CA2566543A1 - Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia - Google Patents

Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia Download PDF

Info

Publication number
CA2566543A1
CA2566543A1 CA002566543A CA2566543A CA2566543A1 CA 2566543 A1 CA2566543 A1 CA 2566543A1 CA 002566543 A CA002566543 A CA 002566543A CA 2566543 A CA2566543 A CA 2566543A CA 2566543 A1 CA2566543 A1 CA 2566543A1
Authority
CA
Canada
Prior art keywords
compound
alkyl
substituted
aryl
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002566543A
Other languages
French (fr)
Inventor
Pascal Druzgala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARYx Therapeutics Inc
Original Assignee
Aryx Therapeutics
Pascal Druzgala
Advanced Therapies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/078,371 external-priority patent/US5364880A/en
Application filed by Aryx Therapeutics, Pascal Druzgala, Advanced Therapies, Inc. filed Critical Aryx Therapeutics
Publication of CA2566543A1 publication Critical patent/CA2566543A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Compound having structure (1) wherein R = H, OH, NH2, SH, halide, alkyl, O-alkyl, acyl, O-acyl, aryl, O-aryl, substituted amine, or substituted thiol; Y = OR, wherein R, is a straight or branched chain alkyl or heteroalkyl having 1 to 8 carbon atoms, a substituted or unsubstituted aryl or heteroaryl; or (a) wherein R2 and R3 are independently selected from H, alkyl or heteroalkyl of 1 to 6 carbon atoms, or wherein N is part of a cyclic or heterocyclic group comprising morpholine, triazole, imidazole, pyrrolidine, piperidine, piperazine, pyrrole, dihydropyridine, aziridine, thiazolidine, thiazoline, thiadiazolidine, or thiadiazoline; and X is O, S, or NH; a derivative of said compound; or a salt of said compound useful for treatment of cardiac arrhythmias, especially useful in patients with congestive heart failure (CHF). A
process for synthesizing the compound is also described.

Description

la DESCRIPTION

Background of the Invention Congestive heart failure (CHF) is a disease affecting approximately 2%a of the population of the United States (Sami, M.H. (I991] J. Clip. Pharmacol, 31:1081). Despite advances in the diagnosis and treatment of CHF, the prognosis remains poor with a 5-year mot'tality rate higher than 50% from the time of diagnosis (McFate Smith, W. (1985] Am. J. CardioL
55:3A; McKee, P.A., W.P. Castelli, P.M. McNamara, W.B. Kannel [1971) N. EngC J. Med 285:1441). In patients with CHF, the rate of survival is lowest in those patients with severe depression of left ventricular function and patients who have frequent ventricular arrhythmias. Patients with ventricular arrhythmias and ischemic cardiomyopathy have an increased risk of sudden death. The presence of ventricular tachycardia in patients with severe CHF results i.n a three-fold increase in sudden death compared to those without tachycardia (Bigger, J.T., Jr. (1987) Circulation 75(suppLIV):28).
Because of the high prevalence of sudden unexpected death in patients with CHF, there has been a growing interest in the prognostic significance of arrhythmias in these patients.
Several compounds have been used in the management of cardiac arrhythmias in patients with congestive heart failure. Unfortunately, antiarrhythmic drug therapy has been disappointing.
The efficacy of antiarrhythmic drugs markedly decreases as left ventricular function declines, such that only a small fraction of patients with CHF are responsive to antiarrhythmic therapy. No antiarrhythmic drug has prevented sudden death in patients with CFiF: There is even a question of increased mortality associated with certain antiarrhythmic drugs (the CAST
investigators (1989]
N. EngL ,l. Med 321:406).
Scientists define tachycardia and ventricular fibrillation as being of multiple nature. It now seems clear, and is accepted in the art, that re-entry is the underlying mechanism to most sustained arrhythmias. Prolonging ventricular repolari~ation as a means of preventing ventricular arrhythmias has consequently received renewed attention. This points to Class-III agents as drugs of choice in the treatment of arrhythrnias. A Cfass-III agent, as referred to herein, is an agent which is classified as such in the Vaughan-Williams classification of antiarrhythmic drugs. A
Class-III agent exerts its primary antiarrhythmic activity by prolonging cardiac action potential duration (APD), and thereby the effective refractory period (ERP), with no effect on conduction.
These electrophysiological changes, which are brought about by blockade of cardiac potassium channels, are well known in the art. Because the blockade of cardiac potassium channels is not associated with depression of the contractile function of the heart, Class-III
agents are particularly attractive for use in patients with CI-IF. Unfortunately, the existing Class-III agents are limited in their utility by additional pharmacological activities, lack of good oral bioavailability, or a poor toxicity proffle. The only two Class III agents currently marketed are bretylium (i.v. only) and amiodarone (i.v. and p.o.).
Amiodarone is an antiarrhyt.hmic agent having vasodilator properties that may benefit patients with severe heart failure. Amiodarone has been shown to improve survival of post-myocardial infarction patients with asymptomatie high-grade ventricular arrhytbmias, and it proved efficacious in patients resistant to other antiarrhythmic drugs without impairing left ventricular function. Cardioprotective agents and methods which employ amiodarone in synergistic combination with vasodilators and beta blockers have been described for use in patients with coronary insufficiency (U.S. Patent No. 5,175,187). Amiodarone has also been described for reducing arrhythmias associated with CI-iF as used in combination with antihypertensive agents, e.g., (S)-1-[6-amino-2-[[hydroxyl4-phenylbutyl)phosphinyl]oxyl]-It.proline (U.S. Patent No.
4,962,095) and zofenopril (LJ.S. Patent No. 4,931,464). However, amiodarone is a difficult drug to manage because of its numerous side effects, some of which are serious.
The most serious long-term toxicity of amiodarone derives from its lQneticx of distribution and elimination. It is absorbed slowly, with a low bioavailability and relatively long half life.
These characteristics have clinically important consequences, including the necessity of giving loading doses, a delay in the achievement'of full antiarrhythmic effects, and a protracted period of elimination of the drug after its administration has been discontinued Amiodarone also can interact negatively with numerous drugs including aprindine digoxin* flecainide* phenytoin,* procainamide, quinidine, and warfarin It also has pharmacodynamic interactions with catecholamines, diltiazein, propranolol, and quinidine, resulting in alpha- and beta-antagonism, sinus arrest and hypotension, bradycardia and sinus arrest, and torsades de pointes and ventricular tachycardias, respectively.
There is also evidence that amiodarone depresses vitamin K-dependent clotting factors, thereby enhancing the anticoagulant effect of warfarin.
Numerous adverse effects limit the clinical applicability of amiodarone.
Important side effects can occur including corneal mierodeposits, hyperthyroidism, hypothyroidism, hepatic dysfunction, pulmonary alveolitis, photosensitivity, dermatitis, bluish discoloration, and peripheral neuropathy.
There is no Class-III agent presently marketed that can be used safely in patients with CHF. The cardiovascular drug market is the largest in any field of drug research, and an effective and safe Class-III antiarrhythmic agent useful in patients with CHF is expected to be of substantial *Trade-mark benefit. Therefore, a drug which could successfully improve the prognosis of CI-iF patients, but with a safety profile much improved over that of amiodarone, would be extremely useful and desired.
Brief Summary of the Invention The subject invention pertains to novel compounds, and compositions comprising the compounds, for the treatment of cardiac arrhythmias. The subject invention further concerns a method of making the novel compounds. The novel compounds are rapidly metabolized analogs of amiodarone, having the distinct and advantageous characteristic of being metabolized to a less lipophilic compound. This results in an improved safety profile. The new compounds can have particular utility for ueating life-threatening ventricular tachyarrhythmias, especially in patients with congestive heart failure (CI-iF). The product can also provide effective management for ventricular arrhythmias and supraveatricular arrhythmias, including atrial fibr~lation and re-entrant tachyarrhythmias involving accessory pathways.
More specifically, the novel compounds have the particular advantage of reducing the numerous side effects observed with the drugs currently available for treatment of these cardiac arrhythmias. For example, the compound of choice currently used for treating cardiac arrhythmias is amiodarone, which has side effects that can be serious.
Also disclosed are novel synthesis procedures for the production of the novel compounds.
One of the novel synthesis procedures essentially involves acytation of salicylaldehyde followed by cyclization and chain elongation reacxions to form methyl-2-benwfuraneacetate. This compound is reacted with p-anisoylchloride involving a Friedel-GYafis type reaaron which can use SnCl4 as a catalyst. The compound resulting from the Friedel-Crafts reaction is then converted from the acetate to its carboxylic acid form. The methoxybeazoyl moiety of the compound is also converted to the hydroxybenzoyl form. This is then followed by iodination and amination to yield the subject compound. The subject compounds can also be comrerted to their various salt forms.
In addition, the ring members can be substituted, e.g., by alkylation, acylation, or amidation reactions, and the ester function can be modified to a series of various analogs having similar therapeutic properties.
An alternative synthesis procedure, which also uses saiicylaldehyde as a starting compound, involves a cyclization step to form 2-acetylbenzofuran. This compound is then converted to its thiomorpholide derivative, which can be further converted to 2 benzofurane acetic acid, which is also formed in the outer described synthesis procedure. Tlte synthesis procedures are identical after formation of 2-benzofurane acetic acid.
The subject invention thus involves the innovative development of a Class-III
antiarrhythmic agent having sigaificxtntly lower toxicity than any currently available compound useful in patients with congestive heart failure (C~.
brief Description of the Drawings Fugures 1a and 1b show the step-wise reaction scheme which results in the synthesis of the novel compound, methyl 2-(3-(3,5-diioda-4-diethylaminoethoxybenzoyl)benzofurane]acetate and its hydrochloride salt form.
Figure 2 shows an alternative synthetic scheme, where 2-benzofurane acetic acid, compound 7 can be made by synthesizing 2-acetylbenzofuran x3 from salirylaldehyde, followed by a chain elongation procedure known as the Willgerodt-ICindIer reaction in order to make the thiomorpholide derivative 14 which is they hydrolyzed to compound 7.
Figures 3A-3D show the time course of the electrophysioIogical effects of equimolar concentrations of compound A and amiodarone in spontaneously beating guinea pig hearts.
Figure 3A is the change in atrial rate versus time plots for equimolar concentrations of amiodarone (v) and compound A (~), versus a control (o). Figure 3B is the change in atrioventricular (A~ interval plots for equimolar concenuations of amiodarone (v) and compound A (~), versus a control (o). Figure 3C is the change is QRS interval (intraventricular conduction time) plots for equimolar concentrations of amiodarone (v) sad oomponad A (t), versus a control (o), Figure 3D is the change in QT interval (repolarizarion time) plots for equimolar concentrations of amiodarone (v) and compound A (~), versus a control (o).
F'>gures 4A-4D show the time course of the electrophysiological effects of equimolar concentrations of compound A and amiodarone in atrially-paced guinea pig hearts. Figure 4A
is the change in S-H interval (atriaventricular nodal conduction time) plots for eqnimolar concentrations of amiodarone (~) and componad A (v), versus a control (o).
Figure 4B is the change is HV interval (His-I'urkinje conduction time) plots for equimolar concentrations of amiodaroae (~) and compound A (v), versus a control (o). Figure 4C is the change is QRS
interval (intraveniricuiar conduction time) plots for equimolar concentrations of amiodarone (~) and compound A (v), versus a control (o). Figure 4D is the change in QT
interval (repolarization time) plots for equimoiar concentrations of amiodarone (~) and compound A (v), versus a control (o).
Figure 5 shows time course of the electrophysiological effects of amiodarone (5 /,cl4n is atriaIly-paced. guinea pig hearts.
Detailed Disclosure of the Invention The subject invention concerns novel compounds which can produce the desired pharmacological properties of amiodaroae but, unlike amiodarone, are susceptible to biotransformation by plasma and tissue esterases to give a carboxylic acid metabolite. Carboxylic ands can form water-soluble salts at physiological pH, and therefore can undergo renal elimination. As a consequence, the novel compounds, exemplified herein by compound A, can have shorter elimination half life. Accordingly, long-term toxicity symptoms (pulmonary fibrosis, corneal microdeposits, etc.) decrease.
One novel compound of the subject invention has the chemical name methyl 2-[3-(3,5-diiodo-4-dieihylaminoethoxybenzoyl)benzofuraneJ acetate and has the chemical structure shown below.
I N
~J
o O
~- ~r R
OCY
wherein R =
H, OH, NH2, SH, halide, alkyl, O-alkyl, aryl, O-aryl, aryl, O-aryl, substituted amine, or substituted thiol.
Y = ORt, wherein Rl is a straight or branched chain alkyl or heteroaIkyl having 1 to 8 carbon atoms, a substituted or unsubstituted aryl or heteroaryl; or -N .R2 \Rs wherein RZ and R3 are independently selected from H, alkyl or heteroalkyl of 1 to 6 carbon atoms, or wherein N is part of a cyclic or heterocyclic group, preferentially, but not limited _ to, morpholine, triazole, imidazole, pyrrolidine, piperidine, piperazine, pyrrole, dihydropyridine, aziridine, thiazolidine, thiazoline, thiadiazolidine, or thiadiazoline.
The structure, as shown, includes an iodinated benzene ring moiety. It would be understood by an ordinarily skilled artisan that other halides, including fluorine, bromine, or chlorine, can be substituted for the iodine substituents. Thus, these other halogenated compounds are contemplated to be included as part of the invention.
The novel compounds can also be provided in their salt form, preferably the hydrochloride salt. Other salts of the novel compounds would be recognized by those of ordinary skill in the art and include but are not limited to oxalate and maleate salts. In addition, the ring structure moieties of the novel compounds can be derivatized by methods and procedures well 'known by those of ordinary skill in the art. For example, it would be well known that various R-groups can be attached to the six-membered ring of the benzofuran moiety of the subject compound, wherein the R groups can include H, OH, NH2, SH, halides, alkyl, O-alkyl, acyl, O-aryl, aryl, O-aryl groups, substituted amines, and substituted thiols. In a preferred embodiment, R is H and X is O.
The subject invention encompasses the novel compound A and compositions comprising these compounds. The successful application of the new compounds to the treatment of CHF is S evidenced by the evaluation of the thermodynamic properties of the compound, e.g., measuring its partition coefficient between water and octanol, evaluation of its kinetics of elimination by measuring its stability in buffer and in human plasma, and evaluation of its electrophysiological properties in guinea pig heart preparations. See Examples hereinbeiow More specifically, the novel compounds can be used for treating life-threatening ventricular tachyarrhythmias, especially in patients with congestive heart failure. This product can provide effective management of not only ventricular tachyarrhythmias and less severe ventricular arrhythmias, but also aerial fibrillation and re-entrant tachyarrhythmias involving accessory pathways. A composition comprising a novel compound having a rapid elimination rate can offer many advantages over the currently available antiarrhythmic agents such as amiodarone. These advantages include:
(l) a shorter onset of action, (ii) decreased and more manageable long-term toxicity, and (iii) lower potential for drug interactions.
In addition, the novel compounds can be included in a composition comprising a second active ingredient. The second active ingredient can be useful for concurrent or synergistic treatment of arrhythmia or for the treatment of an unrelated condition which can be present with or result from arrhythmia or CHF
The subject compounds have thermodynamic properties similar to those of amiodarone, as suggested by log P measurements, but provide the advantageous property of being rapidly metabolized in plasma to a water-soluble metabolite. More specifically, the subject compounds are Class-III agents with electronic, steric, and thermodynamic properties comparable to those of amiodarone, but with an enzymatically Labile ester group advantageously built into the structure such that the drug can be readily hydrolyzed in plasma to a polar, water-soluble metabolite. This water-soluble metabolite can be eliminated by the kidneys. This is a definite advantage over amiodarone, which is metabolized primarily in the liver. Under such conditions, the elimination of the novel compound A is increased and results in a more rapid dissociation of the drug from phospholipid-binding sites. The accumulation of the compound, which is dependent on the steady-state tissue concentration of the drug, and therefore on the dose, then becomes easily reversible. It follows that, upon discontinuation of a drug comprising one of the novel compounds, clearance from the body is more rapid. This increased elimination makes antiarrhythmic therapy using the subject compounds or compositions comprising the subject compounds easier to manage.

Following are examples which illustrate procedures, including the best mode, for practicing the invention. These examples should not be construed as limiting.
All percentages are by weight and alI solvent mixture proportions are by volume unless otherwise noted.
Example 1 - Synthesis of the Novel Compound The novel compounds can be synthesized according to the scheme set out in Figures 1A
and 1B. Below, the steps of the procedure, as shown in Figures 1A 1B, are described in detail.
The primary compounds involved in the synthesis step are numbered corresponding to the numbers provided in Figures 1A and 1B.
I0 Methyl o-form~rluhenoxvacetate: 2. Approximately 509 g of the starting compound, salicylaidehyde (1) was introduced into a 4-liter Erlenmeyer flask with powdered potassium carbonate (569 g), dimethylformamide (1,000 ml), and methyl chloroacetate (478 g) and mechanically stirred at 65°C for about 24 hours. The stirring was stopped and the reaction mixture cooled to 25°C. The mixture was poured into cold water (0°C) while stirring vigorously.
An oil separated that suddenly solidified. Stirring was continued for 30 minutes and the solid isolated by filtration. The product was washed with water (2 x 1,000 mI) and pressed dry. The product can also be dried in vacuo at 25°G A small sample (approx. 2 g) was puri$ed by distillation. The boiling range of the pure product is 124-128°C at 2 mm Hg and has a melting temperature range of about 50.2-50.6°G
Methyl 2-benzofuranecarboxvlate: 3. The crude product 2 was placed into a 5-liter 3-necked round-bottomed flask equipped with a mechanical stirrer and a water trap. Toluene (1,900 mI) was added and the solution heated at refiux temperature (lIl°C) until all water had been removed. DiaTabicyclounde-7-ene (DBL. (65 g) was then added and the mixture was stirred at 111°G, without the water trap, until the starting material was no longer present, i.e., was not detectable by TLC monitoring. Most of the solvent (90%) was then distilled of~
The residue was cooled to 25°C, and ethyl acetate (1,000 ml) was added. The mixture was transferred to a separatory funnel and the organic solution washed with 2 N HCl (2 x 1,000 ml), then with water (1,000 ml). Drying was done over magnesium sulfate. The crude product (326.56 g) was a dark oiI and was used directly in the next step. A small sample was purified for the purpose of structure elucidation: the crude material (2 g) was dissolved in ethyl ether and washed with 1 N
KOH. Drying was done over magnesium sulfate, the material was filtered, and the solvent evaporated. The oily residue was crystallized from isopropanol. The melting range is 53.8-54°C.
2-Hvdroxvmethylbenzofuran: 4. The crude product 3 (324 g) was dissolved in anhydrous ethyl ether. The solution was kept under inert atmosphere (nitrogen or argon) and cooled to 0°C
in an ice bath. A 1 M solution of lithium aluminum hydride in ether (620 ml) was added dropwise, while stirring, over a period of 1 hour. The solution was then washed with 2 N HCl (4 x 1,000 ml), with 2 N KOH (2 x S00 ml), and with water (1,000 ml). The material was dried over magnesium sulfate, filtered, and the solvent evaporated. The crude product was distilled in vacuo, yielding approximately 155.36 g (1.05 moI). The boiling point is 110°C
at IS mm Hg.
2-Chloromet~lbenzofuran: 5. Compound 4 (I55.25 g) was dissolved in anhydrous ethyl ether (250 ml) containing dimethylformamide (1 ml). The reaction flask was placed into an ice bath, and when the solution temperature was between 0°C and 4°C, thionyl chloride (I24.3 g, 76.2 ml) was added dropwise, while stirring, over the period of I hour. The mixture was then stirred for another hour, washed with water (250 m1), 3% sodium bicarbonate solution (250 m1), and with water again (250 mI). The material was dried over magnesium sulfate, filtered, and the solvent evaporated. The product was distilled in vacuo, and the yield was appro~mately 117 g. The boiling point is about 78°C at 1S mm Hg.
2-G~rano~ethvlbenzofuran: 6. Compound 5 (I17 g) was added dropwise to a stirring suspension of sodium cyanide (37.64 g) in dimethyI sulfoxide (100 mI). The reactor was placed from time to time into an i~ bath in order to keep the reaction temperature between 20°C and 45°C. Addition lasted 60 minutes. The reaction mixture was stirred for another I6 hours, then IS poured into methylene chloride (500 ml), washed with water (500 ml, then 2 x 250 mI), and evaporated to dryness. A small sample was purified on a silica gel column, eluting with dichloromethane/hexanes (50:50 v/v).
2-Benzofuraneacetic acid: ~. The crude cyaaomethylbenzofuran, compound 6, was stirred for 6 hours is boiling water (1,000 mI) containing sodium hydroxide (80 g), cooled to ZS°C, then washed with methylene chloride (250 ml, rhea Z x 100 mI). The pH was brought to 2.0 with 6 N
HCI. The precipitate was extracted with methylene chloride (200 ml, then 100 ml, then 50 ml), dried over magnesium sulfate and the solvent evaporated. The yield was approximately 72 g.
Methyl 2-benzofuraneacetate: 8. Compound 9 (72 g) was dissolved is methanol (200 mI) and the solution saturated with dry HCI. The solution was retluxed for 2 hours and the solvent evaporated. The residue was dissolved is methylene chloride (200 ml) and the solution washed with 53b sodium bicarbonate, and then with water (200 m1). The residue was dried over magnesium sulfate and the solvent was evaporated. The product was distilled ins vacuo. The yield was approximately 67.3 g.
Methy~3-anisovlbenzofurane)acetate: 9. Compound 8 (67 g), anhydrous 1,2-dichloroethane (250 ml), and p-anisoyl chloride (59.65 g) were added in a 1,000-m1 flask under inert atmosphere. The solution was cooled in as ice bath, and SnCl4 (115 ml) was added slowly The bath was allowed to warm up to 25°C and the solution was then stirred for another 24 hours.
The solution was poured into an ice%vater mixture (1,000 mI). The organic phase was collected, washed with 33b sodium bicarbonate (2 x 500 m1) and with water (500 mI), and then dried over magnesium sulfate. The solvent was evaporated. The oily residue was stirred for 24 hours into hexane (100 ml). The product is a pale yellow powder. The yield was approximately 103.3 g.

~3-p-hydroxybenzoylbenzofuranelaoetic acid: 10. Aluminum powder (45 g), benzene (900 m1), and iodine crystals (345 g) were introduced in a 2-liter flask with efficient reflux condenser and mechanical stirrer. The solution was placed in a water bath and stirred until most of the heat had dissipated, then stirred at reflux temperature until the red color of iodine disappeared (approx. 30 minutes). This mixture was cooled to 25°C then, while stimin~
compound 9 (70 g) and tetrabutylammonium iodide (0.86 g) were added. When addition was complete, a porEion of the solvent (600 ml) was distilled away, then the remaining solution was cooled to 25°C. A portion of ice-water (700 ml) was slowly added, followed by ethyl acetate (600 m1). The resulting suspension was filtered and the residue washed with more ethyl acetate (2 x 50 ml). The organic phase was washed with more water (500 ml), then extracted with 3°!o sodium bicarbonate (3 x 1,200 ml). The combined aqueous phases were washed with ethyl acetate (200 ml). The aqueous solution was placed into an i~ bath and ethyl acetate (250 ml) was added. The solution was acidified slowly using 6 N HCl while stirring. The organic phase was washed with water (200 ml), dried over magnesium sulfate, filtered, and the solvent evaporated. The yield was 1S approximately 26 g.
2-I~,S-diiodo-4-hydroxybenzovi)benwfurane]acetic a«d: 11. Compound to (25.25 p~
was dissolved is water (250 ml) containing potassium carbonate (23.85 g).
Iodine (47.57 g) was adds and the mixture was stirred at 25°C for 90 minutes. 'Iwo hundred milliliters of water was added and the solution acidified with 2 N HCI. The residue was filtered, then dissolved in ethyl acetate (500 ml), washed with water (500 ml), Then with Sg6 sodium thiosulfate (2 x 500 ml), then with water (500 mI). The residue was dried over magaesium snlEate, and the yield was approximately 37 g.
Methvl 2-(3-(3.5-diiodo-4-hvdroxvbenzovl)benwfurane]acetate: 12. Compound 11 (16.4 g) was dissolved into methanol (100 ml) and concentrated sulfuric acid (1 ml).
The solution was refluxed for 1 hour, they the solvent was evaporated. The residue was dissolved in ethyl acetate (500 ml) and washed with 5~'o sodium bicarbonate (300 ml). Extraction was done with 0.15 N
NaOH (3 x 150 mI). The solution was acidified with 6 N HCl and extracted with ethyl acetate (2 x 150 ral). The organic phase was washed with 1% sodium bicarbonate (2 x 300 ml) and dried over magnesium sulfate. The yield was approximately 11.64 g.
Meihvl2-(3-f3.5-diiodo-4-dieiltvlaminoethoxybenzo,Y)benzofurane]acetate A.
Compound 12 (2.88 g) was dissolved in 0.1 N NaOH solution (51 mI). Methylene chloride (25 ml) is added.
Benzyltriethylammonium chloride (0.114 g) and a solution of diethylaminoethyl chloride (0.96 g) is methylene chloride (25 ml) was then added. This was stirred for 2 hours at 25°C. The organic phase was washed with 0.1 N NaOH (50 ml),1 N HCl (50 ml), 0.1 N NaOH (SO ml), and water (50 ml) and dried over magnesium sulfate to yield the subject compound.

Exampl-a 2 - Alternative S~rnthetic Route for the Novel Compounds An alternative synthetic scheme is shown in Figure 2, where 2-benzofurane acetic acid, compound 7 can be made by an alternative reaction that involves synthesizing 2-acetylbenzofuran ~3- from salicyIaldehyde 1_ reacted with chloroacetone, followed by a chain elongation procedure 5 known as the Willgerodt-Kindler reaction is order to make the thiomorpholide derivative 14 which is then hydrolyzed to compound 7. The remainder of the synthetic scheme to the novel comgound A is then essentially identical to Example 1.
1. Acetvlbenzofuran 13. Salicylaldehyde (326.7 g) is introduced into a 3-liter 3-necked round-bottomed flask containing potassium carbonate (415 g) and acetone (500 ml).
I0 Chloroacetone (252.6 g) is then added dropwise, while stirring, over a period of 30 minutes, followed by addition of another portion of acetone (500 mI). The mixture is stirred at reflex temperature for 4 hours then cooled to 25°C and filtered. The filtrate is evaporated and gives approximately 44i g of a red crystalline solid, 2-acetylbenwfuran I3. which is pure enough for step 2, below To verify the identity of the product, a small portion was distilled in vacuo (P = 0.1 mm Hg) using a short path distillation apparatus, and it was determined that the pure product distills at 80°G, yielding a white crystalline solid 2. Benzofurane acetic acid 7. The cxude 2-,acetylbenzofuran 13 (441 g) is dissolved in morphoiine (256.35 g) in a 3-liter 3-necked round-bottomed flask. Sulfur (~90 g) is added, and the mixture is stirred at reflex temperature (108°C) for 120 minutes.
'This reaction yields the intermediate thiomophoiide derivative i4. The mixture is cooled to 25°G
Methanol (750 mI), water (500 ml), and sodium hydroxide (220 g) are added, and the mixture is stirred at reflex temperature (80°C) for another 4 hours. A portion of the solvent (750 ml) is then removed by distillation. The volume of the solution is brought to 6 liters with water.
NaOH (40 g) and activated deoolorizing charcoal (5 g) are added and the mixture is stirred at reflex temperature for 60 minutes, then filtered through celite. The mixture is then acidified to pH 2 with 12 N HCI, and the product is extracted with ethyl acetate. The extract is dried over sodium sulfate and evaporated, yielding approximately 289 g of a dark solid. The crude product can be used for the next step without further purification. All physical properties of this product are identical to compound 7 and can be used in an identical manner as compound 7 in the synthesis scheme described in Example 1, above.
Example 3 - Partition Coe~cient of Novel Compounds The thermodynamic properties of the new compound A can be evaluated by measuring its partition coefficient, P, between a pH 7.4 phosphate buffer and octanol.
The buffer solution and octanol are mutually saturated before the experiment. The test compounds can be dissolved in the octanol:buffer mixture at such a concentration that neither phase is saturated. The volume ratio between buffer and octanol is adjusted so that the concentration of compound in water after equilibrium is measurable. The mixture is shaken for 1 hour and centrifuged in order to obtain complete separation of the two phases. The concentration of test compound can be measured in the aqueous phase before and after equilibrium, using a W detection method.
The partition coefficient can be calculated using the following equation:
P ~ Co/CW
where P is the partition coefficient, and Co and CW are the concentrations of test compounds in oasnol and in water, respectively. Since measurements take piece only is aqueous buffer, the equation has to be modified to the following, which can be used in this experiment:
P - E~Qi - Qw)~Qw) x Vw~o where Qi is the initial amount of test compound introduced in the buffer:octanol mncture, Qw is the amount of test compound in buffer phase after equilibrium has been reached, and Vw and Vo are the volumes of buffer and octanol, respectively.
Example 4 - Stability it: Buffer and Metabolism Rate in Human Plasma Analytical method. Standard HPLC techniques can be used to determine the concentration of the drug in buffer and in human plasma using standard analytical procedures known is the art.
Stability in buffer. A known oon~atradon of the novel compound A can be incubated in a pH 7.4 phosphate buffer at 37°C. Aliquots of the solution can be taken at various recorded intervals and diluted to the appropriate concentration for injection into the HPLC system. The hydrolysis rate constant, K, in buffer can be calculated from the plot of drug concentration vs.
time.
Metabolism rate in human plasma. The same procedure as above can be used with human plasma instead of bu~'er. The rate constant in plasma can be compared to the rate constant in buffer in order to give an approximated rate of metabolism by plasma enzymes.
Example 5 - Electrophysiological Pr~~erties in Guinea Pig Antiarrhythmic activity in guinea pig heart preparations can be tested for the novel compound A by methods and techniques well known by those of ordinary skill in the art.
Antiarrhythmic activity in guinea pig heart preparations is accepted in the art as a model for antiarrhythmic activity in humans. Specifically, activity in guinea pig heart preparations is used to show that a compound depresses the spontaneous discharge, slows the sinus code spontaneous firing rate, prolongs the effective refractory period (ERP), slows the intra-atrial conduction, suppresses atrial premature beats, prolongs the ventricular ERP, and decreases ventricular excitability. Microelectrode and pacing techniques can be used as ate standard in the art. Assays to show such activity cart be conducted in the isolated, superfused guinea pig S-A node-right atrial preparation. A full dose-response curve for compound A can be calculated in each preparation in order to demonstrate the effects of different doses on S-A node spontaneous rate, atrial action potential duration (APD) and ERP, and on ventricular APD and EltP. The ECjo (the effective concentration that produces 50°!0 of the maximum response), as well as the threshold and maximum doses for the compound can be determined from the full dose-response curve.
The results of electrophysiological studies carried out in guinea pig isolated hearts using the subject compound, compound A, showed that compound A displays electrophysiological properties classically associated with Class iII antiarrhythmic agents. The results of these studies are shown in Figures 3-5. Compared to the known compound, amiodarone, the electrophysical effects of the subject compound show several advantages. For example, on an equimolar basis, the electrophysioiogical effects of compound A on atrioventricular conduction, intraventricular conduction and ventricular repolarization times are much greater than those of amiodarone, both in the spontaneously beating heart (see Figures 3A, 3C, and 3D), and in the paced heart (see Figures 4A, 4C, and 4D). In addition, the effects of compound A on atrioventricular conduction, intraventricular conduction and ventricular repolarization times can be partially reversed upon IS discontinuation of the drug, whereas the effects of amiodarone are not reversed and actually tend to continue to increase even after discontinuation of the drug. Compound A is also able lo more selectively increase the time of ventricular repolarization (i.e., prolong the QT interval) relative to the changes observed on sinoatrial nodal rate and baseline atrioventricular nodal conduction time, as compared to amiodarone (Figures 3A 3D).
Specifically, Figures 3A 3D show the time-dependent electrophysiological effects of a continuous 90-minute infusion of compound A (1 ,uM, n=3), amiodarone (I ,uM, n=3) and vehicle (control, n=3) on the spontaneously beating heart. Changes from baseline values of atriat rate (Figure 3A), A V interval (Figure 3B), QRS interval (Figure 3C) and QT
interval (Figure 3D), respectively, are plotted as a function of time. Figure 3A shows that, compared to control ZS hearts, compound A and amiodarone caused significant time-dependent reductions in atrial rate of similar magnitude. In contrast, compound A and amiodarone caused only a small prolongation of the A-V interval (Figure 3B). The minimal effect of compound A and amiodarone on atrioventricular nodal conduction in spontaneously beating hearts can be at least partly explained by noting that atrial rate modulates the effects of drugs on atrioventricular nodal conduction.
That is, concomitant slowing of atrial rate will lessen the depressant effects of drugs on atrioventricular nodal conduction. For example, in paced hearts where atrial rate is kept constant, compound A (1 ~tM) had a much greater effect on atrioventricular nodal conduction (Figure 4A).
Unlike the effects of amiodarone, the actions of compound A on A-V interval were reversed upon discontinuation of the drug infusion, hereafter referred to as washout (Figure 3B). In addition, compound A but not amiodarone significantly prolonged the QItS interval, i.e., slowed intraventricular conduction (Figure 3C). During the 90-minute washout period of compound A, this effect of compound A was completely reversed. Likewise, although compound A and amiodarone significantly increased the QT interval, the effect of compound A
to prolong the time for ventricular repolari7ation was much greater (Figure 3D). Whereas the effect of compound A
on repolarization was partially reversed during washout, the effect of amiodarone was not attenuated during washout. The average baseline values of atriai rate, A-V
interval, QRS interval and QT interval were 204.6-~-2.4, 55.0-!-4.0, 21.2~0.8 and 162.5~2.9, respectively. Data are shown as mean~SEM.
Figures 4A-4D show a series of separate experiments, the time-dependent electrophysiological effects of a continuous 90-minute infusion of compound A
(1 ~tM, n=3), amiodarone (l,uM, n=3) and vehicle (control, n=3) in guinea pig hearts paced at 200 beats per minute was investigated. Changes from baseline values of S-H interval (Figure 4A), HV interval (Figure 4B), QRS interval (Fygure 4C) and QT iaterval (Figure 4D), respectively, are plotted as a function of time. At equimolar concentrations, compound A depressed atrioventricular nodal conduction in paced hearts to a much greater extent than amiodarone (Figure 4A). The prolongation of the S-H interval caused by compound A was gradual and reached a maximum of 18 cosec (i.e., a 45% increase above the baseline S-H interval) before the drug infusion was stopped. Upon washout of compound A, a large fraction (= 70°!0) of this effect was reversed.
In contrast, amiodarone had no effect on S-H interval during the period of drug infusion.
Compound A and amiodarone had no effect on His-Purianje conduction times, i.e., the HV
interval remained constant (Figure 4B). Similar to its effects on S-H
interval, compound A but not amiodarone prolonged intraventricular conduction time, i.e., increased the QRS interval (Figure 4C). The increase in QRS interval was gradual and reached a maximum of 135 cosec (60°!o increase above baseline value) before the drug infusion was discontinued The effect of compound A on intraventricular conduction was completely reversed during the 90-minute washout period. Compound A and amiodarone both significantly increased the QT
interval.
However, compound A was much more potent at prolonging the time for ventricular repolarization than was amiodarone (Figure 4D). Whereas the effect of compound A on repolarizatian was partially reversed during washout, the effect of amiodarone was not attenuated during washout. The average baseline values of S-H interval, AV interval, QRS
interval and QT
interval were 40.1~L9 cosec, 7.8~0.6 cosec, 22.3~0.7 cosec, and 164.0~1.7 cosec, respectively. Data are shown as mean~SEM.
Figure 5 shows a comparison of the electrophysiological actions of an equipotent (to prolong the baseline S-H interval) concentration of amiodarone to those effects found using 1 ftM
compound A. For this purpose, a concentration of $,uM amiodarone was selected.
Whereas amiodarone (5 EtM) caused a time-dependent increase in S-H, QRS and QT
intervals, it had no effect on the HV interval. Of the intervals measured, amiodarone (5 ~M) had the greatest effect on atrioventricular conduction time. It prolonged the baseline S-H interval by 74 cosec at 90 min of drug infusion before the heart went into second degree AV block. This large protongation of S-H interval was accompanied by only a 20 cosec increase in the QT interval.
On the other hand, although compound A (I,uM) caused an increase of 18 cosec in the baseline S-H
interval at 90-min of drug treatment (Figure 3A), it was accompanied by an increase in the QT
interval of 28 cosec (Figure 3D). Thus, compound A, compared to amiodarone, is able to more selectively prolong the time for ventricular repolarization without causing as much depression of atrioventricular nodal conduction. Likewise, as shown in Figure 3A, at comparable degrees of atrial rate slowing, compound A was able to produce a much greater increase in the QT interval in spontaneously beating hearts (Figure 3D). Taken together, these data show that compound A, compared to amiodarone, can prolong the ventricular repolariration time in a more selective manner at concentrations that would cause less slowing of atrial rate and atrioventricular nodal conduction. The latter is an important issue because excessive slowing of heart rate and atrioventricuiar nodal conduction can cause symptoms in patients. , One of the major drawbacks of amiodarone in the clinical setting is its Long half life (>
30 days), which can cause severe life-threatening side effects that are slow to resolve even after discontinuation of drug therapy. The advantages of compound A over amiodarone or other currently used antiarrhythmics are that it exhibits more selective aniiarrhythmic action, has a potentially shorter half life, and has cardiac effects which are more easiiy reversed ("washed") upon cessation of drug treatment.
Example 6 - Uses. Formulations, and Administrations Therapeutic and prophylactic application of the subject compounds, and compositions comprising them, can be accomplished by any suitable method and technique presentiy or prospectively (mown to those skilled in the art. Further, the compounds of the invention have use as starting materials or intermediates for the preparation of other useful compounds and compositions. The compounds of the invention are useful for various non-therapeutic and therapeutic purposes. It is apparent from the testing that the compounds of the invention have effective antiarrhythmic activity. Specifically, they are useful in regulating cardiac arrhythmia, including atrial fibrillation, in animals and humans.
The administration of the subject compounds of the invention is useful as an antiarrhythmic agent. Thus, pharmaceutical compositions containing compounds of the invention as active ingredients are useful in prophylactic or therapeutic treatment of cardiac arrhythmias in humans or other mammals.
The dosage administered will be dependent upon the immunomodulatory response desired; the type of host involved; its age, health, weight, Idnd of concurrent treatment, if any;
frequency of treatment; therapeutic ratio and like considerations.
Advantageously, dosage levels of the administered active ingredients can be, for examples, dermal, 1 to about 500 mg/kg; orally, ZS
0.01 to 200 mg/kg; intranasal 0.01 to about 100 mg/k~, and aerosol 0.01 to about 50 mg/kg of animal body weight.
Expressed in terms of ~ncentration, the active ingredient of the invention can be present in the new impositions for use dermally, intranasally, bronchially, intramuscularly, intravaginally, intravenously, or orally in a concentration of from about 0.01 to about 50%
w/w of the composition, and especially from about 0.1 to about 30°!o wfw of the composition. Preferably, the novel compound is present in a composition from about 1 to about 10% and, most preferably, the novel composition comprises about 5%'o novel compound.
The impositions of the invention are advantageously used in a variety of forms, eg., tablets, ointments, capsules, pills, powders, aerosols, granules, and oral solutions or suspensions and the like containing the indicated suitable quantities of the active ingredient. Such compositions are referred to herein and is the accompanying claims generically as "pharmaceutical compositions." Typically, they can be in unit dosage form, namely, in physically discrete units suitable as unitary dosages for human or animal subjects, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic or prophylactic effect in association with one or more pharmaceutically acceptable other ingredients, e.g., diluent or carrier.
Where the pharma~uticai compositions are aerosols, the active ingredients can be packaged in pressurized aerosol containers with a propellant, e.g., carbon dioxide, nitrogen, propane, eta with the usual adjuvants such as cosolvents, wetting agents, etc.
Where the pharmaceutical compositions are ointments, the active ingredient can be mixed with a diluent vehicle such as cocoa butter, viscous polyethylene glycols, hydrogenated oils, and such mixtures can be emulsified if desired.
1n accordance with the invention, pharmaceutical compositions comprise, as an inactive '-5 ingredient, as effective amount of one or more non-toxic, pharmaceutically acceptable ingredient(s). Examples of such ingredients for use in the compositions include ethanol, dimethyl sulfoxide, glycerol, silica, alumina, starch, calcium carbonate, talc, flour, and equivalent non-toxic carriers and diluents.
.0 It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof w~l be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.

Claims (14)

1. Use of a therapeutically effective amount of a compound having the structure wherein R = H, OH, NH2, SH, halide, alkyl, O-alkyl, acyl, O-acyl, aryl, O-aryl, substituted amine, or substituted thiol;
Y = OR1, wherein R1 is a straight or branched chain alkyl or heteroalkyl having 1 to 8 carbon atoms, a substituted or unsubstituted aryl or heteroaryl; or wherein R2 and R3 are independently selected from H, alkyl or heteroalkyl of 1 to 6 carbon atoms, or wherein N is part of a cyclic or heterocyclic group comprising morpholine, triazole, imidazole, pyrrolidine, piperidine, piperazine, pyrrole, dihydropyridine, aziridine, thiazolidine, thiazoline, thiadiazolidine, or thiadiazoline; and X is O, S, or NH; a derivative of said compound, wherein fluorine, bromine, or chlorine is substituted for the iodine substituents; or a salt of said compound, for treatment of ventricular tachyarrhythmia in a patient in need of such therapy.
2. The use according to claim 1, wherein R is H and X is O.
3. The use according to claim 1, wherein the salt of said compound is selected from the group consisting of hydrochloride, oxalate, and maleate salts.
4. The use according to claim 1, wherein the salt of said compound is a hydrochloride salt.
5. The use according to any one of claims 1 to 4, wherein said patient is a patient with congestive heart failure.
6. The use according to any one of claims 1 to 5, wherein said compound is formulated for administration in combination with a second active ingredient.
7. Use of an effective amount of a compound having the structure wherein R = H, OH, NH2, SH, halide, alkyl, O-alkyl, acyl, O-acyl, aryl, O-aryl, substituted amine, or substituted thiol;
Y = OR1, wherein R1 is a straight or branched chain alkyl or heteroalkyl having 1 to 8 carbon atoms, a substituted or unsubstituted aryl or heteroaryl; or wherein R2 and R3 are independently selected from H, alkyl or heteroalkyl of 1 to 6 carbon atoms, or wherein N is part of a cyclic or heterocyclic group comprising morpholine, triazole, imidazole, pyrrolidine, piperidine, piperazine, pyrrole, dihydropyridine, aziridine, thiazolidine, thiazoline, thiadiazolidine, or thiadiazoline; and X is O, S, or NH; a derivative of said compound, wherein fluorine, bromine, or chlorine is substituted for the iodine substituents; or a salt of said compound, for management of ventricular tachyarrhythmia, ventricular arrhythmia, atrial fibrillation or re-entrant tachyarrhythmia in a patient in need thereof.
8. The use according to claim 7, wherein R is H and X is O.
9. The use according to claim 7 or 8, wherein the salt of said compound is selected from the group consisting of hydrochloride, oxalate, and maleate salts.
10. The use according to any one of claims 7 to 9, wherein the salt of said compound is a hydrochloride salt.
11. The use according to any one of claims 7 to 10, wherein said compound is formulated for administration in combination with a second active ingredient.
12. A pharmaceutical composition for treating cardiac arrhythmia in an animal, wherein said pharmaceutical composition comprises about 0.01% to about 50% of a compound having the structure wherein R = H, OH, NH2, SH, halide, alkyl, O-alkyl, acyl, O-acyl, aryl, O-aryl, substituted amine, or substituted thiol;
Y = OR1, wherein R1 is a straight or branched chain alkyl or heteroalkyl having 1 to 8 carbon atoms, a substituted or unsubstituted aryl or heteroaryl; or wherein R2 and R3 are independently selected from H, alkyl or heteroalkyl of 1 to 6 carbon atoms, or wherein N is part of a cyclic or heterocyclic group comprising morpholine, triazole, imidazole, pyrrolidine, piperidine, piperazine, pyrrole, dihydropyridine, aziridine, thiazolidine, thiazoline, thiadiazolidine, or thiadiazoline;
X is O, S, or NH; a derivative of said compound, wherein fluorine, bromine, or chlorine is substituted for the iodine substituents; or a pharmaceutically acceptable salt of said compound; and a pharmaceutically acceptable carrier.
13. The pharmaceutical composition according to claim 12, wherein said pharmaceutical composition comprises from about 0.01% to about 30% of said compound.
14. The pharmaceutical composition according to claim 12, wherein said pharmaceutical composition comprises from about 1% to about 10% of said compound.
CA002566543A 1993-06-16 1994-06-16 Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia Abandoned CA2566543A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US078,371 1987-07-27
US08/078,371 US5364880A (en) 1993-06-16 1993-06-16 Compound for treatment of cardiac arrhythmia, synthesis, and methods of use
CA002164633A CA2164633C (en) 1993-06-16 1994-06-16 Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002164633A Division CA2164633C (en) 1993-06-16 1994-06-16 Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia

Publications (1)

Publication Number Publication Date
CA2566543A1 true CA2566543A1 (en) 1994-12-22

Family

ID=37682476

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002566543A Abandoned CA2566543A1 (en) 1993-06-16 1994-06-16 Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia

Country Status (1)

Country Link
CA (1) CA2566543A1 (en)

Similar Documents

Publication Publication Date Title
US5849788A (en) Compound for treatment of cardiac arphythmia, synthesis, and methods of use
US4929636A (en) Positive inotrophic benzothiazole and benzothiophene compositions and method of use therefor
US4103012A (en) Indolizine derivatives, pharmaceutical compositions and methods containing same
US6316487B1 (en) Compounds for treatment of cardiac arrhythmia synthesis, and methods of use
IE841881L (en) Benzothiazepinones
AU2002360582B2 (en) Novel compounds for the treatment of cardiac arrhythmia, synthesis, and methods of use
US7037933B2 (en) Compounds for treatment of cardiac arrhythmia, synthesis, and methods of use
US6362223B1 (en) Enantiomeric compounds for treatment of cardiac arrhythmias and methods of use
US6818782B2 (en) Enantiomeric compounds for treatment of cardiac arrhythmias and methods of use
CA2566543A1 (en) Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia
US5070094A (en) N-benzyltropaneamides
AU2002211479B2 (en) Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia
US7105568B2 (en) Compounds for treatment of cardiac arrhythmia and methods of use
CA2392016C (en) Enantiomeric compounds for treatment of cardiac arrhythmias and methods of use
WO2002038557A9 (en) Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia
AU2002211479A1 (en) Benzoylbenzofurane derivatives for treatment of cardiac arrhythmia

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead