1
- 229960002256 spironolactone Drugs 0.000 description 1
- 229950001330 spiroxatrine Drugs 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940032712 succinylcholine Drugs 0.000 description 1
- AXOIZCJOOAYSMI-UHFFFAOYSA-N succinylcholine Chemical compound C[N+](C)(C)CCOC(=O)CCC(=O)OCC[N+](C)(C)C AXOIZCJOOAYSMI-UHFFFAOYSA-N 0.000 description 1
- GLBQVJGBPFPMMV-UHFFFAOYSA-N sulfilimine Chemical compound S=N GLBQVJGBPFPMMV-UHFFFAOYSA-N 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 229960004724 sultopride Drugs 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 230000016978 synaptic transmission, cholinergic Effects 0.000 description 1
- 230000015883 synaptic transmission, dopaminergic Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- WZWYJBNHTWCXIM-UHFFFAOYSA-N tenoxicam Chemical compound O=C1C=2SC=CC=2S(=O)(=O)N(C)C1=C(O)NC1=CC=CC=N1 WZWYJBNHTWCXIM-UHFFFAOYSA-N 0.000 description 1
- 229960002871 tenoxicam Drugs 0.000 description 1
- WOZVHXUHUFLZGK-UHFFFAOYSA-N terephthalic acid dimethyl ester Natural products COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 1
- 229960004558 terguride Drugs 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229960005344 tiapride Drugs 0.000 description 1
- 229950006823 tilorone Drugs 0.000 description 1
- MPMFCABZENCRHV-UHFFFAOYSA-N tilorone Chemical compound C1=C(OCCN(CC)CC)C=C2C(=O)C3=CC(OCCN(CC)CC)=CC=C3C2=C1 MPMFCABZENCRHV-UHFFFAOYSA-N 0.000 description 1
- 229960004605 timolol Drugs 0.000 description 1
- 229950004554 tiospirone Drugs 0.000 description 1
- 229960005013 tiotixene Drugs 0.000 description 1
- OUDSBRTVNLOZBN-UHFFFAOYSA-N tolazamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1CCCCCC1 OUDSBRTVNLOZBN-UHFFFAOYSA-N 0.000 description 1
- 229960002277 tolazamide Drugs 0.000 description 1
- JIVZKJJQOZQXQB-UHFFFAOYSA-N tolazoline Chemical compound C=1C=CC=CC=1CC1=NCCN1 JIVZKJJQOZQXQB-UHFFFAOYSA-N 0.000 description 1
- 229960002312 tolazoline Drugs 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- 229960005334 tolperisone Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229950002859 tracazolate Drugs 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 229960003741 tranylcypromine Drugs 0.000 description 1
- 229960001288 triamterene Drugs 0.000 description 1
- 229960003386 triazolam Drugs 0.000 description 1
- JOFWLTCLBGQGBO-UHFFFAOYSA-N triazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl JOFWLTCLBGQGBO-UHFFFAOYSA-N 0.000 description 1
- 229960002324 trifluoperazine Drugs 0.000 description 1
- 229960002341 trifluperidol Drugs 0.000 description 1
- GPMXUUPHFNMNDH-UHFFFAOYSA-N trifluperidol Chemical compound C1CC(O)(C=2C=C(C=CC=2)C(F)(F)F)CCN1CCCC(=O)C1=CC=C(F)C=C1 GPMXUUPHFNMNDH-UHFFFAOYSA-N 0.000 description 1
- 229960003904 triflupromazine Drugs 0.000 description 1
- XSCGXQMFQXDFCW-UHFFFAOYSA-N triflupromazine Chemical compound C1=C(C(F)(F)F)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 XSCGXQMFQXDFCW-UHFFFAOYSA-N 0.000 description 1
- 229960001032 trihexyphenidyl Drugs 0.000 description 1
- 229960002431 trimipramine Drugs 0.000 description 1
- ZSCDBOWYZJWBIY-UHFFFAOYSA-N trimipramine Chemical compound C1CC2=CC=CC=C2N(CC(CN(C)C)C)C2=CC=CC=C21 ZSCDBOWYZJWBIY-UHFFFAOYSA-N 0.000 description 1
- 229960001128 triprolidine Drugs 0.000 description 1
- CBEQULMOCCWAQT-WOJGMQOQSA-N triprolidine Chemical compound C1=CC(C)=CC=C1C(\C=1N=CC=CC=1)=C/CN1CCCC1 CBEQULMOCCWAQT-WOJGMQOQSA-N 0.000 description 1
- 229960004791 tropicamide Drugs 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229960001130 urapidil Drugs 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 229940102566 valproate Drugs 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 229960005318 vigabatrin Drugs 0.000 description 1
- 229960001255 viloxazine Drugs 0.000 description 1
- 229960005080 warfarin Drugs 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- 229960000317 yohimbine Drugs 0.000 description 1
- BLGXFZZNTVWLAY-SCYLSFHTSA-N yohimbine Chemical compound C1=CC=C2C(CCN3C[C@@H]4CC[C@H](O)[C@@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-SCYLSFHTSA-N 0.000 description 1
- AADVZSXPNRLYLV-UHFFFAOYSA-N yohimbine carboxylic acid Natural products C1=CC=C2C(CCN3CC4CCC(C(C4CC33)C(O)=O)O)=C3NC2=C1 AADVZSXPNRLYLV-UHFFFAOYSA-N 0.000 description 1
- HUNXMJYCHXQEGX-UHFFFAOYSA-N zaleplon Chemical compound CCN(C(C)=O)C1=CC=CC(C=2N3N=CC(=C3N=CC=2)C#N)=C1 HUNXMJYCHXQEGX-UHFFFAOYSA-N 0.000 description 1
- 229960004010 zaleplon Drugs 0.000 description 1
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 1
- 229960002555 zidovudine Drugs 0.000 description 1
- 229960002791 zimeldine Drugs 0.000 description 1
- OYPPVKRFBIWMSX-SXGWCWSVSA-N zimeldine Chemical compound C=1C=CN=CC=1C(=C/CN(C)C)\C1=CC=C(Br)C=C1 OYPPVKRFBIWMSX-SXGWCWSVSA-N 0.000 description 1
- ZAFYATHCZYHLPB-UHFFFAOYSA-N zolpidem Chemical compound N1=C2C=CC(C)=CN2C(CC(=O)N(C)C)=C1C1=CC=C(C)C=C1 ZAFYATHCZYHLPB-UHFFFAOYSA-N 0.000 description 1
- 229960001475 zolpidem Drugs 0.000 description 1
- 229960003414 zomepirac Drugs 0.000 description 1
- ZXVNMYWKKDOREA-UHFFFAOYSA-N zomepirac Chemical compound C1=C(CC(O)=O)N(C)C(C(=O)C=2C=CC(Cl)=CC=2)=C1C ZXVNMYWKKDOREA-UHFFFAOYSA-N 0.000 description 1
- 229960000820 zopiclone Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
- A61K31/5513—1,4-Benzodiazepines, e.g. diazepam or clozapine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- Ophthalmology & Optometry (AREA)
- Rheumatology (AREA)
- Hospice & Palliative Care (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Disclosed herein is a method to treat neuropsychiatric diseases including psychosis, affective disorders, dementia, neuropathic pain, and glaucoma.
Treatment is carried out by administering a therapeutically effective amount of N-desmethylclozapine to a patient suffering from a neuropsychiatric disease.
Treatment is carried out by administering a therapeutically effective amount of N-desmethylclozapine to a patient suffering from a neuropsychiatric disease.
Description
USE OF N-DESMETHYLCLOZAPINE TO TREAT HUMAN
NEUROPSYCHIATRIC DISEASE
Field of the Invention [0001] The present invention relates to the discovery of potent muscarinic receptor agonist properties of the dibenzodiazepine compound N-desmethylclozapine, 8-chloro-l1-(1-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine, which supports the clinical use of this drug as a stiperior therapeutic agent for the treatment of pain, glaucoma, dementia, affective disease, and psychosis.
Background of the Invention [0002] The physiological actions of the hormone/neurotransmitter acetylcholine are mediated, in part, by muscarinic acetylcholine receptors. Muscarinic receptors comprise a family of five (MI-M5) transmembrane proteins that mediate slow, modulatory signalling in cells and tissues expressing these genes. Muscarinic receptors are the targets of a number of therapeutically useful agents (1, 2). Peripherally, muscarinic receptors mediate the actions of acetylcholine in the parasympathetic nervous system.
Peripherally acting muscarinic receptor agonists are therapuetically useful in lowering intra-ocular pressure in patients with glaucoma (3). Compounds that potentiate the central actions of acetylcholine as well as centrally acting muscarinic receptor agonists have both demonstrated clinical utility in the treatment of a number of neuropsychiatric diseases (1, 2, 4-7).
NEUROPSYCHIATRIC DISEASE
Field of the Invention [0001] The present invention relates to the discovery of potent muscarinic receptor agonist properties of the dibenzodiazepine compound N-desmethylclozapine, 8-chloro-l1-(1-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine, which supports the clinical use of this drug as a stiperior therapeutic agent for the treatment of pain, glaucoma, dementia, affective disease, and psychosis.
Background of the Invention [0002] The physiological actions of the hormone/neurotransmitter acetylcholine are mediated, in part, by muscarinic acetylcholine receptors. Muscarinic receptors comprise a family of five (MI-M5) transmembrane proteins that mediate slow, modulatory signalling in cells and tissues expressing these genes. Muscarinic receptors are the targets of a number of therapeutically useful agents (1, 2). Peripherally, muscarinic receptors mediate the actions of acetylcholine in the parasympathetic nervous system.
Peripherally acting muscarinic receptor agonists are therapuetically useful in lowering intra-ocular pressure in patients with glaucoma (3). Compounds that potentiate the central actions of acetylcholine as well as centrally acting muscarinic receptor agonists have both demonstrated clinical utility in the treatment of a number of neuropsychiatric diseases (1, 2, 4-7).
[0003] The actions of acetylcholine are terminated by degradation of the molecule by acetylcholinesterase enzymes. Inhibition of these enzymes within the central nervous system leads to increased concentrations of acetylcholine at muscarinic receptors.
A number of acetylcholinesterase inhibitors have been developed and are in routine clinical use as cognitive enhancing agents in dementia (4).
A number of acetylcholinesterase inhibitors have been developed and are in routine clinical use as cognitive enhancing agents in dementia (4).
[0004] A number of centrally acting muscarinic agonist have been the subject of clinical testing. One of these, Xanomeline, has been shown to possess efficacy in controlling psychosis and related behavioral disturbances observed in Alzheimer's Disease patients (5). Further, it has recently been demonstrated that xanomeline is efficacious in treating schizophrenia (6). Interestingly, it displayed efficacy against both positive and negative symptoms, and did not induce adverse motoric effects in initial clinical studies in schizophrenics. These data suggest that compounds with muscarinic receptor agonist properties are likely to be efficacious in treating the behavioral disturbances common to neurodegenerative disease such as Alzheimers Disease and as antipsychotics to treat human psychoses, but only if they are tolerated in these patient populations.
Additionally, muscarinic receptor agonists have shown activity in pre-clinical models of neuropathic pain states (7).
Summary of the Invention [0005] Disclosed herein is a method of treating psychosis comprising:
identifying a subject suffering from one or more symptoms of psychosis; and contacting the subject with a therapeutically effective amount of N-desmethylclozapine;
whereby the one or more symptoms of psychosis are ameliorated. In one embodiment, the subject is human.
In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In one embodiment, the method further comprises contacting the subject with an additional therapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine repuptake inhibitiors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reupake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
Additionally, muscarinic receptor agonists have shown activity in pre-clinical models of neuropathic pain states (7).
Summary of the Invention [0005] Disclosed herein is a method of treating psychosis comprising:
identifying a subject suffering from one or more symptoms of psychosis; and contacting the subject with a therapeutically effective amount of N-desmethylclozapine;
whereby the one or more symptoms of psychosis are ameliorated. In one embodiment, the subject is human.
In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In one embodiment, the method further comprises contacting the subject with an additional therapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine repuptake inhibitiors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reupake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
[0006] Also disclosed herein is a method of treating affective disorders comprising: identifying a subject suffering from one or more symptoms of an affective disorder; and administering a therapeutically effective amount of N-desmethylclozapine to the subject, whereby the one or more symptoms of the affective disorder are ameliorated.
In one embodiment, the subject is human. In one embodiment, the affective disorder is depression. In another embodiment, the affective disorder is mania. In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In one embodiment, the method further comprises administering to the subject an additionaltherapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
In one embodiment, the subject is human. In one embodiment, the affective disorder is depression. In another embodiment, the affective disorder is mania. In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In one embodiment, the method further comprises administering to the subject an additionaltherapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
[0007] Also disclosed herein is a method of treating dementia, comprising:
identifying a subject suffering from one or more symptoms of dementia; and administering a therapeutically effective amount of N-desmethylclozapine to said subject, whereby a desired clinical effect is produced. In one embodiment, the subject is human.
In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In one embodiment, the dementia manifests as a cognitive impairment. In another embodiment, the dementia manifests as a behavioral disturbance. In one embodiment, the method further comprises administering to the subject an additional therapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
identifying a subject suffering from one or more symptoms of dementia; and administering a therapeutically effective amount of N-desmethylclozapine to said subject, whereby a desired clinical effect is produced. In one embodiment, the subject is human.
In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In one embodiment, the dementia manifests as a cognitive impairment. In another embodiment, the dementia manifests as a behavioral disturbance. In one embodiment, the method further comprises administering to the subject an additional therapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
[0008] Also disclosed herein is a method of treating neuropathic pain comprising: identifying a subject suffering from one or more symptoms of neuropathic pain; and contacting said subject with a therapeutically effective amount of N-desmethylclozapine, whereby the symptoms of neuropathic pain are reduced. In one embodiment, the subject is human. In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In one embodiment, the method further comprises contacting the subject with an additional therapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
[0009] Also disclosed herein is a method of treating glaucoma comprising:
identifying a subject suffering from one or more symptoms of glaucoma; and contacting said subject with a therapeutically effective amount of N-desmethylclozapine, whereby the symptoms of glaucoma are reduced. In one embodiment, the subject is human. In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In some embodiments, the symptoms of glaucoma are selected from the group consisting of elevated intraocular pressure, optic nerve damage, and decreased field of vision. In one embodiment, the method further comprises contacting the subject with an additional therapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptics, prostenoids and alpha and beta adrenergic agonists.
identifying a subject suffering from one or more symptoms of glaucoma; and contacting said subject with a therapeutically effective amount of N-desmethylclozapine, whereby the symptoms of glaucoma are reduced. In one embodiment, the subject is human. In some embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other embodiments, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In some embodiments, the symptoms of glaucoma are selected from the group consisting of elevated intraocular pressure, optic nerve damage, and decreased field of vision. In one embodiment, the method further comprises contacting the subject with an additional therapeutic agent. In one embodiment, the subject is contacted with the additional therapeutic agent subsequent to the contacting with N-desmethylclozapine. In another embodiment, the subject is contacted with the additional therapeutic agent prior to the contacting with N-desmethylclozapine. In still another embodiment, the subject is contacted with the additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptics, prostenoids and alpha and beta adrenergic agonists.
[0010] Also disclosed herein is a pharmaceutical composition comprising a pharmaceutically effective amount of N-desmethylclozapine and an additional therapeutic agent. In some embodiments, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists. In some embodiments, the additional therapeutic agent is selected from the group consisting of a phenothiazine, phenylbutylpiperadine, debenzapine, benzisoxidil, and salt of lithium. In some embodiments, the additional therapeutic gent is selected from the group consisting of chlorpromazine (Thorazine ), mesoridazine (Serentil ), prochlorperazine (Compazine ), thioridazine (Mellaril ), haloperidol (Haldol ), pimozide (Orap ), clozapine (Clozaril ), loxapiine (Loxitane ), olanzapine (Zyprexa(g), quetiapine (Seroquel ), risperidone (Risperidal ), ziprasidone (Geodon ), lithium carbonate, Aripiprazole (Abilify), Clozapine, Clozaril, Compazine, Etrafon, Geodon, Haldol, Inapsine, Loxitane, Mellaril, Moban, Navane, Olanzapine (Zyprexa), Orap, Permitil, Prolixin, Phenergan, Quetiapine (Seroquel), Reglan, Risperdal, Serentil, Seroquel, Stelazine, Taractan, Thorazine, Triavil, Trilafon, Zyprexa, and pharmaceutically acceptable salts thereof. In some embodiments the selective serotonin reuptake inhibitor is selected from the group consisting of fluoxetine, fluvoxamine, sertraline, paroxetine, citalopram, escitalopram, sibutramine, duloxetine, venlafaxine, and pharmaceutically acceptable salts and prodrugs thereof. In some embodiments, the norepinephrine reuptake inhibitor is selected from the group consisting of thionisoxetine and reboxetine. In some embodiments, the dual serotonin and norepinephrine reuptake inhibitor is selected from the group consisting of duloxetine, milnacripran and fluvoxamine. In some embodiments, the dopamine agonist is selected from the group consisting of cabergoline, amantadine, lisuride, pergolide, ropinirole, pramipexole, L-DOPA and bromocriptine. In one embodiment, the inverse serotonin agonists selected from the group consisting of N-(1-methylpiperidin-4-yl)-N-(4-flourophenylmethyl)-N'-(4-(2-methylpropyloxy)phenylmethyl) carbamide, MDL
100,907, SR-43694B (eplivanserin), ritanserin, ketanserin, mianserin, cinanserin, mirtazepine, cyproheptadine and cinnarizine.
100,907, SR-43694B (eplivanserin), ritanserin, ketanserin, mianserin, cinanserin, mirtazepine, cyproheptadine and cinnarizine.
[0011] One embodiment of the present invention includes, a method of treating cognitive impairment comprising identifying a subject in need of improvement of cognition and administering an amount of N-desmethylclozapine to said subject, which is therapeutically effective in improving the cognition of said subject.
[0012] In some aspects of this embodiment, the subject is human. In some aspects of this embodiment, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other aspects of this embodiment, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses.
[0013] In further aspects of this embodiment, the method further comprises contacting the subject with an additional therapeutic agent. For example, the subject may be contacted with said additional therapeutic agent subsequent to said contacting with N-desmethylclozapine. Alternatively, the subject may be contacted with said additional therapeutic agent prior to said contacting with N-desmethylclozapine.
[0014] In some cases, the subject is contacted with said additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some cases, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists. In some aspects of this embodiment, the subject suffers from a condition selected from the group consisting of hallucinations, delusions, disordered thought, behavioral disturbance, aggression, suicidality, mania, anhedonia, flattening of affect, affective disorders, depression, mania, dementia, neuropathic pain, glaucoma and two or more any of the foregoing conditions.
[0015] Another embodiment of the present invention includes method of ameliorating at least one symptom of a condition where it is beneficial to increase the level of activity of an Ml muscarinic receptor comprising determining that a subject would benefit from an increased level of activity of an M1 muscarinic receptor and administering an amount of N-desmethylclozapine which is therapeutically effective to increase the level of activity of the M 1 muscarinic receptor and to ameliorate said at least one symptom to the subject. In some aspects of this embodiment, the therapeutically effective amount of N-desmethylclozapine is administered as a single dose. In other aspects of this embodiment, the therapeutically effective amount of N-desmethylclozapine is administered as a plurality of doses. In further aspects of this embodiment, the method further comprises contacting the subject with an additional therapeutic agent. For example, the subject may be contacted with said additional therapeutic agent subsequent to said contacting with N-desmethylclozapine. Alternatively, the subject may be contacted with said additional therapeutic agent prior to said contacting with N-desmethylclozapine. In some cases, the subject is contacted with said additional therapeutic agent substantially simultaneously with N-desmethylclozapine. In some cases, the additional therapeutic agent is selected from the group consisting of monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reuptake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists. In some aspects of this embodiment, the subject suffers from a condition selected from the group consisting of hallucinations, delusions, disordered thought, behavioral disturbance, aggression, suicidality, mania, anhedonia, flattening of affect, affective disorders, depression, mania, dementia, neuropathic pain, glaucoma and two or more any of the foregoing conditions.
[0016] Another aspect of the present invention is a method for ameliorating one or more symptoms of psychosis, comprising administering to a subject exhibiting one or more symptoms of psychosis a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine. One embodiment further comprises identifying a subject exhibiting one or more symptoms of psychosis. In one embodiment, the psychosis is induced by exposure of the subject to one or more medications. In one embodiment, the subject is human. In one embodiment, the N-desmethylclozapine is administered as a single daily dose or administered in divided doses. In one embodiment, the N-desmethylclozapine is administered two, three or four times daily.
[0017] Another aspect of the present invention is a method of ameliorating one or more symptoms of an affective disorder, comprising administering to a subject exhibiting one or more symptoms of an affective disorder a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine. One embodiment further comprises identifying a subject exhibiting one or more symptoms of an affective disorder.
In one embodiment, the affective disorder is depression. In one embodiment, the affective disorder is mania.
In one embodiment, the affective disorder is depression. In one embodiment, the affective disorder is mania.
[0018] Another aspect of the present invention is a method of ameliorating one or more symptoms of dementia, comprising administering to a subject exhibiting one or more symptoms of dementia a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine. One embodiment further comprises identifying a subject exhibiting one or more symptoms of dementia. In one embodiment, the dementia comprises cognitive impairment. In one embodiment, the dementia comprises behavioral disturbances.
[0019] Another aspect of the present invention is a method of ameliorating one or more symptoms of neuropathic pain, comprising administering to a subject exhibiting one or more symptoms of neuropathic pain a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine. One embodiment further comprises identifying a subject exhibiting one or more symptoms of neuropathic pain.
[0020] Another aspect of the present invention is a method of ameliorating one or more symptoms of glaucoma, comprising administering to a subject exhibiting one or more symptoms of glaucoma a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine. One embodiment further comprises identifying a subject exhibiting one or more symptoms of glaucoma.
[0021] Another aspect of the present invention is a method of ameliorating one or more symptoms of psychosis, comprising administering to a subject N-desmethylclozapine in combination with another anti-psychotic agent, wherein at least a portion of the N-desmethylclozapine is administered by directly introducing N-desmethylclozapine to the subject. In one embodiment, directly introducing N-desmethylclozapine to the subject comprises orally administering N-desmethylclozapine.
In one embodiment, directly introducing N-desmethylclozapine to the subject comprises intravenous injection of N-desmethylclozapine. In one embodiment, the other anti-psychotic agent is selected from the group consisting of a phenothiazine, phenylbutylpiperadine, debenzapine, benzisoxidil, and a salt of lithium. In one embodiment, the phenothiazine is selected from the group consisting of chlorpromazine (Thorazine ), mesoridazine (Serentil ), prochlorperazine (Compazine ), and thioridazine (Mellaril ). In one embodiment, the phenylbutylpiperadine is selected from the group consisting of haloperidol (Haldol ) and pimozide (Orap ). In one embodiment, the debenzapine is selected from the group consisting of clozapine (Clozaril ), loxapine (Loxitane ), olanzapine (Zyprexa ) and quetiapine (Seroquel ). In one embodiment, the benzisoxidil is selected from the group consisting of resperidone (Resperidal ) and ziprasidone (Geodon(E). In one embodiment, the salt of lithium is lithium carbonate. In one embodiment, the antipsychotic agent is selected from the group consisting of Aripiprazole (Abilify), Clozapine, Clozaril, Compazine, Etrafon, Geodon, Haldol, Inapsine, Loxitane, Mellaril, Moban, Navane, Olanzapine (Zyprexa), Orap, Permitil, Prolixin, Phenergan, Quetiapine (Seroquel), Reglan, Risperdal, Serentil, Seroquel, Stelazine, Taractan, Thorazine, Triavil, Trilafon, and Zyprexa, or pharmaceutically acceptable salts thereof.
In one embodiment, directly introducing N-desmethylclozapine to the subject comprises intravenous injection of N-desmethylclozapine. In one embodiment, the other anti-psychotic agent is selected from the group consisting of a phenothiazine, phenylbutylpiperadine, debenzapine, benzisoxidil, and a salt of lithium. In one embodiment, the phenothiazine is selected from the group consisting of chlorpromazine (Thorazine ), mesoridazine (Serentil ), prochlorperazine (Compazine ), and thioridazine (Mellaril ). In one embodiment, the phenylbutylpiperadine is selected from the group consisting of haloperidol (Haldol ) and pimozide (Orap ). In one embodiment, the debenzapine is selected from the group consisting of clozapine (Clozaril ), loxapine (Loxitane ), olanzapine (Zyprexa ) and quetiapine (Seroquel ). In one embodiment, the benzisoxidil is selected from the group consisting of resperidone (Resperidal ) and ziprasidone (Geodon(E). In one embodiment, the salt of lithium is lithium carbonate. In one embodiment, the antipsychotic agent is selected from the group consisting of Aripiprazole (Abilify), Clozapine, Clozaril, Compazine, Etrafon, Geodon, Haldol, Inapsine, Loxitane, Mellaril, Moban, Navane, Olanzapine (Zyprexa), Orap, Permitil, Prolixin, Phenergan, Quetiapine (Seroquel), Reglan, Risperdal, Serentil, Seroquel, Stelazine, Taractan, Thorazine, Triavil, Trilafon, and Zyprexa, or pharmaceutically acceptable salts thereof.
[0022] Another aspect of the present invention is a method of ameliorating one or more symptoms of psychosis, including administering to a subject exhibiting one or more symptoms of psychosis a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
[0023] Another aspect of the present invention is a method of ameliorating one or more symptoms of an affective disorder, including administering to a subject exhibiting one or more symptoms of an affective disorder a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
[0024] Another aspect of the present invention is a method of ameliorating one or more symptoms of dementia, including administering to a subject exhibiting one or more symptoms of dementia a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
[0025] Another aspect of the present invention is a method of ameliorating one or more symptoms of neuropathic pain, including administering to a subject exhibiting one or more symptoms of neuropathic pain a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
[0026] Another aspect of the present invention is a method of ameliorating one or more symptoms of glaucoma, including administering to a subject exhibiting one or more symptoms of glaucoma a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
Brief Description of the Drawings [0027] Figure 1 is a graph showing the results. of agonist activity of N-desmethylclozapine at Ml muscarinic acetylcholine receptors in R-SAT Assays.
Brief Description of the Drawings [0027] Figure 1 is a graph showing the results. of agonist activity of N-desmethylclozapine at Ml muscarinic acetylcholine receptors in R-SAT Assays.
[0028] Figure 2 is a graph showing the results of agonist activity of N-desmethylclozapine at Ml musacrinic acetylcholine receptors in Phosphatidyl Inositol Assay.
[0029] Figure 3 shows photographs of MAP kinase activation in rat hippocampus following parenteral administration of N-desmethylclozapine.
[0030] Figure 4A shows a graph of the muscarinic M 1 receptor agonist activity of a library of 462 compounds as determined by R-SAT assays. M 1 receptor efficacy data shown are derived from the 1-micromolar concentration of compound, and are reported as percentage efficacy relative to the maximal response observed for a saturating micromolar concentration of carbachol (100%). Figures 4B-D shows a graph of PI
hydrolysis data utilizing Chinese Hamster Ovary cells stably transfected with the human Ml receptor gene. Panel B depicts agonist responses reported as the percentage response observed for carbachol. Drugs depicted are carbachol (squares), clozapine (triangles), and N-desmethylclozapine (circles), with observed potencies (pEC50) of: carbachol (5.7), N-desmethylclozapine (6.7), and clozapine (no response). Panel C depicts competitive antagonist responses obtained in the presence of a 3-micromolar concentration of carbachol, and are reported as the percentage response observed for atropine (100%).
Drugs depicted are atropine (squares), clozapine (triangles), and N-desmethylclozapine (circles), with observed potencies (pKi) of: atropine (8.5), N-desmethylclozapine (no response), and clozapine (7.1). Panel D depicts competitive antagonist responses obtained in the presence of a 0.15-micromolar concentration of N-desmethylclozapine, and are reported as the percentage response observed for atropine (100%). Drugs depicted are atropine (squares), and clozapine (triangles), with observed potencies (pKi) of: atropine (8.4), and clozapine (7.6).
hydrolysis data utilizing Chinese Hamster Ovary cells stably transfected with the human Ml receptor gene. Panel B depicts agonist responses reported as the percentage response observed for carbachol. Drugs depicted are carbachol (squares), clozapine (triangles), and N-desmethylclozapine (circles), with observed potencies (pEC50) of: carbachol (5.7), N-desmethylclozapine (6.7), and clozapine (no response). Panel C depicts competitive antagonist responses obtained in the presence of a 3-micromolar concentration of carbachol, and are reported as the percentage response observed for atropine (100%).
Drugs depicted are atropine (squares), clozapine (triangles), and N-desmethylclozapine (circles), with observed potencies (pKi) of: atropine (8.5), N-desmethylclozapine (no response), and clozapine (7.1). Panel D depicts competitive antagonist responses obtained in the presence of a 0.15-micromolar concentration of N-desmethylclozapine, and are reported as the percentage response observed for atropine (100%). Drugs depicted are atropine (squares), and clozapine (triangles), with observed potencies (pKi) of: atropine (8.4), and clozapine (7.6).
[0031] Figure 5 shows M1 muscarinic receptor agonist activity of N-desmethylclozapine in mouse hippocampus. Phospho-MAPK immunoreactivity in the cell bodies and proximal dendrites of CA1 pyramidal cells (highlighted by arrows) is shown following the administration of vehicle (A), clozapine at 30 mg/kg (B), N-desmethylclozapine at 10 (C), 30 (D), 100 (E), or N-desmethylclozapine (30mg/ kg) and scopolamine (0.3 mg/kg, i.p.)(F).
[0032] Figure 6 shows the quantification of M1 muscarinic receptor agonist activity of N-desmethylclozapine in mouse hippocampus. Quantification of phospho-MAPK immunoreactivity was performed via computer calculated optical 'density measurements of the CA1 region of the hippocampus from four mice, where (*) indicates a significant difference to vehicle treatment using a one factor ANOVA post-hoc Dunnett's test (F (5,23) =10.88: P<0.0001).
[0033] Figure 7 shows the results of an R-SAT assay with a combination of 150 nM NDMC and varying concentrations of clozapine.
[0034] Figure 8 shows the results of a PI hydrolysis assay with a combination of 150 nM NDMC and varying concentrations of clozapine.
~
Detailed Description of the Preferred Embodiment Definitions [0035] N-desmethylclozapine, 8- chloro -11- (1-piperazinyl) -5H- dibenzo [b,e]
[1,4] diazepine, also known as NDMC, is defined as the compound having the molecular structure depicted in Formula (I).
~
Detailed Description of the Preferred Embodiment Definitions [0035] N-desmethylclozapine, 8- chloro -11- (1-piperazinyl) -5H- dibenzo [b,e]
[1,4] diazepine, also known as NDMC, is defined as the compound having the molecular structure depicted in Formula (I).
[0036] An "agonist" is defined as a compound that increases the basal activity of a receptor (i.e. signal transduction mediated by the receptor).
[0037] An "antagonist" is defined as a compound that competes with an agonist or inverse agonist for binding to a receptor, thereby blocking the action of an agonist or inverse agonist on the receptor. However, an antagonist (also known as a "neutral"
antagonist) has no effect on constitutive receptor activity.
antagonist) has no effect on constitutive receptor activity.
[0038] A partial agonist is defined as an agonist that displays limited, or less than complete, activity such that it fails to activate a receptor in vitro, functioning as an antagonist in vivo.
[0039] The term "subject" refers to an animal, preferably a mammal, and most preferably a human, who is the object of treatment, observation or experiment.
[0040] The term "therapeutically effective amount" is used to indicate an amount of an active compound, or pharmaceutical agent, that elicits the biological or medicinal response indicated. This response may occur in a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, and includes alleviation of the symptoms of the disease being treated.
