CA2572726A1 - High-voltage direct-current transmission device - Google Patents

High-voltage direct-current transmission device Download PDF

Info

Publication number
CA2572726A1
CA2572726A1 CA002572726A CA2572726A CA2572726A1 CA 2572726 A1 CA2572726 A1 CA 2572726A1 CA 002572726 A CA002572726 A CA 002572726A CA 2572726 A CA2572726 A CA 2572726A CA 2572726 A1 CA2572726 A1 CA 2572726A1
Authority
CA
Canada
Prior art keywords
current
inverter
direct
voltage
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002572726A
Other languages
French (fr)
Inventor
Dennis Brandt
Mojtaba Mohaddes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Aktiengesellschaft
Dennis Brandt
Mojtaba Mohaddes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Dennis Brandt, Mojtaba Mohaddes filed Critical Siemens Aktiengesellschaft
Publication of CA2572726A1 publication Critical patent/CA2572726A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

The invention relates to a device (1) for the transmission of a high-voltage direct current, comprising a supply connection terminal (4) for connecting an alternating current network (2) that supplies energy and a consumer connection terminal (5) for connecting a multi-phase consumer (3), whereby a rectifier (6) is connected downstream of the supply connection terminal (4), said rectifier being connected to an inverter (9) by means of a direct-current intermediate circuit (8) that comprises a smoothing element (12) and said inverter being connected on the alternating current side to the consumer connection terminal (5). The rectifier (6) and the inverter (9) comprise thyristor valves (9a+, 9b+, 9c+; 9a-, 9b-, 9c-) and a control unit (14) triggers the thyristor valves (9a+, 9b+, 9c+; 9a-, 9b-, 9c-) of the inverter (9) in accordance with a clock pulse. The aim of the invention is to provide a device that enables power to be supplied to passive consumers such as stand-alone networks. To achieve this, the control unit (14) is connected to a clock pulse generator that produces the clock pulse, said generator having its own energy supply, capacitive impedances (13) for commutating the current are connected downstream of the inverter (9) in the direction of the power flow, or the multi-phase consumer (3) has a capacitive impedance that is sufficient for the commutation of the current.

Description

= CA 02572726 2007-01-03 2004P10$07WOUS

High-voltage direct-current transmission device The invention relates to an apparatus for high-voltage direct-current transmission having a supply connecting terminal for connection of an alternating-current mains system which feeds energy and having a load connecting terminal for connection of a polyphase load, with the supply connecting terminal being followed by a rectifier which is connected via a direct-current intermediate circuit which has smoothing means to an inverter which is connected on the alternating-current side to the load connecting terminal, with the rectifier and the inverter having thyristor valves and with a control unit triggering the thyristor valves in the inverter as a function of a clock signal.

The invention also relates to a method for high-voltage direct-current transmission in which alternating current from a polyphase alternating-current mains system which feeds energy, is rectified by a rectifier and is transmitted as direct current to an inverter, and the inverter converts the direct current to alternating current in order to supply a polyphase load, with the rectifier and the inverter having thyristor valves, and a control unit triggering the thyristor valves in the inverter as a function of a clock signal.

An apparatus such as this and a method such as this are known, for example from the "Guide for Planning DC Links Terminating AC DC Systems Locations Having Low Short-Circuit Capacities"

= CA 02572726 2007-01-03 PCT/DE2005/001129 - la -from the CIGRE Working Group 14.07 and IEEE Working Group 05.15.05, Cigre, Paris from the year 1992. This document discloses high-voltage direct-current transmission systems in which a DC voltage circuit connects power distribution mains systems which carry alternating current to one another. In this case, converter stations are connected to the respective three-phase voltage mains system and are used for rectification or inversion of the current. The converters have power semiconductor valves which are connected to one another in bridge circuits, normally using thyristors. Thyristors have considerably lower power losses than other power semiconductors such as so-called GTOs or IGBTs and, furthermore, can be produced at low cost.

In contrast, thyristors have the disadvantage that they can admittedly be changed by an electrical trigger signal from a reverse-biased state in which any current flow through the thyristors is interrupted to a forward-biased state in which current can flow through the thyristor valves. However, it is not possible to switch off the thyristor valves by means of trigger signals. The thyristor is not changed back to its reverse-biased state until the current which is flowing through the thyristor falls below its holding current. Thyristors are thus considered to be externally-commutated or mains-commutated power semiconductors. In conventional high-voltage direct-current transmission, two converters which are connected via a direct-current circuit are each connected to an alternating-current mains system. In this case, the three-phase voltage of the alternating-current mains system in the case of converters which are being operated as inverters ensures the commutation of the current at the alternating-current-side output of the inverter, thus ensuring that the thyristors which are no longer being triggered are changed from their forward-biased state to their reverse-biased state. According to the previous specialist opinion, high-voltage direct-current transmission systems with self-commutating power semiconductors such as IGBTs should be used for supplying power to so-called island mains systems which do not have their own voltage source and therefore cannot provide any three-phase voltage for the commutation of the current during high-voltage direct-current transmission.
However, IGBTs are costly and have high power losses, which likewise result in cost disadvantages in comparison to thyristors during operation.

The object of the invention is thus to provide an apparatus and a method of the type mentioned initially which also allows power to be supplied to so-called island mains systems or other loads which do not have their own voltage source.

According to a first variant, the invention achieves this object in that the control unit is connected to a clock transmitter which produces the clock signal and has its own power supply, with the inverter being followed by capacitive impedances for commutation of the current in the direction of the power flow, or the polyphase load having a capacitive impedance which is sufficient for commutation of the current.
In order to be adequate, the capacitive load must be sufficiently large that the converter can be operated so far in the inductive range at the fundamental frequency that is predetermined by the clock transmitter that this results in a sufficiently large turn-off angle in order to maintain the hold-off time of the thyristors.

According to a second variant, the invention achieves this object in that a clock transmitter with its own independent power supply produces the clock signal, and a capacitive impedance which is sufficient for commutation of the current is provided on the alternating-current side of the inverter.

According to the invention, thyristor valves may be used to supply power to island mains systems or to other passive loads.
In other words, passive loads without their own commutation voltage can be supplied with power from a feeding composition mains system via a high-voltage direct-current transmission system whose converters have thyristor valves. The voltage which is required for the commutation of the current is provided exclusively by means of capacitive impedances, which follow the inverter in the power flow direction. Additional power semiconductor valves in parallel commutation paths or valves which can be turned off actively are superfluous according to the invention. For example, according to the invention, it is thus possible to connect the individual phases to one another via capacitors at the alternating-current-side output of the inverter. The triggering time, for example, of the first phases, is dependent only on the clock signal produced by the independent clock transmitter. In this case, not only the capacitance which is located between the current-carrying phases, but also the two capacitances which are connected via the phase which is not carrying current are charged. These provide the necessary commutation voltage after triggering of the next thyristor. This leads to a current rise in the newly triggered valve, and to the current in the valve which is intended to be turned off falling below the holding current. This thyristor valve is thus once again changed to its reversed-biased position. According to the invention, the inverter is not regulated. The thyristor valves are triggered only on the basis of the phase of the clock signal, which is independent of the three-phase voltage at the inverter. The invention thus overcomes a long-lasting prejudice, specifically that thyristor valves are unsuitable for ' CA 02572726 2007-01-03 supplying passive loads in high-voltage direct-current transmission.

There is no need for the capacitive impedances to be formed by capacitors between the phases of the load. The capacitive impedances can be provided in any desired manner. In addition the load itself may provide a capacitive impedance by means of which, according to the present invention, it is likewise possible for the current to be commutated. The capacitive impedance of the load may also be in the form of an impedance which is produced by specific capacitor banks.

In principle, any expedient clock transmitter may be used for the purposes of the invention. However, it is advantageous for the clock transmitter to be a free-running oscillator. Free-running oscillators are very well known to those skilled in the art, and they do not, therefore, need to be described at this point.

The capacitive impedances are expediently provided by at least one capacitor bank. The capacitor banks allow the apparatus according to the invention to be designed essentially independently of the load, since the capacitor banks make it possible to ensure that the necessary capacitances for the commutation of the current are provided in all cases. The capacitances of the capacitors should be designed appropriately for this purpose.

The capacitor banks are expediently connected between the inverter and the supply connecting terminal, connected in parallel with the load. This arrangement of the capacitor banks close to the inverter results in ' CA 02572726 2007-01-03 the greatest capacitive effect. This leads to a faster commutation and thus to shorter overlap angles during inversion.

The polyphase load is expediently an island mains system which does not have its own voltage source. Island mains systems can be found, for example, on high-seas platforms which are used, for example, for oil drilling.

However, in contrast to this, the load may also be a simple electric motor and/or may be in the form of one or a number of other electrical machines.

The direct-current intermediate circuit expediently has direct-current conductors with a length of more than 30 kilometers.
High-voltage direct-current transmission systems such as these are preferably used for supplying power to remote island mains systems which are a long distance away from the mixed mains system.

In contrast to this, rectifiers and inverters are installed directly adjacent to one another (back to back) thus forming a so-called short coupling. Short couplings such as these are used, for example, for coupling of alternating-current mains systems with a different fundamental frequency, phase angle, use of star points or the like. An arrangement such as this is also advantageous for drive purposes.

The AC voltage which occurs on the alternating-current side of the inverter is advantageously regulated only by means of the rectifier. As has already been stated, no regulation is provided, according to the invention, for the inverter. The three-phase voltage which is dropped across the alternating-current side of the inverter is dependent on the impedances there and also on the magnitude of the alternating current. The alternating current and thus the AC voltage, may, however, be governed by the direct current and thus by the rectifier regulation.

According to one expedient further development relating to this, the AC voltage which is dropped on the alternating-current side of the inverter is measured with an AC measurement voltage being obtained, the AC measurement voltage is compared with a reference voltage, a reference direct-current signal is then produced as a function of this comparison, the current in the direct-current intermediate circuit is measured with a direct-current measurement signal being obtained, the direct-current measurement signal is compared with the reference direct-current signal, and the thyristor valves in the rectifier are triggered as a function of this comparison and such that the desired AC measurement voltage is produced.

Further expedient refinements and advantages of the invention are the subject matter of the following description of exemplary embodiments of the invention, with reference to the figures of the drawing, in which components having the same effect are provided with the same reference symbols, and in which Figure 1 shows one exemplary embodiment of an apparatus according to the invention, Figure 2 shows the inverter side of an apparatus as shown in Figure 1, and Figure 3 shows a schematic illustration in order to show one exemplary embodiment of the method according to the invention.

Figure 1 shows one exemplary embodiment of the apparatus 1 according to the invention which is designed to transmit energy from a feeding alternating-current mains system 2 to an island mains system 3, which essentially does not have its own voltage source. In this case, the apparatus 1 has a supply connecting terminal 4 for connection of the feeding alternating-current mains system 2 as well as a connecting terminal 5 for connection of the load, which in this case is in the form of an island mains system 3. The supply connecting terminal 4 is followed by a rectifier 6, with a transformer 7 being arranged between the supply connecting terminal 4 and the rectifier 6.
The rectifier 6 is connected via a direct-current intermediate circuit 8 to an inverter 9, which is followed by a further transformer 10 and the load connecting terminal 5. Furthermore, filter banks 11 are provided, which are known per se and are tuned to harmonics of the respective rated frequency of the three-phase voltage in the alternating-current mains systems 2, 3. Disturbing harmonics such as these can occur during the rectification and inversion. The harmonics are effectively suppressed by the filters connected in parallel with the respective mains system. An inductance 12 is provided in the direct-current intermediate circuit 8 in order to smooth the direct current. Capacitors 13 are arranged on the alternating-current side of the inverter 9, connected in parallel with the island mains system 3, and have a capacitive impedance which is sufficient for commutation of the current. A control device 14 is provided in order to control the inverter 9, and its method of operation will be described in more detail in the following text.

Figure 2 shows a more detailed illustration of the inverter 9 from which it can be seen, in particular, that the island mains system 3 comprises three phases 3a, 3b, 3c, which are connected via the transformer 10 to the inverter 9. The inverter 9 essentially comprises two commutation groups with the thyristor valves 9a+, 9b+, 9c+ and 9a_, 9b_, 9c_, which are connected to one another in a six-pulse bridge circuit. The phases of the island mains system 3 have associated connecting conductors L1, L2 and L3. The figure also shows that the capacitor bank 13 also comprises three capacitors (15a, 15b, 15c) which are connected to the connecting conductors L1, L2 and L3 in a delta circuit. The start commences, for example by triggering of the thyristors 9a+ and 9c-. The direct current that is produced by the rectifier charges both the capacitor 15c which is connected directly to the current-carrying phases (L1 and L3), and the two capacitors 15a and 15b which are connected via the phase L2 in which no current is flowing. When the next thyristor branch (9b+) is triggered, the voltage across the capacitor 15a ensures the necessary commutation voltage, so that the current is commutated from the thyristor 9a+ to the thyristor 9b+. This results in the thyristor 9a+ changing to its reverse-biased state. The other commutation processes take place in the same manner with a time offset.

Figure 3 shows a schematic illustration of the method according to the invention. This shows, in particular, a supply mains system 2 as well as an island mains system 3, which are connected to one another via the already-described apparatus 1.
As has already been explained, the triggering of the thyristors in the inverter 9 is dependent only on the independently produced clock signal from the clock transmitter, which will not be described with reference to Figure 3. No regulation is provided for the inverter. The AC measurement voltage of the island mains system 3 is measured, for example with the aid of a voltage divider or converter in order to set the three-phase voltages in the island mains system 3. The measured AC
measurement voltage Vac inv is then compared with a configured nominal or reference voltage Vac ref, with a nominal current value or a reference direct-current signal Iref being produced with the aid of internal logic in the control unit. The impedance of the island mains system 3 is used as a parameter for the said internal logic, which uses it to calculate the direct-current reference signal. The reference direct-current signal is compared with the measured direct current Idc, and the triggering of the rectifier 6 is varied by variation of the trigger angle a as a function of the comparison such that the measured AC voltage Vac inv corresponds to the reference value Vac ref.

Claims (9)

1. An apparatus (1) for high-voltage direct-current transmission having a supply connecting terminal (4) for connection of an alternating-current mains system (2) which feeds energy and having a load connecting terminal (5) for connection of a polyphase load (3), with the supply connecting terminal (4) being followed by a rectifier (6) which is connected via a direct-current intermediate circuit (8) which has smoothing means (12) to an inverter (9) which is connected on the alternating-current side to the load connecting terminal (5), with the rectifier (6) and the inverter (9) having thyristor valves (9a+, 9b+, 9c+; 9a_, 9b_, 9c_) and with a control unit (14) triggering the thyristor valves (9a+, 9b+, 9c+; 9a_, 9b_, 9c_) in the inverter (9) as a function of a clock signal, characterized in that the control unit (14) is connected to a clock transmitter which produces the clock signal and has its own power supply, with the inverter (9) being followed by capacitive impedances (13) for commutation of the current in the direction of the power flow, or the polyphase load (3) having a capacitive impedance which is sufficient for commutation of the current.
2. The apparatus (1) as claimed in claim 1, characterized in that the clock transmitter is a free-running oscillator.
3. The apparatus (1) as claimed in claim 1 or 2, characterized in that the capacitive impedances are provided by at least one capacitor bank (13).
4. The apparatus (1) as claimed in one of the preceding claims, characterized in that each capacitor bank (13) is connected between the inverter (6) and the load connecting terminal (5) connected in parallel with the load (3).
5. The apparatus (1) as claimed in one of the preceding claims, characterized in that the polyphase load is an island mains system (3) which does not have its own voltage source.
6. The apparatus (1) as claimed in one of the preceding claims, characterized in that the direct-current intermediate circuit (8) has direct-current conductors with a length of more than 30 km.
7. A method for high-voltage direct-current transmission in which alternating current from a polyphase alternating-current mains system (3) which feeds energy, is rectified by a rectifier (6) and is transmitted as direct current to an inverter (9), the inverter (9) converts the direct current to alternating current in order to supply a polyphase load (3), with the rectifier and the inverter having thyristor valves (9a+, 9b+, 9c+; 9a_, 9b_, 9c_), and a control unit triggering the thyristor valves (9a+, 9b+, 9c+; 9a_, 9b_, 9c_) in the inverter (9) as a function of a clock signal, characterized in that a clock transmitter with its own independent power supply produces the clock signal, and a capacitive impedance which is sufficient for commutation of the current is provided on the alternating-current side of the inverter (9).
8. The method as claimed in claim 7, characterized in that the AC voltage which occurs on the alternating-current side of the inverter (9) is regulated only by means of the rectifier (6).
9. The method as claimed in claim 8, characterized in that the AC voltage which occurs on the alternating-current side of the inverter (9) is measured with an AC measurement voltage (Vac_inv) being obtained, the AC measurement voltage (Vac_inv) is compared with a reference voltage (Vac_ref) and a reference direct-current signal (Iref) is produced as a function of this comparison, the current in the direct-current intermediate circuit is measured with a direct-current measurement signal (Idc) being obtained, the direct-current measurement signal (Idc) is compared with the reference direct-current signal (Iref) and the thyristor valves in the rectifier (6) are triggered as a function of this comparison such that the desired AC measurement voltage (Vac inv) is produced.
CA002572726A 2004-07-05 2005-06-21 High-voltage direct-current transmission device Abandoned CA2572726A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004033578A DE102004033578A1 (en) 2004-07-05 2004-07-05 Device for high voltage light current transmission
DE102004033578.8 2004-07-05
PCT/DE2005/001129 WO2006005293A2 (en) 2004-07-05 2005-06-21 High-voltage direct-current transmission device

Publications (1)

Publication Number Publication Date
CA2572726A1 true CA2572726A1 (en) 2006-01-19

Family

ID=35453418

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002572726A Abandoned CA2572726A1 (en) 2004-07-05 2005-06-21 High-voltage direct-current transmission device

Country Status (9)

Country Link
EP (1) EP1766751B1 (en)
JP (1) JP2008505594A (en)
KR (1) KR20070030309A (en)
CN (1) CN101069334B (en)
AU (1) AU2005262096B2 (en)
CA (1) CA2572726A1 (en)
DE (1) DE102004033578A1 (en)
RU (1) RU2381606C2 (en)
WO (1) WO2006005293A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280898B (en) 2006-06-30 2014-11-12 Abb技术有限公司 Method of control a voltage source converter in a hvdc system and convertor station
DE102007024976A1 (en) * 2007-05-25 2008-11-27 Siemens Ag Apparatus for high voltage direct current transmission
CN101409450B (en) * 2007-11-30 2011-05-18 澳门大学 Static state synchronization reactive compensator connected through capacitance impedance and control method (thereof)
DE102008022618A1 (en) * 2008-05-07 2009-12-31 Siemens Aktiengesellschaft Power supply means
SE0900830L (en) * 2009-06-18 2009-06-29 Abb Technology Ag Control of an inverter device to support an alternating current system
US8446406B2 (en) * 2009-07-03 2013-05-21 Lg Display Co., Ltd. Liquid crystal display
DE102009034354A1 (en) * 2009-07-17 2011-01-27 Siemens Aktiengesellschaft Neutral point reactor
KR101096148B1 (en) 2011-01-20 2011-12-19 한국전력공사 Controller for hvdc and hvdc sysem including the same
KR101096146B1 (en) 2011-01-20 2011-12-19 한국전력공사 Controller for hvdc and hvdc sysem including the same
CN104052077B (en) * 2014-07-04 2016-03-02 南京南瑞继保电气有限公司 A kind of direct current transportation inverter side control method for frequency
CN104319908A (en) * 2014-10-21 2015-01-28 国家电网公司 Safe passing system for high-voltage power lines of residence community
RU2661479C1 (en) * 2017-06-07 2018-07-17 Илья Николаевич Джус Dc power transmission substation
CN110988522B (en) * 2019-11-13 2021-11-19 许昌许继风电科技有限公司 Generator for converter arc-quenching angle margin test and detection method
CN113098068B (en) * 2021-05-13 2023-07-11 中国矿业大学(北京) Photovoltaic grid-connected inverter impedance remodeling strategy matched with sequence component phase selection element
DE102022210186A1 (en) 2022-09-27 2024-03-28 Siemens Energy Global GmbH & Co. KG High-voltage direct current transmission arrangement and method for operating the high-voltage direct current transmission arrangement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443747A (en) * 1982-04-01 1984-04-17 General Electric Company Transitioning between multiple modes of inverter control in a load commutated inverter motor drive
CN1010913B (en) * 1988-03-15 1990-12-19 北京整流器厂 AC frequency control apparatus and inverter circuit thereof
US5483140A (en) * 1993-10-01 1996-01-09 Wisconsin Alumni Research Foundation Thyristor based DC link current source power conversion system for motor driven operation
SE520851C2 (en) * 1997-03-24 2003-09-02 Abb Ab Installation for transmission of electrical power via direct voltage mains for high voltage direct current
US6166929A (en) * 2000-02-29 2000-12-26 Rockwell Technologies, Llc CSI based drive having active damping control

Also Published As

Publication number Publication date
AU2005262096A1 (en) 2006-01-19
JP2008505594A (en) 2008-02-21
DE102004033578A1 (en) 2006-02-02
WO2006005293A2 (en) 2006-01-19
RU2381606C2 (en) 2010-02-10
AU2005262096B2 (en) 2010-03-11
WO2006005293A3 (en) 2007-07-19
CN101069334B (en) 2011-03-09
RU2007104166A (en) 2008-08-10
EP1766751B1 (en) 2013-03-20
EP1766751A2 (en) 2007-03-28
KR20070030309A (en) 2007-03-15
CN101069334A (en) 2007-11-07

Similar Documents

Publication Publication Date Title
AU2005262096B2 (en) High-voltage direct-current transmission device
US8842452B2 (en) 3-phase high power UPS
US7969755B2 (en) Apparatus for electrical power transmission
US5909367A (en) Modular AC-AC variable voltage and variable frequency power conveter system and control
US9825532B2 (en) Current control for DC-DC converters
US9825554B2 (en) Voltage source converter
US20020176265A1 (en) Electrical substation
US20090225570A1 (en) Twelve-pulse HVDC Transmission
CN110048617B (en) Split-phase power conversion apparatus, method and system
EP3231053A1 (en) Standby and charging of modular multilevel converters
KR101862615B1 (en) Voltage source converter including hybrid active filter
US20070279947A1 (en) High-Voltage Direct-Current Transmission Device
EP2605396A2 (en) A track-bound vehicle inverter
US9178443B2 (en) Electrical frequency converter for coupling an electrical power supply grid with an electrical drive
EP2869419A1 (en) Power transmission network
Ekstrom et al. HVDC tapping station: power tapping from a DC transmission line to a local AC network
EP3706304A1 (en) Current type inverter
FI110461B (en) Power transmission equipment
JP5752580B2 (en) Power converter
RU2755800C1 (en) System for uninterrupted power supply of electric locomotive
US11424618B2 (en) Converter, arrangement comprising a converter and method for operating same
RU2194353C2 (en) Direct frequency converter
JP6341075B2 (en) Three-phase 9-level power converter
Kang et al. Open-Delta Auto-connected electronic transformer (OD-ACET) based multi-pulse rectifier systems
SU1156552A1 (en) Multiple-phase device for joining power systems

Legal Events

Date Code Title Description
FZDE Discontinued