[0041] In certain embodiments, the method disclosed herein includes administering a therapeutically effective amount of NDMC to a subject for the purpose of treating psychosis.
[0042] In certain embodiments, the above method for treating psychosis comprises identifying a subject suffering from one or more symptoms of psychosis; and contacting the subject with a therapeutically effective amount of N-desmethylclozapine;
whereby the one or more symptoms of psychosis are ameliorated.
whereby the one or more symptoms of psychosis are ameliorated.
[0043] In some embodiments, the symptom is cognitive impairment associated with psychosis. In other embodiments, the subject suffering from psychosis exhibits more than one symptom of psychosis. In certain embodiments, one of the symptoms is cognitive impairment while another symptoms is one or more of hallucinations, delusions, disordered thought, behavioral disturbance, aggression, suicidality, mania, anhedonia, or flattening of affect.
[0044] In a further embodiment, the method includes administering a therapeutically effective amount of NDMC to a subject for the purpose of treating depression or mania.
[0045] In a still further embodiment, the method includes administering a therapeutically effective amount of NDMC to a subject for the purpose of treating the psychiatric and other behavioral disturbances characteristic of dementia or cognitive impairment of any origin.
[0046] In a still further embodiment, the method includes administering a therapeutically effective amount of NDMC to a subject for the purpose of treating neuropathic pain.
[0047] The present inventors have profiled a large series of drugs that have utility in treating human disease for functional activity at the five human muscarinic receptor subtypes. With the exception of known muscarinic drugs, only two agents studied (out of more than 500) displayed muscarinic receptor agonist activity. One was the atypical antipsychotic clozapine (8). In vitro, this compound has been shown to possess weak partial agonist/antagonist activity at muscarinic M1, M2, and M4 receptors (9, 10), while in vivo it is generally considered to display muscarinic receptor antagonist properties. The other was the related compound N-desmethylclozapine.
[0048] Administration of clozapine to human subjects results in the formation of two major metabolites N-desmethylclozapine (NDMC) and clozapine-N-oxide (11).
However, clozapine-N-oxide is a polar metabolite that is rapidly excreted and likely does not contribute to the biological activity of the parent compound. A
correlation exists between the dose of clozapine administered to a subject, and the serum levels of total clozapine moieties, yet the levels of NDMC can vary widely between individual subjects (12). Generally, NDMC constitutes 40-75% of the total serum clozapine concentrations during steady state kinetics in humans (13). Conflicting data exists as to the ability of NDMC to penetrate the blood brain barrier and impart centrally mediated activity (14, 15).
These observations demonstrate that NDMC has been routinely administered to human subjects, and is well tolerated. Few data exist as to the molecular properties of NDMC.
NDMC has been shown to possess antagonist activity at 5HT2C and D2 receptors (16), but no data on its interaction with muscarinic receptors has been reported.
However, clozapine-N-oxide is a polar metabolite that is rapidly excreted and likely does not contribute to the biological activity of the parent compound. A
correlation exists between the dose of clozapine administered to a subject, and the serum levels of total clozapine moieties, yet the levels of NDMC can vary widely between individual subjects (12). Generally, NDMC constitutes 40-75% of the total serum clozapine concentrations during steady state kinetics in humans (13). Conflicting data exists as to the ability of NDMC to penetrate the blood brain barrier and impart centrally mediated activity (14, 15).
These observations demonstrate that NDMC has been routinely administered to human subjects, and is well tolerated. Few data exist as to the molecular properties of NDMC.
NDMC has been shown to possess antagonist activity at 5HT2C and D2 receptors (16), but no data on its interaction with muscarinic receptors has been reported.
[0049] Surprisingly, and unlike the closely related compound clozapine, it has been found that the compound N-desmethylclozapine (NDMC) possesses heretofore unappreciated functional activity as a muscarinic receptor agonist. Ex vivo experiments have demonstrated that NDMC crosses the blood brain barrier and acts as an agonist at central muscarinic receptors in rats. These observations have practical applications that support the use of NDMC as an antipsychotic, antimania agent, antidementia agent, and as a therepeutic agent to treat glaucoma or neuropathic pain. Thus, in one aspect, disclosed herein is a method of agonizing the activity of a muscarinic receptor comprising contacting the receptor with an effective amount of NDMC. In another aspect, disclosed herein is a method of treating a subject suffering from a muscarinic receptor related disorder comprising indentifying a subject in need thereof and administering to the subject a therapeutically effective amount of NDMC.
[0050] By "muscarinic related disorder," it is meant a disorder whose symptoms are ameliorated by agonizing a muscarinic receptor.
[0051] In another aspect, disclosed herein is a method of ameliorating one or more symptoms associated with schizophrenia or psychosis of any origin in a subject, comprising administering to the subject a therapeutically effective amount of NDMC. In some embodiments, the method comprises contacting a subject with a pharmacologically active dose of NDMC, for the purpose of controlling the positive (hallucinations and delusion) and negative (apathy, social withdrawal, anhedonia) symptoms of schizophrenia or related psychosis. In one embodiment, the NDMC administered to ameliorate one or more symptoms associated with schizophrenia or psychosis is essentially free of clozapine.
By "essentially free of clozapine," it is meant that no appreciable amount of clozapine may be detected in the blood stream of the subject at the same time that NDMC is detectable in the blood stream of the subject. In one embodiment, the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC
and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, the ratio of NDMC to clozapine is high enough to have a beneficial effect due to net agonism at muscarinic receptors. In various embodiments, the ratio of NDMC to clozapine is at least about 100:1, 50:1, 10:1, 9:1, 7:1, 5:1, or 3:1.
By "essentially free of clozapine," it is meant that no appreciable amount of clozapine may be detected in the blood stream of the subject at the same time that NDMC is detectable in the blood stream of the subject. In one embodiment, the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC
and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, the ratio of NDMC to clozapine is high enough to have a beneficial effect due to net agonism at muscarinic receptors. In various embodiments, the ratio of NDMC to clozapine is at least about 100:1, 50:1, 10:1, 9:1, 7:1, 5:1, or 3:1.
[0052] In another aspect, disclosed herein is a method of ameliorating one or more symptoms associated with affective disorders, including major depression, mania, bipolar disorder, and suicide, in a subject, comprising administering to the subject a therapeutically effective amount of NDMC. In some embodiments, the method comprises contacting a subject with a pharmacologically active dose of NDMC, for the purpose of controlling the symptoms observed during major depression or manic depression.
In one embodiment, the NDMC administered to ameliorate one or more symptoms associated with affective disorders is essentially free of clozapine. In one embodiment, the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC
and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors.
In one embodiment, the NDMC administered to ameliorate one or more symptoms associated with affective disorders is essentially free of clozapine. In one embodiment, the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC
and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors.
[0053] In another aspect, disclosed herein is a method of ameliorating one or more symptoms associated with Alzheimer's Disease and related neurodegenerative disorders in a subject, comprising administering to the subject a therapeutically effective amount of NDMC. In some embodiments, the method comprises contacting a subject with a pharmacologically active dose of NDMC, for the purpose of improving the cognitive deficits, and controlling the associated behavioral abnormalities, observed in degenerative dementias. In one embodiment, the NDMC administered to ameliorate one or more symptoms associated with dementia is essentially free of clozapine. In one embodiment,.
the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors.
the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors.
[0054] In another aspect, disclosed herein is a method of ameliorate one or more symptoms associated with neuropathic pain in a subject, comprising identifying a subject in need thereof and administering to the subject a therapeutically effective amount of NDMC.
In some embodiments, the method comprises contacting a subject with a pharmacologically active dose of NDMC, for the purpose of controlling the dysthesthetic, hyperalgesic, and other altered nociceptive symptoms observed in neuropathic pain states regardless of their etiology. In one embodiment, the NDMC administered to ameliorate one or more symptoms associated with neuropathic pain is essentially free of clozapine. In one embodiment, the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors.
In some embodiments, the method comprises contacting a subject with a pharmacologically active dose of NDMC, for the purpose of controlling the dysthesthetic, hyperalgesic, and other altered nociceptive symptoms observed in neuropathic pain states regardless of their etiology. In one embodiment, the NDMC administered to ameliorate one or more symptoms associated with neuropathic pain is essentially free of clozapine. In one embodiment, the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors.
[0055] In another aspect, disclosed herein is a method of ameliorating one or more symptoms associated with glaucoma in a subject, comprising administering to the subject a therapeutically effective amount of NDMC. In some embodiments, the method comprises contacting a subject with a pharmacologically active dose of NDMC, for the purpose of controlling the raised intra-ocular pressure observed in glaucoma, regardless of its etiology. In one embodiment, the NDMC administered to ameliorate one or more symptoms associated with glaucoma is essentially free of clozapine. In one embodiment, the amount of any clozapine administered with the NDMC is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors. In one embodiment, some amount of clozapine is administered but it is low enough such that the combined NDMC and clozapine administered result in a net agonism at muscarinic receptors.
[0056] Surprisingly, NDMC possesses potent agonist activity at the human muscarinic receptors. It is further disclosed herein that NDMC can cross the blood brain barrier, and function in vivo as a muscarinic receptor agonist measured via the activation of MAP kinase activity in rat hippocampus. The molecular activities of NDMC, as identified by the present methods, combined with the known clinical efficacy of compounds that possess a similar molecular pharmacological profile, indicate that NDMC can be used to alleviate or treat disorders or conditions associated with human psychosis, affective disease, degenerative dementia, glaucoma, and neuropathic pain.
[0057] In another aspect, disclosed herein is a method of activating an Ml muscarinic receptor comprising contacting the receptor with N-desmethylclozapine.
[0058] In a further aspect, disclosed herein is a method of ameliorating at least one symptom of a condition where it is beneficial to increase the level of activity of an Ml muscarinic receptor comprising administering N-desmethylclozapine to a subject in need thereof.
Preparation of 1V-desmeth lc~ lozapine (NDMC) [0059] N-desmethylclozapine (NDMC) has the structure of Formula (I).
a N-CI ~ I \
N
H
Preparation of 1V-desmeth lc~ lozapine (NDMC) [0059] N-desmethylclozapine (NDMC) has the structure of Formula (I).
a N-CI ~ I \
N
H
[0060] NDMC is prepared as previously described (17). The dibenzo-diazepine-lactam precursor (II) is converted to the thiolactam (III) using phosphorus pentasulfide, followed by alkylation with e.g. dimethyl sulfate to give the imino thioether (IV).
Aminolysis of the thioether with an excess of piperazine gives the desired N-desmethylclozapine (I). Alternatively, the dibenzo-diazepine-lactam (II) may be converted into the imino-chloride (V) by treatment with a halogenating agent such as phosphorus pentachloride and the product V is converted to N-desmethylclozapine (I) by reaction with piperazine.
H S H p CI
CI N - CI N - C I N
_ H~i H~/ H
(III) (II) (V) H
N SR CD
CI (~ ~ - CI I~ N~ D
H
H\~ (IV) (I) [0061] NDMC may be formulated in pharmaceutical compositions comprising NDMC together with a pharmaceutically acceptable dilutant or excipient. Such compositions may be formulated in an appropriate manner and in accordance with accepted practices such as those disclosed in Remington's Pharmaceutical Sciences, Gennaro, Ed., Mack Publishing Co., Easton PA, 1990. In some embodiments, a pharmaceutical composition comprising NDMC is provided that is essentially free of clozapine.
Aminolysis of the thioether with an excess of piperazine gives the desired N-desmethylclozapine (I). Alternatively, the dibenzo-diazepine-lactam (II) may be converted into the imino-chloride (V) by treatment with a halogenating agent such as phosphorus pentachloride and the product V is converted to N-desmethylclozapine (I) by reaction with piperazine.
H S H p CI
CI N - CI N - C I N
_ H~i H~/ H
(III) (II) (V) H
N SR CD
CI (~ ~ - CI I~ N~ D
H
H\~ (IV) (I) [0061] NDMC may be formulated in pharmaceutical compositions comprising NDMC together with a pharmaceutically acceptable dilutant or excipient. Such compositions may be formulated in an appropriate manner and in accordance with accepted practices such as those disclosed in Remington's Pharmaceutical Sciences, Gennaro, Ed., Mack Publishing Co., Easton PA, 1990. In some embodiments, a pharmaceutical composition comprising NDMC is provided that is essentially free of clozapine.
[0062] Advantageously, NDMC may be administered in a single daily dose, or the total daily dosage may be administered as a plurality of doses, (e.g., divided doses two, three or four times daily). Furthermore, compound for the present invention may be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, or via topical use of ocular formulations, or using those forms of transdermal skin patches well known to persons skilled in the art.
[0063] The dosage regimen of NDMC can be selected in accordance with a variety of factors. These include type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound employed. A
physician of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the disease or disorder that is being treated.
physician of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the disease or disorder that is being treated.
[0064] The daily dosage of the products may be varied over a wide range from 0.01 to 1000 mg per adult human per day. An effective amount of the drug is ordinarily supplied at a dosage level of about 0.0001 mg/kg to about 25 mg/kg body weight per day.
Preferably, the range is from about 0.001 to 10 mg/kg of body weight per day, and especially from about 0.001 mg/kg to 1 mg/kg of body weight per day. The compounds may be administered on a regimen of 1 to 4 times per day.
Preferably, the range is from about 0.001 to 10 mg/kg of body weight per day, and especially from about 0.001 mg/kg to 1 mg/kg of body weight per day. The compounds may be administered on a regimen of 1 to 4 times per day.
[0065] NDMC may be used alone at appropriate dosages defined by routine testing in order to obtain optimal pharmacological effect, while minimizing any potential toxic or otherwise unwanted effects. In addition, it is believed that NDMC may be used as adjunctive therapy with known drugs to reduce the dosage required of these traditional drugs, and thereby reduce their side effects.
[0066] In some embodiments, NDMC is administered in combination with one or more additional therapeutic agents. The additional therapeutic agents can include, but are not limited to, a neuropsychiatric agent. As used herein, a "neuropsychiatric agent"
refers to a compound, or a combination of compounds, that affects the neurons in the brain either directly or indirectly, or affects the signal transmitted to the neurons in the brain.
Neuropsychiatric agents, therefore, may affect a person's psyche, such as the person's mood, perception, nociception, cognition, alertness, memory, etc. In certain embodiments, the neuropsychiatric agent may be selected from the group consisting of monoamine reputkate inhibitiors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reupake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
refers to a compound, or a combination of compounds, that affects the neurons in the brain either directly or indirectly, or affects the signal transmitted to the neurons in the brain.
Neuropsychiatric agents, therefore, may affect a person's psyche, such as the person's mood, perception, nociception, cognition, alertness, memory, etc. In certain embodiments, the neuropsychiatric agent may be selected from the group consisting of monoamine reputkate inhibitiors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reupake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotoninlA agonists, antiepileptic and peripherally acting muscarinic antagonists.
[0067] In some embodiments, the antipsychotic agent may be selected from the group consisting of a phenothiazine, phenylbutylpiperadine, debenzapine, benzisoxidil, and salt of lithium. The phenothiazine group of compounds may be selected from the group consisting of chlorpromazine (Thorazine ), mesoridazine (Serentil ), prochlorperazine (Compazine ), and thioridazine (Mellaril ). The phenylbutylpiperadine group of compounds may be selected from the group consisting of haloperidol (Haldol ), and pimozide (Orap(g). The debenzapine group of compounds may be selected from the group consisting of clozapine (Clozaril ), loxapine (Loxitane ), olanzapine (Zyprexa ) and quetiapine (Seroquel ). The benzisoxidil group of compounds may be selected from the group consisting of resperidone (Resperidal ) and ziprasidone (Geodon ). The salt of lithium may be lithium carbonate. In some embodiments, the antipsychotic agent may be selected from the group consisting of Aripiprazole (Abilify), Clozapine, Clozaril, Compazine, Etrafon, Geodon, Haldol, Inapsine, Loxitane, Mellaril, Moban, Navane, Olanzapine (Zyprexa), Orap, Permitil, Prolixin, Phenergan, Quetiapine (Seroquel), Reglan, Risperdal, Serentil, Seroquel, Stelazine, Taractan, Thorazine, Triavil, Trilafon, and Zyprexa, or pharmaceutically acceptable salts thereof.
[0068] In certain embodiments, the selective serotonin reuptake inhibitor is selected from the group consisting of fluoxetine, fluvoxamine, sertraline, paroxetine, citalopram, escitalopram, sibutramine, duloxetine, and venlafaxine, and pharmaceutically acceptable salts or prodrugs thereof.
[0069] In other embodiments, the norepinephrine reuptake inhibitor is selected from the group consisting of thionisoxetine and reboxetine.
[0070] In further embodiments, the dopamine agonist is selected from the group consisting of cabergoline, amantadine, lisuride, pergolide, ropinirole, pramipexole, and bromocriptine.
[0071] In another embodiment, the inverse serotonin 2A agonist is N-(1-methylpiperidin-4-yl)-N-(4-flourophenylmethyl)-N' -(4-(2-methylpropyloxy)phenylmethyl)carbamide, MDL 100,907, SR-43694B (eplivanserin), rtianserin, ketanserin, mianserin, cinanserin, mirtazepine, cyproheptadine and cinnarizine.
[0072] In another aspect, the present disclosure is directed to a method of treating neuropsychiatric disorder in a patient comprising identifying a patient in need thereof and administering to said patient a therapeutically effective amount of a pharmaceutical composition comprising a compound of Formula (I) and a neuropsychiatric agent. In yet another aspect, the present disclosure is directed to a method of treating neuropsychiatric disorder in a patient comprising identifying a patient in need thereof and administering to said patient a therapeutically effective amount of a compound of Formula (I) and a therapeutically effective amount of a neuropsychiatric agent.
[0073] In some embodiments, NDMC and additional therapeutic agent(s) are administered nearly simultaneously. These embodiments include those in which the compounds are in the same administrable composition, i.e., a single tablet, pill, or capsule, or a single solution for intravenous injection, or a single drinkable solution, or a single dragee formulation or patch, contains the compounds. The embodiments also include those in which each compound is in a separate administrable composition, but the patient is directed to take the separate compositions nearly simultaneously, i.e., one pill is taken right after the other or that one injection of one compound is made right after the injection of another compound, etc.
[0074] In other embodiments, one of NDMC and an additional therapeutic compound is administered first and then the other one of NDMC and the additional therapeutic compound is administered second. In these embodiments, the patient may be administered a composition comprising one of the compounds and then at some time, a few minutes or a few hours later, be administered another composition comprising the other one of the compounds. Also included in these embodiments are those in which the patient is administered a composition comprising one of the compounds on a routine or continuous basis while receiving a composition comprising the other compound occasionally.
[0075] In some embodiments of combination administration, NDMC is administered in combination with another therapeutic agent, wherein at least a portion of the NDMC is administered by directly introducing NDMC to a subject. Thus, for example, clozapine may be administered in combination with NDMC wherein both clozapine and NDMC are directly administered to a subject. A portion of the NDMC
administered to the patient will be due to metabolism of clozapine. However, another portion of NDMC will be due to direct administration of NDMC. In one embodiment, directly introducing NDMC
to a subject may be accomplished by the subject orally ingesting NDMC. In one embodiment, directly introducing NDMC to a subject may be accomplished by intravenously injecting NDMC into the subject.
administered to the patient will be due to metabolism of clozapine. However, another portion of NDMC will be due to direct administration of NDMC. In one embodiment, directly introducing NDMC
to a subject may be accomplished by the subject orally ingesting NDMC. In one embodiment, directly introducing NDMC to a subject may be accomplished by intravenously injecting NDMC into the subject.
[0076] Defining the functional pharmacological activity of NDMC at a given receptor can be achieved by a variety of methodologies. A currently favored assay is the Receptor Selection and Amplification Technology (R-SAT) assay disclosed in US
5,707,798, the content of which is hereby incorporated by reference in its entirety.
5,707,798, the content of which is hereby incorporated by reference in its entirety.
[0077] Defining the functional pharmacological activity of NDMC at a given receptor can be achieved by a variety of methodologies. Another currently favored assay is the PI Hydrolysis assay (18).
[0078] Defining the ability of NDMC to penetrate the blood brain barrier and elicit a meaningful biological response can be achieved by a variety of methodologies. A
currently favored assay is the hippocampal MAP kinase activation assay (19).
currently favored assay is the hippocampal MAP kinase activation assay (19).
[0079] The present invention is further disclosed in the following examples, which are not in any way intended to limit the scope of the invention as claimed.
Examples Example 1: Receptor Selection and Amplification Technology [0080] The functional receptor assay, Receptor Selection and Amplification Technology (R-SAT), was used (essentially as disclosed in US 5,707,798, incorporated by reference herein in its entirety) to investigate the functional pharmacological properties of known drugs, including many of their metabolites. These experiments have provided a molecular profile, or fingerprint, for each of these agents. Of all of the agents tested, only one, NDMC, displayed potent M1 acetylcholine receptor agonist activity. Figure 1 shows the concentration response relationship of clozapine (filled triangles) and N-desmethylclozapine (filled circles) to activate human Ml muscarinic receptors.
Data was derived from R-SAT assays as previously previously described (20). Data is plotted as the percentage activation relative to the full muscarinic receptor agonist carbachol versus drug concentration. Veh denotes vehicle.
Examples Example 1: Receptor Selection and Amplification Technology [0080] The functional receptor assay, Receptor Selection and Amplification Technology (R-SAT), was used (essentially as disclosed in US 5,707,798, incorporated by reference herein in its entirety) to investigate the functional pharmacological properties of known drugs, including many of their metabolites. These experiments have provided a molecular profile, or fingerprint, for each of these agents. Of all of the agents tested, only one, NDMC, displayed potent M1 acetylcholine receptor agonist activity. Figure 1 shows the concentration response relationship of clozapine (filled triangles) and N-desmethylclozapine (filled circles) to activate human Ml muscarinic receptors.
Data was derived from R-SAT assays as previously previously described (20). Data is plotted as the percentage activation relative to the full muscarinic receptor agonist carbachol versus drug concentration. Veh denotes vehicle.
[0081] As shown in Figure 1, clozapine displays high potency (pEC50 of 7.2) yet limited intrinsic efficacy (<25% relative efficacy) at human M1 receptors.
Clozapine is thus defined as a weak partial agonist. Partial agonists lack sufficient intrinsic agonist activity to stimulate the receptor in a manner similar to full agonists. They thus behave as antagonists in vivo. In contrast, NDMC also displays high potency (pEC50 of 7.2) at human M1 receptors, yet it displays significantly greater intrinsic agonist activity at MI receptors (65% relative efficacy to carbachol), behaving as a robust agonist in R-SAT
assays. This increased efficacy suggests that NDMC will act as an agonist in vivo, a functional profile distinct from that observed for clozapine.
Clozapine is thus defined as a weak partial agonist. Partial agonists lack sufficient intrinsic agonist activity to stimulate the receptor in a manner similar to full agonists. They thus behave as antagonists in vivo. In contrast, NDMC also displays high potency (pEC50 of 7.2) at human M1 receptors, yet it displays significantly greater intrinsic agonist activity at MI receptors (65% relative efficacy to carbachol), behaving as a robust agonist in R-SAT
assays. This increased efficacy suggests that NDMC will act as an agonist in vivo, a functional profile distinct from that observed for clozapine.
[0082] To confirm the observation that NDMC displays increased agonist efficacy at M1 receptors, a PI hydrolysis assay was performed, the results of which are disclosed in Figure 2 and Table 1. The data in Figure 2 is derived from PI
assays as described in (18). In Figure 2, the concentration response relationship of carbachol (filled squares), clozapine (filled triangles), and N-desmethylclozapine (filled circles) to activate human M1 muscarinic receptors is shown. Data are plotted as a radioactivity measured in counts per minute versus drug concentration.
Table 1 Compound M, %Efficacy pEC50 n Carbachol 100% 6.04 0.05 5 Clozapine No Activity N-desmethylclozapine 65 10 7.01 0.06 5 [0083] In Table 1, potency is reported as pEC50 values and efficacy is reported as that relative to the full agonist carbachol, both +/- standard deviation.
"n" denotes number of experimental determinations. NDMC displays high potency as an M 1 agonist in this system (pEC50 = 7.0), with full efficacy (>65% relative efficacy to carbachol). Thus, two distinct functional assays confirm that NDMC possesses previously unappreciated potent and fully efficacious agonist activity at human M1 muscarinic acetylcholine receptors. This significantly greater positive intrinsic activity of NDMC
suggests that it behaves as an Ml receptor agonist in vivo.
assays as described in (18). In Figure 2, the concentration response relationship of carbachol (filled squares), clozapine (filled triangles), and N-desmethylclozapine (filled circles) to activate human M1 muscarinic receptors is shown. Data are plotted as a radioactivity measured in counts per minute versus drug concentration.
Table 1 Compound M, %Efficacy pEC50 n Carbachol 100% 6.04 0.05 5 Clozapine No Activity N-desmethylclozapine 65 10 7.01 0.06 5 [0083] In Table 1, potency is reported as pEC50 values and efficacy is reported as that relative to the full agonist carbachol, both +/- standard deviation.
"n" denotes number of experimental determinations. NDMC displays high potency as an M 1 agonist in this system (pEC50 = 7.0), with full efficacy (>65% relative efficacy to carbachol). Thus, two distinct functional assays confirm that NDMC possesses previously unappreciated potent and fully efficacious agonist activity at human M1 muscarinic acetylcholine receptors. This significantly greater positive intrinsic activity of NDMC
suggests that it behaves as an Ml receptor agonist in vivo.
[0084] Clozapine and NDMC were tested at the remaining muscarinic receptor subtypes. These data are disclosed in Table 2. The data in Table 2 are derived from R-SAT
assays as previously described (20). Potency is reported as pEC50 values and efficacy is reported as that relative to the full agonist carbachol, both +/- standard deviation. N
denotes number of experimental determinations.
Table 2 Compound M1 M2 M3 Efficacy pEC50 Efficacy pEC50 Efficacy pEC50 Clozapine 24 3 7.63 0.37 65 8 6.23 0.14 No response N-desmeth Icloza ine 72f5 7.26 0.07 106 19 6.47 0.21 27 4 6.49 0.18 Olanzapine No response No response No response N-desmeth lolanza ine No response No response No response Xanomeline 121 6 7.20 0.08 106 9 6.30 0.23 66 6 6.63 0.21 Carbachol 101 2 6.11 0.03 101 5 6.23 0.09 102 3 6.53f0.04 Compound M4 M5 Efficacy pECso Efficacy pEC50 Clozapine 57 5 7.35 0.10 No response N-desmeth lcloza ine 87 8 6.87 0.17 48 6 7.63 0.25 Olanzapine No response No response N-desmeth lolanza ine No response No response Xanomeline 116 9 7.46 0.14 86 12 6.59 0.22 Carbachol 96 3 6.53 0.05 105f3 6.76 0.12 [0085] NDMC displays increased intrinsic activity at all five muscarinic receptor subtypes when compared to clozapine. The profile of NDMC at human muscarinic receptors is most similar to that observed for the investigational agent Xanomeline, with one important distinction, a significantly lower efficacy at human m3 receptors.
assays as previously described (20). Potency is reported as pEC50 values and efficacy is reported as that relative to the full agonist carbachol, both +/- standard deviation. N
denotes number of experimental determinations.
Table 2 Compound M1 M2 M3 Efficacy pEC50 Efficacy pEC50 Efficacy pEC50 Clozapine 24 3 7.63 0.37 65 8 6.23 0.14 No response N-desmeth Icloza ine 72f5 7.26 0.07 106 19 6.47 0.21 27 4 6.49 0.18 Olanzapine No response No response No response N-desmeth lolanza ine No response No response No response Xanomeline 121 6 7.20 0.08 106 9 6.30 0.23 66 6 6.63 0.21 Carbachol 101 2 6.11 0.03 101 5 6.23 0.09 102 3 6.53f0.04 Compound M4 M5 Efficacy pECso Efficacy pEC50 Clozapine 57 5 7.35 0.10 No response N-desmeth lcloza ine 87 8 6.87 0.17 48 6 7.63 0.25 Olanzapine No response No response N-desmeth lolanza ine No response No response Xanomeline 116 9 7.46 0.14 86 12 6.59 0.22 Carbachol 96 3 6.53 0.05 105f3 6.76 0.12 [0085] NDMC displays increased intrinsic activity at all five muscarinic receptor subtypes when compared to clozapine. The profile of NDMC at human muscarinic receptors is most similar to that observed for the investigational agent Xanomeline, with one important distinction, a significantly lower efficacy at human m3 receptors.
[0086] To confirm aspects of this molecular profile in vivo, and to assess the ability of NDMC to access the central nervous system, NDMC was administered parenterally to rats, and the M1 receptor mediated activation of hippocampal MAP kinase (MAPK) activity was determined, and this is disclosed in Figure 3. NDMC
treatment activates MAPK in CA1 pyramidal neurons. C57BL6 mice were treated s.c with vehicle, N-desmethylclozapine, clozapine, or NDMC and scopolamine (i.p.) at the doses described in Figure 3, and then subjected to labeling via immunohistochemistry. With NDMC
treatment, cell bodies and proximal dendrites of CA1 pyramidal neurons showed increased phospho-MAPK immunoreactivity compared to either vehicle or clozapine treatment.
Furthermore, scopolamine reduced NDMC induced MAPK activation in the CAl region indicative of a muscarinic receptor mediated mechanism. Robust activation was observed, at a dose of 30 mg/kg. This confirms that NDMC penetrates the blood brain barrier, and function as a muscarinic receptor agonist in vivo.
Example 2: Nonclinical Pharmacology of NDMC
treatment activates MAPK in CA1 pyramidal neurons. C57BL6 mice were treated s.c with vehicle, N-desmethylclozapine, clozapine, or NDMC and scopolamine (i.p.) at the doses described in Figure 3, and then subjected to labeling via immunohistochemistry. With NDMC
treatment, cell bodies and proximal dendrites of CA1 pyramidal neurons showed increased phospho-MAPK immunoreactivity compared to either vehicle or clozapine treatment.
Furthermore, scopolamine reduced NDMC induced MAPK activation in the CAl region indicative of a muscarinic receptor mediated mechanism. Robust activation was observed, at a dose of 30 mg/kg. This confirms that NDMC penetrates the blood brain barrier, and function as a muscarinic receptor agonist in vivo.
Example 2: Nonclinical Pharmacology of NDMC
[0087] A comprehensive functional pharmacological screen of nearly all known antipsychotics, and many of their metabolites, at a majority of the known biogenic amine G-protein-coupled receptors (GPCRs) identified NDMC as pharmacologically unique.
NDMC is an antagonist of D2 dopamine receptors and a potent inverse agonist of receptors. However, unlike any other compound tested, NDMC is a potent and efficacious muscarinic receptor agonist. Specifically, NDMC is a potent partial agonist of (Ki=50nM) and M5 receptors (K;=25nM). NDMC also displays agonism of M2, M3, and M4 receptors, however this interaction is 10-fold less potent than the interaction with other subtypes and indeed, under physiological conditions NDMC is able to competitively antagonize M3 receptors. In comparison, clozapine is a potent competitive antagonist of M1, M3, and M5 receptors, a weak agonist of M2 receptors, and a potent partial agonist of M4 receptors. Furthermore, olanzapine, an antipsychotic structurally related to NDMC and clozapine is an antagonist of all 5 muscarinic subtypes. Haloperidol, risperidone, and ziprasidone do not interact with any of these receptors at concentrations up to 1 M. Thus, the agonist activity of NDMC at muscarinic receptors, particularly M, and M5 receptors, is unique among antipsychotic drugs.
NDMC is an antagonist of D2 dopamine receptors and a potent inverse agonist of receptors. However, unlike any other compound tested, NDMC is a potent and efficacious muscarinic receptor agonist. Specifically, NDMC is a potent partial agonist of (Ki=50nM) and M5 receptors (K;=25nM). NDMC also displays agonism of M2, M3, and M4 receptors, however this interaction is 10-fold less potent than the interaction with other subtypes and indeed, under physiological conditions NDMC is able to competitively antagonize M3 receptors. In comparison, clozapine is a potent competitive antagonist of M1, M3, and M5 receptors, a weak agonist of M2 receptors, and a potent partial agonist of M4 receptors. Furthermore, olanzapine, an antipsychotic structurally related to NDMC and clozapine is an antagonist of all 5 muscarinic subtypes. Haloperidol, risperidone, and ziprasidone do not interact with any of these receptors at concentrations up to 1 M. Thus, the agonist activity of NDMC at muscarinic receptors, particularly M, and M5 receptors, is unique among antipsychotic drugs.
[0088] In addition to its activity at D2, 5HT2A, and muscarinic receptors, NDMC
has affinity for aI, az, D1, Hi, S2, 5HTIA, 5HTIB, 5HT3, 5HT6, and 5HT7 receptors, and Ca2+
channels in ligand binding assays. Functionally it is a potent competitive antagonist of 5HT2C, HI, and aIA receptors and an inverse agonist of 5HT6A and 5HT7A
receptors.
has affinity for aI, az, D1, Hi, S2, 5HTIA, 5HTIB, 5HT3, 5HT6, and 5HT7 receptors, and Ca2+
channels in ligand binding assays. Functionally it is a potent competitive antagonist of 5HT2C, HI, and aIA receptors and an inverse agonist of 5HT6A and 5HT7A
receptors.
[0089] NDMC is orally active in two models thought to be predictive of antipsychotic activity. Like clozapine, NDMC attenuates both MK-801-induced and amphetamine-induced hyperactivity in mice at doses lower or similar to those that reduce spontaneous activity. Unlike clozapine and haloperidol, NDMC does not attenuate apomorphine-induced climbing in mice. This may reflect the reduced affinity of NDMC
for D2 receptors compared to these other antipsychotics. NDMC administration results in a dose-dependent activation of mitogen-activated protein kinase (MAPK) in the CA1 region of hippocampus and this activation can be blocked by the non-selective muscarinic antagonist scopolamine. Given that M, receptors are the predominant subtype of muscarinic receptor responsible for MAPK activation in the CAl region of the hippocampus, this finding supports the in vivo agonism of M1 receptors by NDMC.
Clozapine administration does not result in MAPK activation. Additional evidence of pharmacological activity of NDMC comes from the observation that NDMC
administration increases cFOS expression in the prefrontal cortex and nucleus accumbens, but not in the striatum. The lack of cFOS expression in the striatum suggests that NDMC is unlikely to produce extrapyramidal side effects.
Example 3: Nonclinical Pharmacokinetics and Metabolism of NDMC
for D2 receptors compared to these other antipsychotics. NDMC administration results in a dose-dependent activation of mitogen-activated protein kinase (MAPK) in the CA1 region of hippocampus and this activation can be blocked by the non-selective muscarinic antagonist scopolamine. Given that M, receptors are the predominant subtype of muscarinic receptor responsible for MAPK activation in the CAl region of the hippocampus, this finding supports the in vivo agonism of M1 receptors by NDMC.
Clozapine administration does not result in MAPK activation. Additional evidence of pharmacological activity of NDMC comes from the observation that NDMC
administration increases cFOS expression in the prefrontal cortex and nucleus accumbens, but not in the striatum. The lack of cFOS expression in the striatum suggests that NDMC is unlikely to produce extrapyramidal side effects.
Example 3: Nonclinical Pharmacokinetics and Metabolism of NDMC
[0090] The pharmacokinetics of NDMC and clozapine were investigated in rats and dogs. In both species, a single dose of NDMC was administered orally (10 mg/kg) or intravenously (1 mg/kg) and blood samples were taken at regular intervals post-dose. The data showed that the oral bioavailability of NDMC is 25% and 44% in rats and dogs, respectively. In comparison, the oral bioavailability of clozapine is 1.5% and 7% in rats and dogs, respectively. Thus these data indicate that NDMC has superior oral bioavailability relative to clozapine.
[0091] In animals that received clozapine, appreciable levels of NDMC were detected. In rats, NDMC levels at Cmax were approximately 20-fold higher than the levels of clozapine at its Cmax. In dogs, peak NDMC levels were approximately 16% of the peak clozapine levels. These data confirm published studies that demonstrate the metabolism of clozapine to NDMC in several species including mice, rabbit, dog, pig, monkey, and human.
[0092] The brain-to-plasma ratio of NDMC was calculated in rats. The ratio was 1.0 at 240 minutes after oral administration of NDMC and 2.6 at 240 minutes after oral administration of clozapine. Together with data available in the literature, these results show that NDMC distributes into the CNS.
Example 4: In Vitro Pharmacology of NDMC
Example 4: In Vitro Pharmacology of NDMC
[0093] The affinity of NDMC for 50 receptors, ion channels, and transporters was evaluated at a single high dose (10 M). This screen identified 16 sites at which NDMC caused 90% or greater inhibition of binding and these were al, U2, D1, DzS, Hi, Mi, M2, M3, 82, 5HTIA, 5HTIB, 5HT2A, 5HT3, 5HT6, and 5HT7 receptors, and CaZ+
channels.
The inhibition of ligand binding in these assays provides information regarding the binding of NDMC to these receptors, however does not indicate the nature of the interaction.
Example 5: Functional Screen of NDMC Against Multiple G-Protein-Coupled Receptors (GPCRs) [00941 The pharmacological profile of NDMC was extensively studied in a wide range of functional GPCR assays using proprietary Receptor Selection and Amplification Technology (R-SAT; 2, 3). Table 3 reports the functional pharmacological activity of NDMC and leading typical and atypical antipsychotics at a subset of human monoaminergic receptor at which these drugs demonstrate the highest potencies.
Table 3 Antagonist and Inverse Agonist Activity of NDMC and Reference Antipsychotics in R-SAT Assays Compound NDMC Clozapine Olanzapine Haloperidol Risperidone Ziprasidone Competitive Antagonist Receptor pKi pKi pKi pKi pKi pKi DZ 7.2 0.1 7.7 0.1 8.4 0.2 10.0 0.1 9.3 0.1 8.3 0.3 5-HTZA 8.3 0.2 8.3 0.2 8.6 0.1 7.3 0.1 9.7 0.1 8.6 0.1 5-HTIA nrI nr nr nr nr nr*2 5-HTZC 7.8 0.2 7.4 0.2 7.4 0.1 nr 7.2 0.3 7.4 0.2 H, 8.2 0.2 9.5 0.2 8.4 0.1 nr 7.0 0.2 nr M, nr* 7.8 0.2 7.2 0.2 nr nr nr M2 nr* nr* 6.9 0.1 nr nr nr M3 6.8 0.7 8.2 0.2 6.7 0.5 nr nr nr M4 nr* nr* 7.4 0.3 nr nr nr M5 nr* 7.5 0.3 7.2 0.2 nr nr nr D3 nr 6.3 0.1 7.6 0.4 9.7 0.1 7.9 0.4 7.5 0.3 aIA 7.3 0.1 8.1 0.1 7.4 0.2 7.4 0.1 8.5 0.1 7.4 0.2 aZA nr nr nr nr 7.7 0.1 nr Inverse Agonist pEC50 pEC50 pEC50 pEC50 pEC50 pEC50 5HT2A 8.0 0.3 8.0 0.3 7.8 0.1 6.8 0.1 9.0 0.3 8.8 0.3 5HT6A 6.9 0.1 7.0 0.2 7.4 0.2 nr nr nr 5HT7A 7.3 0.1 7.4 0.1 nr nr 9.1 0.2 7.3 0.1 I nr = no significant antagonist or inverse agonist activity up to 1 M.
2 nr* = no significant antagonist or inverse agonist activity up to 1 M;
significant agonist activity (see Table 2).
[0095] The pharmacological activity of NDMC was similar to that of existing, clinically efficacious atypical antipsychotics. Like all atypical antipsychotics, NDMC
showed high potency, competitive antagonist and inverse agonist activity at 5-receptors. It displayed lower potency as a dopamine D2 receptor antagonist, than clozapine and therefore has a higher 5-HT2A/D2 receptor potency ratio. NDMC also displayed lower potency as an Hi and aIA receptor antagonist than clozapine, suggesting that it may have less of a propensity to induce adverse clinical effects, including sedation and orthostatic hypotension, mediated by these receptor subtypes. Consistent with these data, published reports confirm the potent competitive antagonist activity of NDMC at D2 and 5-receptors in vitro (Kouppamaki M, Syvalahti E and Hietala J (1993). Clozapine and N-desmethylclozapine are potent 5-HTIC receptor antagonists. Eur J Pharm, 245:
179-182), the lack of potent activity at histamine H3 receptors (Alves-Rodriques A, Leurs R, Willems E and Timmerman H (1996). Binding of clozapine metabolites and analogues to the histamine H3 receptor in rat brain cortex. Arch Pharm Pharm Med Chem, 329: 413-416;
Schlicker E and Marr I(1996). The moderate affinity of clozapine at H3 receptors is not shared by its two major metabolites and by structurally related and unrelated atypical neuroleptics. Naunyn-Sch Arch Pharmacol, 353: 290-294), and only low potency interactions with GABAA receptors (Wong G, Kuoppamaki M, Hietala J, Luddens H, Syvalahti E and Korpi ER (1996). Effects of clozapine metabolites and chronic clozapine treatment on rat brain GABAA receptors. EurJPharm, 314: 319-323).
[0096] Of the antipsychotics screened, only NDMC and clozapine possessed muscarinic receptor agonist properties (Table 2; Sur C, Mallorga PJ, Wittmann M, Jacobsen MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM
and Conn PJ (2003). N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. PNAS, 100: 13674-13679).
NDMC was a potent, partial agonist of human M1 and M5 receptors and a less potent, full agonist of human M2 and M4 receptors (Table 2); it lacked antagonist activity at these receptors under similar conditions (Table 1). The physiological significance of M2 and M5 agonism in schizophrenia is unknown. However, agonism of M, and M4 receptors is associated with antipsychotic activity (Bymaster FP, Felder C, Ahnmed S and McKinzie D (2002).
Muscarinic Receptors as a Target for Drugs Treating Schizophrenia. Curr Drug Targ CNS
Neurol Dis, 1: 163-181; Felder CC, Bymaster FP, Ward J and DeLapp N (2000).
Therapeutic Opportunities for Muscarinic Receptors in the Central Nervous System. J Med Chem, 43: 4333-4353). Furthermore, agonism of M, receptors may confer cognition-enhancing activity on NDMC (Bymaster FP, Felder C, Ahmned S and McKinzie D
(2002).
Muscarinic Receptors as a Target for Drugs Treating Schizophrenia. Curr Drug Targ CNS
Neurol Dis, 1: 163-181). NDMC displays minimal, low potency agonist activity at M3 receptors and behaves as an antagonist at this site (Tables 3 and 4).
Muscarinic M3 receptors are the predominant receptor subtype that mediate cholinergic effects of parasympathetic activation in humans, such that significant agonist activity would likely result in treatment-limiting parasympathetic side effects including sweating, ocular, and gastrointestinal dysfunction. The antagonist activity of NDMC at M3 suggests that severe parasympathetomimetic effects will not be observed in clinical testing. The pharmacological activity of NDMC at the muscarinic receptors has been observed by others (Sur et al. PNAS 2003).
Table 4 Muscarinic Receptor Agonist Activity of Dibenzodiazepine Antipsychotics Compound Efficacy' pECso Efficacy pEC50 Efficacy pECso r87 ficacy pECso Efficacy pECso NDMC 72t52 7.3t 106 6.5 27+4 6.5t 8 6 .948t6 7=60.1 19 0.2 0.2 0.2 0.3 Clozapine 7.3 6.5 7.4 24 3 0.4 65 8 0.1 nr 7 5 0.1 nr Olanzapine nr nr nr nr nr Carbachol 6.1 t 6.5 6.5 t 6.8 t 101t2 01 lOltS 6.3v0.1 ]02 3 01 96t3 01 1O5t3 01 t Efficacy is % carbachol activation of the receptor 2 Data are mean S.E.M.
3 nr=no significant agonist activity up to 10 M
[0097] The pharmacological profile of NDMC at the muscarinic receptors is distinct from that of clozapine. Clozapine displayed potent agonist activity at M1 receptors, however the efficacy of this interaction was very low (Table 4) and under similar conditions clozapine was a potent antagonist of M1 receptor activation (Table 3). Also in contrast to NDMC, clozapine demonstrated potent M3 and M5 antagonism. At the M2 and M4 receptors clozapine demonstrated partial agonism. These data predict that, whereas it is likely that NDMC will behave as an Ml agonist in vivo, clozapine is likely to act as an Ml antagonist.
Example 6: Effect of NDMC on Spontaneous Locomotion and Reversal of MK-801-Induced Hyperactivity in Non-Swiss Albino Mice [0098] NDMC was administered subcutaneously (s.c.) or orally (p.o.) to male, adult Non-Swiss Albino (NSA) mice at 1, 10, or 30 mg/kg. Upon both s.c. and p.o.
administration, NDMC significantly reduced spontaneous activity at 10 and 30 mg/kg. At mg/kg s.c. the maximal reduction was achieved at 30 minutes post-administration and was maintained for the duration of the experiment, 120 minutes. This effect of NDMC was similar to that seen with clozapine, which reduced spontaneous locomotion at 3 and 10 mg/kg s.c. and p.o.
[0099] Clinically effective antipsychotic drugs can block the behavioral effects of non-competitive N-methyl-D-aspartate agonists, such as MK-801. NDMC was evaluated for its ability to attenuate MK-801-induced hyperactivity in male, adult, NSA
mice and its activity in this assay was compared to that of clozapine. NDMC attenuated MK-induced hyperactivity with a minimal effective dose of 1 mg/kg s.c. and 10 mg/kg p.o., consistent with antipsychotic-like efficacy. These doses were lower than or similar to those that reduced spontaneous locomotion, suggesting that the antipsychotic-like effects can be differentiated from general locomotor behavioral disruption. Similarly, clozapine reduced MK-801-induced hyperactivity with a minimal effective dose of 1 mg/kg s.c. and 3 mg/kg P.O.
Example 7: Effect of NDMC on the Reversal of Amphetamine-induced Locomotor Behaviors in Non-Swiss Albino Mice [0100] Similar to attenuation of hyperactivity induced by N-methyl-D-aspartate agonists, clinically effective antipsychotics also attenuate dopamine-mediated hyperactivity in rodents. Amphetamine-induced hyperactivity in mice is, therefore, a commonly used assay for in vivo antipsychotic-like activity. NDMC attenuated amphetamine-induced hyperactivity in male, adult NSA mice at 10 mg/kg after s.c. or p.o.
administration.
Clozapine also reduced amphetamine-induced hyperactivity with a minimal effective dose of 3 mg/kg p.o. These results are predictive of antipsychotic-like efficacy in humans.
Example 8: Effect of NDMC on Reversal of apomorphine-induced climbing in Non-Swiss Albino Mice [0101] Another way to assess the blockade of dopamine-mediated behavior in rodents is the attenuation of apomorphine-induced climbing in mice. Direct D2 receptor antagonists most effectively block climbing induced by the dopamine receptor agonist apomorphine. Haloperidol, a typical neuroleptic antipsychotic drug with high affinity for dopamine D2 receptors, completely attenuated the apomorphine-induced climbing in male, adult, NSA mice at 0.1 mg/kg s.c. Clozapine also reduced apomorphine-induced climbing in a dose-dependent manner with the minimal effective dose at 10 mg/kg s.c. In contrast NDMC did not attenuate apomorphine-induced climbing at doses up to 100 mg/kg s.c. This may reflect the reduced affinity of NDMC for D2 receptors as compared to clozapine and haloperidol.
Example 9: Effect of NDMC on MAPK Activation in Brain in C57BL/6 Mice [0102] In an effort to confirm the muscarinic agonist properties of NDMC in vivo, the activation of mitogen-activated protein kinase (MAPK) in CA1 region of the hippocampus was examined. NDMC was administered s.c. at doses of 3, 10, 30, and 100 mg/kg to C57BL/6 mice. The animals were killed two hours later; whole brains were removed and subjected to immunodetection of MAPK activity in hippocampus. NDMC
administration resulted in the stimulation of MAPK activity at all doses in a dose-dependent manner. In contrast, clozapine at 30 mg/kg did not result in MAPK
activation in CA 1 region of brain. The stimulation of MAPK activity induced by NDMC was blocked by the non-selective muscarinic receptor antagonist scopolamine (0.3 mg/kg, i.p.), confirming that NDMC acts as a muscarinic receptor agonist in vivo. It has been demonstrated in vitro that M, receptors are the predominant subtype of muscarinic receptor that is responsible for activation of MAPK in the forebrain (Hamilton SE and Nathanson NM (2001). The M, Receptor is required for Muscarinic Activation of Mitogen-activated Protein (MAP) Kinase in Murine Cerebral Cortical Neurons. J Biol Chem, 276: 15850-15853; Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM and Levey Al (2001). M1 Muscarinic Acetylcholine Receptors Activate Extracellular Signal-Regulated Kinase in CAl Pyramidal Neurons in Mouse Hippocampal Slices. Mol Cell Neurosci, 18: 512-524; Berkeley JL and Levey Al (2003). Cell-Specific Extracellular Signal-regulated Kinase Activation by Multiple G Protein-coupled receptor Families in Hippocampus. Mol Pharm, 63:
128-135).
Hence these data support the in vivo agonism of muscarinic M1 receptors by NDMC.
Example 10: Effects of Desmethylclozapine on Fos Protein Expression in the Forebrain:
In vivo Biological Activity of the Clozapine Metabolite [0103] The first in vivo demonstration of pharmacological activity of NDMC
(desmethylclozapine) was a dose-dependent induction of the expression of the immediate early gene cFOS in rat brain (Young CD, Meltzer HY and Deutch AY (1997).
Effects of desmethylclozapine on Fos protein expression in the forebrain: In vivo biological activity of the clozapine metabolite. Neuropsychopharm, 19: 99-103). NDMC was administered to adult male Sprague-Dawley rats s.c. at doses of 7.5 and 30.0 mg/kg; the animals were sacrificed two hours later and homogenized tissue from various brain regions was subjected to immunodetection of cFOS by western blotting. NDMC resulted in the induction of cFOS
expression in the pre-frontal cortex and nucleus accumbens, but not in striatum, and these effects were similar in magnitude and regional selectivity to those observed for clozapine.
The lack of cFOS expression in the striatum of NDMC-treated animals may indicate a low propensity for NDMC to cause EPS.
Example 11: Pharmacokinetic Evaluation of Clozapine and N-Desmethylclozapine following Administration of a Single Intravenous Dose or Oral Dose to Conscious Sprague Dawley Rats [0104] The pharmacokinetics of clozapine and N-desmethylclozapine (NDMC) was evaluated in rats after intravenous (i.v.) and oral (p.o.) dosing. Cmax, Tmax and bioavailability after p.o. dosing and the volume of distribution (Vss), terminal plasma half-life (Tyz) and clearance (CLs) after i.v. dosing were determined. The brain-to-plasma ratio of NDMC after both intravenous and oral administration was also determined. A
total of 18 male Sprague-Dawley rats were dosed with clozapine p.o. (N=6, 10 mg/kg), NDMC
p.o.
(N=6, 10 mg/kg), clozapine i.v. (N=6, 1 mg/kg), or NDMC i.v. (N=6, 1 mg/kg), and serum samples for bioanalytical analysis were obtained at regular intervals at between 0 and 240 minutes post dose. Animals were euthanised and brain and plasma samples obtained at 60 or 240 minutes post-dose, depending on study group. The levels of NDMC and clozapine were measured in each sample. Pharmacokinetic data for NDMC is presented in tables 5-8.
Table 5 Plasma Concentration (ng/mLt) of NDMC in Rat after NDMC
Administration2 Compound Measured (route) Time (min) NDMC (p.o.) 305 101 582 265 481 181 227 75 170 26 122 54 NDMC (p.o.) 277 57 576 161 614 60 NS3 NS NS
NDMC (i.v.) 540 46 276 30 126 38 33.7 11.4 11.7 3.8 5.3 0.3 'Mean SD; Z Dosages for oral administration were 10 mg/kg and lmg/kg for intravenous administration;
3 NS = no sample taken because study terminated at 60 minutes Table 6 Plasma Concentration (ng/mL') of NDMC and Clozapine in Rat after Clozapine Administration2 Time (min) Compound Measured (route) 10 30 60 120 180 240 Clozapine (p.o.) 3.8 1.5 10.2 5.2 10.8 6.0 5.2 2.0 2.8 0.8 2.2 0.3 Clozapine (p.o.) 4.9 1.7 35.8 30.8 38.0 39.0 NS3 NS NS
Clozapine (i.v.) 1124 75.1 6.3 44.5 4.0 24.8 1.8 13.6 2.6 9.5 1.5 NDMC (p.o.) 77.1 88.7 194 161 147 86.6 42.5 15.1 13.4 2.54 7.1 0.5 NDMC (p.o.) 241 21.3 576 135 510 247 NS NS NS
NDMC (i.v.) 3.5 2.8 1.2 4.0 1.5 2.3 1.0 0.7 0.1 0.8 0.6 ' Mean SD; 2 Dosages for oral administration were 10 mg/kg and 1mg/kg for intravenous administration;
3 NS = no sample taken because study terminated at 60 minutes; N=2 Table 7 Pharmacokinetic Parameters' of NDMC in Rat after NDMC
Administration Average CLs Compound AUC I Cmax Tmax T'/Z (min BAZ Vss (mLi min Measured (route) (min.ng (ng/mL) (min) ) (%) (L/kg) .mL-') .kg') NDMC (i.v.) 27331 756 0 39.3 - 1.47 36.2 NDMC (p.o.) 68227 582 60 ND3 25.0 ND ND
Mean SD; Z BA=ora1 bioavailability; 3 ND=not determined Table 8 Pharmacokinetic Parameters' of NDMC and Clozapine in Rat after Clozapine Administration Average CLs Compound AUC Cmax T""x BA 2 Vss (mL i min"
Measured (route) (m'n'ng/ (ng/mL) (min) T'n (min) (%) (L/kg) mL) .kg') NDMC (i.v.) 489.7 3.99 60 - - - -NDMC (p.o) 16199 194 30 - - - -Clozapine (i.v.) 8836 137 0 79.4 - 9.88 101 Clozapine (p.o.) 1347 10.8 60 ND3 1.5 0.6 ND ND
' Mean SD; Z BA=oral bioavailability; 3ND=not determined [0105] These data demonstrate that NDMC was rapidly absorbed from the gastrointestinal tract following oral administration; a Cmax of 582 ng/mL was achieved by 30 minutes. NDMC had low clearance from the circulation, a low volume of distribution, and was approximately 25% orally bioavailable. Clozapine reached much lower peak drug levels (10.8 ng/mL; 1150'" that of NDMC), had higher clearance, and poorer bioavailability (1.5%) following oral administration. These data suggest that NDMC may have acceptable pharmacokinetic properties after oral administration in humans and may indeed have improved pharmacokinetic properties as compared to clozapine.
[0106] High plasma levels of NDMC were observed following oral administration of clozapine and peak plasma levels of NDMC were nearly 20-fold greater than those observed for clozapine (194 ng/mL versus 10.8 ng/mL). Similar observations have been made by others (Weigmann H, Harter S, Fischer V, Dahmen N and Hiemke C
(1999). Distribution of clozapine and desmethylclozapine between blood and brain in rats.
Eur Neuropsychopharm, 9: 253-256; Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D and Cohen BM (1993). Tissue concentrations of clozapine and its metabolite in the rat. Neuropsychopharm, 9: 117-124). Weigmann et al. (Eur Neuropsychopharm 1999) showed that following oral administration of 5 doses (20 mg/kg) of clozapine at 1.5-hour intervals to male Sprague-Dawley rats, plasma concentrations of NDMC exceeded those of clozapine by up to 2.2-fold. In another study, high levels of circulating NDMC were observed following intraperitoneal (i.p.) administration of varying (1-60 mg/kg) doses of clozapine to Sprague-Dawley rats (Baldessarini et al;
Neuropsychopharm 1993). Thus, NDMC is a major chemical moiety formed after oral administration of clozapine in the rat. It is also been shown in vitro that NDMC is the primary clozapine metabolite formed by rat liver microsomes (Bun H, Disdier B, Aubert C
and Catalin J (1999). Interspecies variability and drug interactions of clozapine metabolism by microsomes. Fund Clin Pharm, 13: 577-58 1).
[0107] The pharmacokinetic study described above included an initial assessment of the distribution of NDMC into brain. The ratio of brain-to-plasma levels of NDMC was 0.36 0.16 at 60 minutes and 1.0 0.4 at 240 minutes following oral administration of 10 mg/kg NDMC to Sprague-Dawley rats. Additionally, after oral administration of clozapine the brain-to-plasma ratio of NDMC was 0.26 0.07 at 60 minutes and 2.6 0.8 at 240 minutes. This latter result confirms previously published findings showing that oral administration of clozapine to male Sprague-Dawley rats resulted in NDMC levels in brain that were up to 3.9-fold higher than those observed in serum (Baldessarini et al.; Neuropsychopharm 1993) and intraperitoneal administration of 20, 30, and 60 mg/kg of clozapine to Sprague-Dawley rats resulted in the detection of NDMC in brain (Bun et al.; Fund Clin Pharm 1999). Together these in vivo data clearly document that NDMC distributes into the CNS after oral administration.
Example 12: Bioavailability Assessment of Clozapine and N-Desmethylclozapine in Male Beagle Dogs [0108] The pharmacokinetics of clozapine and N-desmethylclozapine (NDMC) were evaluated in dogs after intravenous (i.v.) and oral (p.o.) dosing. Cmax, Tmax and bioavailability after p.o. dosing and the volume of distribution (Vss), terminal plasma half-life (Tyz) and clearance (CLs) after i.v. dosing were determined. A total of 6 beagle dogs were dosed with clozapine p.o. (N=3, 10 mg/kg), NDMC p.o. (N=3, 10 mg/kg), clozapine i.v. (N=3, 1 mg/kg), or NDMC i.v. (N=3, 1 mg/kg). Serum samples for bioanalytical analysis were obtained pre-dose and 10 min, 30 min, 1, 2, 3, 4, and 6 h post dose after p.o.
administration and pre-dose, 2, 5, 10, 30 min, 1,2 3, and 4 h after i.v.
administration. The levels of NDMC and clozapine were measured in each sample. Pharmacokinetic data for NDMC are presented in tables 9-12.
Table 9 Plasma Concentration (ng/mLt) of NDMC in Dog after NDMC
Administration2 Compound Measured (route) Time (min) NDMC (p o.) 1.0 14 12 z 67 37 155 249 274 NDMC (i.v.) 1890 73 t 22 50 10 35 2 32 6 28 4 27 7 27 4 Mean SD; 2 Dosages for oral administration were 10 mg/kg and 1mg/kg for intravenous administration.
Table 10 Plasma Concentration (ng/mL') of NDMC and Clozapine in Dog after Oral of Intravenous Clozapine Administration2 Compound Time (min) Measured (route) NDMC (p.o.) - 0 2.45 25.4 5.8 10.29 19.23 46.7 Clozapine (p.o.) 0.46 9.53 611.8 103 35 20 57 16 100 213 NDMC (i.v.) 0.54 0.47 0.64 1.72 3.55 4.31 4.89 4.44 0.12 0.06 0.26 0.75 1.03 1.34 1.41 1.31 Clozapine (i.v.) 1 266 1136 98 24 75 10 76 7 61 8 58 11 41 6 Mean SD; 2 Dosages for oral administration were 10 mg/kg and 1mg/kg for intravenous administration.
Table 11 Pharmacokinetic Parameters1 of NDMC in Dog after Oral or Intravenous NDMC and Clozapine Adniinistration Average CLs Compound AUC ~ Cmax T""x B'4 z Vss (mLi min"
Measured (route) (min.ng (ng/mL) (min) TI/z (min) M (L/kg) .mL"') .kg"I) NDMC (i.v.) 134.8 353.2 13.2 7.0 - 28202.1 1850 21.3 242 4919.8 1060.4 NDMC o. 597.6 286.3 3.3 1.2 ND 44.3 ND ND
(p' ) 111.8 25 Clozapine (i.v.) 15.0 3.9 5.3 1.2 2.7 0.58 Clozapine (p.o.) 32.1 24 0 19.2 7.2 4.0 0.0 ' Mean SD; 2 BA=oral bioavailability WO 2006/017614 . PCT/US2005/027645 Table 12 Pharmacokinetic ParametersI of Clozapine in Dog after Clozapine Administration Average CLs Compound AUC _~ C,,,ax T"'ax BAZ Vss (mLfmin Measured (route) (min.ng (ng/mL) (min) T'n (min) (o~o) (L/kg) .mL-') .kg') Clozapine (i.v.) 266 33 189 18 - 3.3 - 10335 2190 0.63 1636 295.9 Clozapine (p.o.) 1186 09.5 124 58 3+ 3.0 1.7 ND 7.0 ND ND
Mean $D; 2 BA=oral bioavailability [0109] NDMC was absorbed from the gastrointestinal tract following oral administration with a Cm,,,, of 286.3 ng/mL achieved by 3.3 h. NDMC had low clearance from the circulation, a low volume of distribution, and was approximately 44%
orally bioavailable. Clozapine had poorer oral bioavailability (7%). These data suggest that NDMC may have acceptable pharmacokinetic properties after oral administration in humans and may indeed have improved pharmacokinetic properties as compared to clozapine.
[0110] NDMC was readily detectable in plasma following both intravenous and oral administration of clozapine. The mean NDMC/clozapine AUC ratio was 0.056 after i.v. administration of clozapine and 0.161 (i.e., 16%) after oral administration. These data confirm recent studies that demonstrated the metabolism of clozapine to N-desmethylclozapine in dog both in vitro (Bun et al. Fund Clin Pharm 1999) and in vivo (Mosier KE, Song J, McKay G, Hubbard JW and Fang J (2003). Determination of clozapine, and its metabolites, N-desmethylclozapine and clozapine N-oxide in dog plasma using high-performance liquid chromatography. J Chromat B, 783: 377-382).
Mosier and colleagues showed that following oral administration of clozapine to a dog the C,r,aX of desmethylclozapine was approximately 20% that of clozapine (i.e., the NDMC/clozapine ratio was approximately 0.2). An early study did not detect N-desmethylclozapine in dog (Gauch R and Michaelis W (1970)). The metabolism of 8-chloro-ll-(4-mehtyl-l-piperazinyl)-5H-dibenzo[b,e] [1,4] diazepine (Clozapine) in mice, dogs, and human subjects. Il Farmaco, 26: 667-681) after oral administration; however this may have been due to insensitive analytical techniques.
Example 13: The role of Ml muscarinic receptor agonism of N-desmeth lc~pine in the unique clinical effects of clozapine Methods [0111] Molecular profiling of clinically relevant drugs was performed at all known monoaminergic receptor subtypes except the Dopamine D4, Serotonin 5A, and Histamine H4 receptors using Receptor Selection and Amplification Technology (R-SAT) assays. Briefly, NIH/3T3 cells plated at 70-80% confluency were transfected with various receptor cDNA (10-100ng receptor and 20ng [3-Gal reporter/well of a 96 well plate) using the Polyfect Reagent (Qiagen Inc.) as described in the manufacture's protocol.
One day after transfection, ligands were added in Dulbecco's modified Eagle's medium supplemented with penicillin (100 U/ml), streptomycin (100 g/ml) and 2% Cyto-SF3.
After four to six days, the media was aspirated off, the cells were lysed, O-Nitrophenyl-beta-D-Galactopyranoside (ONPG) was added and the resulting absorbance was measured spectrophotometrically. Concentration response curves were performed as eight-point concentration response experiments run in duplicate, where the maximal antipsychotic concentrations varied from 10-25 micromolar, and data were analyzed using Excel fit and Graph Pad Prism. Reported EC50 values represent the concentration of a ligand that produces a half-maximal response from a receptor in the absence of other ligands, and IC50 values represent the concentration of a ligand that inhibits half of the agonist-induced activity. Competitive antagonist IC50 data were adjusted for agonist occupancy using the equation Ki = IC50/ { 1+[agonist]/EC50 agonist}. Data are reported as negative log values (pEC5o and pKi). Sources of the drugs utilized in this study are described in Weiner et al.
(2001) and Wellendorph et al. (2002), with the exception of N-desmethylclozapine, which was acquired from Sigma, Inc., and N-desmethylolanzapine, which was synthesized by ACADIA Pharmaceuticals. A list of the compounds screened can be found as supplemental information.
[0112] PI hydrolysis assays were performed on Chinese Hamster Ovary cells stably transfected with the human M1 muscarinic receptor cDNA as described in Spalding et al (2002), and the data are derived from six or eight-point concentration response experiments performed in duplicate.
[0113] MAP Kinase assays utilized C57BL6 mice treated subcutaneously with either vehicle, clozapine, or N-desmethylclozapine with or without scopolamine, sacrificed two hours later, and phospho-MAPK immunoreactivity was assayed as described in Berkeley et al (2001). Briefly, after treatments which were administered s.c.
at 60 min., mice were perfused with 100 ml of 4% paraformaldehyde followed with 100 ml of 10%
sucrose. Brains were removed and cryoprotected in 30% sucrose overnight at 4 C. The next day, 50 m slices were cut on a sliding microtome. Slices were rinsed, treated with 3% HZOz for 10 minutes at room temperature and rinsed again. Slices were blocked in PBS
containing 10 g/ml avidin (Vector Laboratories Burlingame, CA), 0.1% triton-X
and 4%
normal goat serum (NGS) for 1 hour. Slices were rinsed and incubated in PBS
containing 50 g/ml biotin (Vector Laboratories Burlingame, CA), 2% NGS, and phospho-antibody (Cell signal Technologies, Beverly, MA) at a concentration of 1:250 and allowed to incubate overnight at 4 C. The next day, slices were rinsed and placed in PBS
containing 2% NGS and biotinylated goat anti-rabbit (Vector Laboratories Burlingame, CA) at a concentration of 1:100 for 1 hour at 4 C. Slices were rinsed and placed in horseradish peroxidase-conjugated avidin-biotin complex (Vector Laboratories Burlingame, CA) for 1 hour at 4 C. Slices were rinsed and incubated in TSA Fluorescein tyramide for min at room temperature. Slices were treated with 10 mM CuSO4 for 30 minutes, mounted onto glass slides with Vectashield mounting media (Vector Laboratories Burlingame, CA). Slides were visualized via a fluorescence microscope and digital images were analyzed with Scion image analysis software (Scion Corp. Frederick, MD).
[0114) Stepwise multiple-regression analysis, including the dependent measure, dose, age, and gender was utilized to assess the contribution of NDMC to treatment response in schizophrenic subjects (Hasegawa et al 1993 and Lee et al 1999).
The analysis was adjusted for baseline level of symptom severity, age, and dose, since dose was not fixed. The plasma samples chosen for the analyses were obtained at 6 weeks and 6 months after initiation of therapy, were related to the clinical measures obtained at those times, and were drawn 12 hours after the last clozapine dose. Only subjects who had received at least 100 mg of clozapine per day were included in the analysis, and some data were unavailable for these subjects at some time points. Regarding co-treatment with anticholinergic agents, only two subjects in this sample were treated with benztropine. The results did not differ when data from these two subjects were omitted (data not shown). Lastly, ten of the patients in this study were treated with benzodiazepines at the time the levels of clozapine and NDMC were measured. Benzodiazepines have not been reported to affect the metabolism of clozapine.
[0115] Drugs screened, grouped according to clinical class, included:
[0116] Antipsychotics: Amoxapine, Amisulpiride, Amperozide, Bromperidol, Butaclamol, Chlorproethazine, Chlorpromazine, Chlorprothixene, Cis-flupentixol, Clothiapine, Clozapine, Droperidol, Fananserin, Fluphenazine, Fluspiriline, Haloperidol, Loxapine, Mazapertine, M100907, Melperone, Mesoridazine, Molindone, N-Desmethyl Clozapine, N-desmethylolanzapine, Ocaperidone, Octoclothepin, Olanzapine, Perazine, Perlapine, Pimozide, Pimpamperone, Promazine, Prothypendyl, Quetiapine, Remoxipride, Risperidone, Sertindole, Spiperone, Sulpride, Sultopride, Telfludazine, Thioridazine, Thiothixene, Tiapride, Moperone, Tiospirone, Trans-flupentixol, Trifluoperazine, Trifluoperidol, Triflupromazine, and Ziprasidone.
[0117] Antidepressants/Anxiolytics: Acetyltryptophan, Acetyltryptophanamide, Alaprocate, Alprazolam, Amitriptyline, Barbital, Bromazepam, Buproprion, Buspirone, Chloral Hydrate, Clobazam, Clonazepam, Clomipramine, Clorgyline, Chlordiazepoxide, Chlormezanone, Continine, Compazine, Desipramine, Deprenyl, Desmethyldiazepam, Diazoxide, Doxepin, Flumazenil, Flunitrazepam, Fluoxetine, Flurazepam, Fluvoxamine, Imipramine, Indatraline, Iproniazid, Maprotiline, Meprobamate, Milnacipram, Minaprine, Mirtazepine, Modafinil, Nitrazepam, Nomifensine, Nortriptyline, Oxazepam, Pargyline, Phenelzine, Prazepam, Protripytline, Rolipram, Tracazolate, Tranylcypromine, Trazadone, Triazolam, Trihexaphendyl, Trimipramine, Viloxazine, Zimelidine, Zolpidem, and Zopiclone.
[0118] CNS Miscellaneous: 3PPP, 5-Aminopentanoic Acid, 5-Hydroxy MDA, 5-Methoxy DMT, 5-Methoxytryptamine, Acetaminophen, Acetylsalicylic Acid, Alprenelol, Amantadine, Amiodarone, AMPA, Apocodeine, Apomorphine, Atropine, Baclofen, Balperidone, Benztropine, Bicuculline, Bradykinin, Bretylium, BRL 37344, Bromocriptine, Cannabidiol, Carbemazepine, Carbidopa, Cyproheptadine, Cirazoline, D-Amphetamine, (D-Ser2)-Leu Enkephalin-Thr, (Leu 5) Enkephalin, D-Phenylalanine, Dibucaine, Diclofenac, Dihydroergotamine, DOI, Domperidone, Ebalzotan, Edrophonium, Ephedrine, Etadolac, Ethosuxamide, Felbamate, Fenbufen, GABA, Gabaxadol, Galanthamine, Gamma-Vinyl GABA, Gabapentin, (-) GMC III, (+) GMC III, Heroin, Himbacine, I-4-AA, ICI 204448, Indoprofen, Isoguvacine, Ketamine, Ketaprofen, Labetalol, Lamotrigine, Levallorphan, Lidocaine, Lisuride, L-745-870, Melatonin, Metoclopromide, Memantine, Mescaline, Naftopidil, Nalbuphine, N-Allyl SKF 38393, Naloxone, Naltrexone, Naltrindole, Neostigmine, Nicotine, Nipecotic Acid, N-Methyl ICI 118-551, N-Methyldopamine, N, N-Dimethyl MDA, Norapomorphine, Norcodeine, Norfenfulramine, Normetazocine, Oxethazine, Pemoline, Pergolide, PCP, Phaclofen, Phenacetin, Phenteramine, Phenoxybenzamine, Phenytoin, Physostigmine, P-Iodoclonidine, Pirenzepine, Prilocaine, Primodone, Procaine, Prochlorperazine, Propranolol, Pseudoephedrine, Quinpirole, Raclopride, Rauwolscine, Reserpine, Rimcazole, RO-3663, RS 100329, RX 821002, Saclofen, Salicylamide, SCH 12679, SCH 23390, Scopolamine, SKF 81297, SKF 38393, SKF 82948, SKF 82957, SKF 83566, SR
141716A, SR 144528, Succinylcholine, Tenoxicam, Terguride, Tetracaine, Tolazoline, Tropicamide, UK 14304, Valproate, Vigabatrin, WIN 55212-2, Xylazine, Yohimbine, and Zomepirac.
[0119] Monoaminergic: 7-OH-DPAT, 8-OH-DPAT, Alpha Methyl Serotonin, Arecoline, Astemizole, Bethanacol, Carbachol, CGS 12066A, Cinanserin, Chlorpheniramine, Cimetidine, Clobenpropit, CPP, Dihydroergocristine, Dimaprit, Diphenhydramine, Doxylamine, Eltoprazine, Famotidine, Histamine, Imetit, Isomaltane, Ketanserin, Loperamide, L-Tryptophan, LY 53857, mCPP, Mesulergine, Metergoline, Methergine, Methiothepin, Methysergide, Mexamine, Mianserin, MK 212, Mepyramine, Pheniramine, Phenylbiguanide, Pimethixene, Piperazine, Pirenpirone, Prazosin, Promethazine, Pyrilamine, Quiapazine, Ranitidine, Ritanserin, SB 204741, SB
206553, Serotonin, Spiroxatrine, Sumitriptan, Thioperamide, Tripellenamine, Triprolidine,and WB
4101.
[0120] Cardiovascular: Acetazolamide, Adenosine, Albuterol, Atenolol, Amiloride, Amrinone, Bepridil, Caffeine, Catopril, CGS-15943, CGS-21680, CGP-12177A, Chlorothiazide, Clonidine, Debrisoquin, Digitoxin, Digoxin, Diltiazem, Dipyridamole, Disopyramide, Dobutamine, Doxazosin, DPCPX, Epinephrine, Enalapril, Flunarizine, Furosemide, Guanabenz, Guanethidine, Hydralazine, Hydrochlorothiazide, Isoproterenol, Isosorbide, Lidocaine, Linisopril, Metaproterenol, Methoxamine, Metrifudil, Metolazone, Metoprolol, Midodrine, Minoxidil, N-Acethylpocainamide, Nicardipine, Nifedipine, Nimodipine, Nitrendipine, Norepinephrine, Nylidrin, Oxymetazoline, Paraxanthine, Pentoxifylline, Phentolamine, Pinacidil, Pindolol, Procainamide, Propranalol, Quinidine, Spironolactone, Theophylline, Theoyphylline 1-3, Timolol, Triamterene, Urapidil, Verapamil, and Warfarin.
[0121] Systemic Miscellaneous: Acyclovir, Adephenine, Allupurinol, Amodiaquine, 6-bromo-APB, Artemisinin, Azathioprine, Azithromycin, Camphor, Capsaicin, Carbetapentane, Carisoprodol, Cefotaxime, Cinchonidine, Chloramphenicol, Chloroquine, Chlorpropamide, Chlorzoxazone, Clarithromycin, Clofilium, Clotrimazole, Cyclobenzaprine, D-Cycloserine, Danazol, Dantrolene, Dextromethorphan, Dimethadione, Dropropizine, E-Capsaicin, Edoxudine, Ethinimate, Fipexide, Fluconazole, Foscarnet, Gallamine, Glibenclamide, Glipizide, Hypericin, lbuprofen, Ifenprodil, Indomethacin, Isobutylmethylxanthine, Kainic Acid, Ketoconazole, Levorphanol, Linopiridine, Mazindol, Meclizine, Mefexamide, Mefloquine, Mephenesin, Mesbeverine, Methocarbamol, Metoclopramide, Metronidazole, MK 801, N-Aminohexyl-5-Chloronaphthalene-l-Sulfonamide, N-Methyl-D-Aspartic Acid , NCS 382, Neophesperidin, Nixoxetine, Nocapine, Octopamine, Omeprazole, Orphenadrine, Oxyphenbutazone, Papaverine, Penicillamine, Pentamidine, Phenacemide, Picrotoxin, Pitrazepine, Piracetam, Piroxicam, Primaquine, Probenecid, Pyrimethamine, Quinine, Ritodrine, Saccharin, Sulindac, Suramin, SB 218795, Thalidomide, Tilorone, Trimeprazine, Tolazamide, Tolbutamide, Tolperisone, Uridine, Vidarabine, Zaleplon, and Zidovudine.
Results and Discussion [0122] A library of 462 clinically relevant drugs were profiled for functional activity at 33 of the 36 known human monoaminergic G-protein coupled receptors using the mammalian cell-based functional assay Receptor Selection and Amplification Technology (R-SAT). Table 13 illustrates data on representative antipsychotic agents for receptors at which the most potent activities were observed. Potency data for five representative antipsychotics and the clozapine metabolite N-desmethylclozapine (NDMC) at 13 human monoamine receptor subtypes are shown. Potency data are reported as pKi values for the competitive antagonist studies, while inverse agonist data are reported as pEC50 values, both derived from three to eight separate determinations +/= standard error.
Asterixes (*) indicate the presence of agonist activity where the muscarinic receptor agonist potencies are reported in Table 14. Ziprasidone displays limited but detectable agonist efficacy at human 5-HTIA receptors (<30% relative to 8-OH-DPAT), and a Ki > 1-micromolar when assayed as a competitive antagonist. Abbreviations used: NDMC-N-desmethylclozapine, 5-HT-serotonin, H- histamine, M-muscarinic, D-dopamine, and Alpha-alpha adrenergic, and nr-no response defined as no significant antagonist or inverse agonist activity at concentrations up to 1-micromolar.
Table 13 Pharmacological activities of antipsychotics at human monoamine receptors.
lial 'ciol doi,e Zi done a ne a ne navlc Antgaist Fbcow Cp 10.0+1-0.1 9.3H-0.1 &3+/-0.3 &4+/-0.2 7.7+/-0.1 7.2+/-0.1 54f12A 7.3+/-0.1 9.7+/-0.1 8.6+/-0.1 &6+/-0.1 8.3+/-0.2 &3+/-0.2 5-HT1A rr rr rri rr rr rr 5-H12C rr 7.2+/-0.3 7.4-q-0.2 7.4+/-0.1 7.4+/-0.2 7.8".2 H1 rr 7.0+1-0.2 rr &4+/-0.1 9.5+/-0.2 8.2+/-0.2 M1 rr rr rr 7.2+/-0.2 7.8+/-0.2 rr ' IVQ rr rr rr 6.9H-0.1 rr* rr Mi rr rr rr 6.7+/-0.5 &2+1-0.2 6.8+/-0.7k N# rr rr rr 7.4+/-0.3 nr" r-e fV6 rr rr rr 7.2+/-0.2 7.5+/-0.3 rri' D6 9.7+/-0.1 7.9+/-0.4 7.5+/-0.3 7.6+/-0.4 6.3+1-0.1 rr Alpha 1A 7.4+/-0.1 &54-0.1 7.4+/-0.2 7.4+/-0.2 &1+1-0.1 7.3+/-0.1 AI 2A rr 7.7+/-0.1 rr rr rr rr Irneise Agonist 5-FiT2A 6.8-q-0.1 9.0+/-0.3 &8".3 7.8+/-0.1 &0+1-0.3 &0+/-0.3 5+ff6A rr rr rr 7.4-q-0.2 7.0+/-0.2 6.9+/-0.1 5a-iT7A rr 9.1+/-0.2 7.3+/-0.1 rr 7.4+/-0.1 7.3+/-0.1 [0123] Competitive antagonism of D2 receptors, and inverse agonism of 5-HT2A
receptors was nearly uniform throughout this class, with typical agents demonstrating low 5HTZA/DZ ratios, and atypical agents demonstrating high ratios (Meltzer et al 1989 and Weiner et al 2001). Inverse agonism of H, receptors was commonly observed, where clozapine and olanzapine displayed particularly high potency (Weiner et al 2001). Many compounds showed antagonist activity at alphal-adrenergic receptors, fewer agents exhibited potent 5-HT6 activity, while many, particularly risperidone, displayed potent inverse agonist activity at 5-HT7 receptors. Clozapine, olanzapine, and a number of typical agents (e.g. thioridazine, data not shown), were found to possess potent muscarinic receptor antagonist properties. Importantly, no single antagonist activity differentiated clozapine from all other agents.
[0124] In contrast to the widespread antagonist activity of these compounds, very few agents possessed agonist activity. Figure 4A reports the results of the functional agonist screen of this compound library at the human M1 muscarinic acetylcholine receptor.
Only four compounds, the known muscarinic receptor agonists arecoline and carbachol, moperone and N-desmethylclozapine (NDMC), the major metabolite of clozapine (Gauch and Michaelis 1971), were identified. Moperone displayed only a very low potency (EC50>1-micromolar) interaction. In contrast, NDMC displayed an EC50 of 100 nM
with 80% efficacy (relative to carbachol) in this study. This result was further confirmed in a second functional assay, PI hydrolysis. As depicted in Figure 4B, clozapine displays limited agonist efficacy in this assay, precluding accurate potency determinations, whereas NDMC displayed high potency (93 +/- 22nM, n=3) and greater agonist efficacy (56 +/- 8%, n=3) relative to carbachol. In fact, when assayed against carbachol for competitive antagonist activity, clozapine behaved as an antagonist, while NDMC only partially reversed carbachol-induced PI hydrolysis (Figure 4C), consistent with the lack of an antagonistic response observed when NDMC was tested as a competitive antagonist at M 1 receptors in R-SAT (Table 13). Finally, the agonist activity of NDMC was blocked by both atropine and clozapine (Figure 4D). These results confirm that NDMC is a potent, efficacious, Ml receptor agonist, distinguishing it from the M1 receptor antagonist properties of clozapine.
[0125] Having demonstrated the agonist activity of NDMC at human M 1 receptors in multiple in vitro functional assays, we then profiled carbachol, clozapine, NDMC, olanzapine, the major olanzapine metabolite N-desmethylolanzapine, and the muscarinic agonist xanomeline (Shannon et al 1994), at all five human muscarinic receptor subtypes using R-SAT (Table 14).
Table 14 Muscarinic acetylcholine receptor agonist activity of antipsychotics.
Muscarinic receptor (M1-M5) agonist activity of clozapine, N-desmethylclozapine, olanzapine, N-desmethylolanzapine, xanomeline, and carbachol was determined using R-SAT as previously described (Spalding et al 2002). Average efficacy (percentage relative to carbachol) and potency (pEC50) +/- standard error are reported for 3 or more replicate determinations. No response denotes the lack of agonist activity at concentrations up to 10-micromolar.
Compound M1 M2 M3 Efficacy pEC50 Efficacy pEC50 Efficacy pEC50 Clozapine 24 3 7.63f0.37 65 8 6.23 0.14 No response N-desmeth lcloza ine 72 5 7.26 0.07 106 19 6.47 0.21 27 4 6.49 0.18 Olanzapine No response No response No response N-desmeth lolanza ine No response No response No response Xanomeline 121 6 7.20 0.08 106 9 6.30 0.23 66 6 6.63 0.21 Carbachol 101t2 6.11 0.03 101 5 6.23 0.09 102 3 6.53 0.04 Compound M4 M5 Efficacy pEC50 Efficacy pEC50 Clozapine 57 5 7.35 0.10 No response N-desmeth lcloza ine 87 8 6.87 0.17 48 6 7.63 0.25 Olanzapine No response No response N-desmeth lolanza ine No response No response Xanomeline 116 9 7.46 0.14 86 12 6.59 0.22 Carbachol 96 3 6.53 0.05 105 3 6.76 0.12 [0126] Clozapine was found to be a very weak partial agonist at Ml receptors, a more efficacious agonist at M2 and M4 receptors, and to lack agonist activity at M3 and M5 receptors. NDMC also displayed high potency interactions with all five human muscarinic receptors, but with increased agonist efficacy at M1, M4, and M5 receptors when compared to clozapine (Table 14). In contrast, olanzapine and N-desmethylolanzapine, both structurally related to clozapine and NDMC, lacked agonist activity at human muscarinic receptors. Interestingly, xanomeline displayed a muscarinic receptor profile that is similar to that observed for NDMC, with the notable exception of higher agonist efficacy at M3 receptors. The agonist activities of clozapine, NDMC, and xanomeline at human muscarinic receptor subtypes are unique among all neuropsychiatric agents tested (Figure 4, and Tables 13 and 14).
[0127] The present inventors discovered that muscarinic receptor agonism, and M1 receptor agonism in particular, of NDMC can be achieved in vivo during pharmacotherapy with clozapine. Clozapine and NDMC were tested for their ability to increase the phosphorylation of mitogen-activated protein kinase (MAP kinase) in the CA1 region of mouse hippocampus, a response that has been shown to reflect Ml receptor activation (Berkeley et al 2001). As depicted in Figure 5, subcutaneous administration of vehicle (Figure 5A), clozapine (Figure 5B), or scopolamine alone (data not shown) fails to stimulate phosphorylation of hippocampal MAP kinase. In contrast, NDMC induced phosphorylation of MAP kinase in hippocampal neurons in a dose dependent manner (Figures 5C, 5D, and E), an effect that was blocked by pretreatment with scopolamine (Figure 5F). Quantification of this effect demonstrates statistically significant Ml receptor activation at NDMC doses of 30 mg/kg and greater (Figure 6). Clozapine fails to behave as an agonist under these experimental conditions, which likely reflects either insufficient metabolism to NDMC after acute administration in mouse, or direct antagonist effects at the M1 receptor as demonstrated in the in vitro studies. These data confirm that NDMC
passes the blood brain barrier and activates hippocampal M1 receptors in vivo.
[0128] It has long been appreciated that antagonism of central muscarinic receptors can attenuate the EPS induced by antipsychotics (Miller and Hiley 1974). Initial investigations of the anti-muscarinic properties of antipsychotics defined the high potency of clozapine for these receptors in rodent brain, and elucidated the inverse correlation between muscarinic receptor antagonism and propensity to induce EPS (Snyder et al 1974).
Following the elucidation of five muscarinic acetylcholine receptor subtypes (Bonner et al 1987), clozapine was described as a potent competitive antagonist (Bolden et al 1991).
Functional studies in various cell lines subsequently documented that clozapine has significant agonist activity at M2 and M4 receptors, and low agonist efficacy at M 1 receptors (Zorn et al 1994 and Olianas et al 1999), consistent with the results reported herein. In humans, clozapine has two major metabolites, NDMC and clozapine-N-oxide (Gauch and Michaelis 1971). After steady state dosing, NDMC represents a large proportion of total detectable moieties, with concentrations ranging from 20-150% of that observed for clozapine, with mean values of 60-80% (Bondesson and Lindstrom 1988 and Perry et al 1991). That NDMC is an active metabolite is supported by the present data, as well as by prior reports documenting D1, D2, and 5-HT2C receptor competitive antagonist activity (Kuoppamaki et al 1993), and a recent report of M1 receptor agonist activity (Sur et al 2003). In contrast, the other major clozapine metabolite, clozapine-N-oxide, displays only very low potency (pKI's<6.0) functional activity at human monoaminergic receptors (data not shown). While varying degrees of brain penetration of NDMC have been reported in rodents (Baldessarini et al 1993 and Weigmann et al 1999), the present results, the observation that systemically administered NDMC activates cFOS expression in rodent brain (Young et al 1998), and the detection of NDMC in human cerebrospinal fluid following parenteral administration of clozapine (Nordin et al 1995), demonstrate that NDMC is brain penetrant and centrally active.
[0129] The present inventors have discovered that clozapine, acting through its predominant metabolite NDMC, functions as a direct acting muscarinic receptor agonist in vivo. During pharmacotherapy with clozapine, the agonist actions of NDMC is attenuated by the antagonistic actions of the parent compound. Thus, high NDMC levels, and particularly high NDMC/clozapine ratios, increases agonist efficacy at muscarinic receptors, as predicted by mass action and by agonist/antagonist mixing studies (Brauner-Osborne et al 1996). Clinical data support this notion. Not only does clozapine therapy usually lack the traditional anti-cholinergic side effects of dry mouth, blurred vision, and urinary retention common to classical muscarinic antagonists, it is unique in its ability to frequently produce sialorrhea (Baldessarini and Frankenburg 1991), an effect that can be blocked by the muscarinic antagonist pirenzepine (Fritze and Elliger 1995).
Thus, the muscarinic receptor agonist activity of NDMC likely mediates this peripheral effect, while the muscarinic receptor subtype responsible is still unknown, receptor subtypes in addition to the M3 have been implicated (Bymaster et a12003).
[0130] The muscarinic agonist properties of NDMC reported herein underlies some of the unique central effects of treatment with clozapine. Multiple lines of evidence support a pro-cognitive effect of potentiating central cholinergic neurotransmission, including the clinical effects of acetylcholinesterase inhibitors and direct acting muscarinic receptor agonists (Davis et al 1993). High dose clozapine therapy in treatment refractory schizophrenics may actually serve to raise brain levels of NDMC to achieve central muscarinic receptor agonist activity, particularly Ml receptor stimulation, rather than recruiting additional lower potency receptor interactions that clozapine and NDMC possess (Table 13). Thus, NDMC/clozapine ratios are a better predictor of therapeutic response to clozapine, particularly for cognition, than absolute clozapine levels.
[0131] The data on clozapine and NDMC plasma levels and clinical response that were prospectively gathered as part of two clinical trials which included 59 neuroleptic resistant patients (Hasegawa et al 1993), and 33 neuroleptic responsive patients (Lee et al 1999) with schizophrenia were re-analyzed. Patients were classified as treatment resistant or not by standard criteria (Kane et al 1988), and clinical ratings and neuropsychological test scores were obtained by trained raters who were blinded to plasma drug levels. The mean daily dosages of clozapine, as well as clozapine and NDMC serum levels, and NDMC/Clozapine ratios after 6 weeks and 6 months of treatment are reported in Table 15A.
Table 15 Serum N-desmethylclozapine levels and clinical response in schizophrenia.
Statistical analysis of the correlation between clinical outcome and serum levels of clozapine and N-desmethylclozapine (NDMC) for a cohort of 92 clozapine treated schizophrenics are reported. Table 15A reports the clozapine dose, clozapine level, NDMC
levels, and NDMC/clozapine ratios for all treatment resistant (TR) subjects, responders, non-responders, and all subjects at 6 weeks and 6 months. P* reports statistically significant differences between responders and non-responders. Table 15B
reports the major relationships of interest for the prediction of the contribution of NDMC
to response to clozapine treatment, including quality of life, negative symptoms, and cognition, analyzed by multiple linear regression. R2** refers to the model applied.
Abbreviations .used include: NS-not significant, BPRS-Brief Psychiatric Rating Scale, SANS-Scale for the Assessment of Negative Symptoms, SAPS- Scale for the Assessment of Positive Symptoms, WISC-Wisconsin Card Sorting Test.
Table 15A
Drug Measure All TR Subjects Responders Non-Responders P*
(59) (26) (25) Dose (mg/day) 468+/-190 485+/-205 433+/-178 NS
NDMC Level (ng/ml) 260+/-203 308+/-243 171+/-123 0.01 Clozapine Level (ng/ml) 393+/-301 453+/-328 268+/-207 0.02 NDMC/Clozapine 0.75+/-0.36 0.70+/-0.22 0.81+/-0.48 NS
Drug Measure All Subjects at 6 All Subjects at 6 Months Weeks (86) (92) Dose (mg/day) 369+/-169 417+/-197 NDMC Level (ng/ml) 194+/-136 235+/-190 Clozapine Level (ng/mi) 287+/-190 365+/-285 NDMC/Clozapine 0.83+/-1.08 0.71+/-0.30 Table 15B
Clinical Measure Beta F P df Dependent Variable: 6 Weeks BPRS-Withdrawal/Retardation -0.52 3.73 0.06 0.32 3.73 SANS Attentional Impairment -0.28 5.65 0.02 0.26 3.65 SAPS Global Delusions -1.00 3.87 0.05 0.60 3.55 Quality of Life Scale: Total 17.50 5.20 0.03 0.50 2.40 Quality of Life Scale: Objects and 2.91 7.10 0.01 0.43 2.40 Activities 13.80 14.84 0.01 0.54 2.39 Quality of Life Scale: Instrumentai Role 2.27 4.10 0.05 0.75 4.33 WISC-R Maze Dependent Variable: 6 Months 7.45 6.75 0.01 0.47 4.47 Petersen's Consonant Trigram Test 1.35 3.67 0.06 0.47 3.48 WISC-Categories Formed [0132] Both time points were analyzed because improvement in psychopathology and cognition with clozapine may take six months or longer (Hagger et al 1993). Thirteen of the 92 patients (14.1%) had NDMC/clozapine ratios >/=1. Of these thirteen patients, the highest ratio was 1.77 and the median was 1.05. The Spearman rank order correlation between clozapine and NDMC levels was 0.82 and 0.89 at 6 weeks and 6 months, respectively (P=0.0001). The correlation between NDMC/clozapine ratios at 6 weeks and 6 months was 0.92 (P= 0.0001), indicating remarkable stability of NDMC/clozapine ratios within subjects. Importantly, dose and NDMC/clozapine ratios were not significantly correlated at either time point (rho<0.10) in neither the neuroleptic-resistant nor neuroleptic-responsive patients.
[0133] Stepwise multiple-regression were utilized to determine the best predictors of outcome from each of these measures, including baseline levels of the dependent measure, dose, age, and gender, since all have been shown to significantly predict response to clozapine (Table 15B).
[0134] In all the models tested, baseline levels of the dependent measure predicted the largest share of the variance in the model. The NDMC/clozapine ratio was the next most frequent predictor of response; the ratio significantly predicted response in 8/24 (33.3%) of the models, all in the expected direction: the higher the ratio, the better the outcome. This result contrasts with the lack of predictive power of clozapine levels alone, NDMC levels alone, or their sum. The exception was that higher NDMC levels alone predicted greater improvement in two subscales of the Quality of Life scale (Heinrichs et al 1984) (data not shown). As shown in Table 15B, higher NDMC/clozapine ratio predicted improvement in multiple measures of cognition, as well as the Scale for the Assessment of Negative Symptoms-Attention subscale, which has been suggested to be more related to cognition than negative symptoms. The ratio also predicted improvement in Quality of Life-total score, including the Instrumental Role Function factor, which has been shown to be dependent upon cognitive status (Green 1996), and negative symptoms, which have been found to correlate with cognition. The ratio also predicted improvement in delusions, but not hallucinations, with clozapine treatment. Dose did not contribute to the prediction of any of the models in Table 15B. Dose is significantly correlated with plasma levels of clozapine and NDMC (P=0.01-0.001) but not, as noted above, with the NDMC/clozapine ratio. This provides further evidence that the absolute levels of clozapine and NDMC, while important in identifying responders and non-responders (Fabrazzo et al 2002) are not as important as their ratio when baseline levels of the dependent measure are included in the model. Although additional analyses in larger cohorts are necessary, this analysis, as well as recent reports (Frazier et al 2003 and Mauri et al 2003) all suggest that the NDMC/clozapine ratio is a better predictor of clinical response to clozapine than clozapine levels alone, and support the hypothesis that NDMC is a critical mediator of clozapine action.
[0135] The muscarinic receptor agonist properties of NDMC also contribute to the efficacy of clozapine therapy against positive symptoms. Not only did high NDMC/clozapine ratios predict response to delusions as noted above, but additional support comes from the observation that there are several similarities between the central effects of muscarinic receptor agonists and dopamine D2 receptor antagonists (Pfeiffer and Jenney 1957 and Mirza et al 2003). For example, behavioral pharmacological experiments with mice harboring targeted deletions of each of the five muscarinic receptor subtypes have shown that the M1 receptors plays a central role in DA-mediated behaviors (Gerber et al 2001). In addition, xanomeline (which displays some selectivity for M1 and receptors) inhibits amphetamine-induced locomotion (Shannon et al 2000).
Clinically, xanomeline was found to diminish hallucinosis and aggression in Alzheimer's Disease patients (Bodick et al 1997), and has been shown to display activity against both positive and negative symptoms in a recent, small, Phase 2 study in schizophrenia (Schekhar et al, unpublished data).
[0136] The central dopaminergic and muscarinic cholinergic systems are well known to be functionally interrelated (Miller and Hiley 1974). The muscarinic antagonist properties of clozapine are thought to contribute to its low propensity to cause EPS, yet the anti-EPS effects of clozapine are more robust than those obtained by the adjunctive use of anticholinergics agents like trihexyphenidyl, and some EPS producing antipsychotics, e.g.
thioridazine, also possess potent muscarinic receptor antagonist properties.
These observations suggest that although antagonism of central muscarinic receptors can confer anti-EPS effects, cholinergic modulation of the motoric effects of D2 receptor blockade are more complex than previously appreciated. Present data show that agonism, not antagonism, of certain muscarinic receptor subtypes expressed within critical basal ganglia structures (Weiner et al 1990), are a more efficacious mechanism to lessen these adverse motor effects. Further, the widespread use of adjunctive anticholinergics should be reevaluated in light of the present data on the pro-cognitive benefits conferred by the central muscarinic receptor agonist properties of NDMC.
[0137] In summary, functional characterization of therapeutically useful neuropsychiatric drugs has revealed the potent, efficacious, muscarinic receptor agonist activity of NDMC. This activity was found to be unique among neuropsychiatric agents as a class. It is demonstrated that NDMC can cross the blood brain barrier and function as an Ml receptor agonist in vivo. Consideration of the contribution of NDMC to improvement in cognition and quality of life in clozapine treated patients shows that NDMC
mediates clinically relevant aspects of treatment response that differentiate clozapine from other agents used to treat schizophrenia. These findings show that muscarinic receptor agonism mediates the unique clinical properties of clozapine, and that Ml muscarinic receptor agonists (Spalding et al 2002), including NDMC itself, may be efficacious atypical antipsychotic agents.
Example 14: Net Agonism in N-desmeth lcy lozapine/Clozapine Mixtures [0138] The effect of mixtures of clozapine and N-desmethylclozapine was evaluated using an R-SAT assay as described above. 150 nM of N-desmethylclozapine was provided with varying concentrations of clozapine. Figure 7 depicts the results of the R-SAT assay as a function of clozapine concentration. As indicated by the dotted line in Figure 7, net agonistic activity was observed for clozapine concentrations of about 100 nM
and below. Thus, ratios of NDMC to clozapine of about 1.5 and greater provide a net agonistic effect.
[0139] The results of the R-SAT assay were confirmed using a PI hydrolysis assay as described above. 150 nM of N-desmethylclozapine was again provided with varying concentrations of clozapine. Figure 8 depicts the results of the assay as a function of clozapine concentration. The dotted line in Figure 8 indicates the maximum concentration of clozapine for which a net agonistic effect is observed.
Similar to the results of the R-SAT assay, net agonistic activity was observed for clozapine concentrations of about 100 nM and below, thus confirming that a ratio of NDMC to clozapine of about 1.5 and greater provide a net agonistic effect.
Example 15: Administration of Single Doses of NDMC to Schizophrenic Patients [0140] A single-center, in-patient, randomized, double blind, placebo controlled, single dose study is conducted on two sequential group of patients. Two different groups of 6 patients each are enrolled. Each patient in the first group of patients receives single doses of placebo, 25 mg of NDMC, and 50 mg of NDMC
sequentially in random order. Each patient in the second group of patients receives single doses of placebo, 75 mg of NDMC, and 100 mg of NDMC sequentially in random order. The NDMC and placebo is administered orally as a powder in a gelatin capsule. Male or female patients, 20 to 50 years of age, with a history of schizophrenia or schizoaffective disorder, who are otherwise in good health are selected for the study. The patients are not experiencing acute exacerbation of severe psychosis, defined as a Positive and Negative Syndrome Scale (PANSS) score greater than 75.
[0141] Patients are withdrawn from all centrally active medications during a lead-in period of 4-7 days prior to study start on Study Day -1. On Study Day -1, patients are randomized to a schedule of NDMC:placebo in a 2:1 manner. On Study Day 1, patients receive study drug or placebo, orally, in the morning, and serial blood samples are collected up to 24 h after dose administration. Patients are monitored for 8 hr post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Day. No study drug is given on Study Days 2 and 3. On Study Day 4, subjects once again receive study drug or placebo, orally, in the morning, and serial blood samples are collected up to 24 h after dose administration.
Patients are monitored for 8 h post-dose by continuous lead II ECG monitoring.
Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout the Study Day 4. No study drug or placebo is given on Study Days 5 and 6. On Study Day 8, patients receive study drug or placebo, orally, in the morning, and serial blood samples are collected up to 24 h after dose administration. Patients are monitored for 8 h post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout the Study Day 8. A final End of Study evaluation is performed 3-5 days following Study Day 8 and a clinical evaluation, administration of clinical rating scales, and a safety assessment are performed.
[0142] An interim analysis of the safety variables and pharmacokinetic data obtained from Group 1 is conducted after the End of Study evaluation and before the randomization of Group 2. Safety variables are reviewed by the PI in order to determine the doses to be administered in Group 2. If NDMC administration during Group 1 is deemed safe the second patient cohort is screened, randomized, and enrolled.
If the doses of NDMC in Group 2 are greater than those administered in Group 1, then, during the lead-in period, a pre-conditioning dose of 25 mg of NDMC is given to each subject.
This test dose is used to identify any patient who may be particularly sensitive to higher doses of NDMC, and is administered at least 3 days prior to Day -1. Study related procedures for Group 2 is identical to those of Group 1, with the exception of the NDMC dose.
Pharmacokinetic Analysis [0143] Plasma samples are analyzed for concentrations of NDMC.
Pharmacokinetic parameters are calculated including C,,,ax (maximum plasma concentration), tmax (time to maximum plasma concentration), AUCo_Z (area under the plasma concentration time curve from time zero to the last quantifiable timepoint, calculated by linear-log trapezoidal summation), AUC0_. (area under the plasma concentration time curve from time zero to infinity, calculated by linear-log trapezoidal summation and extrapolated to infinity by addition of the last quantifiable plasma concentration divided by the elimination rate constant kz), kz (elimination rate constant, determined by linear regression of the terminal points of the log-linear plasma concentration-time curve), tliz (terminal half-life, determined as ln(2)/Xz), and CLpo (apparent oral clearance, calculated by Dose / AUC(0-oo)).
Tolerability [0144] Tolerability of NDMS is determined by measuring extrapyramidal (EPS) motor effect using the Simpson and Angus Sacle (SAS) and the Barnes Akathisia Scale (BAS). These scales are administered at baseline (Study Day -1), 3-5 hours after drug administration on Study Days 1, 4, and 8, and at the End of Study evaluation.
Antipsychotic efficacy [0145] Antipsychotic efficacy is measured using the PANSS and the Clinical Global Impression Scale-Schisophrenia (CGI-S) measures. These scales are administred at baseline (Study Day -1), on Study Days 1, 4, and 8, and at the End of Study evaluation.
Safety [0146] Safety is evaluated by measuring vital signs including 3-positional blood pressure and pulse rate (5 minute supine, 1 minute sitting, 3 minutes standing), respiratory rate, and oral temperature except during screening and post-study procedures.
[0147] 12-lead ECGs are recorded and standard electrocardiogram parameters including QRS, PR, QT, and QTc intervals are measured. In addition, continuous lead-II
ECG monitoring is performed for the first 8 hours of Day 1, 4, and 8 following each NDMC or placebo dose administration.
[0148] A neurological screen is conducted by the clinically responsible physician at the clinic. The neurological screen consists of a qualitative assessment of muscle tone in the extremities, the presence of tremors, fasiculations, and nystagmus, and various tests of cerebellar coordination (finger nose test, dysdiadochokinesia, heel-shin test, and gait).
[0149] Clinical laboratories are measured after at least an 8-hour fast on Study Days 1, 4, 8, and the End of Study evaluation and include the following:
[0150] Erythrocytes: RBC count, hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), RDW, and reticulocyte count.
[0151] Leukocytes: WBC count and differential (basophils, eosinophils, lymphocytes, monocytes, and neutrophils) reported as absolute values.
[0152] Coagulation: platelet count, PT as INR, and aPTT.
[0153] Liver: alkaline phosphatase, ALT (serum glutamic-pyruvic transaminase [SGPT]), AST (serum glutamic-oxaloacetic transaminase [SGOT]), bilirubin (total, direct, indirect), gamma-glutamyl transferase (GGTP), creatine phosphokinase (CPK) and LDH.
[0154] Renal: blood urea nitrogen (BUN), creatinine, and uric acid.
[0155] Electrolytes: carbon dioxide, chloride, magnesium, potassium, and sodium.
[0156] General: albumin, calcium, glucose (fasting) phosphate, and protein (total).
[0157] Endocrine: prolactin.
[0158] Lipids: cholesterol (total), HDL cholesterol, LDL cholesterol, and triglycerides.
[0159] Macroscopic urinalysis: pH, specific gravity, glucose, ketones, leukocyte esterase, nitrites, occult blood, and protein.
[0160] Microscopic urinalysis: RBC/high powered field, WBC/high powered field, bacteria, castes, epithelial cells, mucous threads and crystals.
Example 16: Administration of Multiple Doses of NDMC to Schizophrenic Patients [0161] A single-center, in-patient, randomized, double blind, placebo controlled, multiple dose study is conducted on two sequential groups. Twelve patients, in two different groups of six patients each are enrolled. Each patient receives either placebo or NDMC daily for five days. The NDMC and placebo is administered orally as a powder in a gelatin capsule. Male or female patients, 20 to 50 years of age, with a history of schizophrenia or schizoaffective disorder, who are otherwise in good health are selected for the study. The patients are not experiencing acute exacerbation of severe psychosis, defined as a Positive and Negative Syndrome Scale (PANSS) score greater than 75.
[0162] Patients are withdrawn from all centrally active medications during the lead-in period of 4-7 days prior to study start on Study Day -1. If the safety profile of NDMC as determined by the single-dose study of Example 14 suggests that a gradual dose escalation is warranted, and if the pharmacokinetics properties of NDMC
demonstrate that the t1i2 is less than 8 hr, then patients enrolled in the study receive pre-conditioning doses of NDMC prior to Study Day -1. If indicated, subjects receive, during the lead-in portion of the study, a single dose of NDMC that is 25% of the planned dose, followed by a second dose the following day which is 50% of the planned dose. If these doses are deemed safe, then subjects are randomized on Study Day -1 to either NDMC or placebo. The dosages and frequency of administration (QD or BID) of NDMC are determined based on the safety and pharmacokinetics observed during the single dose safety study of Example 14.
[0163] On Study Day 1, patients receive study drug or placebo, orally, and serial blood samples are collected up to 24 hours after dose administration. Patients are monitored for 8 hr post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Day 1.
[0164] Patients receive study drug or placebo daily for the next four days. On Study Days 2, 3, and 4, pre-dose serum sampling for pharmacokinetic analysis are obtained, and patients are monitored for 8 hr post-dose by continuous lead II ECG
monitoring.
Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Days 2-4.
[0165] On Study Day 5, pre-dose serum sampling as well as serial blood samples collected up to 24 hours after study drug or placebo administration are obtained for pharmacokinetic analysis, and patients are monitored for 8 hr post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Day 5.
[0166] A final End of Study evaluation is conducted 5-7 days after the cessation of active dosing on Study Day 5. A safety assessment is performed during this clinical evaluation, including vital signs, ECG, clinical labs, NDMC serum determination, and adverse event recording. All patients are followed clinically, as in-patients, for as long as is indicated following the cessation of active dosing of NDMC.
[0167] An interim analysis of the safety variables and pharmacokinetic data from Group 1 is conducted after the End of Study evaluation, and before the randomization of Group 2. Safety variables are reviewed by the PI in order to determine the doses to be administered in Group 2. If NDMC administration during Group 1 is deemed safe, the second patient cohort is screened, randomized, and enrolled. Study related procedures for Group, 2 are identical to those of Group 1, with the exception of NDMC dose and/or frequency of administration.
Pharmacokinetic Analysis [0168] Plasma samples are analyzed for concentrations of NDMC.
Pharmacokinetic parameters are calculated are calculated following the single dose administration on Day 1 including Cmax (maximum plasma concentration), tmax (time to maximum plasma concentration), AUCo_Z (area under the plasma concentration time curv e from time zero to the last quantifiable timepoint, calculated by linear-log trapezoidal summation), AUCo_,,,, (area under the plasma concentration time curve from time zero to infinity, calculated by linear-log trapezoidal summation and extrapolated to infinity by addition of the last quantifiable plasma concentration divided by the elimination rate constant ?,z), Xz (elimination rate constant, determined by linear regression of the terminal points of the log-linear plasma concentration-time curve), t1i2 (terminal half-life, determined as ln(2)/Xz), and CLpo (apparent oral clearance, calculated by Dose / AUC(0-oo)).
[0169] Pharmacokinetic parameters are also calculated following the last dose on Day 5 including Cmax,ss (maximum steady-state plasma concentration), Cmin,ss (minimum steady-state plasma concentration), Cavg,ss (average steady-state plasma concentration calculated as AUC(0-i)sS divided by the dosing interval i), tmax,ss (time to maximum steady-state plasma concentration), tmin,ss (time to minimum steady-state plasma concentration), AUCo_Z (area under the plasma concentration time curve from time zero to the last quantifiable timepoint, calculated by linear-log trapezoidal summation), AUCo_tss (area under the plasma concentration time curve from time zero to the end of the steady-state dosing interval, calculated by linear-log trapezoidal summation), ?,z,ss (steady-state elimination rate constant, determined by linear regression of the terminal points of the log-linear plasma concentration-time curve), tli2,ss (steady-state terminal half-life, determined as ln(2)/Xz,ss), and CLpo,SS (apparent oral clearance, calculated by Dose / AUC(0-i)ss).
Tolerability [0170] Tolerability of NDMS is determined by measuring extrapyramidal (EPS) motor effect using the Simpson and Angus Sacle (SAS) and the Barnes Akathisia Scale (BAS). These scales are administered at baseline (Study Day -1), 6 hours after drug administration on Study Days 1-5, and at the End of Study evaluation.
Antipsychotic efficacx [0171] Antipsychotic efficacy is measured using the PANSS and the Clinical Global Impression Scale-Schisophrenia (CGI-S) measures. These scales are administred at baseline (Study Day -1), on Study Days 1, 5, and at the End of Study evaluation.
Safety [0172] Safety is evaluated by measuring vital signs including 3-positional blood pressure and pulse rate (5 minute supine, 1 minute sitting, 3 minutes standing), respiratory rate, and oral temperature except during screening and post-study procedures.
[0173] 12-lead ECGs are recorded and standard electrocardiogram parameters including QRS, PR, QT, and QTc intervals are measured. In addition, continuous lead-II
ECG monitoring is performed for the first 8 hours of Days 1-5 following each NDMC or placebo dose administration.
[0174] A neurological screen is conducted by the clinically responsible physician at the clinic. The neurological screen consists of a qualitative assessment of muscle tone in the extremities, the presence of tremors, fasiculations, and nystagmus, and various tests of cerebellar coordination (finger nose test, dysdiadochokinesia, heel-shin test, and gait).
[0175] Clinical laboratories are measured after at least an 8-hour fast and include the following:
[0176] Erythrocytes: RBC count, hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), RDW, and reticulocyte count.
[0177] Leukocytes: WBC count and differential (basophils, eosinophils, lymphocytes, monocytes, and neutrophils) reported as absolute values.
[0178] Coagulation: platelet count, PT as INR, and aPTT.
[0179] Liver: alkaline phosphatase, ALT (serum glutamic-pyruvic transaminase [SGPT]), AST (serum glutamic-oxaloacetic transaminase [SGOT]), bilirubin (total, direct, indirect), gamma-glutamyl transferase (GGTP), creatine phosphokinase (CPK) and LDH.
[0180] Renal: blood urea nitrogen (BUN), creatinine, and uric acid.
[0181] Electrolytes: carbon dioxide, chloride, magnesium, potassium, and sodium.
[0182] General: albumin, calcium, glucose (fasting) phosphate, and protein (total).
[0183] Endocrine: prolactin.
[0184] Lipids: cholesterol (total), HDL cholesterol, LDL cholesterol, and triglycerides.
[0185] Macroscopic urinalysis: pH, specific gravity, glucose, ketones, leukocyte esterase, nitrites, occult blood, and protein.
[0186] Microscopic urinalysis: RBC/high powered field, WBC/high powered field, bacteria, castes, epithelial cells, mucous threads and crystals.
Literature Cited [0187] Each of the following references is incorporated by reference herein in its entirety, including any drawings.
[0188] The following references are incorporated herein by reference in their entireties, including any drawings.
[0189] Eglen, R., M., Choppin, A., and Watson, N., (2001) Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol. Sci. 22(8):
409-414.
[0190] Brown, J., H., and Taylor, P., (1996) Muscarinic receptor agonists and antagonists, in The pharmacological basis of therapeutics. Hardiman, J., G., and Limbird, L., E., editors, Mcgraw-Hill, New York, pp. 141-161.
[0191] Moroi, S., E., and Lichter, P., R. (1996) Ocular pharmacology, in The pharmacological basis of therapeutics. Hardiman, J., G., and Limbird, L., E., editors, Mcgraw-Hill, New York, pp. 1619-1647.
[0192] Davis, R E; Doyle, P D; Carroll, R T; Emmerling, M R; Jaen, J.
Cholinergic therapies for Alzheimer's disease: Palliative or disease altering?
Arzneimittel-Forschung,.45, 425-431, 1995.
[0193] Shekhar, A., Potter, W., Z., Lienemann, J., et. al. (2001) Efficacy of xanomeline, a selective muscarinic agonist, in treating schizophrenia: a double blind placebo controlled study. ACNP abstracts 135: 173.
[0194] Rodriquez, M.A., Whipple, B., Ocampo, G., et. al. (2002) Muscarinic agonists in neuropathic and nociceptive pain assays in rats.
International Association for the Study of Pain's 10'h World Congress, 1160-P76: 388.
[0195] Baldessarini, R., J., and Frankenburg, F., R. (1991) Clozapine. A
novel antipsychotic agent. New. Engl. J. Med., 324(11): 746-754.
[0196] Jann, M., W., Grimsley, S., R., Gray, E., C., and Chang, W. (1993) Pharmacokinetic and pharmacodynamics of clozapine. Clin. Pharmacokinet. 24(2):
176.
[0197] Centorrino, F., Baldessarini, R., J., Kando, J., C., et. al. (1994) Clozapine and metabolites: concentrations in serum and clinical findings during treatment of chronically psychotic patients. J. Clin. Psychopharmacol. 14: 119-125.
[0198] Hunziker F. Fisher, E., and Scmutz, J. (1967) 11-amino-5H-dibenzo[b,e]-1,4-diazepine. Mitteilung uber siebenglienrige Heterocyclen.
Helv. Chim.
Acta, 50:1588-1599.
[0199] Jensen, A., A., Spalding, T., A., Burstein E., S., et. al. (2000) Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor.
Constitutive activity and inverse agonism in a family C G-protein-coupled receptor. J Biol Chem. 275(38): 29547-55.
[0200] Baldessarini RJ, Frankenburg FR (1991) Clozapine: a novel antipsychotic agent. NEngl JMed 324:746-754.
[0201] Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM (1993) Tissue concentrations of clozapine and its metabolites in the rat.
Neuropsychopharmacology 9:117-124.
[0202] Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM, Levey Al (2001) M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol Cell Neurosci 18:512-524.
[0203] Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM
(1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465-473.
[0204] Bolden C, Cusack B, Richelson E(1991) Clozapine is a potent and selective muscarinic antagonist at the five cloned human muscarinic acetylcholine receptors expressed in CHO-K1 cells. Eur JPharmacol 192:205-206.
[0205] Bondesson U, Lindstrom LH (1988) Determination of clozapine and its N-demethylated metabolite in plasma by use of gas chromatography-mass spectrometry with single ion detection. Psychopharmacology 95:472-475.
[0206] Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527-532.
[0207] Brauner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P
(1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur JPharmacol 313:145-150.
[0208] Bymaster FB, Carter PA, Yamada M, Gomeza J, Wess J, Hamilton S, Nathanson NM, McKinzie DL, Felder CC (2003) Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur JNeurosci 17:1403-1410.
[0209] Carlsson A (1978) Antipsychotic drugs, neurotransmitters, and schizophrenia. Am JPsychiatry 135(2):165-173.
[0210] Davis RE, Emmerling MR, Jaen JC, Moos WH, Spiegel K (1993) Therapeutic intervention in dementia. Crit Rev Neurobiol 7:41-83.
[0211] Fabrazzo M, La Pia S, Monteleone P, Esposito G, Pinto A, De Simone L, Bencivenga R, Maj M (2002) Is time course of clozapine response correlated to the time course of plasma clozapine levels? A one-year prospective study in drug-resistant patients with schizophrenia. Neuropsychopharmacology 27:1050-1055.
[0212] Frazier JA, Glassner Cohen L, Jacobsen L, Grothe D, Flood J, Baldessarini RJ, Piscitelli S, Kim GS, Rapoport JL (2003) Clozapine pharmacokinetics in children and adolescents with childhood-onset schizophrenia. J Clin Psychopharmacol 23(1):87-91.
[0213] Fritze J, Elliger T (1995) Pirenzepine for clozapine-induced hypersalivation. Lancet 346:1034.
[0214] Gauch R, MichaelisW (1971) The metabolism of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo [b,e] [1,4] diazepine (clozapine) in mice, dogs, and human subjects. Farmaco 26:667-681.
[0215] Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 98(26):15312-15371.
[0216] Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am JPsychiatry 153:321-330.
[0217] Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY
(1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Pyschiatry 34:702-712.
[0218] Hasegawa M, Gutierrez-Esteinou R, Way L, Meltzer HY (1993) Relationship between clinical efficacy and clozapine concentrations in plasma in schizophrenia: effect of smoking. J Clin Psychopharmacol 13:383-390.
[0219] Heinrichs DW, Hanlon TE, Carpenter WT (1984) The Quality of Life Scale: an instrument for rating the schizophrenia deficit syndrome. Schizophr Bull 10:388-398.
[0220] Kane J, Honigfeld G, Singer J, Meltzer H, Clozaril Collaborative Study Group (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45:789-796.
[0221] Kuoppamaki M, Syvalahti E, Hietala J (1993) Clozapine and N-desmethylclozapine are potent 5-HTIC receptor antagonists. Eur J Pharmacol 245:179-182.
[0222] Lee MA, Jayathilake K, Meltzer HY (1999) A comparison of the effect of clozapine with typical neuroleptics on cognitive function in neuroleptic-responsive schizophrenia. Schizophr Res 37:1-11.
[0223] Leucht S, Wahlbeck K, Hamann J, Kissling W (2003) New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 361(9369):1581-1589.
[0224] Mauri MC, Volonteri LS, Dell'Osso B, Regispani F, Papa P, Baldi M, Bareggi SR (2003) Predictors of clinical outcome in schizophrenic patients responding to clozapine. J Clin Psychopharmacol 23(6):660-664.
[0225] Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values.
JPharmacol Exp Ther 251:238-246.
[0226] Meltzer HY, Alphs L, Green Al, Altamura AC, Anand R, Bertoldi A, Bourgeois M, Chouinard G, Zahur Islam M, Kane J, Krishnan R, Lindenmayer JP, Potkin S
(2003) Clozapine treatment for suicidality in schizophrenia. Arch Gen Psychiatry 60:82-91.
[0227] Miller RJ, Hiley CR (1974) Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248:596-597.
[0228] Mirza NR, Peters D, Sparks RG (2003) Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS
Drug Rev 9(2):159-186.
[0229] Nordin C, Alme B, Bondesson U (1995) CSF and serum concentrations of clozapine and its demethyl metabolite: a pilot study. Psychopharmacology 122:104-107.
[0230] Olianas MC, Maullu C, Onali P (1999) Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in chinese hamster ovary cells. Neuropsychopharmacology 20(3):263-270.
[0231] Perry PJ, Miller DD, Arndt SV, Cadoret RJ (1991) Clozapine and norclozapine plasma concentrations and clinical response of treatment-refractory schizophrenic patients. Am JPsychiatry 148(2):231-135.
102321 Pfeiffer CC, Jenney EH (1957) The inhibition of the conditioned response and the counteraction of schizophrenia by muscarinic stimulation of the brain. Ann NYAcad Sci 66:753-764.
[0233] Shannon HE, Bymaster FP, Calligaro DO, Greenwood B, Mitch CH, Sawyer BD, Ward JS, Wong DT, Olesen PH, Sheardown MJ, Swedberg MDB, Suzdak PD, Sauerberg P (1994) Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. JPharmacol Exp Ther 269(1):271-281.
[0234] Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD, Jeppesen L, Sheardown MJ, Sauerberg P, Fink-Jensen A (2000) Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249-259.
[0235] Snyder S, Greenberg D, Yamamura HI (1974) Anti-schizophrenic drugs and brain cholinergic receptors. Affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry 31:58-61.
[0236] Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M(l) muscarinic receptor. Mol Pharmacol 61:1297-1302.
[0237] Spina E, Avenoso A, Facciola G, Salemi M, Scordo MG, Ancione M, Madia AG, Perucca E (2001) Relationship between plasma risperidone and 9-hydroxyrisperidone concentrations and clinical response in patients with schizophrenia.
Psychopharmacology 153:238-243.
[0238] Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn, PJ (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc Natl Acad Sci USA 100(23):13674-13679.
[0239] The Parkinson Study Group (1999) Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson's Disease. NEngl JMed 340:757-763.
[0240] Weigmann H, Hartter S, Fischer V, Dahmen N, Hiemke C (1999) Distribution of clozapine and desmethylclozapine between blood and brain in rats. Eur.
Neuropsychopharmaco19:253-256.
[0241] Weiner DM, Levey Al, Brann MR (1990) Expression of muscarinic receptor acetylcholine and dopamine receptor mRNA's in rat basal ganglia. Proc Natl AcadSci USA. 87:7050-7054.
[0242] Weiner DM, Burstein ES, Nash N, Croston GE, Currier EA, Vanover KE, Harvey SC, Donohue E, Hansen HC, Andersson CM, Spalding TA, Gibson DFC, Krebs-Thomson K, Powell, SB, Geyer MA, Hacksell U, Brann MR (2001)5-hydroxytryptamine2a receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther 299:268-276.
[0243] Weissman JT, Ma J, Essex A, Gao Y, Burstein ES (2003) G-protein-coupled receptor-mediated activation of rap GTPases: characterization of a novel Gi regulated pathway. Oncogene 23(1):241-249.
[0244] Wellendorph P, Goodman MW, Burstein ES, Nash NR, Brann MR, Weiner DM (2002) Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H3 receptor. Neuropharmacology 42:929-940.
[0245] Wong AH, Van Tol HH (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27(3):269-306.
[0246] Young CD, Meltzer HY, Deutch AY (1998) Effects of desmethylclozapine on fos protein expression in the forebrain: in vivo biological activity of the clozapine metabolite. Neuropsychopharmacology 19:99-103.
[0247] Zorn SH, Jones SB, Ward KM, Liston DR (1994) Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur JPharmaco1269:R1-R2.
channels.
The inhibition of ligand binding in these assays provides information regarding the binding of NDMC to these receptors, however does not indicate the nature of the interaction.
Example 5: Functional Screen of NDMC Against Multiple G-Protein-Coupled Receptors (GPCRs) [00941 The pharmacological profile of NDMC was extensively studied in a wide range of functional GPCR assays using proprietary Receptor Selection and Amplification Technology (R-SAT; 2, 3). Table 3 reports the functional pharmacological activity of NDMC and leading typical and atypical antipsychotics at a subset of human monoaminergic receptor at which these drugs demonstrate the highest potencies.
Table 3 Antagonist and Inverse Agonist Activity of NDMC and Reference Antipsychotics in R-SAT Assays Compound NDMC Clozapine Olanzapine Haloperidol Risperidone Ziprasidone Competitive Antagonist Receptor pKi pKi pKi pKi pKi pKi DZ 7.2 0.1 7.7 0.1 8.4 0.2 10.0 0.1 9.3 0.1 8.3 0.3 5-HTZA 8.3 0.2 8.3 0.2 8.6 0.1 7.3 0.1 9.7 0.1 8.6 0.1 5-HTIA nrI nr nr nr nr nr*2 5-HTZC 7.8 0.2 7.4 0.2 7.4 0.1 nr 7.2 0.3 7.4 0.2 H, 8.2 0.2 9.5 0.2 8.4 0.1 nr 7.0 0.2 nr M, nr* 7.8 0.2 7.2 0.2 nr nr nr M2 nr* nr* 6.9 0.1 nr nr nr M3 6.8 0.7 8.2 0.2 6.7 0.5 nr nr nr M4 nr* nr* 7.4 0.3 nr nr nr M5 nr* 7.5 0.3 7.2 0.2 nr nr nr D3 nr 6.3 0.1 7.6 0.4 9.7 0.1 7.9 0.4 7.5 0.3 aIA 7.3 0.1 8.1 0.1 7.4 0.2 7.4 0.1 8.5 0.1 7.4 0.2 aZA nr nr nr nr 7.7 0.1 nr Inverse Agonist pEC50 pEC50 pEC50 pEC50 pEC50 pEC50 5HT2A 8.0 0.3 8.0 0.3 7.8 0.1 6.8 0.1 9.0 0.3 8.8 0.3 5HT6A 6.9 0.1 7.0 0.2 7.4 0.2 nr nr nr 5HT7A 7.3 0.1 7.4 0.1 nr nr 9.1 0.2 7.3 0.1 I nr = no significant antagonist or inverse agonist activity up to 1 M.
2 nr* = no significant antagonist or inverse agonist activity up to 1 M;
significant agonist activity (see Table 2).
[0095] The pharmacological activity of NDMC was similar to that of existing, clinically efficacious atypical antipsychotics. Like all atypical antipsychotics, NDMC
showed high potency, competitive antagonist and inverse agonist activity at 5-receptors. It displayed lower potency as a dopamine D2 receptor antagonist, than clozapine and therefore has a higher 5-HT2A/D2 receptor potency ratio. NDMC also displayed lower potency as an Hi and aIA receptor antagonist than clozapine, suggesting that it may have less of a propensity to induce adverse clinical effects, including sedation and orthostatic hypotension, mediated by these receptor subtypes. Consistent with these data, published reports confirm the potent competitive antagonist activity of NDMC at D2 and 5-receptors in vitro (Kouppamaki M, Syvalahti E and Hietala J (1993). Clozapine and N-desmethylclozapine are potent 5-HTIC receptor antagonists. Eur J Pharm, 245:
179-182), the lack of potent activity at histamine H3 receptors (Alves-Rodriques A, Leurs R, Willems E and Timmerman H (1996). Binding of clozapine metabolites and analogues to the histamine H3 receptor in rat brain cortex. Arch Pharm Pharm Med Chem, 329: 413-416;
Schlicker E and Marr I(1996). The moderate affinity of clozapine at H3 receptors is not shared by its two major metabolites and by structurally related and unrelated atypical neuroleptics. Naunyn-Sch Arch Pharmacol, 353: 290-294), and only low potency interactions with GABAA receptors (Wong G, Kuoppamaki M, Hietala J, Luddens H, Syvalahti E and Korpi ER (1996). Effects of clozapine metabolites and chronic clozapine treatment on rat brain GABAA receptors. EurJPharm, 314: 319-323).
[0096] Of the antipsychotics screened, only NDMC and clozapine possessed muscarinic receptor agonist properties (Table 2; Sur C, Mallorga PJ, Wittmann M, Jacobsen MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM
and Conn PJ (2003). N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. PNAS, 100: 13674-13679).
NDMC was a potent, partial agonist of human M1 and M5 receptors and a less potent, full agonist of human M2 and M4 receptors (Table 2); it lacked antagonist activity at these receptors under similar conditions (Table 1). The physiological significance of M2 and M5 agonism in schizophrenia is unknown. However, agonism of M, and M4 receptors is associated with antipsychotic activity (Bymaster FP, Felder C, Ahnmed S and McKinzie D (2002).
Muscarinic Receptors as a Target for Drugs Treating Schizophrenia. Curr Drug Targ CNS
Neurol Dis, 1: 163-181; Felder CC, Bymaster FP, Ward J and DeLapp N (2000).
Therapeutic Opportunities for Muscarinic Receptors in the Central Nervous System. J Med Chem, 43: 4333-4353). Furthermore, agonism of M, receptors may confer cognition-enhancing activity on NDMC (Bymaster FP, Felder C, Ahmned S and McKinzie D
(2002).
Muscarinic Receptors as a Target for Drugs Treating Schizophrenia. Curr Drug Targ CNS
Neurol Dis, 1: 163-181). NDMC displays minimal, low potency agonist activity at M3 receptors and behaves as an antagonist at this site (Tables 3 and 4).
Muscarinic M3 receptors are the predominant receptor subtype that mediate cholinergic effects of parasympathetic activation in humans, such that significant agonist activity would likely result in treatment-limiting parasympathetic side effects including sweating, ocular, and gastrointestinal dysfunction. The antagonist activity of NDMC at M3 suggests that severe parasympathetomimetic effects will not be observed in clinical testing. The pharmacological activity of NDMC at the muscarinic receptors has been observed by others (Sur et al. PNAS 2003).
Table 4 Muscarinic Receptor Agonist Activity of Dibenzodiazepine Antipsychotics Compound Efficacy' pECso Efficacy pEC50 Efficacy pECso r87 ficacy pECso Efficacy pECso NDMC 72t52 7.3t 106 6.5 27+4 6.5t 8 6 .948t6 7=60.1 19 0.2 0.2 0.2 0.3 Clozapine 7.3 6.5 7.4 24 3 0.4 65 8 0.1 nr 7 5 0.1 nr Olanzapine nr nr nr nr nr Carbachol 6.1 t 6.5 6.5 t 6.8 t 101t2 01 lOltS 6.3v0.1 ]02 3 01 96t3 01 1O5t3 01 t Efficacy is % carbachol activation of the receptor 2 Data are mean S.E.M.
3 nr=no significant agonist activity up to 10 M
[0097] The pharmacological profile of NDMC at the muscarinic receptors is distinct from that of clozapine. Clozapine displayed potent agonist activity at M1 receptors, however the efficacy of this interaction was very low (Table 4) and under similar conditions clozapine was a potent antagonist of M1 receptor activation (Table 3). Also in contrast to NDMC, clozapine demonstrated potent M3 and M5 antagonism. At the M2 and M4 receptors clozapine demonstrated partial agonism. These data predict that, whereas it is likely that NDMC will behave as an Ml agonist in vivo, clozapine is likely to act as an Ml antagonist.
Example 6: Effect of NDMC on Spontaneous Locomotion and Reversal of MK-801-Induced Hyperactivity in Non-Swiss Albino Mice [0098] NDMC was administered subcutaneously (s.c.) or orally (p.o.) to male, adult Non-Swiss Albino (NSA) mice at 1, 10, or 30 mg/kg. Upon both s.c. and p.o.
administration, NDMC significantly reduced spontaneous activity at 10 and 30 mg/kg. At mg/kg s.c. the maximal reduction was achieved at 30 minutes post-administration and was maintained for the duration of the experiment, 120 minutes. This effect of NDMC was similar to that seen with clozapine, which reduced spontaneous locomotion at 3 and 10 mg/kg s.c. and p.o.
[0099] Clinically effective antipsychotic drugs can block the behavioral effects of non-competitive N-methyl-D-aspartate agonists, such as MK-801. NDMC was evaluated for its ability to attenuate MK-801-induced hyperactivity in male, adult, NSA
mice and its activity in this assay was compared to that of clozapine. NDMC attenuated MK-induced hyperactivity with a minimal effective dose of 1 mg/kg s.c. and 10 mg/kg p.o., consistent with antipsychotic-like efficacy. These doses were lower than or similar to those that reduced spontaneous locomotion, suggesting that the antipsychotic-like effects can be differentiated from general locomotor behavioral disruption. Similarly, clozapine reduced MK-801-induced hyperactivity with a minimal effective dose of 1 mg/kg s.c. and 3 mg/kg P.O.
Example 7: Effect of NDMC on the Reversal of Amphetamine-induced Locomotor Behaviors in Non-Swiss Albino Mice [0100] Similar to attenuation of hyperactivity induced by N-methyl-D-aspartate agonists, clinically effective antipsychotics also attenuate dopamine-mediated hyperactivity in rodents. Amphetamine-induced hyperactivity in mice is, therefore, a commonly used assay for in vivo antipsychotic-like activity. NDMC attenuated amphetamine-induced hyperactivity in male, adult NSA mice at 10 mg/kg after s.c. or p.o.
administration.
Clozapine also reduced amphetamine-induced hyperactivity with a minimal effective dose of 3 mg/kg p.o. These results are predictive of antipsychotic-like efficacy in humans.
Example 8: Effect of NDMC on Reversal of apomorphine-induced climbing in Non-Swiss Albino Mice [0101] Another way to assess the blockade of dopamine-mediated behavior in rodents is the attenuation of apomorphine-induced climbing in mice. Direct D2 receptor antagonists most effectively block climbing induced by the dopamine receptor agonist apomorphine. Haloperidol, a typical neuroleptic antipsychotic drug with high affinity for dopamine D2 receptors, completely attenuated the apomorphine-induced climbing in male, adult, NSA mice at 0.1 mg/kg s.c. Clozapine also reduced apomorphine-induced climbing in a dose-dependent manner with the minimal effective dose at 10 mg/kg s.c. In contrast NDMC did not attenuate apomorphine-induced climbing at doses up to 100 mg/kg s.c. This may reflect the reduced affinity of NDMC for D2 receptors as compared to clozapine and haloperidol.
Example 9: Effect of NDMC on MAPK Activation in Brain in C57BL/6 Mice [0102] In an effort to confirm the muscarinic agonist properties of NDMC in vivo, the activation of mitogen-activated protein kinase (MAPK) in CA1 region of the hippocampus was examined. NDMC was administered s.c. at doses of 3, 10, 30, and 100 mg/kg to C57BL/6 mice. The animals were killed two hours later; whole brains were removed and subjected to immunodetection of MAPK activity in hippocampus. NDMC
administration resulted in the stimulation of MAPK activity at all doses in a dose-dependent manner. In contrast, clozapine at 30 mg/kg did not result in MAPK
activation in CA 1 region of brain. The stimulation of MAPK activity induced by NDMC was blocked by the non-selective muscarinic receptor antagonist scopolamine (0.3 mg/kg, i.p.), confirming that NDMC acts as a muscarinic receptor agonist in vivo. It has been demonstrated in vitro that M, receptors are the predominant subtype of muscarinic receptor that is responsible for activation of MAPK in the forebrain (Hamilton SE and Nathanson NM (2001). The M, Receptor is required for Muscarinic Activation of Mitogen-activated Protein (MAP) Kinase in Murine Cerebral Cortical Neurons. J Biol Chem, 276: 15850-15853; Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM and Levey Al (2001). M1 Muscarinic Acetylcholine Receptors Activate Extracellular Signal-Regulated Kinase in CAl Pyramidal Neurons in Mouse Hippocampal Slices. Mol Cell Neurosci, 18: 512-524; Berkeley JL and Levey Al (2003). Cell-Specific Extracellular Signal-regulated Kinase Activation by Multiple G Protein-coupled receptor Families in Hippocampus. Mol Pharm, 63:
128-135).
Hence these data support the in vivo agonism of muscarinic M1 receptors by NDMC.
Example 10: Effects of Desmethylclozapine on Fos Protein Expression in the Forebrain:
In vivo Biological Activity of the Clozapine Metabolite [0103] The first in vivo demonstration of pharmacological activity of NDMC
(desmethylclozapine) was a dose-dependent induction of the expression of the immediate early gene cFOS in rat brain (Young CD, Meltzer HY and Deutch AY (1997).
Effects of desmethylclozapine on Fos protein expression in the forebrain: In vivo biological activity of the clozapine metabolite. Neuropsychopharm, 19: 99-103). NDMC was administered to adult male Sprague-Dawley rats s.c. at doses of 7.5 and 30.0 mg/kg; the animals were sacrificed two hours later and homogenized tissue from various brain regions was subjected to immunodetection of cFOS by western blotting. NDMC resulted in the induction of cFOS
expression in the pre-frontal cortex and nucleus accumbens, but not in striatum, and these effects were similar in magnitude and regional selectivity to those observed for clozapine.
The lack of cFOS expression in the striatum of NDMC-treated animals may indicate a low propensity for NDMC to cause EPS.
Example 11: Pharmacokinetic Evaluation of Clozapine and N-Desmethylclozapine following Administration of a Single Intravenous Dose or Oral Dose to Conscious Sprague Dawley Rats [0104] The pharmacokinetics of clozapine and N-desmethylclozapine (NDMC) was evaluated in rats after intravenous (i.v.) and oral (p.o.) dosing. Cmax, Tmax and bioavailability after p.o. dosing and the volume of distribution (Vss), terminal plasma half-life (Tyz) and clearance (CLs) after i.v. dosing were determined. The brain-to-plasma ratio of NDMC after both intravenous and oral administration was also determined. A
total of 18 male Sprague-Dawley rats were dosed with clozapine p.o. (N=6, 10 mg/kg), NDMC
p.o.
(N=6, 10 mg/kg), clozapine i.v. (N=6, 1 mg/kg), or NDMC i.v. (N=6, 1 mg/kg), and serum samples for bioanalytical analysis were obtained at regular intervals at between 0 and 240 minutes post dose. Animals were euthanised and brain and plasma samples obtained at 60 or 240 minutes post-dose, depending on study group. The levels of NDMC and clozapine were measured in each sample. Pharmacokinetic data for NDMC is presented in tables 5-8.
Table 5 Plasma Concentration (ng/mLt) of NDMC in Rat after NDMC
Administration2 Compound Measured (route) Time (min) NDMC (p.o.) 305 101 582 265 481 181 227 75 170 26 122 54 NDMC (p.o.) 277 57 576 161 614 60 NS3 NS NS
NDMC (i.v.) 540 46 276 30 126 38 33.7 11.4 11.7 3.8 5.3 0.3 'Mean SD; Z Dosages for oral administration were 10 mg/kg and lmg/kg for intravenous administration;
3 NS = no sample taken because study terminated at 60 minutes Table 6 Plasma Concentration (ng/mL') of NDMC and Clozapine in Rat after Clozapine Administration2 Time (min) Compound Measured (route) 10 30 60 120 180 240 Clozapine (p.o.) 3.8 1.5 10.2 5.2 10.8 6.0 5.2 2.0 2.8 0.8 2.2 0.3 Clozapine (p.o.) 4.9 1.7 35.8 30.8 38.0 39.0 NS3 NS NS
Clozapine (i.v.) 1124 75.1 6.3 44.5 4.0 24.8 1.8 13.6 2.6 9.5 1.5 NDMC (p.o.) 77.1 88.7 194 161 147 86.6 42.5 15.1 13.4 2.54 7.1 0.5 NDMC (p.o.) 241 21.3 576 135 510 247 NS NS NS
NDMC (i.v.) 3.5 2.8 1.2 4.0 1.5 2.3 1.0 0.7 0.1 0.8 0.6 ' Mean SD; 2 Dosages for oral administration were 10 mg/kg and 1mg/kg for intravenous administration;
3 NS = no sample taken because study terminated at 60 minutes; N=2 Table 7 Pharmacokinetic Parameters' of NDMC in Rat after NDMC
Administration Average CLs Compound AUC I Cmax Tmax T'/Z (min BAZ Vss (mLi min Measured (route) (min.ng (ng/mL) (min) ) (%) (L/kg) .mL-') .kg') NDMC (i.v.) 27331 756 0 39.3 - 1.47 36.2 NDMC (p.o.) 68227 582 60 ND3 25.0 ND ND
Mean SD; Z BA=ora1 bioavailability; 3 ND=not determined Table 8 Pharmacokinetic Parameters' of NDMC and Clozapine in Rat after Clozapine Administration Average CLs Compound AUC Cmax T""x BA 2 Vss (mL i min"
Measured (route) (m'n'ng/ (ng/mL) (min) T'n (min) (%) (L/kg) mL) .kg') NDMC (i.v.) 489.7 3.99 60 - - - -NDMC (p.o) 16199 194 30 - - - -Clozapine (i.v.) 8836 137 0 79.4 - 9.88 101 Clozapine (p.o.) 1347 10.8 60 ND3 1.5 0.6 ND ND
' Mean SD; Z BA=oral bioavailability; 3ND=not determined [0105] These data demonstrate that NDMC was rapidly absorbed from the gastrointestinal tract following oral administration; a Cmax of 582 ng/mL was achieved by 30 minutes. NDMC had low clearance from the circulation, a low volume of distribution, and was approximately 25% orally bioavailable. Clozapine reached much lower peak drug levels (10.8 ng/mL; 1150'" that of NDMC), had higher clearance, and poorer bioavailability (1.5%) following oral administration. These data suggest that NDMC may have acceptable pharmacokinetic properties after oral administration in humans and may indeed have improved pharmacokinetic properties as compared to clozapine.
[0106] High plasma levels of NDMC were observed following oral administration of clozapine and peak plasma levels of NDMC were nearly 20-fold greater than those observed for clozapine (194 ng/mL versus 10.8 ng/mL). Similar observations have been made by others (Weigmann H, Harter S, Fischer V, Dahmen N and Hiemke C
(1999). Distribution of clozapine and desmethylclozapine between blood and brain in rats.
Eur Neuropsychopharm, 9: 253-256; Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D and Cohen BM (1993). Tissue concentrations of clozapine and its metabolite in the rat. Neuropsychopharm, 9: 117-124). Weigmann et al. (Eur Neuropsychopharm 1999) showed that following oral administration of 5 doses (20 mg/kg) of clozapine at 1.5-hour intervals to male Sprague-Dawley rats, plasma concentrations of NDMC exceeded those of clozapine by up to 2.2-fold. In another study, high levels of circulating NDMC were observed following intraperitoneal (i.p.) administration of varying (1-60 mg/kg) doses of clozapine to Sprague-Dawley rats (Baldessarini et al;
Neuropsychopharm 1993). Thus, NDMC is a major chemical moiety formed after oral administration of clozapine in the rat. It is also been shown in vitro that NDMC is the primary clozapine metabolite formed by rat liver microsomes (Bun H, Disdier B, Aubert C
and Catalin J (1999). Interspecies variability and drug interactions of clozapine metabolism by microsomes. Fund Clin Pharm, 13: 577-58 1).
[0107] The pharmacokinetic study described above included an initial assessment of the distribution of NDMC into brain. The ratio of brain-to-plasma levels of NDMC was 0.36 0.16 at 60 minutes and 1.0 0.4 at 240 minutes following oral administration of 10 mg/kg NDMC to Sprague-Dawley rats. Additionally, after oral administration of clozapine the brain-to-plasma ratio of NDMC was 0.26 0.07 at 60 minutes and 2.6 0.8 at 240 minutes. This latter result confirms previously published findings showing that oral administration of clozapine to male Sprague-Dawley rats resulted in NDMC levels in brain that were up to 3.9-fold higher than those observed in serum (Baldessarini et al.; Neuropsychopharm 1993) and intraperitoneal administration of 20, 30, and 60 mg/kg of clozapine to Sprague-Dawley rats resulted in the detection of NDMC in brain (Bun et al.; Fund Clin Pharm 1999). Together these in vivo data clearly document that NDMC distributes into the CNS after oral administration.
Example 12: Bioavailability Assessment of Clozapine and N-Desmethylclozapine in Male Beagle Dogs [0108] The pharmacokinetics of clozapine and N-desmethylclozapine (NDMC) were evaluated in dogs after intravenous (i.v.) and oral (p.o.) dosing. Cmax, Tmax and bioavailability after p.o. dosing and the volume of distribution (Vss), terminal plasma half-life (Tyz) and clearance (CLs) after i.v. dosing were determined. A total of 6 beagle dogs were dosed with clozapine p.o. (N=3, 10 mg/kg), NDMC p.o. (N=3, 10 mg/kg), clozapine i.v. (N=3, 1 mg/kg), or NDMC i.v. (N=3, 1 mg/kg). Serum samples for bioanalytical analysis were obtained pre-dose and 10 min, 30 min, 1, 2, 3, 4, and 6 h post dose after p.o.
administration and pre-dose, 2, 5, 10, 30 min, 1,2 3, and 4 h after i.v.
administration. The levels of NDMC and clozapine were measured in each sample. Pharmacokinetic data for NDMC are presented in tables 9-12.
Table 9 Plasma Concentration (ng/mLt) of NDMC in Dog after NDMC
Administration2 Compound Measured (route) Time (min) NDMC (p o.) 1.0 14 12 z 67 37 155 249 274 NDMC (i.v.) 1890 73 t 22 50 10 35 2 32 6 28 4 27 7 27 4 Mean SD; 2 Dosages for oral administration were 10 mg/kg and 1mg/kg for intravenous administration.
Table 10 Plasma Concentration (ng/mL') of NDMC and Clozapine in Dog after Oral of Intravenous Clozapine Administration2 Compound Time (min) Measured (route) NDMC (p.o.) - 0 2.45 25.4 5.8 10.29 19.23 46.7 Clozapine (p.o.) 0.46 9.53 611.8 103 35 20 57 16 100 213 NDMC (i.v.) 0.54 0.47 0.64 1.72 3.55 4.31 4.89 4.44 0.12 0.06 0.26 0.75 1.03 1.34 1.41 1.31 Clozapine (i.v.) 1 266 1136 98 24 75 10 76 7 61 8 58 11 41 6 Mean SD; 2 Dosages for oral administration were 10 mg/kg and 1mg/kg for intravenous administration.
Table 11 Pharmacokinetic Parameters1 of NDMC in Dog after Oral or Intravenous NDMC and Clozapine Adniinistration Average CLs Compound AUC ~ Cmax T""x B'4 z Vss (mLi min"
Measured (route) (min.ng (ng/mL) (min) TI/z (min) M (L/kg) .mL"') .kg"I) NDMC (i.v.) 134.8 353.2 13.2 7.0 - 28202.1 1850 21.3 242 4919.8 1060.4 NDMC o. 597.6 286.3 3.3 1.2 ND 44.3 ND ND
(p' ) 111.8 25 Clozapine (i.v.) 15.0 3.9 5.3 1.2 2.7 0.58 Clozapine (p.o.) 32.1 24 0 19.2 7.2 4.0 0.0 ' Mean SD; 2 BA=oral bioavailability WO 2006/017614 . PCT/US2005/027645 Table 12 Pharmacokinetic ParametersI of Clozapine in Dog after Clozapine Administration Average CLs Compound AUC _~ C,,,ax T"'ax BAZ Vss (mLfmin Measured (route) (min.ng (ng/mL) (min) T'n (min) (o~o) (L/kg) .mL-') .kg') Clozapine (i.v.) 266 33 189 18 - 3.3 - 10335 2190 0.63 1636 295.9 Clozapine (p.o.) 1186 09.5 124 58 3+ 3.0 1.7 ND 7.0 ND ND
Mean $D; 2 BA=oral bioavailability [0109] NDMC was absorbed from the gastrointestinal tract following oral administration with a Cm,,,, of 286.3 ng/mL achieved by 3.3 h. NDMC had low clearance from the circulation, a low volume of distribution, and was approximately 44%
orally bioavailable. Clozapine had poorer oral bioavailability (7%). These data suggest that NDMC may have acceptable pharmacokinetic properties after oral administration in humans and may indeed have improved pharmacokinetic properties as compared to clozapine.
[0110] NDMC was readily detectable in plasma following both intravenous and oral administration of clozapine. The mean NDMC/clozapine AUC ratio was 0.056 after i.v. administration of clozapine and 0.161 (i.e., 16%) after oral administration. These data confirm recent studies that demonstrated the metabolism of clozapine to N-desmethylclozapine in dog both in vitro (Bun et al. Fund Clin Pharm 1999) and in vivo (Mosier KE, Song J, McKay G, Hubbard JW and Fang J (2003). Determination of clozapine, and its metabolites, N-desmethylclozapine and clozapine N-oxide in dog plasma using high-performance liquid chromatography. J Chromat B, 783: 377-382).
Mosier and colleagues showed that following oral administration of clozapine to a dog the C,r,aX of desmethylclozapine was approximately 20% that of clozapine (i.e., the NDMC/clozapine ratio was approximately 0.2). An early study did not detect N-desmethylclozapine in dog (Gauch R and Michaelis W (1970)). The metabolism of 8-chloro-ll-(4-mehtyl-l-piperazinyl)-5H-dibenzo[b,e] [1,4] diazepine (Clozapine) in mice, dogs, and human subjects. Il Farmaco, 26: 667-681) after oral administration; however this may have been due to insensitive analytical techniques.
Example 13: The role of Ml muscarinic receptor agonism of N-desmeth lc~pine in the unique clinical effects of clozapine Methods [0111] Molecular profiling of clinically relevant drugs was performed at all known monoaminergic receptor subtypes except the Dopamine D4, Serotonin 5A, and Histamine H4 receptors using Receptor Selection and Amplification Technology (R-SAT) assays. Briefly, NIH/3T3 cells plated at 70-80% confluency were transfected with various receptor cDNA (10-100ng receptor and 20ng [3-Gal reporter/well of a 96 well plate) using the Polyfect Reagent (Qiagen Inc.) as described in the manufacture's protocol.
One day after transfection, ligands were added in Dulbecco's modified Eagle's medium supplemented with penicillin (100 U/ml), streptomycin (100 g/ml) and 2% Cyto-SF3.
After four to six days, the media was aspirated off, the cells were lysed, O-Nitrophenyl-beta-D-Galactopyranoside (ONPG) was added and the resulting absorbance was measured spectrophotometrically. Concentration response curves were performed as eight-point concentration response experiments run in duplicate, where the maximal antipsychotic concentrations varied from 10-25 micromolar, and data were analyzed using Excel fit and Graph Pad Prism. Reported EC50 values represent the concentration of a ligand that produces a half-maximal response from a receptor in the absence of other ligands, and IC50 values represent the concentration of a ligand that inhibits half of the agonist-induced activity. Competitive antagonist IC50 data were adjusted for agonist occupancy using the equation Ki = IC50/ { 1+[agonist]/EC50 agonist}. Data are reported as negative log values (pEC5o and pKi). Sources of the drugs utilized in this study are described in Weiner et al.
(2001) and Wellendorph et al. (2002), with the exception of N-desmethylclozapine, which was acquired from Sigma, Inc., and N-desmethylolanzapine, which was synthesized by ACADIA Pharmaceuticals. A list of the compounds screened can be found as supplemental information.
[0112] PI hydrolysis assays were performed on Chinese Hamster Ovary cells stably transfected with the human M1 muscarinic receptor cDNA as described in Spalding et al (2002), and the data are derived from six or eight-point concentration response experiments performed in duplicate.
[0113] MAP Kinase assays utilized C57BL6 mice treated subcutaneously with either vehicle, clozapine, or N-desmethylclozapine with or without scopolamine, sacrificed two hours later, and phospho-MAPK immunoreactivity was assayed as described in Berkeley et al (2001). Briefly, after treatments which were administered s.c.
at 60 min., mice were perfused with 100 ml of 4% paraformaldehyde followed with 100 ml of 10%
sucrose. Brains were removed and cryoprotected in 30% sucrose overnight at 4 C. The next day, 50 m slices were cut on a sliding microtome. Slices were rinsed, treated with 3% HZOz for 10 minutes at room temperature and rinsed again. Slices were blocked in PBS
containing 10 g/ml avidin (Vector Laboratories Burlingame, CA), 0.1% triton-X
and 4%
normal goat serum (NGS) for 1 hour. Slices were rinsed and incubated in PBS
containing 50 g/ml biotin (Vector Laboratories Burlingame, CA), 2% NGS, and phospho-antibody (Cell signal Technologies, Beverly, MA) at a concentration of 1:250 and allowed to incubate overnight at 4 C. The next day, slices were rinsed and placed in PBS
containing 2% NGS and biotinylated goat anti-rabbit (Vector Laboratories Burlingame, CA) at a concentration of 1:100 for 1 hour at 4 C. Slices were rinsed and placed in horseradish peroxidase-conjugated avidin-biotin complex (Vector Laboratories Burlingame, CA) for 1 hour at 4 C. Slices were rinsed and incubated in TSA Fluorescein tyramide for min at room temperature. Slices were treated with 10 mM CuSO4 for 30 minutes, mounted onto glass slides with Vectashield mounting media (Vector Laboratories Burlingame, CA). Slides were visualized via a fluorescence microscope and digital images were analyzed with Scion image analysis software (Scion Corp. Frederick, MD).
[0114) Stepwise multiple-regression analysis, including the dependent measure, dose, age, and gender was utilized to assess the contribution of NDMC to treatment response in schizophrenic subjects (Hasegawa et al 1993 and Lee et al 1999).
The analysis was adjusted for baseline level of symptom severity, age, and dose, since dose was not fixed. The plasma samples chosen for the analyses were obtained at 6 weeks and 6 months after initiation of therapy, were related to the clinical measures obtained at those times, and were drawn 12 hours after the last clozapine dose. Only subjects who had received at least 100 mg of clozapine per day were included in the analysis, and some data were unavailable for these subjects at some time points. Regarding co-treatment with anticholinergic agents, only two subjects in this sample were treated with benztropine. The results did not differ when data from these two subjects were omitted (data not shown). Lastly, ten of the patients in this study were treated with benzodiazepines at the time the levels of clozapine and NDMC were measured. Benzodiazepines have not been reported to affect the metabolism of clozapine.
[0115] Drugs screened, grouped according to clinical class, included:
[0116] Antipsychotics: Amoxapine, Amisulpiride, Amperozide, Bromperidol, Butaclamol, Chlorproethazine, Chlorpromazine, Chlorprothixene, Cis-flupentixol, Clothiapine, Clozapine, Droperidol, Fananserin, Fluphenazine, Fluspiriline, Haloperidol, Loxapine, Mazapertine, M100907, Melperone, Mesoridazine, Molindone, N-Desmethyl Clozapine, N-desmethylolanzapine, Ocaperidone, Octoclothepin, Olanzapine, Perazine, Perlapine, Pimozide, Pimpamperone, Promazine, Prothypendyl, Quetiapine, Remoxipride, Risperidone, Sertindole, Spiperone, Sulpride, Sultopride, Telfludazine, Thioridazine, Thiothixene, Tiapride, Moperone, Tiospirone, Trans-flupentixol, Trifluoperazine, Trifluoperidol, Triflupromazine, and Ziprasidone.
[0117] Antidepressants/Anxiolytics: Acetyltryptophan, Acetyltryptophanamide, Alaprocate, Alprazolam, Amitriptyline, Barbital, Bromazepam, Buproprion, Buspirone, Chloral Hydrate, Clobazam, Clonazepam, Clomipramine, Clorgyline, Chlordiazepoxide, Chlormezanone, Continine, Compazine, Desipramine, Deprenyl, Desmethyldiazepam, Diazoxide, Doxepin, Flumazenil, Flunitrazepam, Fluoxetine, Flurazepam, Fluvoxamine, Imipramine, Indatraline, Iproniazid, Maprotiline, Meprobamate, Milnacipram, Minaprine, Mirtazepine, Modafinil, Nitrazepam, Nomifensine, Nortriptyline, Oxazepam, Pargyline, Phenelzine, Prazepam, Protripytline, Rolipram, Tracazolate, Tranylcypromine, Trazadone, Triazolam, Trihexaphendyl, Trimipramine, Viloxazine, Zimelidine, Zolpidem, and Zopiclone.
[0118] CNS Miscellaneous: 3PPP, 5-Aminopentanoic Acid, 5-Hydroxy MDA, 5-Methoxy DMT, 5-Methoxytryptamine, Acetaminophen, Acetylsalicylic Acid, Alprenelol, Amantadine, Amiodarone, AMPA, Apocodeine, Apomorphine, Atropine, Baclofen, Balperidone, Benztropine, Bicuculline, Bradykinin, Bretylium, BRL 37344, Bromocriptine, Cannabidiol, Carbemazepine, Carbidopa, Cyproheptadine, Cirazoline, D-Amphetamine, (D-Ser2)-Leu Enkephalin-Thr, (Leu 5) Enkephalin, D-Phenylalanine, Dibucaine, Diclofenac, Dihydroergotamine, DOI, Domperidone, Ebalzotan, Edrophonium, Ephedrine, Etadolac, Ethosuxamide, Felbamate, Fenbufen, GABA, Gabaxadol, Galanthamine, Gamma-Vinyl GABA, Gabapentin, (-) GMC III, (+) GMC III, Heroin, Himbacine, I-4-AA, ICI 204448, Indoprofen, Isoguvacine, Ketamine, Ketaprofen, Labetalol, Lamotrigine, Levallorphan, Lidocaine, Lisuride, L-745-870, Melatonin, Metoclopromide, Memantine, Mescaline, Naftopidil, Nalbuphine, N-Allyl SKF 38393, Naloxone, Naltrexone, Naltrindole, Neostigmine, Nicotine, Nipecotic Acid, N-Methyl ICI 118-551, N-Methyldopamine, N, N-Dimethyl MDA, Norapomorphine, Norcodeine, Norfenfulramine, Normetazocine, Oxethazine, Pemoline, Pergolide, PCP, Phaclofen, Phenacetin, Phenteramine, Phenoxybenzamine, Phenytoin, Physostigmine, P-Iodoclonidine, Pirenzepine, Prilocaine, Primodone, Procaine, Prochlorperazine, Propranolol, Pseudoephedrine, Quinpirole, Raclopride, Rauwolscine, Reserpine, Rimcazole, RO-3663, RS 100329, RX 821002, Saclofen, Salicylamide, SCH 12679, SCH 23390, Scopolamine, SKF 81297, SKF 38393, SKF 82948, SKF 82957, SKF 83566, SR
141716A, SR 144528, Succinylcholine, Tenoxicam, Terguride, Tetracaine, Tolazoline, Tropicamide, UK 14304, Valproate, Vigabatrin, WIN 55212-2, Xylazine, Yohimbine, and Zomepirac.
[0119] Monoaminergic: 7-OH-DPAT, 8-OH-DPAT, Alpha Methyl Serotonin, Arecoline, Astemizole, Bethanacol, Carbachol, CGS 12066A, Cinanserin, Chlorpheniramine, Cimetidine, Clobenpropit, CPP, Dihydroergocristine, Dimaprit, Diphenhydramine, Doxylamine, Eltoprazine, Famotidine, Histamine, Imetit, Isomaltane, Ketanserin, Loperamide, L-Tryptophan, LY 53857, mCPP, Mesulergine, Metergoline, Methergine, Methiothepin, Methysergide, Mexamine, Mianserin, MK 212, Mepyramine, Pheniramine, Phenylbiguanide, Pimethixene, Piperazine, Pirenpirone, Prazosin, Promethazine, Pyrilamine, Quiapazine, Ranitidine, Ritanserin, SB 204741, SB
206553, Serotonin, Spiroxatrine, Sumitriptan, Thioperamide, Tripellenamine, Triprolidine,and WB
4101.
[0120] Cardiovascular: Acetazolamide, Adenosine, Albuterol, Atenolol, Amiloride, Amrinone, Bepridil, Caffeine, Catopril, CGS-15943, CGS-21680, CGP-12177A, Chlorothiazide, Clonidine, Debrisoquin, Digitoxin, Digoxin, Diltiazem, Dipyridamole, Disopyramide, Dobutamine, Doxazosin, DPCPX, Epinephrine, Enalapril, Flunarizine, Furosemide, Guanabenz, Guanethidine, Hydralazine, Hydrochlorothiazide, Isoproterenol, Isosorbide, Lidocaine, Linisopril, Metaproterenol, Methoxamine, Metrifudil, Metolazone, Metoprolol, Midodrine, Minoxidil, N-Acethylpocainamide, Nicardipine, Nifedipine, Nimodipine, Nitrendipine, Norepinephrine, Nylidrin, Oxymetazoline, Paraxanthine, Pentoxifylline, Phentolamine, Pinacidil, Pindolol, Procainamide, Propranalol, Quinidine, Spironolactone, Theophylline, Theoyphylline 1-3, Timolol, Triamterene, Urapidil, Verapamil, and Warfarin.
[0121] Systemic Miscellaneous: Acyclovir, Adephenine, Allupurinol, Amodiaquine, 6-bromo-APB, Artemisinin, Azathioprine, Azithromycin, Camphor, Capsaicin, Carbetapentane, Carisoprodol, Cefotaxime, Cinchonidine, Chloramphenicol, Chloroquine, Chlorpropamide, Chlorzoxazone, Clarithromycin, Clofilium, Clotrimazole, Cyclobenzaprine, D-Cycloserine, Danazol, Dantrolene, Dextromethorphan, Dimethadione, Dropropizine, E-Capsaicin, Edoxudine, Ethinimate, Fipexide, Fluconazole, Foscarnet, Gallamine, Glibenclamide, Glipizide, Hypericin, lbuprofen, Ifenprodil, Indomethacin, Isobutylmethylxanthine, Kainic Acid, Ketoconazole, Levorphanol, Linopiridine, Mazindol, Meclizine, Mefexamide, Mefloquine, Mephenesin, Mesbeverine, Methocarbamol, Metoclopramide, Metronidazole, MK 801, N-Aminohexyl-5-Chloronaphthalene-l-Sulfonamide, N-Methyl-D-Aspartic Acid , NCS 382, Neophesperidin, Nixoxetine, Nocapine, Octopamine, Omeprazole, Orphenadrine, Oxyphenbutazone, Papaverine, Penicillamine, Pentamidine, Phenacemide, Picrotoxin, Pitrazepine, Piracetam, Piroxicam, Primaquine, Probenecid, Pyrimethamine, Quinine, Ritodrine, Saccharin, Sulindac, Suramin, SB 218795, Thalidomide, Tilorone, Trimeprazine, Tolazamide, Tolbutamide, Tolperisone, Uridine, Vidarabine, Zaleplon, and Zidovudine.
Results and Discussion [0122] A library of 462 clinically relevant drugs were profiled for functional activity at 33 of the 36 known human monoaminergic G-protein coupled receptors using the mammalian cell-based functional assay Receptor Selection and Amplification Technology (R-SAT). Table 13 illustrates data on representative antipsychotic agents for receptors at which the most potent activities were observed. Potency data for five representative antipsychotics and the clozapine metabolite N-desmethylclozapine (NDMC) at 13 human monoamine receptor subtypes are shown. Potency data are reported as pKi values for the competitive antagonist studies, while inverse agonist data are reported as pEC50 values, both derived from three to eight separate determinations +/= standard error.
Asterixes (*) indicate the presence of agonist activity where the muscarinic receptor agonist potencies are reported in Table 14. Ziprasidone displays limited but detectable agonist efficacy at human 5-HTIA receptors (<30% relative to 8-OH-DPAT), and a Ki > 1-micromolar when assayed as a competitive antagonist. Abbreviations used: NDMC-N-desmethylclozapine, 5-HT-serotonin, H- histamine, M-muscarinic, D-dopamine, and Alpha-alpha adrenergic, and nr-no response defined as no significant antagonist or inverse agonist activity at concentrations up to 1-micromolar.
Table 13 Pharmacological activities of antipsychotics at human monoamine receptors.
lial 'ciol doi,e Zi done a ne a ne navlc Antgaist Fbcow Cp 10.0+1-0.1 9.3H-0.1 &3+/-0.3 &4+/-0.2 7.7+/-0.1 7.2+/-0.1 54f12A 7.3+/-0.1 9.7+/-0.1 8.6+/-0.1 &6+/-0.1 8.3+/-0.2 &3+/-0.2 5-HT1A rr rr rri rr rr rr 5-H12C rr 7.2+/-0.3 7.4-q-0.2 7.4+/-0.1 7.4+/-0.2 7.8".2 H1 rr 7.0+1-0.2 rr &4+/-0.1 9.5+/-0.2 8.2+/-0.2 M1 rr rr rr 7.2+/-0.2 7.8+/-0.2 rr ' IVQ rr rr rr 6.9H-0.1 rr* rr Mi rr rr rr 6.7+/-0.5 &2+1-0.2 6.8+/-0.7k N# rr rr rr 7.4+/-0.3 nr" r-e fV6 rr rr rr 7.2+/-0.2 7.5+/-0.3 rri' D6 9.7+/-0.1 7.9+/-0.4 7.5+/-0.3 7.6+/-0.4 6.3+1-0.1 rr Alpha 1A 7.4+/-0.1 &54-0.1 7.4+/-0.2 7.4+/-0.2 &1+1-0.1 7.3+/-0.1 AI 2A rr 7.7+/-0.1 rr rr rr rr Irneise Agonist 5-FiT2A 6.8-q-0.1 9.0+/-0.3 &8".3 7.8+/-0.1 &0+1-0.3 &0+/-0.3 5+ff6A rr rr rr 7.4-q-0.2 7.0+/-0.2 6.9+/-0.1 5a-iT7A rr 9.1+/-0.2 7.3+/-0.1 rr 7.4+/-0.1 7.3+/-0.1 [0123] Competitive antagonism of D2 receptors, and inverse agonism of 5-HT2A
receptors was nearly uniform throughout this class, with typical agents demonstrating low 5HTZA/DZ ratios, and atypical agents demonstrating high ratios (Meltzer et al 1989 and Weiner et al 2001). Inverse agonism of H, receptors was commonly observed, where clozapine and olanzapine displayed particularly high potency (Weiner et al 2001). Many compounds showed antagonist activity at alphal-adrenergic receptors, fewer agents exhibited potent 5-HT6 activity, while many, particularly risperidone, displayed potent inverse agonist activity at 5-HT7 receptors. Clozapine, olanzapine, and a number of typical agents (e.g. thioridazine, data not shown), were found to possess potent muscarinic receptor antagonist properties. Importantly, no single antagonist activity differentiated clozapine from all other agents.
[0124] In contrast to the widespread antagonist activity of these compounds, very few agents possessed agonist activity. Figure 4A reports the results of the functional agonist screen of this compound library at the human M1 muscarinic acetylcholine receptor.
Only four compounds, the known muscarinic receptor agonists arecoline and carbachol, moperone and N-desmethylclozapine (NDMC), the major metabolite of clozapine (Gauch and Michaelis 1971), were identified. Moperone displayed only a very low potency (EC50>1-micromolar) interaction. In contrast, NDMC displayed an EC50 of 100 nM
with 80% efficacy (relative to carbachol) in this study. This result was further confirmed in a second functional assay, PI hydrolysis. As depicted in Figure 4B, clozapine displays limited agonist efficacy in this assay, precluding accurate potency determinations, whereas NDMC displayed high potency (93 +/- 22nM, n=3) and greater agonist efficacy (56 +/- 8%, n=3) relative to carbachol. In fact, when assayed against carbachol for competitive antagonist activity, clozapine behaved as an antagonist, while NDMC only partially reversed carbachol-induced PI hydrolysis (Figure 4C), consistent with the lack of an antagonistic response observed when NDMC was tested as a competitive antagonist at M 1 receptors in R-SAT (Table 13). Finally, the agonist activity of NDMC was blocked by both atropine and clozapine (Figure 4D). These results confirm that NDMC is a potent, efficacious, Ml receptor agonist, distinguishing it from the M1 receptor antagonist properties of clozapine.
[0125] Having demonstrated the agonist activity of NDMC at human M 1 receptors in multiple in vitro functional assays, we then profiled carbachol, clozapine, NDMC, olanzapine, the major olanzapine metabolite N-desmethylolanzapine, and the muscarinic agonist xanomeline (Shannon et al 1994), at all five human muscarinic receptor subtypes using R-SAT (Table 14).
Table 14 Muscarinic acetylcholine receptor agonist activity of antipsychotics.
Muscarinic receptor (M1-M5) agonist activity of clozapine, N-desmethylclozapine, olanzapine, N-desmethylolanzapine, xanomeline, and carbachol was determined using R-SAT as previously described (Spalding et al 2002). Average efficacy (percentage relative to carbachol) and potency (pEC50) +/- standard error are reported for 3 or more replicate determinations. No response denotes the lack of agonist activity at concentrations up to 10-micromolar.
Compound M1 M2 M3 Efficacy pEC50 Efficacy pEC50 Efficacy pEC50 Clozapine 24 3 7.63f0.37 65 8 6.23 0.14 No response N-desmeth lcloza ine 72 5 7.26 0.07 106 19 6.47 0.21 27 4 6.49 0.18 Olanzapine No response No response No response N-desmeth lolanza ine No response No response No response Xanomeline 121 6 7.20 0.08 106 9 6.30 0.23 66 6 6.63 0.21 Carbachol 101t2 6.11 0.03 101 5 6.23 0.09 102 3 6.53 0.04 Compound M4 M5 Efficacy pEC50 Efficacy pEC50 Clozapine 57 5 7.35 0.10 No response N-desmeth lcloza ine 87 8 6.87 0.17 48 6 7.63 0.25 Olanzapine No response No response N-desmeth lolanza ine No response No response Xanomeline 116 9 7.46 0.14 86 12 6.59 0.22 Carbachol 96 3 6.53 0.05 105 3 6.76 0.12 [0126] Clozapine was found to be a very weak partial agonist at Ml receptors, a more efficacious agonist at M2 and M4 receptors, and to lack agonist activity at M3 and M5 receptors. NDMC also displayed high potency interactions with all five human muscarinic receptors, but with increased agonist efficacy at M1, M4, and M5 receptors when compared to clozapine (Table 14). In contrast, olanzapine and N-desmethylolanzapine, both structurally related to clozapine and NDMC, lacked agonist activity at human muscarinic receptors. Interestingly, xanomeline displayed a muscarinic receptor profile that is similar to that observed for NDMC, with the notable exception of higher agonist efficacy at M3 receptors. The agonist activities of clozapine, NDMC, and xanomeline at human muscarinic receptor subtypes are unique among all neuropsychiatric agents tested (Figure 4, and Tables 13 and 14).
[0127] The present inventors discovered that muscarinic receptor agonism, and M1 receptor agonism in particular, of NDMC can be achieved in vivo during pharmacotherapy with clozapine. Clozapine and NDMC were tested for their ability to increase the phosphorylation of mitogen-activated protein kinase (MAP kinase) in the CA1 region of mouse hippocampus, a response that has been shown to reflect Ml receptor activation (Berkeley et al 2001). As depicted in Figure 5, subcutaneous administration of vehicle (Figure 5A), clozapine (Figure 5B), or scopolamine alone (data not shown) fails to stimulate phosphorylation of hippocampal MAP kinase. In contrast, NDMC induced phosphorylation of MAP kinase in hippocampal neurons in a dose dependent manner (Figures 5C, 5D, and E), an effect that was blocked by pretreatment with scopolamine (Figure 5F). Quantification of this effect demonstrates statistically significant Ml receptor activation at NDMC doses of 30 mg/kg and greater (Figure 6). Clozapine fails to behave as an agonist under these experimental conditions, which likely reflects either insufficient metabolism to NDMC after acute administration in mouse, or direct antagonist effects at the M1 receptor as demonstrated in the in vitro studies. These data confirm that NDMC
passes the blood brain barrier and activates hippocampal M1 receptors in vivo.
[0128] It has long been appreciated that antagonism of central muscarinic receptors can attenuate the EPS induced by antipsychotics (Miller and Hiley 1974). Initial investigations of the anti-muscarinic properties of antipsychotics defined the high potency of clozapine for these receptors in rodent brain, and elucidated the inverse correlation between muscarinic receptor antagonism and propensity to induce EPS (Snyder et al 1974).
Following the elucidation of five muscarinic acetylcholine receptor subtypes (Bonner et al 1987), clozapine was described as a potent competitive antagonist (Bolden et al 1991).
Functional studies in various cell lines subsequently documented that clozapine has significant agonist activity at M2 and M4 receptors, and low agonist efficacy at M 1 receptors (Zorn et al 1994 and Olianas et al 1999), consistent with the results reported herein. In humans, clozapine has two major metabolites, NDMC and clozapine-N-oxide (Gauch and Michaelis 1971). After steady state dosing, NDMC represents a large proportion of total detectable moieties, with concentrations ranging from 20-150% of that observed for clozapine, with mean values of 60-80% (Bondesson and Lindstrom 1988 and Perry et al 1991). That NDMC is an active metabolite is supported by the present data, as well as by prior reports documenting D1, D2, and 5-HT2C receptor competitive antagonist activity (Kuoppamaki et al 1993), and a recent report of M1 receptor agonist activity (Sur et al 2003). In contrast, the other major clozapine metabolite, clozapine-N-oxide, displays only very low potency (pKI's<6.0) functional activity at human monoaminergic receptors (data not shown). While varying degrees of brain penetration of NDMC have been reported in rodents (Baldessarini et al 1993 and Weigmann et al 1999), the present results, the observation that systemically administered NDMC activates cFOS expression in rodent brain (Young et al 1998), and the detection of NDMC in human cerebrospinal fluid following parenteral administration of clozapine (Nordin et al 1995), demonstrate that NDMC is brain penetrant and centrally active.
[0129] The present inventors have discovered that clozapine, acting through its predominant metabolite NDMC, functions as a direct acting muscarinic receptor agonist in vivo. During pharmacotherapy with clozapine, the agonist actions of NDMC is attenuated by the antagonistic actions of the parent compound. Thus, high NDMC levels, and particularly high NDMC/clozapine ratios, increases agonist efficacy at muscarinic receptors, as predicted by mass action and by agonist/antagonist mixing studies (Brauner-Osborne et al 1996). Clinical data support this notion. Not only does clozapine therapy usually lack the traditional anti-cholinergic side effects of dry mouth, blurred vision, and urinary retention common to classical muscarinic antagonists, it is unique in its ability to frequently produce sialorrhea (Baldessarini and Frankenburg 1991), an effect that can be blocked by the muscarinic antagonist pirenzepine (Fritze and Elliger 1995).
Thus, the muscarinic receptor agonist activity of NDMC likely mediates this peripheral effect, while the muscarinic receptor subtype responsible is still unknown, receptor subtypes in addition to the M3 have been implicated (Bymaster et a12003).
[0130] The muscarinic agonist properties of NDMC reported herein underlies some of the unique central effects of treatment with clozapine. Multiple lines of evidence support a pro-cognitive effect of potentiating central cholinergic neurotransmission, including the clinical effects of acetylcholinesterase inhibitors and direct acting muscarinic receptor agonists (Davis et al 1993). High dose clozapine therapy in treatment refractory schizophrenics may actually serve to raise brain levels of NDMC to achieve central muscarinic receptor agonist activity, particularly Ml receptor stimulation, rather than recruiting additional lower potency receptor interactions that clozapine and NDMC possess (Table 13). Thus, NDMC/clozapine ratios are a better predictor of therapeutic response to clozapine, particularly for cognition, than absolute clozapine levels.
[0131] The data on clozapine and NDMC plasma levels and clinical response that were prospectively gathered as part of two clinical trials which included 59 neuroleptic resistant patients (Hasegawa et al 1993), and 33 neuroleptic responsive patients (Lee et al 1999) with schizophrenia were re-analyzed. Patients were classified as treatment resistant or not by standard criteria (Kane et al 1988), and clinical ratings and neuropsychological test scores were obtained by trained raters who were blinded to plasma drug levels. The mean daily dosages of clozapine, as well as clozapine and NDMC serum levels, and NDMC/Clozapine ratios after 6 weeks and 6 months of treatment are reported in Table 15A.
Table 15 Serum N-desmethylclozapine levels and clinical response in schizophrenia.
Statistical analysis of the correlation between clinical outcome and serum levels of clozapine and N-desmethylclozapine (NDMC) for a cohort of 92 clozapine treated schizophrenics are reported. Table 15A reports the clozapine dose, clozapine level, NDMC
levels, and NDMC/clozapine ratios for all treatment resistant (TR) subjects, responders, non-responders, and all subjects at 6 weeks and 6 months. P* reports statistically significant differences between responders and non-responders. Table 15B
reports the major relationships of interest for the prediction of the contribution of NDMC
to response to clozapine treatment, including quality of life, negative symptoms, and cognition, analyzed by multiple linear regression. R2** refers to the model applied.
Abbreviations .used include: NS-not significant, BPRS-Brief Psychiatric Rating Scale, SANS-Scale for the Assessment of Negative Symptoms, SAPS- Scale for the Assessment of Positive Symptoms, WISC-Wisconsin Card Sorting Test.
Table 15A
Drug Measure All TR Subjects Responders Non-Responders P*
(59) (26) (25) Dose (mg/day) 468+/-190 485+/-205 433+/-178 NS
NDMC Level (ng/ml) 260+/-203 308+/-243 171+/-123 0.01 Clozapine Level (ng/ml) 393+/-301 453+/-328 268+/-207 0.02 NDMC/Clozapine 0.75+/-0.36 0.70+/-0.22 0.81+/-0.48 NS
Drug Measure All Subjects at 6 All Subjects at 6 Months Weeks (86) (92) Dose (mg/day) 369+/-169 417+/-197 NDMC Level (ng/ml) 194+/-136 235+/-190 Clozapine Level (ng/mi) 287+/-190 365+/-285 NDMC/Clozapine 0.83+/-1.08 0.71+/-0.30 Table 15B
Clinical Measure Beta F P df Dependent Variable: 6 Weeks BPRS-Withdrawal/Retardation -0.52 3.73 0.06 0.32 3.73 SANS Attentional Impairment -0.28 5.65 0.02 0.26 3.65 SAPS Global Delusions -1.00 3.87 0.05 0.60 3.55 Quality of Life Scale: Total 17.50 5.20 0.03 0.50 2.40 Quality of Life Scale: Objects and 2.91 7.10 0.01 0.43 2.40 Activities 13.80 14.84 0.01 0.54 2.39 Quality of Life Scale: Instrumentai Role 2.27 4.10 0.05 0.75 4.33 WISC-R Maze Dependent Variable: 6 Months 7.45 6.75 0.01 0.47 4.47 Petersen's Consonant Trigram Test 1.35 3.67 0.06 0.47 3.48 WISC-Categories Formed [0132] Both time points were analyzed because improvement in psychopathology and cognition with clozapine may take six months or longer (Hagger et al 1993). Thirteen of the 92 patients (14.1%) had NDMC/clozapine ratios >/=1. Of these thirteen patients, the highest ratio was 1.77 and the median was 1.05. The Spearman rank order correlation between clozapine and NDMC levels was 0.82 and 0.89 at 6 weeks and 6 months, respectively (P=0.0001). The correlation between NDMC/clozapine ratios at 6 weeks and 6 months was 0.92 (P= 0.0001), indicating remarkable stability of NDMC/clozapine ratios within subjects. Importantly, dose and NDMC/clozapine ratios were not significantly correlated at either time point (rho<0.10) in neither the neuroleptic-resistant nor neuroleptic-responsive patients.
[0133] Stepwise multiple-regression were utilized to determine the best predictors of outcome from each of these measures, including baseline levels of the dependent measure, dose, age, and gender, since all have been shown to significantly predict response to clozapine (Table 15B).
[0134] In all the models tested, baseline levels of the dependent measure predicted the largest share of the variance in the model. The NDMC/clozapine ratio was the next most frequent predictor of response; the ratio significantly predicted response in 8/24 (33.3%) of the models, all in the expected direction: the higher the ratio, the better the outcome. This result contrasts with the lack of predictive power of clozapine levels alone, NDMC levels alone, or their sum. The exception was that higher NDMC levels alone predicted greater improvement in two subscales of the Quality of Life scale (Heinrichs et al 1984) (data not shown). As shown in Table 15B, higher NDMC/clozapine ratio predicted improvement in multiple measures of cognition, as well as the Scale for the Assessment of Negative Symptoms-Attention subscale, which has been suggested to be more related to cognition than negative symptoms. The ratio also predicted improvement in Quality of Life-total score, including the Instrumental Role Function factor, which has been shown to be dependent upon cognitive status (Green 1996), and negative symptoms, which have been found to correlate with cognition. The ratio also predicted improvement in delusions, but not hallucinations, with clozapine treatment. Dose did not contribute to the prediction of any of the models in Table 15B. Dose is significantly correlated with plasma levels of clozapine and NDMC (P=0.01-0.001) but not, as noted above, with the NDMC/clozapine ratio. This provides further evidence that the absolute levels of clozapine and NDMC, while important in identifying responders and non-responders (Fabrazzo et al 2002) are not as important as their ratio when baseline levels of the dependent measure are included in the model. Although additional analyses in larger cohorts are necessary, this analysis, as well as recent reports (Frazier et al 2003 and Mauri et al 2003) all suggest that the NDMC/clozapine ratio is a better predictor of clinical response to clozapine than clozapine levels alone, and support the hypothesis that NDMC is a critical mediator of clozapine action.
[0135] The muscarinic receptor agonist properties of NDMC also contribute to the efficacy of clozapine therapy against positive symptoms. Not only did high NDMC/clozapine ratios predict response to delusions as noted above, but additional support comes from the observation that there are several similarities between the central effects of muscarinic receptor agonists and dopamine D2 receptor antagonists (Pfeiffer and Jenney 1957 and Mirza et al 2003). For example, behavioral pharmacological experiments with mice harboring targeted deletions of each of the five muscarinic receptor subtypes have shown that the M1 receptors plays a central role in DA-mediated behaviors (Gerber et al 2001). In addition, xanomeline (which displays some selectivity for M1 and receptors) inhibits amphetamine-induced locomotion (Shannon et al 2000).
Clinically, xanomeline was found to diminish hallucinosis and aggression in Alzheimer's Disease patients (Bodick et al 1997), and has been shown to display activity against both positive and negative symptoms in a recent, small, Phase 2 study in schizophrenia (Schekhar et al, unpublished data).
[0136] The central dopaminergic and muscarinic cholinergic systems are well known to be functionally interrelated (Miller and Hiley 1974). The muscarinic antagonist properties of clozapine are thought to contribute to its low propensity to cause EPS, yet the anti-EPS effects of clozapine are more robust than those obtained by the adjunctive use of anticholinergics agents like trihexyphenidyl, and some EPS producing antipsychotics, e.g.
thioridazine, also possess potent muscarinic receptor antagonist properties.
These observations suggest that although antagonism of central muscarinic receptors can confer anti-EPS effects, cholinergic modulation of the motoric effects of D2 receptor blockade are more complex than previously appreciated. Present data show that agonism, not antagonism, of certain muscarinic receptor subtypes expressed within critical basal ganglia structures (Weiner et al 1990), are a more efficacious mechanism to lessen these adverse motor effects. Further, the widespread use of adjunctive anticholinergics should be reevaluated in light of the present data on the pro-cognitive benefits conferred by the central muscarinic receptor agonist properties of NDMC.
[0137] In summary, functional characterization of therapeutically useful neuropsychiatric drugs has revealed the potent, efficacious, muscarinic receptor agonist activity of NDMC. This activity was found to be unique among neuropsychiatric agents as a class. It is demonstrated that NDMC can cross the blood brain barrier and function as an Ml receptor agonist in vivo. Consideration of the contribution of NDMC to improvement in cognition and quality of life in clozapine treated patients shows that NDMC
mediates clinically relevant aspects of treatment response that differentiate clozapine from other agents used to treat schizophrenia. These findings show that muscarinic receptor agonism mediates the unique clinical properties of clozapine, and that Ml muscarinic receptor agonists (Spalding et al 2002), including NDMC itself, may be efficacious atypical antipsychotic agents.
Example 14: Net Agonism in N-desmeth lcy lozapine/Clozapine Mixtures [0138] The effect of mixtures of clozapine and N-desmethylclozapine was evaluated using an R-SAT assay as described above. 150 nM of N-desmethylclozapine was provided with varying concentrations of clozapine. Figure 7 depicts the results of the R-SAT assay as a function of clozapine concentration. As indicated by the dotted line in Figure 7, net agonistic activity was observed for clozapine concentrations of about 100 nM
and below. Thus, ratios of NDMC to clozapine of about 1.5 and greater provide a net agonistic effect.
[0139] The results of the R-SAT assay were confirmed using a PI hydrolysis assay as described above. 150 nM of N-desmethylclozapine was again provided with varying concentrations of clozapine. Figure 8 depicts the results of the assay as a function of clozapine concentration. The dotted line in Figure 8 indicates the maximum concentration of clozapine for which a net agonistic effect is observed.
Similar to the results of the R-SAT assay, net agonistic activity was observed for clozapine concentrations of about 100 nM and below, thus confirming that a ratio of NDMC to clozapine of about 1.5 and greater provide a net agonistic effect.
Example 15: Administration of Single Doses of NDMC to Schizophrenic Patients [0140] A single-center, in-patient, randomized, double blind, placebo controlled, single dose study is conducted on two sequential group of patients. Two different groups of 6 patients each are enrolled. Each patient in the first group of patients receives single doses of placebo, 25 mg of NDMC, and 50 mg of NDMC
sequentially in random order. Each patient in the second group of patients receives single doses of placebo, 75 mg of NDMC, and 100 mg of NDMC sequentially in random order. The NDMC and placebo is administered orally as a powder in a gelatin capsule. Male or female patients, 20 to 50 years of age, with a history of schizophrenia or schizoaffective disorder, who are otherwise in good health are selected for the study. The patients are not experiencing acute exacerbation of severe psychosis, defined as a Positive and Negative Syndrome Scale (PANSS) score greater than 75.
[0141] Patients are withdrawn from all centrally active medications during a lead-in period of 4-7 days prior to study start on Study Day -1. On Study Day -1, patients are randomized to a schedule of NDMC:placebo in a 2:1 manner. On Study Day 1, patients receive study drug or placebo, orally, in the morning, and serial blood samples are collected up to 24 h after dose administration. Patients are monitored for 8 hr post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Day. No study drug is given on Study Days 2 and 3. On Study Day 4, subjects once again receive study drug or placebo, orally, in the morning, and serial blood samples are collected up to 24 h after dose administration.
Patients are monitored for 8 h post-dose by continuous lead II ECG monitoring.
Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout the Study Day 4. No study drug or placebo is given on Study Days 5 and 6. On Study Day 8, patients receive study drug or placebo, orally, in the morning, and serial blood samples are collected up to 24 h after dose administration. Patients are monitored for 8 h post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout the Study Day 8. A final End of Study evaluation is performed 3-5 days following Study Day 8 and a clinical evaluation, administration of clinical rating scales, and a safety assessment are performed.
[0142] An interim analysis of the safety variables and pharmacokinetic data obtained from Group 1 is conducted after the End of Study evaluation and before the randomization of Group 2. Safety variables are reviewed by the PI in order to determine the doses to be administered in Group 2. If NDMC administration during Group 1 is deemed safe the second patient cohort is screened, randomized, and enrolled.
If the doses of NDMC in Group 2 are greater than those administered in Group 1, then, during the lead-in period, a pre-conditioning dose of 25 mg of NDMC is given to each subject.
This test dose is used to identify any patient who may be particularly sensitive to higher doses of NDMC, and is administered at least 3 days prior to Day -1. Study related procedures for Group 2 is identical to those of Group 1, with the exception of the NDMC dose.
Pharmacokinetic Analysis [0143] Plasma samples are analyzed for concentrations of NDMC.
Pharmacokinetic parameters are calculated including C,,,ax (maximum plasma concentration), tmax (time to maximum plasma concentration), AUCo_Z (area under the plasma concentration time curve from time zero to the last quantifiable timepoint, calculated by linear-log trapezoidal summation), AUC0_. (area under the plasma concentration time curve from time zero to infinity, calculated by linear-log trapezoidal summation and extrapolated to infinity by addition of the last quantifiable plasma concentration divided by the elimination rate constant kz), kz (elimination rate constant, determined by linear regression of the terminal points of the log-linear plasma concentration-time curve), tliz (terminal half-life, determined as ln(2)/Xz), and CLpo (apparent oral clearance, calculated by Dose / AUC(0-oo)).
Tolerability [0144] Tolerability of NDMS is determined by measuring extrapyramidal (EPS) motor effect using the Simpson and Angus Sacle (SAS) and the Barnes Akathisia Scale (BAS). These scales are administered at baseline (Study Day -1), 3-5 hours after drug administration on Study Days 1, 4, and 8, and at the End of Study evaluation.
Antipsychotic efficacy [0145] Antipsychotic efficacy is measured using the PANSS and the Clinical Global Impression Scale-Schisophrenia (CGI-S) measures. These scales are administred at baseline (Study Day -1), on Study Days 1, 4, and 8, and at the End of Study evaluation.
Safety [0146] Safety is evaluated by measuring vital signs including 3-positional blood pressure and pulse rate (5 minute supine, 1 minute sitting, 3 minutes standing), respiratory rate, and oral temperature except during screening and post-study procedures.
[0147] 12-lead ECGs are recorded and standard electrocardiogram parameters including QRS, PR, QT, and QTc intervals are measured. In addition, continuous lead-II
ECG monitoring is performed for the first 8 hours of Day 1, 4, and 8 following each NDMC or placebo dose administration.
[0148] A neurological screen is conducted by the clinically responsible physician at the clinic. The neurological screen consists of a qualitative assessment of muscle tone in the extremities, the presence of tremors, fasiculations, and nystagmus, and various tests of cerebellar coordination (finger nose test, dysdiadochokinesia, heel-shin test, and gait).
[0149] Clinical laboratories are measured after at least an 8-hour fast on Study Days 1, 4, 8, and the End of Study evaluation and include the following:
[0150] Erythrocytes: RBC count, hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), RDW, and reticulocyte count.
[0151] Leukocytes: WBC count and differential (basophils, eosinophils, lymphocytes, monocytes, and neutrophils) reported as absolute values.
[0152] Coagulation: platelet count, PT as INR, and aPTT.
[0153] Liver: alkaline phosphatase, ALT (serum glutamic-pyruvic transaminase [SGPT]), AST (serum glutamic-oxaloacetic transaminase [SGOT]), bilirubin (total, direct, indirect), gamma-glutamyl transferase (GGTP), creatine phosphokinase (CPK) and LDH.
[0154] Renal: blood urea nitrogen (BUN), creatinine, and uric acid.
[0155] Electrolytes: carbon dioxide, chloride, magnesium, potassium, and sodium.
[0156] General: albumin, calcium, glucose (fasting) phosphate, and protein (total).
[0157] Endocrine: prolactin.
[0158] Lipids: cholesterol (total), HDL cholesterol, LDL cholesterol, and triglycerides.
[0159] Macroscopic urinalysis: pH, specific gravity, glucose, ketones, leukocyte esterase, nitrites, occult blood, and protein.
[0160] Microscopic urinalysis: RBC/high powered field, WBC/high powered field, bacteria, castes, epithelial cells, mucous threads and crystals.
Example 16: Administration of Multiple Doses of NDMC to Schizophrenic Patients [0161] A single-center, in-patient, randomized, double blind, placebo controlled, multiple dose study is conducted on two sequential groups. Twelve patients, in two different groups of six patients each are enrolled. Each patient receives either placebo or NDMC daily for five days. The NDMC and placebo is administered orally as a powder in a gelatin capsule. Male or female patients, 20 to 50 years of age, with a history of schizophrenia or schizoaffective disorder, who are otherwise in good health are selected for the study. The patients are not experiencing acute exacerbation of severe psychosis, defined as a Positive and Negative Syndrome Scale (PANSS) score greater than 75.
[0162] Patients are withdrawn from all centrally active medications during the lead-in period of 4-7 days prior to study start on Study Day -1. If the safety profile of NDMC as determined by the single-dose study of Example 14 suggests that a gradual dose escalation is warranted, and if the pharmacokinetics properties of NDMC
demonstrate that the t1i2 is less than 8 hr, then patients enrolled in the study receive pre-conditioning doses of NDMC prior to Study Day -1. If indicated, subjects receive, during the lead-in portion of the study, a single dose of NDMC that is 25% of the planned dose, followed by a second dose the following day which is 50% of the planned dose. If these doses are deemed safe, then subjects are randomized on Study Day -1 to either NDMC or placebo. The dosages and frequency of administration (QD or BID) of NDMC are determined based on the safety and pharmacokinetics observed during the single dose safety study of Example 14.
[0163] On Study Day 1, patients receive study drug or placebo, orally, and serial blood samples are collected up to 24 hours after dose administration. Patients are monitored for 8 hr post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Day 1.
[0164] Patients receive study drug or placebo daily for the next four days. On Study Days 2, 3, and 4, pre-dose serum sampling for pharmacokinetic analysis are obtained, and patients are monitored for 8 hr post-dose by continuous lead II ECG
monitoring.
Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Days 2-4.
[0165] On Study Day 5, pre-dose serum sampling as well as serial blood samples collected up to 24 hours after study drug or placebo administration are obtained for pharmacokinetic analysis, and patients are monitored for 8 hr post-dose by continuous lead II ECG monitoring. Clinical evaluation, clinical rating scales, and frequent assessments of safety including vital signs, ECGs, clinical labs, and adverse event recording are performed periodically throughout Study Day 5.
[0166] A final End of Study evaluation is conducted 5-7 days after the cessation of active dosing on Study Day 5. A safety assessment is performed during this clinical evaluation, including vital signs, ECG, clinical labs, NDMC serum determination, and adverse event recording. All patients are followed clinically, as in-patients, for as long as is indicated following the cessation of active dosing of NDMC.
[0167] An interim analysis of the safety variables and pharmacokinetic data from Group 1 is conducted after the End of Study evaluation, and before the randomization of Group 2. Safety variables are reviewed by the PI in order to determine the doses to be administered in Group 2. If NDMC administration during Group 1 is deemed safe, the second patient cohort is screened, randomized, and enrolled. Study related procedures for Group, 2 are identical to those of Group 1, with the exception of NDMC dose and/or frequency of administration.
Pharmacokinetic Analysis [0168] Plasma samples are analyzed for concentrations of NDMC.
Pharmacokinetic parameters are calculated are calculated following the single dose administration on Day 1 including Cmax (maximum plasma concentration), tmax (time to maximum plasma concentration), AUCo_Z (area under the plasma concentration time curv e from time zero to the last quantifiable timepoint, calculated by linear-log trapezoidal summation), AUCo_,,,, (area under the plasma concentration time curve from time zero to infinity, calculated by linear-log trapezoidal summation and extrapolated to infinity by addition of the last quantifiable plasma concentration divided by the elimination rate constant ?,z), Xz (elimination rate constant, determined by linear regression of the terminal points of the log-linear plasma concentration-time curve), t1i2 (terminal half-life, determined as ln(2)/Xz), and CLpo (apparent oral clearance, calculated by Dose / AUC(0-oo)).
[0169] Pharmacokinetic parameters are also calculated following the last dose on Day 5 including Cmax,ss (maximum steady-state plasma concentration), Cmin,ss (minimum steady-state plasma concentration), Cavg,ss (average steady-state plasma concentration calculated as AUC(0-i)sS divided by the dosing interval i), tmax,ss (time to maximum steady-state plasma concentration), tmin,ss (time to minimum steady-state plasma concentration), AUCo_Z (area under the plasma concentration time curve from time zero to the last quantifiable timepoint, calculated by linear-log trapezoidal summation), AUCo_tss (area under the plasma concentration time curve from time zero to the end of the steady-state dosing interval, calculated by linear-log trapezoidal summation), ?,z,ss (steady-state elimination rate constant, determined by linear regression of the terminal points of the log-linear plasma concentration-time curve), tli2,ss (steady-state terminal half-life, determined as ln(2)/Xz,ss), and CLpo,SS (apparent oral clearance, calculated by Dose / AUC(0-i)ss).
Tolerability [0170] Tolerability of NDMS is determined by measuring extrapyramidal (EPS) motor effect using the Simpson and Angus Sacle (SAS) and the Barnes Akathisia Scale (BAS). These scales are administered at baseline (Study Day -1), 6 hours after drug administration on Study Days 1-5, and at the End of Study evaluation.
Antipsychotic efficacx [0171] Antipsychotic efficacy is measured using the PANSS and the Clinical Global Impression Scale-Schisophrenia (CGI-S) measures. These scales are administred at baseline (Study Day -1), on Study Days 1, 5, and at the End of Study evaluation.
Safety [0172] Safety is evaluated by measuring vital signs including 3-positional blood pressure and pulse rate (5 minute supine, 1 minute sitting, 3 minutes standing), respiratory rate, and oral temperature except during screening and post-study procedures.
[0173] 12-lead ECGs are recorded and standard electrocardiogram parameters including QRS, PR, QT, and QTc intervals are measured. In addition, continuous lead-II
ECG monitoring is performed for the first 8 hours of Days 1-5 following each NDMC or placebo dose administration.
[0174] A neurological screen is conducted by the clinically responsible physician at the clinic. The neurological screen consists of a qualitative assessment of muscle tone in the extremities, the presence of tremors, fasiculations, and nystagmus, and various tests of cerebellar coordination (finger nose test, dysdiadochokinesia, heel-shin test, and gait).
[0175] Clinical laboratories are measured after at least an 8-hour fast and include the following:
[0176] Erythrocytes: RBC count, hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), RDW, and reticulocyte count.
[0177] Leukocytes: WBC count and differential (basophils, eosinophils, lymphocytes, monocytes, and neutrophils) reported as absolute values.
[0178] Coagulation: platelet count, PT as INR, and aPTT.
[0179] Liver: alkaline phosphatase, ALT (serum glutamic-pyruvic transaminase [SGPT]), AST (serum glutamic-oxaloacetic transaminase [SGOT]), bilirubin (total, direct, indirect), gamma-glutamyl transferase (GGTP), creatine phosphokinase (CPK) and LDH.
[0180] Renal: blood urea nitrogen (BUN), creatinine, and uric acid.
[0181] Electrolytes: carbon dioxide, chloride, magnesium, potassium, and sodium.
[0182] General: albumin, calcium, glucose (fasting) phosphate, and protein (total).
[0183] Endocrine: prolactin.
[0184] Lipids: cholesterol (total), HDL cholesterol, LDL cholesterol, and triglycerides.
[0185] Macroscopic urinalysis: pH, specific gravity, glucose, ketones, leukocyte esterase, nitrites, occult blood, and protein.
[0186] Microscopic urinalysis: RBC/high powered field, WBC/high powered field, bacteria, castes, epithelial cells, mucous threads and crystals.
Literature Cited [0187] Each of the following references is incorporated by reference herein in its entirety, including any drawings.
[0188] The following references are incorporated herein by reference in their entireties, including any drawings.
[0189] Eglen, R., M., Choppin, A., and Watson, N., (2001) Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol. Sci. 22(8):
409-414.
[0190] Brown, J., H., and Taylor, P., (1996) Muscarinic receptor agonists and antagonists, in The pharmacological basis of therapeutics. Hardiman, J., G., and Limbird, L., E., editors, Mcgraw-Hill, New York, pp. 141-161.
[0191] Moroi, S., E., and Lichter, P., R. (1996) Ocular pharmacology, in The pharmacological basis of therapeutics. Hardiman, J., G., and Limbird, L., E., editors, Mcgraw-Hill, New York, pp. 1619-1647.
[0192] Davis, R E; Doyle, P D; Carroll, R T; Emmerling, M R; Jaen, J.
Cholinergic therapies for Alzheimer's disease: Palliative or disease altering?
Arzneimittel-Forschung,.45, 425-431, 1995.
[0193] Shekhar, A., Potter, W., Z., Lienemann, J., et. al. (2001) Efficacy of xanomeline, a selective muscarinic agonist, in treating schizophrenia: a double blind placebo controlled study. ACNP abstracts 135: 173.
[0194] Rodriquez, M.A., Whipple, B., Ocampo, G., et. al. (2002) Muscarinic agonists in neuropathic and nociceptive pain assays in rats.
International Association for the Study of Pain's 10'h World Congress, 1160-P76: 388.
[0195] Baldessarini, R., J., and Frankenburg, F., R. (1991) Clozapine. A
novel antipsychotic agent. New. Engl. J. Med., 324(11): 746-754.
[0196] Jann, M., W., Grimsley, S., R., Gray, E., C., and Chang, W. (1993) Pharmacokinetic and pharmacodynamics of clozapine. Clin. Pharmacokinet. 24(2):
176.
[0197] Centorrino, F., Baldessarini, R., J., Kando, J., C., et. al. (1994) Clozapine and metabolites: concentrations in serum and clinical findings during treatment of chronically psychotic patients. J. Clin. Psychopharmacol. 14: 119-125.
[0198] Hunziker F. Fisher, E., and Scmutz, J. (1967) 11-amino-5H-dibenzo[b,e]-1,4-diazepine. Mitteilung uber siebenglienrige Heterocyclen.
Helv. Chim.
Acta, 50:1588-1599.
[0199] Jensen, A., A., Spalding, T., A., Burstein E., S., et. al. (2000) Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor.
Constitutive activity and inverse agonism in a family C G-protein-coupled receptor. J Biol Chem. 275(38): 29547-55.
[0200] Baldessarini RJ, Frankenburg FR (1991) Clozapine: a novel antipsychotic agent. NEngl JMed 324:746-754.
[0201] Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM (1993) Tissue concentrations of clozapine and its metabolites in the rat.
Neuropsychopharmacology 9:117-124.
[0202] Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM, Levey Al (2001) M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol Cell Neurosci 18:512-524.
[0203] Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM
(1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465-473.
[0204] Bolden C, Cusack B, Richelson E(1991) Clozapine is a potent and selective muscarinic antagonist at the five cloned human muscarinic acetylcholine receptors expressed in CHO-K1 cells. Eur JPharmacol 192:205-206.
[0205] Bondesson U, Lindstrom LH (1988) Determination of clozapine and its N-demethylated metabolite in plasma by use of gas chromatography-mass spectrometry with single ion detection. Psychopharmacology 95:472-475.
[0206] Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527-532.
[0207] Brauner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P
(1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur JPharmacol 313:145-150.
[0208] Bymaster FB, Carter PA, Yamada M, Gomeza J, Wess J, Hamilton S, Nathanson NM, McKinzie DL, Felder CC (2003) Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur JNeurosci 17:1403-1410.
[0209] Carlsson A (1978) Antipsychotic drugs, neurotransmitters, and schizophrenia. Am JPsychiatry 135(2):165-173.
[0210] Davis RE, Emmerling MR, Jaen JC, Moos WH, Spiegel K (1993) Therapeutic intervention in dementia. Crit Rev Neurobiol 7:41-83.
[0211] Fabrazzo M, La Pia S, Monteleone P, Esposito G, Pinto A, De Simone L, Bencivenga R, Maj M (2002) Is time course of clozapine response correlated to the time course of plasma clozapine levels? A one-year prospective study in drug-resistant patients with schizophrenia. Neuropsychopharmacology 27:1050-1055.
[0212] Frazier JA, Glassner Cohen L, Jacobsen L, Grothe D, Flood J, Baldessarini RJ, Piscitelli S, Kim GS, Rapoport JL (2003) Clozapine pharmacokinetics in children and adolescents with childhood-onset schizophrenia. J Clin Psychopharmacol 23(1):87-91.
[0213] Fritze J, Elliger T (1995) Pirenzepine for clozapine-induced hypersalivation. Lancet 346:1034.
[0214] Gauch R, MichaelisW (1971) The metabolism of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo [b,e] [1,4] diazepine (clozapine) in mice, dogs, and human subjects. Farmaco 26:667-681.
[0215] Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 98(26):15312-15371.
[0216] Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am JPsychiatry 153:321-330.
[0217] Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY
(1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Pyschiatry 34:702-712.
[0218] Hasegawa M, Gutierrez-Esteinou R, Way L, Meltzer HY (1993) Relationship between clinical efficacy and clozapine concentrations in plasma in schizophrenia: effect of smoking. J Clin Psychopharmacol 13:383-390.
[0219] Heinrichs DW, Hanlon TE, Carpenter WT (1984) The Quality of Life Scale: an instrument for rating the schizophrenia deficit syndrome. Schizophr Bull 10:388-398.
[0220] Kane J, Honigfeld G, Singer J, Meltzer H, Clozaril Collaborative Study Group (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45:789-796.
[0221] Kuoppamaki M, Syvalahti E, Hietala J (1993) Clozapine and N-desmethylclozapine are potent 5-HTIC receptor antagonists. Eur J Pharmacol 245:179-182.
[0222] Lee MA, Jayathilake K, Meltzer HY (1999) A comparison of the effect of clozapine with typical neuroleptics on cognitive function in neuroleptic-responsive schizophrenia. Schizophr Res 37:1-11.
[0223] Leucht S, Wahlbeck K, Hamann J, Kissling W (2003) New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 361(9369):1581-1589.
[0224] Mauri MC, Volonteri LS, Dell'Osso B, Regispani F, Papa P, Baldi M, Bareggi SR (2003) Predictors of clinical outcome in schizophrenic patients responding to clozapine. J Clin Psychopharmacol 23(6):660-664.
[0225] Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values.
JPharmacol Exp Ther 251:238-246.
[0226] Meltzer HY, Alphs L, Green Al, Altamura AC, Anand R, Bertoldi A, Bourgeois M, Chouinard G, Zahur Islam M, Kane J, Krishnan R, Lindenmayer JP, Potkin S
(2003) Clozapine treatment for suicidality in schizophrenia. Arch Gen Psychiatry 60:82-91.
[0227] Miller RJ, Hiley CR (1974) Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248:596-597.
[0228] Mirza NR, Peters D, Sparks RG (2003) Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS
Drug Rev 9(2):159-186.
[0229] Nordin C, Alme B, Bondesson U (1995) CSF and serum concentrations of clozapine and its demethyl metabolite: a pilot study. Psychopharmacology 122:104-107.
[0230] Olianas MC, Maullu C, Onali P (1999) Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in chinese hamster ovary cells. Neuropsychopharmacology 20(3):263-270.
[0231] Perry PJ, Miller DD, Arndt SV, Cadoret RJ (1991) Clozapine and norclozapine plasma concentrations and clinical response of treatment-refractory schizophrenic patients. Am JPsychiatry 148(2):231-135.
102321 Pfeiffer CC, Jenney EH (1957) The inhibition of the conditioned response and the counteraction of schizophrenia by muscarinic stimulation of the brain. Ann NYAcad Sci 66:753-764.
[0233] Shannon HE, Bymaster FP, Calligaro DO, Greenwood B, Mitch CH, Sawyer BD, Ward JS, Wong DT, Olesen PH, Sheardown MJ, Swedberg MDB, Suzdak PD, Sauerberg P (1994) Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. JPharmacol Exp Ther 269(1):271-281.
[0234] Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD, Jeppesen L, Sheardown MJ, Sauerberg P, Fink-Jensen A (2000) Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249-259.
[0235] Snyder S, Greenberg D, Yamamura HI (1974) Anti-schizophrenic drugs and brain cholinergic receptors. Affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry 31:58-61.
[0236] Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M(l) muscarinic receptor. Mol Pharmacol 61:1297-1302.
[0237] Spina E, Avenoso A, Facciola G, Salemi M, Scordo MG, Ancione M, Madia AG, Perucca E (2001) Relationship between plasma risperidone and 9-hydroxyrisperidone concentrations and clinical response in patients with schizophrenia.
Psychopharmacology 153:238-243.
[0238] Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn, PJ (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc Natl Acad Sci USA 100(23):13674-13679.
[0239] The Parkinson Study Group (1999) Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson's Disease. NEngl JMed 340:757-763.
[0240] Weigmann H, Hartter S, Fischer V, Dahmen N, Hiemke C (1999) Distribution of clozapine and desmethylclozapine between blood and brain in rats. Eur.
Neuropsychopharmaco19:253-256.
[0241] Weiner DM, Levey Al, Brann MR (1990) Expression of muscarinic receptor acetylcholine and dopamine receptor mRNA's in rat basal ganglia. Proc Natl AcadSci USA. 87:7050-7054.
[0242] Weiner DM, Burstein ES, Nash N, Croston GE, Currier EA, Vanover KE, Harvey SC, Donohue E, Hansen HC, Andersson CM, Spalding TA, Gibson DFC, Krebs-Thomson K, Powell, SB, Geyer MA, Hacksell U, Brann MR (2001)5-hydroxytryptamine2a receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther 299:268-276.
[0243] Weissman JT, Ma J, Essex A, Gao Y, Burstein ES (2003) G-protein-coupled receptor-mediated activation of rap GTPases: characterization of a novel Gi regulated pathway. Oncogene 23(1):241-249.
[0244] Wellendorph P, Goodman MW, Burstein ES, Nash NR, Brann MR, Weiner DM (2002) Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H3 receptor. Neuropharmacology 42:929-940.
[0245] Wong AH, Van Tol HH (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27(3):269-306.
[0246] Young CD, Meltzer HY, Deutch AY (1998) Effects of desmethylclozapine on fos protein expression in the forebrain: in vivo biological activity of the clozapine metabolite. Neuropsychopharmacology 19:99-103.
[0247] Zorn SH, Jones SB, Ward KM, Liston DR (1994) Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur JPharmaco1269:R1-R2.
Claims (47)
1. Use of N-desmethylclozapine for the preparation of a medicament essentially free of clozapine for treating cognitive impairment.
2. Use of N-desmethylclozapine for the preparation of a medicament essentially free of clozapine for treating psychosis.
3. Use of N-desmethylclozapine for the preparation of a medicament essentially free of clozapine for treating an affective disorder.
4. Use of N-desmethylclozapine for the preparation of a medicament essentially free of clozapine for treating dementia.
5. Use of N-desmethylclozapine for the preparation of a medicament essentially free of clozapine for treating neuropathic pain.
6. Use of N-desmethylclozapine for the preparation of a medicament essentially free of clozapine for treating glaucoma.
7. Use of N-desmethylclozapine for the preparation of a medicament essentially free of clozapine for treating a condition where it is beneficial to increase the level of activity of an M1 muscarinic receptor.
8. A method of treating cognitive impairment comprising administering to a subject exhibiting one or more symptoms of cognitive impairment a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine.
9. The method of claim 8, further comprising identifying a subject in need of improvement of cognition.
10. The method of claim 8, further compnsing contacting said subject with an additional therapeutic agent.
11. The method of claim 10, wherein said additional therapeutic agent is selected from the group consisting of monoamine reputkate inhibitiors, selective serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dual serotonin and norepinephrine reupake inhibitors, dopamine agonists, antipsychotic agents, inverse serotonin agonists, serotonin antagonists, serotonin 2 inverse agonists, serotonin 2 antagonists, serotonin1A
agonists, antiepileptic and peripherally acting muscarinic antagonists.
agonists, antiepileptic and peripherally acting muscarinic antagonists.
12. The method of claim 8, wherein said subject suffers from a condition selected from the group consisting of hallucinations, delusions, disordered thought, behavioral disturbance, aggression, suicidality, mania, anhedonia, flattening of affect, affective disorders, depression, mania, dementia, neuropathic pain, glaucoma and two or more any of the foregoing conditions.
13. A method of ameliorating one or more symptoms of psychosis, comprising administering to a subject exhibiting one or more symptoms of psychosis a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine.
14. The method of claim 13, further comprising identifying a subject exhibiting one or more symptoms of psychosis.
15. The method of claim 13, wherein the psychosis is induced by exposure of the subject to one or more medications.
16. A method of ameliorating one or more symptoms of an affective disorder, comprising administering to a subject exhibiting one or more symptoms of an affective disorder a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine.
17. The method of claim 16, further comprising identifying a subject exhibiting one or more symptoms of an affective disorder.
18. The method of claim 16, wherein the affective disorder is depression.
19. The method of claim 16, wherein the affective disorder is mania.
20. A method of ameliorating one or more symptoms of dementia, comprising administering to a subject exhibiting one or more symptoms of dementia a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine.
21. The method of claim 20, further comprising identifying a subject exhibiting one or more symptoms of dementia.
22. The method of claim 20, wherein the dementia comprises cognitive impairment.
23. The method of claim 20, wherein the dementia comprises behavioral disturbances.
24. A method of ameliorating one or more symptoms of neuropathic pain, comprising administering to a subject exhibiting one or more symptoms of neuropathic pain a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine.
25. The method of claim 24, further comprising identifying a subject exhibiting one or more symptoms of neuropathic pain.
26. A method of ameliorating one or more symptoms of glaucoma, comprising administering to a subject exhibiting one or more symptoms of glaucoma a therapeutically effective amount of N-desmethylclozapine essentially free of clozapine.
27. The method of claim 26, further comprising identifying a subject exhibiting one or more symptoms of glaucoma.
28. The method of claims 8, 13, 16, 20, 24, or 26, wherein the subject is human.
29. The method of claims 8, 13, 16, 20, 24, or 26, wherein the N-desmethylclozapine is administered as a single daily dose or administered in divided doses.
30. The method of claims 8, 13, 16, 20, 24 or 26, wherein the N-desmethylclozapine is administered two, three or four times daily.
31. A method of ameliorating one or more symptoms of psychosis, comprising administering to a subject N-desmethylclozapine in combination with another anti-psychotic agent, wherein at least a portion of the N-desmethylclozapine is administered by directly introducing N-desmethylclozapine to the subject.
32. The method of claim 31, wherein directly introducing N-desmethylclozapine to the subject comprises orally administering N-desmethylclozapine.
33. The method of claim 31, wherein directly introducing N-desmethylclozapine to the subject comprises intravenous injection of N-desmethylclozapine.
34. The method of claim 31, wherein the other anti-psychotic agent is selected from the group consisting of a phenothiazine, phenylbutylpiperadine, debenzapine, benzisoxidil, and a salt of lithium.
35. The method of claim 34, wherein the phenothiazine is selected from the group consisting of chlorpromazine (Thorazine®), mesoridazine (Serentil®), prochlorperazine (Compazine®), and thioridazine (Mellaril(D)
36. The method of claim 34, wherein the phenylbutylpiperadine is selected from the group consisting of haloperidol (Haldol®) and pimozide (Orap®).
37. The method of claim 34, wherein the debenzapine is selected from the group consisting of clozapine (Clozaril®), loxapine (Loxitane®), olanzapine (Zyprexa®) and quetiapine (Seroquel®).
38. The method of claim 34, wherein the benzisoxidil is selected from the group consisting of resperidone (Resperidal®) and ziprasidone (Geodon(D).
39. The method of claim 34, wherein the salt of lithium is lithium carbonate.
40. The method of claim 31, wherein the antipsychotic agent is selected from the group consisting of Aripiprazole (Abilify), Clozapine, Clozaril, Compazine, Etrafon, Geodon, Haldol, Inapsine, Loxitane, Mellaril, Moban, Navane, Olanzapine (Zyprexa), Orap, Permitil, Prolixin, Phenergan, Quetiapine (Seroquel), Reglan, Risperdal, Serentil, Seroquel, Stelazine, Taractan, Thorazine, Triavil, Trilafon, and Zyprexa, or pharmaceutically acceptable salts thereof.
41. A method of ameliorating one or more symptoms of psychosis, comprising administering to a subject exhibiting one or more symptoms of psychosis a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
42. A method of ameliorating one or more symptoms of an affective disorder, comprising administering to a subject exhibiting one or more symptoms of an affective disorder a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
43. A method of ameliorating one or more symptoms of dementia, comprising administering to a subject exhibiting one or more symptoms of dementia a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
44. A method of ameliorating one or more symptoms of neuropathic pain, comprising administering to a subject exhibiting one or more symptoms of neuropathic pain a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
45. A method of ameliorating one or more symptoms of glaucoma, comprising administering to a subject exhibiting one or more symptoms of glaucoma a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
46. A method of treating cognitive impairment, comprising administering to a subject exhibiting one or more symptoms of cognitive impairment a therapeutically effective amount of a pharmaceutical composition comprising N-desmethylclozapine and a pharmaceutically acceptable excipient or diluent, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at muscarinic receptors.
47. A method of ameliorating at least one symptom of a condition where it is beneficial to increase the level of activity of an M1 muscarinic receptor comprising:
determining that a subject would benefit from an increased level of activity of an Ml muscarinic receptor; and administering an amount of N-desmethylclozapine which is therapeutically effective to increase the level of activity of said M1 muscarinic receptor and to ameliorate said at least one symptom to said subject, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at the M1 muscarinic receptor.
determining that a subject would benefit from an increased level of activity of an Ml muscarinic receptor; and administering an amount of N-desmethylclozapine which is therapeutically effective to increase the level of activity of said M1 muscarinic receptor and to ameliorate said at least one symptom to said subject, wherein the amount of any clozapine administered is low enough such that the combined N-desmethylclozapine and clozapine result in a net agonism at the M1 muscarinic receptor.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/913,117 | 2004-08-05 | ||
US10/913,117 US20050085463A1 (en) | 2003-01-23 | 2004-08-05 | Use of N-desmethylclozapine to treat human neuropsychiatric disease |
US61755304P | 2004-10-08 | 2004-10-08 | |
US60/617,553 | 2004-10-08 | ||
US11/098,892 | 2005-04-04 | ||
US11/098,892 US20050250767A1 (en) | 2003-01-23 | 2005-04-04 | Use of N-desmethylclozapine to treat human neuropsychiatric disease |
PCT/US2005/027645 WO2006017614A1 (en) | 2004-08-05 | 2005-08-04 | Use of n-desmethylclozapine to treat human neuropsychiatric disease |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2576153A1 true CA2576153A1 (en) | 2006-02-16 |
Family
ID=35511003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002576153A Abandoned CA2576153A1 (en) | 2004-08-05 | 2005-08-04 | Use of n-desmethylclozapine to treat human neuropsychiatric disease |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1778244A1 (en) |
JP (1) | JP2008509147A (en) |
AU (1) | AU2005271513A1 (en) |
CA (1) | CA2576153A1 (en) |
WO (1) | WO2006017614A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090013815A (en) * | 2006-05-04 | 2009-02-05 | 솔베이 파마슈티칼스 비. 브이 | Muscarinic agonists to treat impulse control disorders |
US8748419B2 (en) | 2006-06-16 | 2014-06-10 | Theracos, Inc. | Treating obesity with muscarinic receptor M1 antagonists |
US7893053B2 (en) | 2006-06-16 | 2011-02-22 | Theracos, Inc. | Treating psychological conditions using muscarinic receptor M1 antagonists |
GB0701970D0 (en) | 2007-02-01 | 2007-03-14 | Wilson Stuart | Treatment of protein aggregation diseases |
GB0708186D0 (en) * | 2007-04-27 | 2007-06-06 | Merck Sharp & Dohme | Therapeutic compounds |
US9018202B2 (en) * | 2010-12-03 | 2015-04-28 | Allergan, Inc. | Methods for treating diseases of the retina |
CN106749219A (en) * | 2015-11-20 | 2017-05-31 | 江苏恩华药业股份有限公司 | A kind of lactam derivative and its application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MXPA05007784A (en) * | 2003-01-23 | 2005-09-30 | Acadia Pharm Inc | Use of n-desmethylclozapine to treat human neuropsychiatric disease. |
US20060233843A1 (en) * | 2003-02-19 | 2006-10-19 | Conn P J | Treatment of psychosis with a muscarinic m1 receptor ectopic activator |
-
2005
- 2005-08-04 WO PCT/US2005/027645 patent/WO2006017614A1/en active Application Filing
- 2005-08-04 AU AU2005271513A patent/AU2005271513A1/en not_active Abandoned
- 2005-08-04 CA CA002576153A patent/CA2576153A1/en not_active Abandoned
- 2005-08-04 EP EP05802835A patent/EP1778244A1/en not_active Withdrawn
- 2005-08-04 JP JP2007524968A patent/JP2008509147A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2006017614A1 (en) | 2006-02-16 |
JP2008509147A (en) | 2008-03-27 |
AU2005271513A2 (en) | 2006-02-16 |
AU2005271513A1 (en) | 2006-02-16 |
EP1778244A1 (en) | 2007-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060194831A1 (en) | Use of N-desmethylclozapine to treat human neuropsychiatric disease | |
US20050085463A1 (en) | Use of N-desmethylclozapine to treat human neuropsychiatric disease | |
US20070275957A1 (en) | Use of n-desmethylclozapine to treat human neuropsychiatric disease | |
Weiner et al. | The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine | |
EP1994932A1 (en) | Use of N-desmethylclozapine to treat human psychosis | |
Baldessarini et al. | Pharmacotherapy of psychosis and mania | |
Davies et al. | Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology | |
Jones et al. | Muscarinic cholinergic modulation of prepulse inhibition of the acoustic startle reflex | |
McElroy et al. | Role of antiepileptic drugs in the management of eating disorders | |
CA2576153A1 (en) | Use of n-desmethylclozapine to treat human neuropsychiatric disease | |
Levy et al. | Calcium channel antagonists for the treatment of bipolar disorder | |
AU2006252708A1 (en) | Methods and compositions for managing psychotic disorders | |
JP7541483B2 (en) | Medicines for diabetic peripheral neuropathy | |
CN110167562A (en) | DMPC, DMPG, DMPC/DMPG, LYSOPG and LYSOPC are directed to the protective effect for causing the drug of ion channel disease | |
Yasui-Furukori et al. | Clinical response to risperidone in relation to plasma drug concentrations in acutely exacerbated schizophrenic patients | |
EP2288345A1 (en) | Psycho-pharmaceuticals | |
KR20010031470A (en) | Method of reducing craving in mammals | |
WO2008002602A1 (en) | Use of n-desmethylclozapine to treat psychosis | |
CN101094674A (en) | Use of n-desmethylclozapine to treat human neuropsychiatric disease | |
Banham et al. | Pharmacodynamics and pharmacokinetics | |
Solanki et al. | Clozapine: current perspective | |
Meltzer | Multiple neurotransmitters involved in antipsychotic drug action | |
See | 14 The Role of Neurotransmitter Receptors in the Adverse Effects of Antipsychotic Drugs | |
Williams et al. | General Principles of Psychopharmacology | |
Nogué et al. | Hypnotics, sedatives and antipsychotics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |