CA2553856A1 - Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles and coating methods and assemblages thereof - Google Patents
Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles and coating methods and assemblages thereof Download PDFInfo
- Publication number
- CA2553856A1 CA2553856A1 CA002553856A CA2553856A CA2553856A1 CA 2553856 A1 CA2553856 A1 CA 2553856A1 CA 002553856 A CA002553856 A CA 002553856A CA 2553856 A CA2553856 A CA 2553856A CA 2553856 A1 CA2553856 A1 CA 2553856A1
- Authority
- CA
- Canada
- Prior art keywords
- coating
- actinic radiation
- mixture
- radiation curable
- solids composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 346
- 230000005855 radiation Effects 0.000 title claims abstract description 267
- 239000007787 solid Substances 0.000 title claims abstract description 175
- 239000008199 coating composition Substances 0.000 title abstract description 73
- 239000011248 coating agent Substances 0.000 claims abstract description 253
- 238000000034 method Methods 0.000 claims abstract description 126
- 238000004519 manufacturing process Methods 0.000 claims abstract description 99
- 230000008569 process Effects 0.000 claims abstract description 80
- 239000000203 mixture Substances 0.000 claims description 408
- 239000000049 pigment Substances 0.000 claims description 148
- 239000000178 monomer Substances 0.000 claims description 93
- 238000005260 corrosion Methods 0.000 claims description 91
- 230000007797 corrosion Effects 0.000 claims description 90
- 239000006185 dispersion Substances 0.000 claims description 88
- 239000000945 filler Substances 0.000 claims description 73
- -1 fatty acid modified bisphenol A acrylates Chemical class 0.000 claims description 59
- 239000003921 oil Substances 0.000 claims description 32
- 229920005989 resin Polymers 0.000 claims description 28
- 239000011347 resin Substances 0.000 claims description 28
- 239000003999 initiator Substances 0.000 claims description 27
- 238000005507 spraying Methods 0.000 claims description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- 239000003112 inhibitor Substances 0.000 claims description 22
- 239000007921 spray Substances 0.000 claims description 22
- 230000001678 irradiating effect Effects 0.000 claims description 21
- 238000002156 mixing Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 20
- 239000004593 Epoxy Substances 0.000 claims description 15
- 230000003595 spectral effect Effects 0.000 claims description 15
- 238000007654 immersion Methods 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 14
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 claims description 13
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 claims description 12
- 239000004698 Polyethylene Substances 0.000 claims description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 11
- 238000007598 dipping method Methods 0.000 claims description 11
- 238000007590 electrostatic spraying Methods 0.000 claims description 11
- 239000003623 enhancer Substances 0.000 claims description 11
- 229920000573 polyethylene Polymers 0.000 claims description 11
- 238000007766 curtain coating Methods 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 239000012965 benzophenone Substances 0.000 claims description 8
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 8
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 claims description 7
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 claims description 7
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 7
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 7
- 230000001680 brushing effect Effects 0.000 claims description 7
- 230000000670 limiting effect Effects 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 7
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 claims description 6
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 claims description 6
- OCIFJWVZZUDMRL-UHFFFAOYSA-N 6-hydroxyhexyl prop-2-enoate Chemical compound OCCCCCCOC(=O)C=C OCIFJWVZZUDMRL-UHFFFAOYSA-N 0.000 claims description 6
- 229930185605 Bisphenol Natural products 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 6
- 239000008119 colloidal silica Chemical group 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 6
- 125000004386 diacrylate group Chemical group 0.000 claims description 6
- WGOQVOGFDLVJAW-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCOC(N)=O WGOQVOGFDLVJAW-UHFFFAOYSA-N 0.000 claims description 6
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical group P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 6
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 6
- WXPWZZHELZEVPO-UHFFFAOYSA-N (4-methylphenyl)-phenylmethanone Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=CC=C1 WXPWZZHELZEVPO-UHFFFAOYSA-N 0.000 claims description 5
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical class C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 5
- 238000005299 abrasion Methods 0.000 claims description 5
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010413 gardening Methods 0.000 claims description 5
- 238000004381 surface treatment Methods 0.000 claims description 5
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 4
- 229920000178 Acrylic resin Polymers 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000001055 blue pigment Substances 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 229910002029 synthetic silica gel Inorganic materials 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- LVOJOIBIVGEQBP-UHFFFAOYSA-N 4-[[2-chloro-4-[3-chloro-4-[(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)diazenyl]phenyl]phenyl]diazenyl]-5-methyl-2-phenylpyrazol-3-ol Chemical compound CC1=NN(C(O)=C1N=NC1=CC=C(C=C1Cl)C1=CC(Cl)=C(C=C1)N=NC1=C(O)N(N=C1C)C1=CC=CC=C1)C1=CC=CC=C1 LVOJOIBIVGEQBP-UHFFFAOYSA-N 0.000 claims description 3
- CGLVZFOCZLHKOH-UHFFFAOYSA-N 8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine Chemical compound CCN1C2=CC=CC=C2C2=C1C=C1OC3=C(Cl)C4=NC(C=C5C6=CC=CC=C6N(C5=C5)CC)=C5OC4=C(Cl)C3=NC1=C2 CGLVZFOCZLHKOH-UHFFFAOYSA-N 0.000 claims description 3
- 244000248349 Citrus limon Species 0.000 claims description 3
- 235000005979 Citrus limon Nutrition 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical group O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 3
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 239000001056 green pigment Substances 0.000 claims description 3
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 claims description 3
- 239000001054 red pigment Substances 0.000 claims description 3
- 229910001923 silver oxide Inorganic materials 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 239000001052 yellow pigment Substances 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 238000001723 curing Methods 0.000 description 84
- 238000012360 testing method Methods 0.000 description 73
- 239000000843 powder Substances 0.000 description 45
- 239000002904 solvent Substances 0.000 description 39
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 38
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 37
- 229910052753 mercury Inorganic materials 0.000 description 37
- 230000007423 decrease Effects 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 19
- 238000006116 polymerization reaction Methods 0.000 description 18
- 239000003973 paint Substances 0.000 description 17
- 239000007788 liquid Substances 0.000 description 15
- 239000003960 organic solvent Substances 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 14
- 238000009472 formulation Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 230000008901 benefit Effects 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 12
- 230000035939 shock Effects 0.000 description 12
- 238000003801 milling Methods 0.000 description 11
- 229910052770 Uranium Inorganic materials 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 238000003915 air pollution Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000007792 addition Methods 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 239000011164 primary particle Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000001993 wax Substances 0.000 description 8
- 230000006378 damage Effects 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000001023 inorganic pigment Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 206010039509 Scab Diseases 0.000 description 5
- 238000003848 UV Light-Curing Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000012855 volatile organic compound Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000005562 fading Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000010705 motor oil Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000002318 adhesion promoter Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000012860 organic pigment Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical group C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 241001147416 Ursus maritimus Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000009993 protective function Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000000935 solvent evaporation Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- ILBBNQMSDGAAPF-UHFFFAOYSA-N 1-(6-hydroxy-6-methylcyclohexa-2,4-dien-1-yl)propan-1-one Chemical compound CCC(=O)C1C=CC=CC1(C)O ILBBNQMSDGAAPF-UHFFFAOYSA-N 0.000 description 1
- KHUFHLFHOQVFGB-UHFFFAOYSA-N 1-aminoanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2N KHUFHLFHOQVFGB-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- JQXYBDVZAUEPDL-UHFFFAOYSA-N 2-methylidene-5-phenylpent-4-enoic acid Chemical compound OC(=O)C(=C)CC=CC1=CC=CC=C1 JQXYBDVZAUEPDL-UHFFFAOYSA-N 0.000 description 1
- CAHWDGJDQYAFHM-UHFFFAOYSA-N 2-nitroisophthalic acid Chemical class OC(=O)C1=CC=CC(C(O)=O)=C1[N+]([O-])=O CAHWDGJDQYAFHM-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- FEIQOMCWGDNMHM-UHFFFAOYSA-N 5-phenylpenta-2,4-dienoic acid Chemical compound OC(=O)C=CC=CC1=CC=CC=C1 FEIQOMCWGDNMHM-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- DEBAKWBAUARYEA-UHFFFAOYSA-N C1=CC=CC=C1C1=CC=CC=C1.CC1=CC(C)=C(C(=O)[PH2]=O)C(C)=C1 Chemical compound C1=CC=CC=C1C1=CC=CC=C1.CC1=CC(C)=C(C(=O)[PH2]=O)C(C)=C1 DEBAKWBAUARYEA-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 241000551547 Dione <red algae> Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- AFILSFBTXJLAKW-UHFFFAOYSA-N [PH3]=O.CC1=C(C(=O)C2=C(C=CC=C2)C2=CC=CC=C2)C(=CC(=C1)C)C Chemical compound [PH3]=O.CC1=C(C(=O)C2=C(C=CC=C2)C2=CC=CC=C2)C(=CC(=C1)C)C AFILSFBTXJLAKW-UHFFFAOYSA-N 0.000 description 1
- VVFMKHRTYGDEPI-UHFFFAOYSA-N [Ti]C1=CC=CC=C1 Chemical compound [Ti]C1=CC=CC=C1 VVFMKHRTYGDEPI-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical compound N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- DGXKDBWJDQHNCI-UHFFFAOYSA-N dioxido(oxo)titanium nickel(2+) Chemical compound [Ni++].[O-][Ti]([O-])=O DGXKDBWJDQHNCI-UHFFFAOYSA-N 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 238000004924 electrostatic deposition Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- BLCTWBJQROOONQ-UHFFFAOYSA-N ethenyl prop-2-enoate Chemical class C=COC(=O)C=C BLCTWBJQROOONQ-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 231100001244 hazardous air pollutant Toxicity 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910001509 metal bromide Inorganic materials 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- AWIZFKXFPHTRHN-UHFFFAOYSA-N naphtho[2,3-f]quinoline Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=N1 AWIZFKXFPHTRHN-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 229960003351 prussian blue Drugs 0.000 description 1
- 239000013225 prussian blue Substances 0.000 description 1
- LLBIOIRWAYBCKK-UHFFFAOYSA-N pyranthrene-8,16-dione Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C=C4C5=CC=CC=C5C(=O)C5=C4C4=C3C2=C1C=C4C=C5 LLBIOIRWAYBCKK-UHFFFAOYSA-N 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 239000007962 solid dispersion Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Chemical class 0.000 description 1
- 239000001648 tannin Chemical class 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
- C08F2/48—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
- C08F2/50—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Disclosed are environmentally friendly, substantially all solids coating compositions which are curable using ultra violet and visible radiation. In addition, methods, processes, production lines, and factories, incorporating environmentally friendly, ultra violet and visible radiation curable substantially all solids coating compositions, for coating surfaces, or at least a portion of the surfaces, and curing of the coated surface to obtain partially or fully cured coated surfaces are disclosed. Articles of manufacture incorporating fully cured coated surfaces, in particular motor vehicles and motor vehicle parts or accessories, are also disclosed.
Description
ENVIRONMENTALLY FRIENDLY,100% SOLIDS, ACTINIC RADIATION
CURABLE COATING COMPOSITIONS AND COATED SURFACES AND COATED
ARTICLES AND COATING METHODS AND ASSEMBLAGES THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This Application claims priority to U.S. Patent Application Ser. Nos.
10/983,022 filed November 5, 2004, and 10/982,998 filed November 5, 2004, and 10/771,867 filed February 4, 2004, and 10/872,531 filed June 21, 2004, which claims the benefit of U.S.
Provisional Application serial number 60/551,287, filed on March 8, 2004, the disclosures of all of which are hereby incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION
In general, most surfaces of man-made objects have some type of coating which has been applied in order fulfill some expected function, utility, or appearance.
Man-made objects may be fabricated from natural or synthetic materials, and can range from flooring, which may require an abrasion resistant coating, to motor vehicle and motor vehicle parts which may require attractive, corrosion resistant coatings. Thus, coatings applied to surfaces typically serve decorative and/or protective functions. This is particularly so for automotive finishes, which must provide an esthetically appealing appearance while meeting and maintaining rigorous performance and durability requirements.
Presented herein are environmentally friendly actinic radiation curable, substantially all solids compositions and methods for coating a surface or at least a portion of a surface.
Also described herein are environmentally-friendly methods, compositions, processes, assemblages, articles, and factories. Actinic radiation curable, all solids compositions are ZS used for coating at least a portion of the surface of an object. Such coating compositions produce less volatile materials, produce less waste and require less energy to be coated on an object. Furthermore, such coating compositions may be used to produce coatings having desirable esthetic, performance and durability properties. Further presented are partially and fully cured surfaces, along with articles of manufacture incorporating fully cured surfaces.
30 In one aspect the actinic radiation curable, substantially all solids compositions described herein are comprised of a mixture of oligomers, monomers, photoinitiators, co-photoinitiators, fillers, and polymerizable pigment dispersions. In one embodiment of the this aspect, the actinic radiation curable, substantially all solids composition mixture may comprise 0-40% percent by weight of oligomer or mixture of oligomers, plus monomers, photoinitiators, co-photoinitiators, fillers, and polymerizable pigment dispersions.
In another embodiment of the above aspect, the actinic radiation curable, substantially all solids composition mixture comprises 5-68% by weight monomer or mixture of monomers; plus oligomers, photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions. In a further embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition mixture comprises 3-15% photoinitiator or mixture of photoinitiators and co-initiators; plus oligomers, monomers, fillers, and polymerizable pigment dispersions. In a still further embodiment of the above aspect, the actinic radiation curable, substantially all solids composition mixture comprises 0.5-11%
filler or mixture of fillers; plus oligomers, monomers, photoinitatiors, co-photoinitiators, and polymerizable pigment dispersions. In yet another embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition mixture comprises 3-15% polymerizable pigment dispersion or mixture of polymerizable pigment dispersions;
plus oligomers, monomers, photoinitatiors, co-photoinitiators, and fillers. In an embodiment of the above aspect, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight monomer or mixture of monomers; plus photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions. In another embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers and 3-15% photoinitiator or mixture of photoinitiators and co-initiators; plus, fillers, and polymerizable pigment dispersions. In a further embodiment of the above aspect, the actinic radiation curable, substantially all solids composition mixture comprises 0-40%
percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% filler or mixture of fillers; plus polymerizable pigment dispersions.
In still further embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition mixture comprises 0-40% percent by weight oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15%
photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11% filler or mixture of fillers, and 3-15%
solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions;
whereby the room temperature viscosity of the composition is up to about 500 centipoise.
CURABLE COATING COMPOSITIONS AND COATED SURFACES AND COATED
ARTICLES AND COATING METHODS AND ASSEMBLAGES THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This Application claims priority to U.S. Patent Application Ser. Nos.
10/983,022 filed November 5, 2004, and 10/982,998 filed November 5, 2004, and 10/771,867 filed February 4, 2004, and 10/872,531 filed June 21, 2004, which claims the benefit of U.S.
Provisional Application serial number 60/551,287, filed on March 8, 2004, the disclosures of all of which are hereby incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION
In general, most surfaces of man-made objects have some type of coating which has been applied in order fulfill some expected function, utility, or appearance.
Man-made objects may be fabricated from natural or synthetic materials, and can range from flooring, which may require an abrasion resistant coating, to motor vehicle and motor vehicle parts which may require attractive, corrosion resistant coatings. Thus, coatings applied to surfaces typically serve decorative and/or protective functions. This is particularly so for automotive finishes, which must provide an esthetically appealing appearance while meeting and maintaining rigorous performance and durability requirements.
Presented herein are environmentally friendly actinic radiation curable, substantially all solids compositions and methods for coating a surface or at least a portion of a surface.
Also described herein are environmentally-friendly methods, compositions, processes, assemblages, articles, and factories. Actinic radiation curable, all solids compositions are ZS used for coating at least a portion of the surface of an object. Such coating compositions produce less volatile materials, produce less waste and require less energy to be coated on an object. Furthermore, such coating compositions may be used to produce coatings having desirable esthetic, performance and durability properties. Further presented are partially and fully cured surfaces, along with articles of manufacture incorporating fully cured surfaces.
30 In one aspect the actinic radiation curable, substantially all solids compositions described herein are comprised of a mixture of oligomers, monomers, photoinitiators, co-photoinitiators, fillers, and polymerizable pigment dispersions. In one embodiment of the this aspect, the actinic radiation curable, substantially all solids composition mixture may comprise 0-40% percent by weight of oligomer or mixture of oligomers, plus monomers, photoinitiators, co-photoinitiators, fillers, and polymerizable pigment dispersions.
In another embodiment of the above aspect, the actinic radiation curable, substantially all solids composition mixture comprises 5-68% by weight monomer or mixture of monomers; plus oligomers, photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions. In a further embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition mixture comprises 3-15% photoinitiator or mixture of photoinitiators and co-initiators; plus oligomers, monomers, fillers, and polymerizable pigment dispersions. In a still further embodiment of the above aspect, the actinic radiation curable, substantially all solids composition mixture comprises 0.5-11%
filler or mixture of fillers; plus oligomers, monomers, photoinitatiors, co-photoinitiators, and polymerizable pigment dispersions. In yet another embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition mixture comprises 3-15% polymerizable pigment dispersion or mixture of polymerizable pigment dispersions;
plus oligomers, monomers, photoinitatiors, co-photoinitiators, and fillers. In an embodiment of the above aspect, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight monomer or mixture of monomers; plus photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions. In another embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers and 3-15% photoinitiator or mixture of photoinitiators and co-initiators; plus, fillers, and polymerizable pigment dispersions. In a further embodiment of the above aspect, the actinic radiation curable, substantially all solids composition mixture comprises 0-40%
percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% filler or mixture of fillers; plus polymerizable pigment dispersions.
In still further embodiment of the aforementioned aspect, the actinic radiation curable, substantially all solids composition mixture comprises 0-40% percent by weight oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15%
photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11% filler or mixture of fillers, and 3-15%
solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions;
whereby the room temperature viscosity of the composition is up to about 500 centipoise.
In a further or alternative embodiment, the oligomers are selected from a group consisting of epoxy acrylates, epoxy diacrylate/monomer blends, silicone acrylate, aliphatic urethane triacrylate/monomer blends, fatty acid modified bisphenol A
acrylates, bisphenol epoxy acrylates blended with trimethylolpropane triacrylate, aliphatic urethane triacrylates blended with 1, 6-hexanediol acrylate, and combinations thereof. In a further or alternative embodiment, the monomers are selected from a group consisting of trimethylolpropane triacrylate, 2-phenoxyethyl acrylate, isobornyl acrylate, propoxylated glyceryl triacrylate, methacrylate ester derivatives, and combinations thereof.
In a still further or alternative embodiment, the photoinitiators are selected from a group consisting of phosphine oxide type photoinitiators, diphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide, a thioxanthone, dimethyl ketal, benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2, 4, 6,-trimethylbenzophenone, 4-methylbenzophenone, oligo (2-hydroxy-2-methyl - 1-(4-(1-methylvinyl)phenyl)propanone), amine acrylates, and combinations thereof.
In a still further or alternative embodiment, the fillers are selected from a group consisting of amorphous silicon dioxide prepared with polyethylene wax, synthetic amorphous silica with organic surface treatment, untreated amorphous silicon dioxide, alkyl quaternary bentonite, colloidal silica, acrylated colloidal silica, alumina, zirconia, zinc oxide, niobia, titania aluminum nitride, silver oxide, cerium oxides, and combinations thereof.
Further, the average size of the filler particles is less than 500 nanometers, or less than 100 nanometers, or less than 50 nanometers, or even less than 25 nanometers.
In a still further or alternative embodiment, the polymerizable pigment dispersions are comprised of pigments attached to activated resins, such as acrylate resins, methacrylate resins, or vinyl resins, and, wherein, the pigments are selected from a group consisting of carbon blaclc, rutile titanium dioxide, organic red pigment, phthalo blue pigment, red oxide pigment, isoindoline yellow pigment, phthalo green pigment, quinacridone violet, carbazole violet, masstone black, light lemon yellow oxide, light organic yellow, transparent yellow oxide, diarylide orange, quinacridone red, organic scarlet, light organic red, and deep organic red.
In a still further or alternative embodiment, the actinic radiation curable, substantially all solids composition may also contain a corrosion inhibitor, wherein the corrosion inhibitor is an all solids corrosion inhibitor present in an amount up to about 3% by weight. A further embodiment is the incorporation of M-235 (Cortec Corporation's (4119 White Bear Parlcway, St. Paul, MN 55110 U.S.A.)) as a corrosion inhibitor.
acrylates, bisphenol epoxy acrylates blended with trimethylolpropane triacrylate, aliphatic urethane triacrylates blended with 1, 6-hexanediol acrylate, and combinations thereof. In a further or alternative embodiment, the monomers are selected from a group consisting of trimethylolpropane triacrylate, 2-phenoxyethyl acrylate, isobornyl acrylate, propoxylated glyceryl triacrylate, methacrylate ester derivatives, and combinations thereof.
In a still further or alternative embodiment, the photoinitiators are selected from a group consisting of phosphine oxide type photoinitiators, diphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide, a thioxanthone, dimethyl ketal, benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2, 4, 6,-trimethylbenzophenone, 4-methylbenzophenone, oligo (2-hydroxy-2-methyl - 1-(4-(1-methylvinyl)phenyl)propanone), amine acrylates, and combinations thereof.
In a still further or alternative embodiment, the fillers are selected from a group consisting of amorphous silicon dioxide prepared with polyethylene wax, synthetic amorphous silica with organic surface treatment, untreated amorphous silicon dioxide, alkyl quaternary bentonite, colloidal silica, acrylated colloidal silica, alumina, zirconia, zinc oxide, niobia, titania aluminum nitride, silver oxide, cerium oxides, and combinations thereof.
Further, the average size of the filler particles is less than 500 nanometers, or less than 100 nanometers, or less than 50 nanometers, or even less than 25 nanometers.
In a still further or alternative embodiment, the polymerizable pigment dispersions are comprised of pigments attached to activated resins, such as acrylate resins, methacrylate resins, or vinyl resins, and, wherein, the pigments are selected from a group consisting of carbon blaclc, rutile titanium dioxide, organic red pigment, phthalo blue pigment, red oxide pigment, isoindoline yellow pigment, phthalo green pigment, quinacridone violet, carbazole violet, masstone black, light lemon yellow oxide, light organic yellow, transparent yellow oxide, diarylide orange, quinacridone red, organic scarlet, light organic red, and deep organic red.
In a still further or alternative embodiment, the actinic radiation curable, substantially all solids composition may also contain a corrosion inhibitor, wherein the corrosion inhibitor is an all solids corrosion inhibitor present in an amount up to about 3% by weight. A further embodiment is the incorporation of M-235 (Cortec Corporation's (4119 White Bear Parlcway, St. Paul, MN 55110 U.S.A.)) as a corrosion inhibitor.
In a still further or alternative embodiment, the actinic radiation curable, substantially all solids composition includes flow and slip enhancers. In a still further or alternative embodiment, the flow and slip enhancer are added to the composition in an amount up to about 3% by weight. In a still further or alternative embodiment the flow and slip enhancer are selected from a group consisting of acrylated silicone, EBECRYL ~ 350 (UCB
Surface Specialties, Brussels, Belgium), EBECRYL ~ 1360 (UCB Surface Specialties, Brussels, Belgium), and CN990 (Sartomer, Exton, PA, U.S.A.).
In a still further or alternative embodiment, the actinic radiation curable, substantially all solids composition includes curing boosters. In a still further or alternative embodiment, the curing boosters are present in an amount up to about 0.5% by weight. In a still further or alternative embodiment, the curing booster is thioxanthone.
In a still further or alternative embodiment, the actinic radiation curable, substantially all solids composition has a room temperature viscosity of up to about 500 centipoise.
In another aspect the coated surfaces are obtained by coating surfaces with the actinic radiation curable, substantially all solids composition. In further or alternative embodiments, the coated surfaces are coated metals, coated wood, coated plastic, coated stone, coated glass, or coated ceramic.
In further or alternative embodiments, the coating can be applied to the surface by means of spraying, brushing, rolling, dipping, blade coating, curtain coating or a combination thereof. Further, the means of spraying includes, but is not limited to, the use of a high pressure low volume spraying systems, or electrostatic spraying systems. In further or alternative embodiments, the coating is applied in a single application, or in multiple applications. In further or alternative embodiments, the surface is partially covered by the coating, or in a still in still further or alternative embodiments, the surface is fully covered by the coating.
In further or alternative embodiments, the coated surfaces are partially cured by exposure of the coated surfaces to a first source of actinic radiation. In further or alternative embodiments, the partially cured surfaces are opaque or glossy, or opaque and glossy.
In further or alternative embodiments, the coated surfaces are fully cured by exposure of the partially cured coated surface to a second source of actinic radiation.
In further or alternative embodiments, the fully cured surfaces are opaque, hard, glossy, corrosion resistant, and abrasion resistant.
In further or alternative embodiments, the actinic radiation is selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof. Further, the W radiation is selected from the group consisting of UV-A radiation, LTV-B radiation, W-B radiation, W-C radiation, W-D radiation, or combinations thereof.
In ftirther or alternative embodiments, the completely cured coated surface is part of articles of manufacture. In further or alternative embodiments, the articles of manufacture include the completely cured coated surface. In further or alternative embodiments, the article of manufacture is selected from the group consisting of motor vehicles, motor vehicle parts, motor vehicle accessories, gardening equipment, lawnmowers, and lawnmower parts.
In further or alternative embodiments, the motor vehicle parts are underhood parts including, but not limited to, oil filters, dampers, battery casings, alternator casings, and engine manifolds.
In another aspect the completely cured coated surfaces of the articles of manufacture are stable to one or more testing conditions. In further or alternative embodiments, the completely cured coated surfaces exhibits no marking after contact with at least 10% sulfuric acid at a temperature of at least 65°C for at least 6 minutes. In further or alternative embodiments, the completely cured coated surfaces exhibits no marking after contact with at least 10% sulfuric acid at a temperature of at least 65°C for at least 12 minutes. In further or alternative embodiments, the completely cured coated surfaces exhibits no softening and no blistering after immersion in engine coolant for at least 8 hours at a temperature of at least 60 °C. In further or alternative embodiments, the coated surfaces exhibits no softening and no blistering after immersion in engine coolant for at least 20 hours at a temperature of at least 60 °C. In further or alternative embodiments, the completely cured coated surfaces exhibits no softening and no blistering after immersion in power steering oil for at least 8 hours at a temperature of at least 60 °C. In further or alternative embodiments, the completely cured coated surfaces exhibits no softening and no blistering after immersion in power steering oil for at least 24 hours at a temperature of at least 60 °C. In further or alternative embodiments, the completely cured coated surfaces exhibits no surface corrosion after 400 hours of exposure to salt spray. In further or alternative embodiments, the completely cured coated surfaces exhibits no surface corrosion after 900 hours of exposure to salt spray. In further or alternative embodiments, the completely cured coated surfaces exhibits no loss of adhesion after heating at a temperature of at least 200 °C in a convection oven for at least 1 hour. In further or alternative embodiments, the completely cured coated surfaces exhibits no loss of adhesion after heating at a temperature of at least 200 °C in a convection oven for at least 10 hours.
111 another aspect the articles of manufacture are motor vehicles selected from the group consisting of automobiles, buses, trucks, tractors, and off road vehicles. In further or alternative embodiments, the articles of manufacture are motor vehicle accessories or motor vehicle parts for motor vehicles, such as, but not limited to, automobiles, buses, trucks, and off road vehicles.
In further or alternative embodiments, the article of manufacture are lawnmowers In a further aspect the method for producing the actinic radiation curable, substantially all solids composition involves adding the components, for instance, by way of example only, at least one oligomer, at least one monomer, at least one photoinitiator, at least one co-photoinitiator, at least one filler, and at least one polymerizable pigment dispersion, to a container and using a means for mixing the components to form a smooth composition. In further or alternative embodiments, the composition can be mixed in or transferred to a suitable container, such as, but not limited to, a can.
The compositions, methods and articles described herein relate generally to the field of coatings and more specifically to a composition of matter, comprising UV
curable material, photoinitiators, fillers, and solid pigment dispersions which may be sprayed by conventional HVLP or electrostatic bell, with no additional heat, applicable in one coat, as a finish for metal. Also described herein are compositions and processes for applying a100%
solids, UV curable, opaque, corrosion resistant finish to parts for underhood use in motor vehicles.
An object is to produce opaque, corrosion resistant, UV curable coatings without the milling. Another object is to produce opaque LTV curable coatings with no addition of vehicle. Another object is to decrease production time. Another object is to save space.
Another object is to reduce emissions. Yet another object is to improve color reproducibility and stability. Another object is to improve the appearance of coated articles.
Still yet another object is to produce a product applicable by HVLP or electrostatic bell without the use of any heating apparatus. Another object is to produce opaque, corrosion resistant coatings which may be applied to metals in one coat. Still yet another object is to provide energy savings of up to 80%. Another object is to provide cost savings. Another object is to utilize less space.
A further object is to eliminate the need for air pollution control technology. Another object is to produce visually acceptable parts. A further object is to equal or exceed previous performance of parts as to corrosion resistance. Yet another object is to cut production time.
In one aspect are assemblages for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a means for applying to the object an actinic radiation curable, substantially all solids composition; a means for irradiating the object with a first actinic radiation so as to partially cure the coated surface;
and a means for irradiating the object with a second actinic radiation so as to completely cure the coated surface; wherein the coating does not show marks upon contact with a 10%
solution of HZS04 at 65 °C for up to at least 6 minutes.
In one embodiment of such assemblages, the actinic radiation curable, substantially all solids composition is comprised of a mixture of oligomers, monomers, photoinitatiors, co-photoinitiators, fillers, and polyrnerizable pigment dispersions. In a further embodiment, the means for irradiating so as to partially cure the coated surface and the means for irradiating so as to completely cure the coated surface are located at an irradiation station so as to not require the transport of the object. In still a further embodiment, the means for applying the composition is located at an application station, wherein the object must be moved from the application station to the irradiation station. In yet a further embodiment, such assemblages further comprise a means for moving the object from the application station to the irradiation station. In still yet a further embodiment, the means for moving comprises a conveyer belt.
In further or alternative embodiments, the irradiation station comprises a means for limiting the exposure of actinic radiation to the application station. In yet further or alternative embodiment, assemblages further comprise a means for rotating the object arourid at least one axis. In yet further or alternative embodiment, assemblages further comprise a mounting station wherein the object to be coated is attached to a movable unit. In further embodiments, the movable unit is capable of rotating the object around at least one axis. In further or alternative embodiments, the movable unit is capable of moving the object from the application station to the irradiation station.
In still fixrther or alternative embodiments, such assemblages further comprise a removal station wherein the completely cured coated object is removed from the movable unit. In further embodiments, the completely cured coated object does not require cooling prior to removal from the movable unit.
In further or alternative embodiments, the means for applying includes spraying means, brushing means, rolling means, dipping means, blade coating, and curtain coating means. In further embodiments, the means for applying includes a spraying means. In still further embodiments, the spraying means includes equipment for high volume low pressure (HVLP) spraying. In further or alternative embodiments, the means for applying occurs at ambient temperature. In further or alternative embodiments, the spraying means includes equipment for electrostatic spraying.
In further or alternative embodiments, the application station further comprises a means for reclaiming actinic radiation curable, substantially all solids composition that is non-adhering to the surface of the object. In still further embodiments, the reclaimed actinic radiation curable, substantially all solids composition is subsequently applied to a different obj ect.
W further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers.
In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 5-68% by weight monomer or mixture of monomers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 3-15% photoinitiator or mixture of photoinitiators and co-initiators. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0.5-11% filler or mixture of fillers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 3-15% polymerizable pigment dispersion or mixture of polymerizable dispersions. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight monomer or mixture of monomers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers and 3-15%
photoinitiator or mixture of photoinitiators and co-initiators. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% filler or mixture of fillers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40%
percent by weight oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11%
filler or mixture of fillers, and 3-15% solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions; whereby the room temperature viscosity of the composition is up to about 500 centipoise. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition further comprises an all solids corrosion inhibitor.
In further or alternative embodiments, the first actinic radiation includes actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra violet (ITV) radiation, and combinations thereof. In further or alternative embodiments, the second actinic radiation includes actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof.
In further or alternative embodiments, the irradiation station includes an arrangement of S mirrors.
In further or alternative embodiments, the object being coated is selected from the group consisting of a motor vehicle, a motor vehicle part, a motor vehicle accessory, gardening equipment, a lawnmower, and a lawnmower part. In further embodiments, the article of manufacture is an motor vehicle part. In still further embodiments, the motor vehicle part is an underhood part. In still further embodiments, the underhood part is selected from the group consisting of an oil filter, a damper, brake rotor, a battery casing, an alternator casing, and an engine manifold.
In another aspect are processes for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising attaching the object onto a conveying means; applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station; irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of H2S04 at 65 °C for up to at least 6 minutes.
In further embodiments, such processes further comprise attaching the object to a rotatable spindle prior to the application step. In further or alternative embodiments, such processes further comprise moving the conveying means after attaching the object to the rotatable spindle so as to locate the object near an application station. In further embodiments, such processes further comprise applying an actinic radiation curable composition at the application station as the spindle holding the object rotates. In further embodiments, the conveying means comprises a conveyer belt.
In further or alternative embodiments, the irradiation station comprises a curing chamber containing a first actinic radiation source and a second actinic radiation source.
In further embodiments, such processes further comprise moving the completely cured coated object via the conveying means outside the curing chamber wherein the coated object is packed for storage or shipment.
In further or alternative embodiments, the actinic radiation curable, substantially all solids composition is comprised of a mixture of oligomers, monomers, photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight monomer or mixture of monomers. In fwther or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers and 3-15%
photoinitiator or mixture of photoinitiators and co-initiators. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% filler or mixture of fillers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40%
percent by weight oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11%
filler or mixture of fillers, and 3-15% solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions; whereby the room temperature viscosity of the composition is up to about 500 centipoise. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition further comprises an all solids corrosion inhibitor.
In further or alternative embodiments, the application station comprises equipment for electrostatic spray. In further or alternative embodiments, the application station comprises equipment suitable for High pressure Low Volume (HVLP) coatings application.
In either case, further or alternative embodiments include processes wherein the coating is applied in a single application, or the coating is applied in multiple applications.
Further, in either case, further or alternative embodiments include processes wherein the surface is partially covered by the coating, or the surface is fully covered by the coating.
In further or alternative embodiments, the time between the first actinic radiation step and the second actinic radiation step is less than 5 minutes. In further embodiments, the time between the first actinic radiation step and the second actinic radiation step is less than 1 minute. In further embodiments, the time between the first actinic radiation step and the second actinic radiation step is less than 15 seconds.
In further or alternative embodiments, the irradiation station includes at least one light capable of providing actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (LTV) radiation, and combinations thereof.
In further or alternative embodiments, the irradiation station includes at least one light source capable of providing actinic radiation selected from the group consisting of IJV-A
radiation, UV-B radiation, UV-B radiation, UV-C radiation, W-D radiation, or combinations thereof.
In further or alternative embodiments, the irradiation station includes an arrangement of mirrors such that the coated surface is cured in three dimensions. In further or alternative embodiments, the irradiation station includes an arrangement of light sources such that the coated surface is cured in three dimensions. In fixrther embodiments, each light source emits different spectral wavelength ranges. In further embodiments, the different light sources have partially overlapping spectral wavelength ranges.
In another aspect are production lines for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the obj ect onto a conveying means; applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station; irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of H2S04 at 65 °C for up to at least 6 minutes.
In another aspect are facilities or factories for producing objects coated with an actinic radiation cured substantially all solids composition comprising at least one production line for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the object onto a conveying means;
applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station;
irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of HZS04 at 65 °C for up to at least 6 minutes.
In another aspect are coated objects wherein the object is an underhood part of a vehicle and the object is produced at a facility or factory for producing objects coated with an actinic radiation cured substantially all solids composition comprising at least one production line for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the obj ect onto a conveying means;
applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station;
irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of H2S04 at 65 °C for up to at least 6 minutes.
In another aspect are articles of manufacture, wherein such articles are underhood parts with a completely cured coated surface that exhibits no loss of adhesion after at least 1 hour at a temperature of at least 210 °C, and wherein the article of manufacture is produced at a facility or factory for producing objects coated with an actinic radiation cured substantially all solids composition comprising at least one production line for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the object onto a conveying means; applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station;
irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10%
solution of HZS04 at 65 °C for up to at least 6 minutes.
The compositions, methods and articles described herein relate generally to the field of coatings and more specifically to a composition of matter, comprising UV
curable material, photoinitiators, fillers, and solid pigment dispersions which may be sprayed by conventional HVLP or electrostatic bell, with no additional heat, applicable in one coat, as a finish for metal. Also described herein are compositions and processes for applying a100%
solids, LTV curable, opaque, corrosion resistant finish to parts for underhood use in motor vehicles.
INCORPORATION BY REFERENCE
All publications, patents and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE FIGURES
A better understanding of the features and advantages of the present methods and compositions may be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of our methods, compositions, devices and apparatuses are utilized, and the accompanying drawings of which:
Figure 1 is a flowchart of the process used to obtain an obj ect with a completely cured coating of the described compositions.
Figure 2 is a flowchart of the operations that comprise the method.
Figure 3 depicts is an illustration of the components required for an opaque, corrosion resistant, LTV curable coating.
Figure 4 is an illustrative of how the coating is applied.
Figure 5 is an illustration of the cure of the coating.
Figure 6 is an illustration of the immediate availability of shipping and handling of underhood automobile parts.
DETAILED DESCRIPTION OF THE INVENTION
The 100% solids, actinic radiation curable coating compositions, methods of applying the composition, coated surfaces and coated articles described herein, materially enhance the quality of the environment by incorporation of components which are zero or near zero volatile organic compounds (VOC's). Further, such components are essentially non-volatile and therefore have zero or near zero emissions. Such a decrease in emissions significantly decreases air pollution, especially in comparison to the air pollution encountered with coating composition using volatile solvents. In addition, any water and soil pollution associated with waste disposal from processes using coating composition using volatile solvents is minimized using the methods described herein, thereby further contributing to and materially enhancing the quality of the environment. Furthermore, the 100% solids, actinic radiation curable coating compositions, methods, processes and assemblages for applying the compositions, coated surfaces and coated articles described herein, utilize significantly less energy than processes using coating composition using volatile solvents, thereby conserving energy. As used herein, the term "actinic radiation", refers to any radiation source which can produce polymerization reactions, such as, by way of example only, ultraviolet radiation and visible light.
1. Coatings Coatings have been applied to surfaces using either solvent-based systems, including aqueous or non-aqueous solvent-based systems, or powders. The non-aqueous solvent based systems include organic solvents, oils, or alcohols. Organic solvents have properties that make them very desirable in coatings application. Traditionally, paint manufacturers have relied on organic solvents to act as the carrier to evenly disperse the paints over the surface and then evaporate quickly. To achieve this, the organic solvents are used to thin/dilute the coating compositions. However, due to their high volatility such organic solvents create high emission concentrations and are therefore classified as Volatile Organic Compounds (VOC's) and Hazardous Air Pollutants (HAP's). These solvent emissions are of concern to employers and employees, as overexposure can cause renal damage or other health related difficulties.
Furthermore, environmental issues, and potential fire hazards are other issues to consider when using coatings which incorporate organic solvents. These aspects may ultimately result in financial ramifications, including medical expenses, environmental cleanup, and insurance premiums. Another aspect associated with the solvent-based coating formulations, as well as powder coatings, is that large areas are needed to accomplish thermal curing.
This requires a significant financial commitment from the coating end user, in terms of leasing or purchasing space, and the cost of energy associated with the thermal curing process.
2. Thermoset Powder Coatings Powder-based coating compositions and aqueous-based formulations were developed to address the issue of volatile emissions associated with non-aqueous solvent-based systems.
Powder-based coatings, which can include thermoset or UV-cure formulations, may decrease emissions, however due to the need for thermal melting, smoothing and curing (for thermoset powders); such powder-based coatings also require considerable time, space, and energy.
Water-based coatings decrease emissions, and may decrease energy usage when the coated articles are air dried. Such water-based coatings, nonetheless, still require considerable space and time outlays. Furthermore, water-based coatings promote flash-rusting, in which steel or other iron-based surfaces are oxidized as the water-borne coating is drying.
Drying with hot air blowers or the use of vacuum systems may reduce or eliminate the flash rust. However, if the coated items are dried with heat, then there is no added benefit with respect to decreasing energy costs.
Powder coatings are composed of 100% solids material, with no solvents of any kind.
All substrate wetting and flow is due to the melt viscosity of the binder at elevated temperature. Solid resin, pigments, curing agents and additives are premixed, melted and dispersed in an extruder between 100° to 130° Celsius. This molten blend is then squeezed into a thin ribbon, cooled, broken into flakes, and then ground into a fine powder.
Powder coatings can be applied using electrostatic deposition. The charged powder particles are attracted to, and uniformly coat, a part that has been grounded.
The coated part is moved to an oven in which the powder melts and cures into a thin film.
Extrusion thermal stresses and curing using thermo-setting has limited the development of powder coating to those which cure at temperatures below 150° Celsius. Further limitations occur as a result of resin cross-linking within the extruder. The extruder dwell time must thus be limited because such cross-linking can result in increased melt viscosity, more orange peel and possible defects caused by gel particle formation. Also, powder coatings which thermoset at 120 °
Celsius have cure times of 30-60 minutes. This time is not practical for temperature sensitive materials such as those containing plastic or engineered wood components.
Furthermore, once the curing process has begun the melt viscosity increases immediately and stops further flow and leveling. Powder coatings can display an "orange peel" appearance which may be undesirable. Flow and leveling takes place within the first 30-90 seconds of cure, and therefore the degree of orange peel and smoothness is set in.
3. UV Curable Powder Coating Solid resins which possess UV-reactive moieties, and retain the melt and flow characteristics needed to produce high quality coatings, allow for the creation of UV-curable powder coatings. These powder coatings combine the low energy, space efficient and fast cure characteristics observed with UV cure liquid coatings, with the convenience of powder coating application. Also, the combination of UV curing with powder coating technologies effectively separates the melt and flow stages from the curing stage. This thermal latency of W powder coatings allows the coating to flow to maximum smoothness before curing by exposure to LJV radiation. Thus, any substrate which withstands temperatures ranging from 100° to 120° Celsius can be coated using UV curable powder coatings. The powder manufacturing process for thermoset powders or UV cure powders is identical.
The significant difference between thennoset powder coatings and W cure powder coatings is that the applicability of thennoset powder coatings is limited by process, requiring thermal cure temperatures, whereas UV curable powder coatings have limitations resulting from powder storage conditions.
4. UV Curable Liquid Coating Contemporary with the development of powder coatings was the development of IJV-curable liquid coatings. These coatings utilized low molecular weight unsaturated and acrylated resins in combination with photoinitiators to produce a coating which is cured by radical polymerization when exposed to UV radiation. However, due to the highly viscous nature of these liquid UV coatings, material handling and application of the W-curable liquid coatings to complex parts can be burdensome and difficult. These coatings often utilize organic solvents to thin/dilute the formulation as a means to effectively apply the coating to a surface. Consequently, the issues associated with the use of organic solvents, such as environmental, health, and monetary considerations, are also of concern with UV-curable liquid coatings.
Surface Specialties, Brussels, Belgium), EBECRYL ~ 1360 (UCB Surface Specialties, Brussels, Belgium), and CN990 (Sartomer, Exton, PA, U.S.A.).
In a still further or alternative embodiment, the actinic radiation curable, substantially all solids composition includes curing boosters. In a still further or alternative embodiment, the curing boosters are present in an amount up to about 0.5% by weight. In a still further or alternative embodiment, the curing booster is thioxanthone.
In a still further or alternative embodiment, the actinic radiation curable, substantially all solids composition has a room temperature viscosity of up to about 500 centipoise.
In another aspect the coated surfaces are obtained by coating surfaces with the actinic radiation curable, substantially all solids composition. In further or alternative embodiments, the coated surfaces are coated metals, coated wood, coated plastic, coated stone, coated glass, or coated ceramic.
In further or alternative embodiments, the coating can be applied to the surface by means of spraying, brushing, rolling, dipping, blade coating, curtain coating or a combination thereof. Further, the means of spraying includes, but is not limited to, the use of a high pressure low volume spraying systems, or electrostatic spraying systems. In further or alternative embodiments, the coating is applied in a single application, or in multiple applications. In further or alternative embodiments, the surface is partially covered by the coating, or in a still in still further or alternative embodiments, the surface is fully covered by the coating.
In further or alternative embodiments, the coated surfaces are partially cured by exposure of the coated surfaces to a first source of actinic radiation. In further or alternative embodiments, the partially cured surfaces are opaque or glossy, or opaque and glossy.
In further or alternative embodiments, the coated surfaces are fully cured by exposure of the partially cured coated surface to a second source of actinic radiation.
In further or alternative embodiments, the fully cured surfaces are opaque, hard, glossy, corrosion resistant, and abrasion resistant.
In further or alternative embodiments, the actinic radiation is selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof. Further, the W radiation is selected from the group consisting of UV-A radiation, LTV-B radiation, W-B radiation, W-C radiation, W-D radiation, or combinations thereof.
In ftirther or alternative embodiments, the completely cured coated surface is part of articles of manufacture. In further or alternative embodiments, the articles of manufacture include the completely cured coated surface. In further or alternative embodiments, the article of manufacture is selected from the group consisting of motor vehicles, motor vehicle parts, motor vehicle accessories, gardening equipment, lawnmowers, and lawnmower parts.
In further or alternative embodiments, the motor vehicle parts are underhood parts including, but not limited to, oil filters, dampers, battery casings, alternator casings, and engine manifolds.
In another aspect the completely cured coated surfaces of the articles of manufacture are stable to one or more testing conditions. In further or alternative embodiments, the completely cured coated surfaces exhibits no marking after contact with at least 10% sulfuric acid at a temperature of at least 65°C for at least 6 minutes. In further or alternative embodiments, the completely cured coated surfaces exhibits no marking after contact with at least 10% sulfuric acid at a temperature of at least 65°C for at least 12 minutes. In further or alternative embodiments, the completely cured coated surfaces exhibits no softening and no blistering after immersion in engine coolant for at least 8 hours at a temperature of at least 60 °C. In further or alternative embodiments, the coated surfaces exhibits no softening and no blistering after immersion in engine coolant for at least 20 hours at a temperature of at least 60 °C. In further or alternative embodiments, the completely cured coated surfaces exhibits no softening and no blistering after immersion in power steering oil for at least 8 hours at a temperature of at least 60 °C. In further or alternative embodiments, the completely cured coated surfaces exhibits no softening and no blistering after immersion in power steering oil for at least 24 hours at a temperature of at least 60 °C. In further or alternative embodiments, the completely cured coated surfaces exhibits no surface corrosion after 400 hours of exposure to salt spray. In further or alternative embodiments, the completely cured coated surfaces exhibits no surface corrosion after 900 hours of exposure to salt spray. In further or alternative embodiments, the completely cured coated surfaces exhibits no loss of adhesion after heating at a temperature of at least 200 °C in a convection oven for at least 1 hour. In further or alternative embodiments, the completely cured coated surfaces exhibits no loss of adhesion after heating at a temperature of at least 200 °C in a convection oven for at least 10 hours.
111 another aspect the articles of manufacture are motor vehicles selected from the group consisting of automobiles, buses, trucks, tractors, and off road vehicles. In further or alternative embodiments, the articles of manufacture are motor vehicle accessories or motor vehicle parts for motor vehicles, such as, but not limited to, automobiles, buses, trucks, and off road vehicles.
In further or alternative embodiments, the article of manufacture are lawnmowers In a further aspect the method for producing the actinic radiation curable, substantially all solids composition involves adding the components, for instance, by way of example only, at least one oligomer, at least one monomer, at least one photoinitiator, at least one co-photoinitiator, at least one filler, and at least one polymerizable pigment dispersion, to a container and using a means for mixing the components to form a smooth composition. In further or alternative embodiments, the composition can be mixed in or transferred to a suitable container, such as, but not limited to, a can.
The compositions, methods and articles described herein relate generally to the field of coatings and more specifically to a composition of matter, comprising UV
curable material, photoinitiators, fillers, and solid pigment dispersions which may be sprayed by conventional HVLP or electrostatic bell, with no additional heat, applicable in one coat, as a finish for metal. Also described herein are compositions and processes for applying a100%
solids, UV curable, opaque, corrosion resistant finish to parts for underhood use in motor vehicles.
An object is to produce opaque, corrosion resistant, UV curable coatings without the milling. Another object is to produce opaque LTV curable coatings with no addition of vehicle. Another object is to decrease production time. Another object is to save space.
Another object is to reduce emissions. Yet another object is to improve color reproducibility and stability. Another object is to improve the appearance of coated articles.
Still yet another object is to produce a product applicable by HVLP or electrostatic bell without the use of any heating apparatus. Another object is to produce opaque, corrosion resistant coatings which may be applied to metals in one coat. Still yet another object is to provide energy savings of up to 80%. Another object is to provide cost savings. Another object is to utilize less space.
A further object is to eliminate the need for air pollution control technology. Another object is to produce visually acceptable parts. A further object is to equal or exceed previous performance of parts as to corrosion resistance. Yet another object is to cut production time.
In one aspect are assemblages for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a means for applying to the object an actinic radiation curable, substantially all solids composition; a means for irradiating the object with a first actinic radiation so as to partially cure the coated surface;
and a means for irradiating the object with a second actinic radiation so as to completely cure the coated surface; wherein the coating does not show marks upon contact with a 10%
solution of HZS04 at 65 °C for up to at least 6 minutes.
In one embodiment of such assemblages, the actinic radiation curable, substantially all solids composition is comprised of a mixture of oligomers, monomers, photoinitatiors, co-photoinitiators, fillers, and polyrnerizable pigment dispersions. In a further embodiment, the means for irradiating so as to partially cure the coated surface and the means for irradiating so as to completely cure the coated surface are located at an irradiation station so as to not require the transport of the object. In still a further embodiment, the means for applying the composition is located at an application station, wherein the object must be moved from the application station to the irradiation station. In yet a further embodiment, such assemblages further comprise a means for moving the object from the application station to the irradiation station. In still yet a further embodiment, the means for moving comprises a conveyer belt.
In further or alternative embodiments, the irradiation station comprises a means for limiting the exposure of actinic radiation to the application station. In yet further or alternative embodiment, assemblages further comprise a means for rotating the object arourid at least one axis. In yet further or alternative embodiment, assemblages further comprise a mounting station wherein the object to be coated is attached to a movable unit. In further embodiments, the movable unit is capable of rotating the object around at least one axis. In further or alternative embodiments, the movable unit is capable of moving the object from the application station to the irradiation station.
In still fixrther or alternative embodiments, such assemblages further comprise a removal station wherein the completely cured coated object is removed from the movable unit. In further embodiments, the completely cured coated object does not require cooling prior to removal from the movable unit.
In further or alternative embodiments, the means for applying includes spraying means, brushing means, rolling means, dipping means, blade coating, and curtain coating means. In further embodiments, the means for applying includes a spraying means. In still further embodiments, the spraying means includes equipment for high volume low pressure (HVLP) spraying. In further or alternative embodiments, the means for applying occurs at ambient temperature. In further or alternative embodiments, the spraying means includes equipment for electrostatic spraying.
In further or alternative embodiments, the application station further comprises a means for reclaiming actinic radiation curable, substantially all solids composition that is non-adhering to the surface of the object. In still further embodiments, the reclaimed actinic radiation curable, substantially all solids composition is subsequently applied to a different obj ect.
W further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers.
In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 5-68% by weight monomer or mixture of monomers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 3-15% photoinitiator or mixture of photoinitiators and co-initiators. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0.5-11% filler or mixture of fillers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 3-15% polymerizable pigment dispersion or mixture of polymerizable dispersions. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight monomer or mixture of monomers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers and 3-15%
photoinitiator or mixture of photoinitiators and co-initiators. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% filler or mixture of fillers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40%
percent by weight oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11%
filler or mixture of fillers, and 3-15% solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions; whereby the room temperature viscosity of the composition is up to about 500 centipoise. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition further comprises an all solids corrosion inhibitor.
In further or alternative embodiments, the first actinic radiation includes actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra violet (ITV) radiation, and combinations thereof. In further or alternative embodiments, the second actinic radiation includes actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof.
In further or alternative embodiments, the irradiation station includes an arrangement of S mirrors.
In further or alternative embodiments, the object being coated is selected from the group consisting of a motor vehicle, a motor vehicle part, a motor vehicle accessory, gardening equipment, a lawnmower, and a lawnmower part. In further embodiments, the article of manufacture is an motor vehicle part. In still further embodiments, the motor vehicle part is an underhood part. In still further embodiments, the underhood part is selected from the group consisting of an oil filter, a damper, brake rotor, a battery casing, an alternator casing, and an engine manifold.
In another aspect are processes for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising attaching the object onto a conveying means; applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station; irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of H2S04 at 65 °C for up to at least 6 minutes.
In further embodiments, such processes further comprise attaching the object to a rotatable spindle prior to the application step. In further or alternative embodiments, such processes further comprise moving the conveying means after attaching the object to the rotatable spindle so as to locate the object near an application station. In further embodiments, such processes further comprise applying an actinic radiation curable composition at the application station as the spindle holding the object rotates. In further embodiments, the conveying means comprises a conveyer belt.
In further or alternative embodiments, the irradiation station comprises a curing chamber containing a first actinic radiation source and a second actinic radiation source.
In further embodiments, such processes further comprise moving the completely cured coated object via the conveying means outside the curing chamber wherein the coated object is packed for storage or shipment.
In further or alternative embodiments, the actinic radiation curable, substantially all solids composition is comprised of a mixture of oligomers, monomers, photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight monomer or mixture of monomers. In fwther or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers and 3-15%
photoinitiator or mixture of photoinitiators and co-initiators. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% filler or mixture of fillers. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition comprises 0-40%
percent by weight oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers, 3-15% photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11%
filler or mixture of fillers, and 3-15% solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions; whereby the room temperature viscosity of the composition is up to about 500 centipoise. In further or alternative embodiments, the actinic radiation curable, substantially all solids composition further comprises an all solids corrosion inhibitor.
In further or alternative embodiments, the application station comprises equipment for electrostatic spray. In further or alternative embodiments, the application station comprises equipment suitable for High pressure Low Volume (HVLP) coatings application.
In either case, further or alternative embodiments include processes wherein the coating is applied in a single application, or the coating is applied in multiple applications.
Further, in either case, further or alternative embodiments include processes wherein the surface is partially covered by the coating, or the surface is fully covered by the coating.
In further or alternative embodiments, the time between the first actinic radiation step and the second actinic radiation step is less than 5 minutes. In further embodiments, the time between the first actinic radiation step and the second actinic radiation step is less than 1 minute. In further embodiments, the time between the first actinic radiation step and the second actinic radiation step is less than 15 seconds.
In further or alternative embodiments, the irradiation station includes at least one light capable of providing actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (LTV) radiation, and combinations thereof.
In further or alternative embodiments, the irradiation station includes at least one light source capable of providing actinic radiation selected from the group consisting of IJV-A
radiation, UV-B radiation, UV-B radiation, UV-C radiation, W-D radiation, or combinations thereof.
In further or alternative embodiments, the irradiation station includes an arrangement of mirrors such that the coated surface is cured in three dimensions. In further or alternative embodiments, the irradiation station includes an arrangement of light sources such that the coated surface is cured in three dimensions. In fixrther embodiments, each light source emits different spectral wavelength ranges. In further embodiments, the different light sources have partially overlapping spectral wavelength ranges.
In another aspect are production lines for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the obj ect onto a conveying means; applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station; irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of H2S04 at 65 °C for up to at least 6 minutes.
In another aspect are facilities or factories for producing objects coated with an actinic radiation cured substantially all solids composition comprising at least one production line for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the object onto a conveying means;
applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station;
irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of HZS04 at 65 °C for up to at least 6 minutes.
In another aspect are coated objects wherein the object is an underhood part of a vehicle and the object is produced at a facility or factory for producing objects coated with an actinic radiation cured substantially all solids composition comprising at least one production line for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the obj ect onto a conveying means;
applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station;
irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10% solution of H2S04 at 65 °C for up to at least 6 minutes.
In another aspect are articles of manufacture, wherein such articles are underhood parts with a completely cured coated surface that exhibits no loss of adhesion after at least 1 hour at a temperature of at least 210 °C, and wherein the article of manufacture is produced at a facility or factory for producing objects coated with an actinic radiation cured substantially all solids composition comprising at least one production line for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising a process comprising attaching the object onto a conveying means; applying an actinic radiation curable composition at an application station onto the surface of the object; moving the coated object via the conveying means to an irradiation station;
irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation; wherein the coating does not show marks upon contact with a 10%
solution of HZS04 at 65 °C for up to at least 6 minutes.
The compositions, methods and articles described herein relate generally to the field of coatings and more specifically to a composition of matter, comprising UV
curable material, photoinitiators, fillers, and solid pigment dispersions which may be sprayed by conventional HVLP or electrostatic bell, with no additional heat, applicable in one coat, as a finish for metal. Also described herein are compositions and processes for applying a100%
solids, LTV curable, opaque, corrosion resistant finish to parts for underhood use in motor vehicles.
INCORPORATION BY REFERENCE
All publications, patents and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE FIGURES
A better understanding of the features and advantages of the present methods and compositions may be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of our methods, compositions, devices and apparatuses are utilized, and the accompanying drawings of which:
Figure 1 is a flowchart of the process used to obtain an obj ect with a completely cured coating of the described compositions.
Figure 2 is a flowchart of the operations that comprise the method.
Figure 3 depicts is an illustration of the components required for an opaque, corrosion resistant, LTV curable coating.
Figure 4 is an illustrative of how the coating is applied.
Figure 5 is an illustration of the cure of the coating.
Figure 6 is an illustration of the immediate availability of shipping and handling of underhood automobile parts.
DETAILED DESCRIPTION OF THE INVENTION
The 100% solids, actinic radiation curable coating compositions, methods of applying the composition, coated surfaces and coated articles described herein, materially enhance the quality of the environment by incorporation of components which are zero or near zero volatile organic compounds (VOC's). Further, such components are essentially non-volatile and therefore have zero or near zero emissions. Such a decrease in emissions significantly decreases air pollution, especially in comparison to the air pollution encountered with coating composition using volatile solvents. In addition, any water and soil pollution associated with waste disposal from processes using coating composition using volatile solvents is minimized using the methods described herein, thereby further contributing to and materially enhancing the quality of the environment. Furthermore, the 100% solids, actinic radiation curable coating compositions, methods, processes and assemblages for applying the compositions, coated surfaces and coated articles described herein, utilize significantly less energy than processes using coating composition using volatile solvents, thereby conserving energy. As used herein, the term "actinic radiation", refers to any radiation source which can produce polymerization reactions, such as, by way of example only, ultraviolet radiation and visible light.
1. Coatings Coatings have been applied to surfaces using either solvent-based systems, including aqueous or non-aqueous solvent-based systems, or powders. The non-aqueous solvent based systems include organic solvents, oils, or alcohols. Organic solvents have properties that make them very desirable in coatings application. Traditionally, paint manufacturers have relied on organic solvents to act as the carrier to evenly disperse the paints over the surface and then evaporate quickly. To achieve this, the organic solvents are used to thin/dilute the coating compositions. However, due to their high volatility such organic solvents create high emission concentrations and are therefore classified as Volatile Organic Compounds (VOC's) and Hazardous Air Pollutants (HAP's). These solvent emissions are of concern to employers and employees, as overexposure can cause renal damage or other health related difficulties.
Furthermore, environmental issues, and potential fire hazards are other issues to consider when using coatings which incorporate organic solvents. These aspects may ultimately result in financial ramifications, including medical expenses, environmental cleanup, and insurance premiums. Another aspect associated with the solvent-based coating formulations, as well as powder coatings, is that large areas are needed to accomplish thermal curing.
This requires a significant financial commitment from the coating end user, in terms of leasing or purchasing space, and the cost of energy associated with the thermal curing process.
2. Thermoset Powder Coatings Powder-based coating compositions and aqueous-based formulations were developed to address the issue of volatile emissions associated with non-aqueous solvent-based systems.
Powder-based coatings, which can include thermoset or UV-cure formulations, may decrease emissions, however due to the need for thermal melting, smoothing and curing (for thermoset powders); such powder-based coatings also require considerable time, space, and energy.
Water-based coatings decrease emissions, and may decrease energy usage when the coated articles are air dried. Such water-based coatings, nonetheless, still require considerable space and time outlays. Furthermore, water-based coatings promote flash-rusting, in which steel or other iron-based surfaces are oxidized as the water-borne coating is drying.
Drying with hot air blowers or the use of vacuum systems may reduce or eliminate the flash rust. However, if the coated items are dried with heat, then there is no added benefit with respect to decreasing energy costs.
Powder coatings are composed of 100% solids material, with no solvents of any kind.
All substrate wetting and flow is due to the melt viscosity of the binder at elevated temperature. Solid resin, pigments, curing agents and additives are premixed, melted and dispersed in an extruder between 100° to 130° Celsius. This molten blend is then squeezed into a thin ribbon, cooled, broken into flakes, and then ground into a fine powder.
Powder coatings can be applied using electrostatic deposition. The charged powder particles are attracted to, and uniformly coat, a part that has been grounded.
The coated part is moved to an oven in which the powder melts and cures into a thin film.
Extrusion thermal stresses and curing using thermo-setting has limited the development of powder coating to those which cure at temperatures below 150° Celsius. Further limitations occur as a result of resin cross-linking within the extruder. The extruder dwell time must thus be limited because such cross-linking can result in increased melt viscosity, more orange peel and possible defects caused by gel particle formation. Also, powder coatings which thermoset at 120 °
Celsius have cure times of 30-60 minutes. This time is not practical for temperature sensitive materials such as those containing plastic or engineered wood components.
Furthermore, once the curing process has begun the melt viscosity increases immediately and stops further flow and leveling. Powder coatings can display an "orange peel" appearance which may be undesirable. Flow and leveling takes place within the first 30-90 seconds of cure, and therefore the degree of orange peel and smoothness is set in.
3. UV Curable Powder Coating Solid resins which possess UV-reactive moieties, and retain the melt and flow characteristics needed to produce high quality coatings, allow for the creation of UV-curable powder coatings. These powder coatings combine the low energy, space efficient and fast cure characteristics observed with UV cure liquid coatings, with the convenience of powder coating application. Also, the combination of UV curing with powder coating technologies effectively separates the melt and flow stages from the curing stage. This thermal latency of W powder coatings allows the coating to flow to maximum smoothness before curing by exposure to LJV radiation. Thus, any substrate which withstands temperatures ranging from 100° to 120° Celsius can be coated using UV curable powder coatings. The powder manufacturing process for thermoset powders or UV cure powders is identical.
The significant difference between thennoset powder coatings and W cure powder coatings is that the applicability of thennoset powder coatings is limited by process, requiring thermal cure temperatures, whereas UV curable powder coatings have limitations resulting from powder storage conditions.
4. UV Curable Liquid Coating Contemporary with the development of powder coatings was the development of IJV-curable liquid coatings. These coatings utilized low molecular weight unsaturated and acrylated resins in combination with photoinitiators to produce a coating which is cured by radical polymerization when exposed to UV radiation. However, due to the highly viscous nature of these liquid UV coatings, material handling and application of the W-curable liquid coatings to complex parts can be burdensome and difficult. These coatings often utilize organic solvents to thin/dilute the formulation as a means to effectively apply the coating to a surface. Consequently, the issues associated with the use of organic solvents, such as environmental, health, and monetary considerations, are also of concern with UV-curable liquid coatings.
5. 100% Solids, UV Curable Coating A need exists for improved 100% solids UV curable coating compositions which are easily applied to surfaces and cure quickly without the use of large curing and drying ovens;
thereby, decreasing production costs associated with owning/leasing space required for drying/curing ovens, along with the cost associated with the energy requirements for operation of drying/curing ovens. In addition, the UV curable coating compositions should result in a more efficient production process because the use of a single coating (i.e. one-coat finish) decreases the time associated with coating a product and results in immediate "pack and ship" capabilities. In addition, it would be advantageous if the UV-curable coating compositions imparted corrosion resistance, abrasion resistance, improved adhesion, and could be either opaque or clear coat finishes. Such advantageous UV-curable coating compositions should not contain volatile organic solvents, thereby limiting health, safety, and environmental risks posed by such solvents. Further advantages of such W-curable coating compositions would be the use of solid pigment dispersions, thus limiting the need for "milling," as required with raw pigments.
A primary object of the methods, compositions, and processes described herein is to produce opaque, corrosion resistant, W curable coatings without the milling.
Milling refers to the powder manufacture processes of premixing, melting and grinding the powder coating formulation to obtain a powder suitable for spraying onto a surface. The addition of these steps to the coating process results in increased time and energy expenditures per article of manufacture coated. Removal of these steps streamlines the coating process and removes the associated milling costs, thus improving overall productivity and lowering business expenditures. As described herein, the replacement of pigment dispersions with polymerizable pigment dispersions, as well as the incorporation of adhesion promoter components, is an effective approach for creating opaque, corrosion resistant, IJV-curable coatings without the need for milling.
Another object of the methods, compositions, and processes described herein is to produce opaque W curable coatings with no addition of vehicle. In general, solvent based coating formulations incorporate four basic types of materials: pigment, resin (binder), solvent, and additives. The liquid portion of these formulations is called the "vehicle", and can involve both the solvent and the resin. Homogeneous pigment dispersions can be created by efficient mixing of insoluble pigment particle in the vehicle, and thereby create opaque coatings. The resin makes up the non-volatile portion of the vehicle, and aids in adhesion, determines coating cohesiveness, affects gloss, and provides resistance to chemicals, water, and acids/bases. Three types of resins are generally used: multiuse resins (acrylics, vinyls, urethanes, polyesters); thermoset resins (alkyds, epoxides); and oils. The type of solvent used in these formulations depends on the resin and are either an organic solvent (such as alcohols, esters, ketones, glycol ethers, methylene chloride, trichloroethane, and petroleum distillates), or water. The significant drawback associated with the use of these types of formulations results from the use of volatile solvents as part of the formulation vehicle.
Although the low vapor pressure of the organic solvent is the characteristic desired to create coatings using these formulations, the corresponding solvent evaporation creates environmental, fire hazard, and worker health issues. Even the use of water, although not generally a fire hazard or having environmental or health issues, can create undesirable effects, such as flash rusting of metal surfaces. As described herein, the compositions and methods are 100%
solids, thus eliminating the undesirable aspects of the vehicle found in typical coating formulations. In this regard, another object is to reduce emissions. Therefore, by using various higher vapor pressure resins as the composition vehicle, the use of any solvent is removed, and the associated solvent emissionlevaporation issues are overcome.
A further object of the methods, compositions, and processes described herein is to eliminate the need for air pollution control technology. As discussed above, the UV-curable coating compositions described herein are environmentally friendly because solvents have been removed from the composition. This effectively decreases the corresponding solvent emissions, and, obviates the need to incorporate air pollution control technology into the manufacturing process. As a result, the methods and compositions described herein can result in fixrther time (e.g., maintenance of air pollution control systems), space and money for an operation in which a coating step is integrated.
Another obj ect of the methods, compositions, and processes described herein is to decrease or cut production time. An additional advantage resulting from using the methods and compositions described herein is that such compositions and methods result in the overall decrease in time required to apply, cure, and dry the coating. Although, conventional coating processes can be adapted to the coating compositions and methods described herein, the use of UV radiation, rather than heat, to initiate the polymerization process significantly decreases the curing time per article coated. Furthermore, the lack of solvent removes the requirement for using heat to drive off solvent, a process which adds significant time and cost to the coating procedure. The use of UV light for curing, and the removal of solvent from the composition, dramatically decreases the time for completion of the total coating process for each article coated. Thus, the overall production time per part is decreased, and this can manifest itself in two ways. First, more parts can be processed in the same time needed for solvent based methods, and second, fulfilling batch orders requires less time and therefore the costs associated with maintaining the production line will be lower.
Another object is to save space, or alternatively stated, another object of the invention is to utilize less space. Each of these aspects has unique benefits depending on whether an existing production line is modified, or a new production line is being designed. The ability to minimize the usage of space for production, whether it be floor space, wall space, or even ceiling space (in the situation when objects are hung from the ceiling), can be critical in terms of productivity, production costs and initial capital expenditure. The removal of the solvent from the UV cure composition allows for the removal of large ovens from the production line. These ovens are used to cure and to force the rapid evaporation of the solvent.
Removing the ovens significantly decreases the volume, (floor, wall, and ceiling space) required for the production system, and in effect utilizes less space for existing production lines. Furthermore, the expense associated with operating the ovens is no longer an issue and the result is decreased production costs. For new production lines removal of these ovens from the design actually saves space, and hence a smaller building may be used to house the production line, thereby decreasing the construction costs. In addition, the capital expenditure for the new production line will be less because ovens are no longer required.
Removal of the ovens results in one feature which is common to both saving space and utilizing less space; in particular, for the situation in which a given specific volume (floor, wall, and ceiling space) is to be utilized for production. This feature is the ability to have many production lines in parallel, and therefore increase productivity. That is, by utilizing less space in a pre-existing facility, multiple coating assembly lines may be housed in the space required by conventional, thermal-based assemblies.
Another aspect associated with the coating production line described herein is that the lower spatial requirements of the coating methods and compositions described herein can be integrated with the associated production line for an article of manufacture.
For instance, with the removal of the large ovens, the streamlined coating production line can be inserted into, by way of example only, the production line of any underhood part used in motor vehicles, such as the production line for oil filters, brake rotors, or dampers. The term "motor vehicle", as used herein, refers to any vehicle which is self propelled by mechanical or electrical power. Motor vehicles, by way of example only, include automobiles, buses, trucks, tractors, recreational vehicles, and off road vehicles. In addition, the UV curable coating composition and associated production line can be inserted into production lines for small engines and engine components, such as lawn mowers, gardening equipment, such as hedge trimmers, edgers and the like.
Still yet another object of the invention is to provide energy savings of up to 80%. As noted above, coating compositions which are solvent based, whether organic solvent or aqueous based, require the use of heat to dry the coated surfaces and thereby force the evaporation of the solvent. Large ovens axe used to accomplish this process, and it can be appreciated that there is a large cost associated with operating these ovens.
Furthermore, the use of ventilation systems (for instance large fans), and air pollution control systems all require energy to operate. Therefore, the UV curable coatings, compositions and methods described herein create significant energy savings by not limiting (or eliminating) the need for large ovens, associated ventilation systems and air purification systems required for alternative thermal or solvent-based coating compositions and methods.
Another object of the invention is to provide cost savings. The various beneficial aspects obtained from the use of the UV curable coating compositions and methods described herein have been discussed; in particular removal of solvents and the associated emissions, which allows for the removal of large drying ovens, ventilation systems, and air pollution control systems from the manufacturing process, also allows for less manufacturing space.
As a result, a cost savings is expected to be associated with the use of the UV curable coating composition and methods described herein.
Yet another obj ect of the invention is to improve color reproducibility and stability.
Pigment color properties such as, strength, transparency/opacity, glosses, shade, rheology, and light and chemical stability, are generally affected to a greater or lesser extent by the size and distribution of the pigment particles in the vehicle in which they are embedded. Pigment particles normally exist in the form of primary particle (50 ~.m to 500 Vim), aggregates, agglomerates and flocculates. Primary particles are individual crystals, whereas aggregate are collections of primary particles bound together at their crystal faces, and agglomerates are a looser type of arrangement with primary particles and aggregates joined at corners and edges.
Flocculates consist of primary particle aggregates and agglomerates generally arranged in a fairly open structure, which can be broken down in shear. However, after the shear is removed, or a dispersion is allowed to stand undisturbed, the flocculates can reform. The relationship between pigment particle size and the ability of a pigment vehicle system to absorb visible electromagnetic radiation is referred to as the color or tinctorial strength. The ability of a given pigment to absorb light (tinctorial strength) increases with decreasing particle diameter, and accordingly increased surface area. Thus, the ability to maintain the pigment at a minimum pigment particle size will yield a maximum tinctorial strength. The primary purpose of a dispersion is to break down pigment aggregates and agglomerates into the primary particles, and therefore achieve optimal benefits of a pigment both visually and economically. When used in a coating composition pigment dispersions exhibit increased tinctorial strength and provided enhanced gloss. However, of concern in obtaining an optimal dispersion is the number of processes involved in creating the pigment dispersion, such as agitating, shearing, milling, and grinding. If these processes are not accurately controlled then the possibility exists for batch to batch color variation and poor color reproducibility. Alternatively, polymerizable pigment dispersions, which exhibit minimal aggregation and agglomeration, are simply mixed into the coating composition and thereby improve color reproducibility by removing the need for these processes in the coating process. Furthermore, due to the reactive functionality of the polymerizable pigment dispersion, during polymerization the pigment becomes an integral part of the resulting coating because it is attached to the reactive functionality. This may impart greater color stability relative to pigment dispersions which simply entrap the pigment particles in the coating matrix. Thus, coatings which incorporate polymerizable pigment dispersions exhibit improved color reproducibility, and improved color stability, greater tinctorial strength and enhanced opacity and gloss. By way of example only, compositions described herein can exhibit acceptable opacity at thicknesses less than 50 microns.
Another object is to improve the appearance of coated articles, and another object is to produce visually acceptable parts. Gloss essentially refers to the smoothness and shine of a surface, and both of these properties are important when considering the visually appearance and ultimate visual acceptability of a coating. As discussed above, the incorporation of polyrnerizable pigment dispersions into the coating composition can yield greater tinctorial strength and enhanced gloss. Furthermore, the incorporation of fillers in the coating composition, along with controlled polymerization conditions, can impart enhanced smoothness. The control of the polymerization process will be described in detail later, briefly however, it involves the use of mixtures of photoinitiators which possess different absorbance characteristics such that longer wavelength radiation can be used to excite a photoinitiator or photoinitiators of the mixture, while shorter wavelength radiation is used to excite the other photoinitiators of the mixture. In this manner, the order of excitation is important. It is desirable that the longer wavelength photoinitiators are excited first, as this allows for improved adhesion and traps the filler components in place. The shorter wavelengths photoinitiators are then excited to complete the polymerization process. If this order of excitation is not used the filler compounds can aggregate and thereby create a matted finish. Thus, former procedure can improve visual appearance and acceptability by to enhancing the surface smoothness, or enhancing the surface shine, or enhancing the surface smoothness and surface shine. However, if a matted appearance is desired the latter procedure may be used.
A further object is to equal or exceed previous performance of parts as to corrosion resistance. There are a variety of corrosion resistance requirements which an effective coating must fulfill. The corrosion resistance testing evaluations include;
salt spray, scab, and cycle corrosion evaluations and any associated creepback. The testing method for evaluating salt spray corrosion involve mounting the test panels in a temperature-controlled chamber, and then spraying the test panel with an aqueous solution of salt or salt mixtures in the form of a fine aerosol. Typically, the solution is a 5% salt (sodium chloride) solution, although the methods can vary according to chamber temperature and the composition of the salt solution. The test panels are inserted into the chamber and the salt solution is sprayed as a very fine fog mist over the samples at a constant temperature. Since the spray is continual, the samples are constantly wet, and thus, constantly subject to corrosion. The samples are rotated frequently to ensure uniform exposure to the salt spray mist. Test duration can be from 24 to 480 hours, or longer. Enhanced corrosion resistance, may be evidenced by exposure of a test panel for at least 400 hours without developing any significant evidence of under-film corrosion, such as blistering or other changes in appearance which may result from pin holes in the coating. In addition, the maximum allowable creepback is 2-4 mm along with at least less than 10% of the surface being corroded within 2-4 mm of sharp edges.
A more rigorous test involves exposure for at least 900 hours without developing any significant evidence of under-film corrosion, such as blistering or other changes in appearance, with the maximum allowable creepback being 2-4 mm and at least less than 10%
of the surface being corroded within 2-4 mm of sharp edges. The UV curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
Scab corrosion testing involves the use of the salt spray procedure however the test panel is scribed such that a scratch is created in the coating. Scab-like corrosion then occurs along the scratch in a coating and manifests itself as a blister like appearance emanating away from the scratch. Enhanced corrosion resistance for scab corrosion may be demonstrated in that after 1 week the test panel exhibits no blistering or surface corrosion, or other change in appearance, with is a maximum creepback of up to 2mm, and at least less than 10% of the surface is corroded within 3 mm of sharp edges. A more rigorous test involves exposure of a scribed test panel for up to 2 weeks without showing evidence of scab corrosion. The UV
curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
Evaluation of coated surfaces using procedures that involve continual exposure to moisture (as occurs in the salt spray test) may not emulate realistic conditions experienced by the coated surface, which in reality will experience periods of wet and dry environments.
Therefore evaluation of a coating using wet/dry cycles, with and without salt spray during the wet cycle, is a more realistic evaluation for daily use of a coating, particularly coatings used in the automotive industry. The continual wetness during the salt spray test does not allow this passive oxide layer to develop. The W curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
Along with corrosion testing, a coating undergoes a number of other evaluation criteria, including, tape adhesion/peel back test with and without humidity, resistance to chipping evaluation, thermal shock testing, and in the case of coatings for the automotive industry, resistance to exposure to automotive fluids. The UV curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
The tape adhesion/peel back test is exactly how it sounds. The coated surface has cellophane tape applied to it and the tape is cross-scored to ensure efficient adhesion of the tape to the coated surface. The tape is then removed to test the adhesive properties of the coating to the surface, with a minimum of 99% paint retention expected. The UV
curable, corrosion resistant coating described herein may meet or exceed this requirement.
Incorporation of humidity to the tape adhesion/peel back test determines how the adhesive properties of the coating behave under conditions in which corrosion may occur.
The UV curable, corrosion resistant coating described herein may meet or exceeds the requirement for this test, wherein after 96 hours there is a minimum of 99%
paint retention, and no blistering or other change in appearance is observed.
Resistance to chipping testing is primarily used to simulate the effects of the impact of flying debris on the coating of a surface. In particular, the test is used to simulate the effects of the impact of flying gravel or other debris on automotive parts. Typically a Gravelometer , which has been designed to evaluate the resistance of surface coatings (paint, clear coats, metallic plating, etc.) to chipping caused by the impacts of gravel or other flying objects. In general, the test sample is mounted in the back of the Gravelometer, and air pressure is used to hurl approximately 300 pieces of gravel, hexagonal metal nuts, or other angled objects at the test panel. The test sample is then removed, gently wiped with a clean cloth, and then tape is applied to the entire tested surface. Removal of the tape then pulls off any loose fragments of the coating. The appearance of the tested sample is then compared to standards to determine the chipping ratings, or visual examination can also be used.
Chipping ratings consist of a number which designates the number of chips observed. The UV
curable, corrosion resistant coating described herein may meet or exceed the requirement for the chip resistance test with a rating of 6-7.
A "cure" test is used to evaluate completeness of curing, the coating adhesion strength to the surface, and solvent resistance. The procedure used is to take a test panel, coat it with the test sample and then cure according using the cure method of choice, such as actinic radiation or in an oven. The coated and cured test panel is the subject to rubbing to evaluate the number of rubs needed to expose primer, or to expose the surface if primer is not used.
Failure normally is determined by a breakthrough to the substrate surface.
Generally, the cloth used to rub the surface is also soaked in an organic solvent such as methyl ethyl ketone (MEK) as a means to accelerate testing conditions and test for stability to solvent exposure.
One rub is considered to be one back and forth cycle, and highly solvent resistant coating achieve a rating of more than 100 double rubs. In addition, a secondary reading may also be obtained by determining at what point a marring of the surface occurs. The LTV
curable, corrosion resistant coating described herein may meet or exceed the 100 double rubs requirement with a possible secondary rating of 0 or 1.
For evaluation of the heat resistance of a coating, a coated test panel is placed in an oven and evaluated for loss of adhesion, cracking, crazing, fading, hazing, or fogging after various periods of thermal exposure. The types of ovens used include, but are not limited to, convection ovens. The L1V curable, corrosion resistant coating described herein may meet or exceed requirements for heat resistance with no loss of adhesion and no cracking, crazing, fading, hazing, or fogging after least 1 hour held at, at least 210 °C, and at least 10 hrs held at, at least 210 °C.
Thermal shock testing is the most strenuous temperature test, designed to show how the product will perform as it expands and contracts under extreme conditions.
Thermal shock testing creates an environment that will show in a short period of time how a coating would behave under adverse conditions throughout years of change. Several variants of testing include the resiliency of a coating to rapidly changing temperatures, such as that experienced in winter when moving from a warm environment, such as a house, garage or warehouse, into the freezing, cold environment outside, or vice versa. Such thermal shock tests have a rapid thermal ramp rate (30°C per minute) and can be either air-to-air or liquid-to-liquid shock tests. Thermal Shock Testing is at the more severe end on the scale of temperature tests and is used for testing coatings, packaging, aircraft parts, military hardware or electronics destined to rugged duty. Most test items undergo air-to-air thermal shock testing where the test product moves from one extreme atmospheric temperature to another via mechanical means. Fully enclosed thermal shock test chambers can be used to avoid unintended exposure to ambient temperature, whereby miiumizing the thermal shock. In Thermal Shock testing the cold zone of the chamber can be maintained at -54°C (-65°F) and the hot zone can be set for 160°C (320°F). The test panels is held at each stage for at least an hour and then moved back and forth between stages in a large number of cycles.
The number of Thermal Shock cycles can vary from 10 or 20 cycles, up to 1500 cycles. The W curable, corrosion resistant coating described herein may meet and exceed the Thermal Shock testing requirement in which no loss of adhesion, cracking, crazing, fading, hazing, or fogging is observed for up to 20 cycles.
In the case of coatings used in the automotive industry, the resistance to motor vehicle liquids such as engine oil, transmission oil (manual and automatic), power steering fluid, engine coolant, brake fluid, window washer fluid, gasoline (containing MTBE or ethanol), ethanolic fuel, methanol fuel, diesel, and biodiesel, is critical, as it is very likely the coated surface will come into contact with any of these fluids throughout the lifetime of the motor vehicle. The test for resistance to motor vehicle liquids is an immersion test which involves dipping the coated test panel into a bath containing the motor vehicle liquids of interest. In addition, the bath is maintained at various temperatures depending on the specific requirements used for evaluation. After removing the test panel a thumbnail under pressure is dragged across the surface. The UV curable, corrosion resistant coating described herein may meets or exceed the presence of any visible defects, such as color change or paint removal to underlying surfaces, or lifting or peeling of paint film, for the liquids listed above.
In particular, the UV curable, corrosion resistant coating described herein may meet and exceed immersion in engine oil for, at least 20 hours at 120°C, at least 24 hours at 150°C, at least 400 hours at 140°C, and at least 500 hours at 150°C.
For immersion in manual transmission oil the UV curable, corrosion resistant coating described herein may remain intact after at least 8 hours at 60°C, or after at least 8 hours at 90°C, or after at least 20 hours at 90°C, or after at least 24 hours at 90°C; while in automatic transmission fluid it may remain intact after at least 8 hours at 60°C, or after at least 8 hours at 70°C, or after at least 20 hours at 70°C, or after at least 24 hours at temperatures from 70°C.
In power steering fluid and engine coolant the UV curable, corrosion resistant coating described herein may remain intact after at least 8 hours at 60°C, or after at least 8 hours at 70°C, or after at least 20 hours at 60°C, or after at least 24 hours at 70°C.
In addition, upon immersion in brake fluid, window washer fluid, gasoline (containing MTBE or ethanol) ethanolic fuel, and methanol fuels, the UV curable, corrosion resistant coating described herein may remain intact after at least 4 hours at 23°C, or after at least 6 hours at 23°C, or after at least 8 hours at 23°C.
Upon immersion, in diesel and biodiesel, the W curable, corrosion resistant coating described herein may remain intact after at least 8 hours at 23°C, or after at least 20 hours at 23°C, or up to 24 hours at 23°C.
In addition, spot testing for blistering of the UV curable, corrosion resistant coating described herein by contact with corrosive solutions at elevated temperature, such as, by way of example only, 10% sulfuric acid at 65°C, demonstrated the coating shows no marking after at least 6 minutes, in other embodiments, no markings after at least 12 minutes, in other embodiments, no markings after at least 24 minutes, and yet in other embodiments, no markings after at least 60 minutes.
Another object of the invention is to produce opaque, corrosion resistant coatings which may be applied to metals in one coat. It is evident that there is considerable benefit to having a coating composition and process which requires only a single coating step. This is cost effective in terms of the amount of coating composition used, as well as with the overall production time per item coated. Clearly, the more a part needs to be handled prior to becoming a finished product, the more costly it is to produce and therefore, the lower the earnings margins are. Thus, there exists the need for a coating composition which can be applied in a single coating step. Obviously, the coating composition must still impart beneficial qualities, such as corrosion resistance, when applied as a single coat. The UV
curable coating composition utilizes fillers in the mixture of oligomers, monomers, polymerizable pigment dispersion, and photoinitiators to impart desirable rheological characteristics to the resulting film that is applied to the surface prior to exposure to UV
radiation. These rheologicial properties include viscosity and thixotropic behavior, which allows the composition to be sprayed onto a surface, but also allows the film to flow and fill in any gaps without dripping or running off the surface. Such control of the rheological properties of the UV curable coating composition contributes to the ability of the coating procedure to occur in a single step.
The term "cure," as used herein, refers to polymerization, at least in part, of a coating composition.
The term "curable," as used herein, refers to a coating composition which is able to polymerize at least in part.
The term "irradiating," as used herein, refers to exposing a surface to actinic radiation.
The term "co-photoinitiator," as used herein, refers to a photoinitiator which may be combined with another photoinitiator or photoinitiators.
The term "polymerizable pigment dispersions," as used herein, refers to pigments attached to polymerizable resins which are dispersed in a coating composition.
The term "polymerizable resin" or activated resin," as used herein, refers to resins which possess reactive functional groups.
The term "pigment," as used herein, refers to compounds which are insoluble or partially soluble, and are used to impart color.
Still yet another object of the invention is to produce a product applicable by HVLP
or electrostatic bell without the use of any heating apparatus. The UV curable coating composition can be applied to surfaces by spraying, curtain coating, dipping, rolling or brushing. However, spraying is the one of the most efficient methods of application, and this can be accomplished using High Volume Low Pressure (HVLP) methodology or electrostatic spraying technology. Note that HVLP and electrostatic spraying techniques are methods well established in the coating industry, thus it is adventitious to develop coating compositions which utilize them as an application means. In addition, because the coating composition is LTV curable there is no need for any heating apparatus to assist in curing. A
significant benefit to curing without requiring any heating apparatus is that thermally sensitive objects can be coated and UV cured without causing thennal damage. For instance metal objects with incorporated thermally sensitive plastic or rubber components are difficult to heat cure due to potential damage to the plastic or rubber. However, coating and UV
curing the UV
curable composition eliminates this problem. In addition, virtually any thermally sensitive object can be coated using the UV curable coating composition approach described herein.
It is very important to the durability of a motor vehicle that corrosion of underhood components be prevented. In addition, for the desirability of a vehicle, components should have an attractive appearance. Thus it is important that underhood parts be coated with a corrosion preventative, visually acceptable, opaque coating. In addition, the coating should be as environmentally friendly as possible, for the welfare of both the business and the general population. Previously, coatings used for this purpose have been either powders or waterborne liquids. Powder coatings require a large amount of time, energy, and space to be properly cured. Waterbornes often have similar requirements and also show inferior performance. A corrosion resistant UV cured, opaque coating equals or exceeds the performance of powders or waterbornes for underhood use, while cutting production time and space requirements as well as up to 80% less energy.
Sprayable UV curable finishing compositions were described by Andrew Sokol in patent # 5,453,451. These coatings, while intended to reduce emissions, were not formulated to prevent corrosion or produce a one coat finish. Some photoinitiators, co-initiators as well as the fillers necessary to achieve a sprayable, opaque, one coat finish of suitable viscosity were not included. Solid pigment dispersions were not used. Solid pigment dispersions are described patent # 4,234,466. Wlule color matching panels, cured by UV light, were described, the intended usage was for the coloring of plastic and powdery paints. As illustrated in the online edition of Industrial Paint and Powder Magazine, "Faster, Friendlier, and Fewer Rejects," by Dennis I~aminski, posted April 28, 2004, it has been accepted wisdom that pigmented UV coatings are high viscosity, requiring heated recycling. Raw pigments are difficult to disperse in these high viscosity coatings and have required milling.
Pigment dispersions in solvents have been used, but they added to emissions.
Pigment dispersions in reactive diluents have been used, but have been difficult to use in quantities sufficient to provide sufficient pigmentation for coverage in one coat.
Prior to this composition, if one wished to apply a corrosion resistant coating to metal, one had several choices. One could have used a conventional solventborne coating, resulting in increased emissions. One could have used a waterborne coating, resulting in higher production time and/or higher energy and space requirements as well as possible flash-rusting. One could have used powder, with increased use of space and energy as well as an orange-peel appearance. Less common alternatives were e-coats, which required considerable space and energy and finally electron beam curing, which required high energy and extensive safety shielding. One could also have used existing UV curable coatings which would have required heating and special spray equipment. An additional problem with such UV curable coatings is increased energy usage through heat. Such heating and/or temperature cycling may cause breakdown in some UV curable components, especially epoxy acrylates. Heat may also cause unwanted polymerization due to inhibitor loss. In addition, UV curable pigmented coatings may require milling, and thus increased production time. Further, color control is not always precise and stable. Use of this composition reduces emissions, reduces space and production time requirements, and reduces energy usage as compared to previous technologies. This composition's use also improves color control and reproducibility. In addition, no heat is used, so breakdown and undesirable polymerization are not a concern.
Described herein are improved sprayable, 100% solids compositions, methods of using the compositions for coating surfaces, and the processes of coating surfaces. More particularly, described herein are compositions which are comprised of actinic radiation curable material, photoinitiators, fillers, slip and flow enhancers, and polymerizable pigment dispersions, and which may be applied in a single coat by conventional High Volume Low Pressure (HVLP) or electrostatic bell, with no additional heat.
The present invention provides sprayable, ultraviolet light curable, 100%
solids compositions of matter comprising UV curable material, photoinitiators, and solid pigment polymerizable dispersions for applying to metal substrates, to produce an opaque coating.
The compositions are especially advantageous in that they produce opaque, corrosion resistant, UV curable coatings without the use of milling and with no addition of vehicle (i.e.
the use of a solvent). The characteristics of the compositions are that they have zero VOC's, zero HAP's, cure in seconds, for example, but not limited to, 1.5 seconds, (thereby decreasing cure time by 99%), require 80% less floor space, require 80% less energy, are non-flammable, require no thinning, are extremely durable, are high gloss, applied using HVLP or electrostatic bell, do not require flash off ovens, do not require thermal cure, have no thermal stress and no orange peel effect. Further, they enable the user to decrease production time while producing a product with superior, more reproducible appearance. The user stands to save time, energy, and space. In addition, the user may reduce or eliminate emissions as no solvent or vehicles are used.
The present invention also provides processes for applying sprayable, ultraviolet light curable, 100% solids. The characteristics of the processes are that they provide an industrial strength coating, tested to meet OEM standards, have 98% reclamation of overspray, no cooling line required, immediate "pack and ship", decreased parts in process, less workholders, no workholder burn off, eliminate air pollution control systems, safer for the environment, safer for employees, decreased production costs, decreased production time, and increased production.
The compositions of the invention are essentially solvent free, and is therefore referred to as a solids composition. The compositions of the invention, based on total composition weight generally comprise from 0-40% percent by weight oligomer, 5-68% by weight monomer or mixture of monomers, 3-15% solid pigment dispersion or mixture of solid dispersions, 0.5-11% filler or mixture of fillers, and 3-15°So photoinitiator or mixture of photoinitiators and co-initiators, which initiate polymerization when exposed to UV light.
The compositions also comprise up to about 2% of a corrosion inhibitor, and up to about 2%
of a slip and flow enhancer.
The oligomer may be selected from the group consisting of monoacrylates, diacrylates, triacrylates, polyacrylates, urethane acrylates, polyester acrylates; including mixtures thereof. Suitable compounds which may be used in the practice of the present invention include, but are not limited to, trimethylolpropane triacrylate, alkoxylated trimethylolpropane triacrylate, such as ethoxylated or propoxylated trimethyolpropane triacrylate, 1,6-hexane diol diacrylate, isobornyl acrylate, aliphatic urethane acrylates, vinyl acrylates, epoxy acrylates, ethoxylated bisphenol A diacrylates, trifunctional acrylic ester, ZO unsaturated cyclic diones, polyester diacrylates; and mixtures thereof.
Preferably, the oligomer is selected from a group consisting of epoxy acrylates, epoxy diacrylate/monomer blends and aliphatic urethane triacrylate/monomer blends.
Even further preferred, the oligomer is selected from the group consisting of fatty acid modified bisphenol A acrylates, bisphenol epoxy acrylates blended with trimethylolpropane triacrylate, and aliphatic urethane triacrylates blended with 1, 6-hexanediol acrylate.
The monomers are selected from a group comprising trimethylolpropane triacrylate;
adhesion promoters such as, but not limited to, 2-phenoxyethyl acrylate, isobornyl acrylate, acrylate ester derivatives, and methacrylate ester derivatives; and cross-linking agents, such as, but not limited to, propoxylated glyceryl triacrylate.
The rapid polymerization reaction is initiated by a photoinitiator component of the composition when exposed to ultraviolet light. The photoinitiators used in the composition of the present invention are categorized as free radicals; however, other photoinitiator types can be used. Furthermore, combinations of photoinitiators may be used which encompass different spectral properties of the UV sources used to initiate polymerization. In one embodiment, the photoinitiators are matched to the spectral properties of the UV sources. It is to be appreciated that the present invention may be cured by medium pressure mercury arc lights which produce intense UV-C (200-280 nm) radiation, or by doped mercury discharge lamps which produce UV-A (315-400 nm) radiation, or UV-B (280-315 nm) radiation depending on the dopant, or by combination of lamp types depending on the photoinitiator combinations used. In addition, the presence of pigments can absorb radiation both in the UV and visible light regions, thereby reducing the effectiveness of some types of photoinitator. However, phosphine oxide type photoinitiators, for example but not limited to bis acylphosphine oxide, are effective in pigmented, including, by way of example only, black, UV curable coating materials. Phosphine oxides also find use as photoinitiators for white coatings.
Photoinitiators which are suitable for use in the practice of the present invention include, but are not limited to, 1-phenyl-2-hydroxy-2-methyl-1-propanone, oligo{2-hydroxy-2 methyl-1-4-(methylvinyl)phenylpropanone)}, 2-hydroxy 2-methyl-1-phenyl propan-1 one, bis (2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyl phosphine oxide, 1-hydroxycyclohexyl phenyl ketone and benzophenone as well as mixtures thereof.
Other useful initiators include, for example, bis(n,5,2,4- cyclopentadien -1-yl)-bis 2,6 -difluoro-3-(1H-pyrol-1-yl) phenyl titanium and 2-benzyl -2-N,N-dimethyl amino -1- (4-morpholinophenyl) -1- butanone. These compounds are IIZGACURE ~ 784 and IRGACURE O 369, respectively (both from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) Still other useful photoiniators include, for example, 2-methyle -1-4(methylthio)-2-morpholinopropan-1-one, 4-(2-hydroxy) phenyl -2-hydroxy -2-(methylpropyl)ketone, 1-hydroxy cyclohexyl phenyl ketone benzophenone, (n-5,2,4-cyclopentadien -1-yl) > 1,2,3,4,5,6-n)-(1-methylethyl) benzene-iron(+) hexafluorophosphate (-1), 2,2 -dimethoxy -2-phenyl-1-acetophen-one 2,4,6- trimethyl benzoyl-Biphenyl phosphine oxide, benzoic acid, 4-(dimethyl amino) -ethyl ether, as well as mixtures thereof.
Preferably, the photoinitiators and co-photoinitiators are selected from a group consisting of phosphine oxide type photoinitiators, Biphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide, benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR ~ 1173 from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.)), 2, 4, 6,-trimethylbenzophenone, 4-methylbenzophenone, oligo (2-hydroxy-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone), amine acrylates, thioxanthones, benzyl methyl ketal, and mixtures thereof.
More preferably, the photoinitiators and co-photoinitiators are 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR ~ 1173 from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.), phosphine oxide type photoinitiators, IRGACURE
500 (Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.), amine acrylates, thioxanthones, benzyl methyl ketal, and mixtures thereof. In addition, thioxanthone is used as a curing booster. The term "curing booster", as used herein, refers to an agent or agents which boost or other wise enhance, or partially enhance, the curing process.
Pigments, are insoluble white, black, or colored material, typically suspended in a vehicle for use in a paint or ink, and may also include effect pigments such as micas, metallic pigments such as aluminum, and opalescent pigments.
Pigments are used in coatings to provide decorative andlor protective functions, however; due to their insolubility, pigments may be a possible contributing factor to a variety of problems in liquid coatings and/or dry paint films. Examples of some film defects thought to be attributable to pigments include: undesirable gloss due to aggregates, blooming, pigment fading, pigment flocculation and/or settlement, separation of pigment mixtures, brittleness, moisture susceptibility, fungal growth susceptibility, and/or thermal instability.
An ideal dispersion consists of a homogeneous suspension of primary particles.
However, inorganic pigments are often incompatible with the resin in which they axe incorporated, and this generally results in the failure of the pigment to uniformly disperse.
Furthermore, a milling step may be required as dry pigments comprise a mixture of primary particles, aggregates, and agglomerates which must be wetted and de-aggregated before the production of a stable, pigment dispersion is obtained.
The level of dispersion in a particular pigment containing coating composition affects the application properties of the composition as well as the optical properties of the cured film. Improvements in dispersion have been sho~m to result in improvements in gloss, color strength, brightness, and gloss retention.
Treatment of the pigment surface to incorporate reactive functionality has improved pigment dispersion. Examples of surface modifiers include polymers such as polystyrene, polypropylene, polyesters, styrene-methacrylic acid type copolymers, styrene-acrylic acid type copolymers, polytetrafluoroethylene, polychlorotrifluoroethylene, polyethylenetetrafluoroethylene type copolymers, polyaspartic acid, polyglutamic acid, and polyglutamic acid-.gamma.-methyl esters; and modifiers such as silane coupling agents and alcohols.
These surface modified pigments have improved the pigment dispersion in a variety of resins, for example, olefins such as polyethylene, polypropylene, polybutadiene, and the like; vinyls such as polyvinylchloride, polyvinylesters, polystyrene; acrylic homopolymers and copolymers; phenolics; amino resins; alkyds, epoxys, siloxanes, nylons, polyurethanes, phenoxys, polycarbonates, polysulfones, polyesters (optionally chlorinated), polyethers, acetals, polyimides, and polyoxyethylenes.
Various organic pigments can be used in the present invention including, for example, carbon black, azo-pigment, phthalocyanine pigment, thioindigo pigment, anthraquinone pigment, flavanthrone pigment, indanthrene pigment, anthrapyridine pigment, pyranthrone pigment, perylene pigment, perynone pigment and quinacridone pigment.
In addition, various inorganic pigments can be used, for example, but not limited to, titanium dioxide, aluminum oxide, zinc oxide, zirconium oxide, iron oxides:
red oxide, yellow oxide and black oxide, Ultramarine blue, Prussian blue, chromium oxide and chromium hydroxide, barium sulfate, tin oxide, calcium sulfate, talc, mica, silicas, dolomite, zinc sulfide, antimony oxide, zirconium dioxide, silicon dioxide, cadmium sulfide, cadmium selenide, lead chromate, zinc chromate, nickel titanate, clays such as kaolin clay, muscovite and sericite.
Inorganic pigments, as used herein, refers to ingredients which are particulate and substantially nonvolatile in use, and includes those ingredients typically labeled as inerts, extenders, fillers or the like in the paint and plastic trade.
Inorganic pigments for the present invention advantageously are opacifying inorganic pigments, such as pigmentary titanium dioxide. Titanium dioxide pigments include rutile and anatase titanium. Treated inorganic pigments, and especially pigmentary titanium dioxide, find uses in powder paints and similar systems.
Preferably, the solid pigment dispersions used in the composition of the invention are selected from a group consisting of the following pigments bonded with modified acrylic resins carbon black, rutile titanium dioxide, organic red pigment, phthalo blue pigment, red oxide pigment, isoindoline yellow pigment, phthalo green pigment, quinacridone violet, carbazole violet, masstone black, light lemon yellow oxide, light organic yellow, transparent yellow oxide, diarylide orange, quinacridone red, organic scarlet, light organic red, and deep organic red. These polyrnerizable pigment dispersions are distinguishable for other pigment dispersions which disperse insoluble pigment particles in some type of resin and entrap the pigment particles within a polymerized matrix. The pigment dispersions use in the composition of the invention have pigments treated such that they are attached to acrylic resins; consequently the pigment dispersion is polymerizable upon exposure to UV
irradiation and becomes intricately involved in the overall coating properties.
The term "corrosion inhibitor", as used herein, refers to an agent or agents which inhibit, or partially inhibit corrosion. Corrosion inhibitors are formulated into coatings to minimize corrosion of the substrate to which it is applied. Suitable corrosion inhibitors can be selected from organic pigments, inorganic pigments, organometallic pigments or other organic compounds which are insoluble in the aqueous phase. It is also possible to use concomitantly anti-corrosion pigments, for example pigments containing phosphates or borates, metal pigments and metal oxide pigments, for example but not limited to zinc phosphates, zinc borates, silicic acid or silicates, for example calcium or strontium silicates, and also organic pigments corrosion inhibitor based on aminoanthraquinone. In addition inorganic corrosion inhibitors, for example salts of nitroisophthalic acid, tannin, phosphoric esters, substituted benzotriazoles or substituted phenols, can be used.
Furthermore, sparingly water-soluble titanium or zirconium complexes of carboxylic acids and resin bound ketocarboxylic acids are particularly suitable as corrosion inhibitors in coating compositions for protecting metallic surfaces. In addition, the "key" embodiment is an all-solids, non-metal corrosion inhibitor, including by way of example only, Cortec Corporation's (4119 White Bear Parkway, St. Paul, MN, U.S.A.), M-235 product, and any other upgrades and superseding products.
The term "filler" refers to a relatively inert substance, added to modify the physical, mechanical, thermal, or electrical properties of a coating. In addition fillers are used to reduce costs.
The particle size of fillers can vary from micron sized particles to manometer sized particles. Polymer nanocomposites are the blend of manometer-sized fillers with either a thermoset or UV curable polymers. Polymer nanocomposites have improved properties compared to conventional filler materials. These improved properties range include improved tensile strength, modulus, heat distortion temperature, barrier properties, UV
resistance, and conductivity.
The fillers used in the composition of the invention are selected from a group consisting of amorphous silicon dioxide prepared with polyethylene wax, synthetic amorphous silca with organic surface treatment, untreated amorphous silicon dioxide, alkyl quaternary bentonite, colloidal silica, acrylated colloidal silica, alumina, zirconia, zinc oxide, niobia, titania aluminum nitride, silver oxide, cerium oxides, and combinations thereof.
The term "flow and slip enhancer", as used herein, refers to an agent or agents which enhance or partially enhance the flow and slip characteristics of a coating.
To provide good substrate wetting and slip with no migration properties to the coated surface it is desirable to incorporate some type of flow and slip enhancer (also referred herein as slip and flow enhancer) into the composition. Slip and flow enhancing agents are additives which reduce the friction coefficient and surface tension, thereby facilitating spreading and improving of slip characteristics of coating films. Examples of slip and flow enhancing agents axe, but not limited to, various waxes, silicones, modified polyesters, acrylated silicone, molybdenum disulfide, tungsten disulfide, EBECRYL ~ 350 (UCB Surface Specialties, Brussels, Belgium), EBECRYL ~ 1360 (UCB Surface Specialties, Brussels, Belgium), and (Sartomer, Exton, PA, U.S.A.), polytetrafluoroethylene, a combination of polyethylene wax and polytetrafluoroethylene, dispersion of low molecular weight polyethylene or polymeric wax, silicone oils, and the like.
Possible methods of applying the composition of the invention include spraying, brushing, curtain coating, dipping, and rolling. To enable spraying onto a desired surface the pre-polymerization viscosity must be controlled. This is achieved by the use of low molecular weight monomers which take the place of organic solvents. However, these monomers also participate and contribute to final coating properties and do not evaporate.
The lacle of solvent use with these coating compositions makes them inherently environmentally friendly. Furthermore, without the need to thermally cure, or drying stages with these coatings, there is no longer a need for large ovens, which decreases the space and energy commitment of the coating end-user.
The viscosity of the composition of the invention is from about 2 centipoise to about 1500 centipoise. Preferably, the composition of the invention wherein has a viscosity of approximately 500 centipoise or less at room temperature, allowing coverage in one coat with application by HVLP or electrostatic bell essentially without the addition of heat.
It is customary that metals to be coated. Desirable coatings prevent corrosion as well as producing an attractive appearance. Historically, metals have been coated primarily by solventborne paints, powder, or waterborne paints. More recently, ultraviolet curable coatings, especially cleax hardcoats have been used. All of these technologies have their flaws. Solventborne paints often show superior performance, but produce undesirable emissions. They also require time, space and energy to cure. Use of powder may decrease emissions, but also requires considerable time, space, and energy to cure.
Powder coatings also often display an "orange peel" appearance that may be undesirable.
Waterborne paints may decrease emissions and energy usage. Waterbornes still require considerable space and time, especially if air drying is used. In addition they may promote flash-rusting and have other performance characteristics inferior to other technologies. The use of UV curing eliminates many emissions, saves space, and decreases both production time and energy usage. However, opaque UV curable coatings have not been available with the spraying characteristics and corrosion resistance that industry requires. Previously, 100% solids UV
curable coatings have also shown poor wetting of pigments, causing an undesirable appearance.
thereby, decreasing production costs associated with owning/leasing space required for drying/curing ovens, along with the cost associated with the energy requirements for operation of drying/curing ovens. In addition, the UV curable coating compositions should result in a more efficient production process because the use of a single coating (i.e. one-coat finish) decreases the time associated with coating a product and results in immediate "pack and ship" capabilities. In addition, it would be advantageous if the UV-curable coating compositions imparted corrosion resistance, abrasion resistance, improved adhesion, and could be either opaque or clear coat finishes. Such advantageous UV-curable coating compositions should not contain volatile organic solvents, thereby limiting health, safety, and environmental risks posed by such solvents. Further advantages of such W-curable coating compositions would be the use of solid pigment dispersions, thus limiting the need for "milling," as required with raw pigments.
A primary object of the methods, compositions, and processes described herein is to produce opaque, corrosion resistant, W curable coatings without the milling.
Milling refers to the powder manufacture processes of premixing, melting and grinding the powder coating formulation to obtain a powder suitable for spraying onto a surface. The addition of these steps to the coating process results in increased time and energy expenditures per article of manufacture coated. Removal of these steps streamlines the coating process and removes the associated milling costs, thus improving overall productivity and lowering business expenditures. As described herein, the replacement of pigment dispersions with polymerizable pigment dispersions, as well as the incorporation of adhesion promoter components, is an effective approach for creating opaque, corrosion resistant, IJV-curable coatings without the need for milling.
Another object of the methods, compositions, and processes described herein is to produce opaque W curable coatings with no addition of vehicle. In general, solvent based coating formulations incorporate four basic types of materials: pigment, resin (binder), solvent, and additives. The liquid portion of these formulations is called the "vehicle", and can involve both the solvent and the resin. Homogeneous pigment dispersions can be created by efficient mixing of insoluble pigment particle in the vehicle, and thereby create opaque coatings. The resin makes up the non-volatile portion of the vehicle, and aids in adhesion, determines coating cohesiveness, affects gloss, and provides resistance to chemicals, water, and acids/bases. Three types of resins are generally used: multiuse resins (acrylics, vinyls, urethanes, polyesters); thermoset resins (alkyds, epoxides); and oils. The type of solvent used in these formulations depends on the resin and are either an organic solvent (such as alcohols, esters, ketones, glycol ethers, methylene chloride, trichloroethane, and petroleum distillates), or water. The significant drawback associated with the use of these types of formulations results from the use of volatile solvents as part of the formulation vehicle.
Although the low vapor pressure of the organic solvent is the characteristic desired to create coatings using these formulations, the corresponding solvent evaporation creates environmental, fire hazard, and worker health issues. Even the use of water, although not generally a fire hazard or having environmental or health issues, can create undesirable effects, such as flash rusting of metal surfaces. As described herein, the compositions and methods are 100%
solids, thus eliminating the undesirable aspects of the vehicle found in typical coating formulations. In this regard, another object is to reduce emissions. Therefore, by using various higher vapor pressure resins as the composition vehicle, the use of any solvent is removed, and the associated solvent emissionlevaporation issues are overcome.
A further object of the methods, compositions, and processes described herein is to eliminate the need for air pollution control technology. As discussed above, the UV-curable coating compositions described herein are environmentally friendly because solvents have been removed from the composition. This effectively decreases the corresponding solvent emissions, and, obviates the need to incorporate air pollution control technology into the manufacturing process. As a result, the methods and compositions described herein can result in fixrther time (e.g., maintenance of air pollution control systems), space and money for an operation in which a coating step is integrated.
Another obj ect of the methods, compositions, and processes described herein is to decrease or cut production time. An additional advantage resulting from using the methods and compositions described herein is that such compositions and methods result in the overall decrease in time required to apply, cure, and dry the coating. Although, conventional coating processes can be adapted to the coating compositions and methods described herein, the use of UV radiation, rather than heat, to initiate the polymerization process significantly decreases the curing time per article coated. Furthermore, the lack of solvent removes the requirement for using heat to drive off solvent, a process which adds significant time and cost to the coating procedure. The use of UV light for curing, and the removal of solvent from the composition, dramatically decreases the time for completion of the total coating process for each article coated. Thus, the overall production time per part is decreased, and this can manifest itself in two ways. First, more parts can be processed in the same time needed for solvent based methods, and second, fulfilling batch orders requires less time and therefore the costs associated with maintaining the production line will be lower.
Another object is to save space, or alternatively stated, another object of the invention is to utilize less space. Each of these aspects has unique benefits depending on whether an existing production line is modified, or a new production line is being designed. The ability to minimize the usage of space for production, whether it be floor space, wall space, or even ceiling space (in the situation when objects are hung from the ceiling), can be critical in terms of productivity, production costs and initial capital expenditure. The removal of the solvent from the UV cure composition allows for the removal of large ovens from the production line. These ovens are used to cure and to force the rapid evaporation of the solvent.
Removing the ovens significantly decreases the volume, (floor, wall, and ceiling space) required for the production system, and in effect utilizes less space for existing production lines. Furthermore, the expense associated with operating the ovens is no longer an issue and the result is decreased production costs. For new production lines removal of these ovens from the design actually saves space, and hence a smaller building may be used to house the production line, thereby decreasing the construction costs. In addition, the capital expenditure for the new production line will be less because ovens are no longer required.
Removal of the ovens results in one feature which is common to both saving space and utilizing less space; in particular, for the situation in which a given specific volume (floor, wall, and ceiling space) is to be utilized for production. This feature is the ability to have many production lines in parallel, and therefore increase productivity. That is, by utilizing less space in a pre-existing facility, multiple coating assembly lines may be housed in the space required by conventional, thermal-based assemblies.
Another aspect associated with the coating production line described herein is that the lower spatial requirements of the coating methods and compositions described herein can be integrated with the associated production line for an article of manufacture.
For instance, with the removal of the large ovens, the streamlined coating production line can be inserted into, by way of example only, the production line of any underhood part used in motor vehicles, such as the production line for oil filters, brake rotors, or dampers. The term "motor vehicle", as used herein, refers to any vehicle which is self propelled by mechanical or electrical power. Motor vehicles, by way of example only, include automobiles, buses, trucks, tractors, recreational vehicles, and off road vehicles. In addition, the UV curable coating composition and associated production line can be inserted into production lines for small engines and engine components, such as lawn mowers, gardening equipment, such as hedge trimmers, edgers and the like.
Still yet another object of the invention is to provide energy savings of up to 80%. As noted above, coating compositions which are solvent based, whether organic solvent or aqueous based, require the use of heat to dry the coated surfaces and thereby force the evaporation of the solvent. Large ovens axe used to accomplish this process, and it can be appreciated that there is a large cost associated with operating these ovens.
Furthermore, the use of ventilation systems (for instance large fans), and air pollution control systems all require energy to operate. Therefore, the UV curable coatings, compositions and methods described herein create significant energy savings by not limiting (or eliminating) the need for large ovens, associated ventilation systems and air purification systems required for alternative thermal or solvent-based coating compositions and methods.
Another object of the invention is to provide cost savings. The various beneficial aspects obtained from the use of the UV curable coating compositions and methods described herein have been discussed; in particular removal of solvents and the associated emissions, which allows for the removal of large drying ovens, ventilation systems, and air pollution control systems from the manufacturing process, also allows for less manufacturing space.
As a result, a cost savings is expected to be associated with the use of the UV curable coating composition and methods described herein.
Yet another obj ect of the invention is to improve color reproducibility and stability.
Pigment color properties such as, strength, transparency/opacity, glosses, shade, rheology, and light and chemical stability, are generally affected to a greater or lesser extent by the size and distribution of the pigment particles in the vehicle in which they are embedded. Pigment particles normally exist in the form of primary particle (50 ~.m to 500 Vim), aggregates, agglomerates and flocculates. Primary particles are individual crystals, whereas aggregate are collections of primary particles bound together at their crystal faces, and agglomerates are a looser type of arrangement with primary particles and aggregates joined at corners and edges.
Flocculates consist of primary particle aggregates and agglomerates generally arranged in a fairly open structure, which can be broken down in shear. However, after the shear is removed, or a dispersion is allowed to stand undisturbed, the flocculates can reform. The relationship between pigment particle size and the ability of a pigment vehicle system to absorb visible electromagnetic radiation is referred to as the color or tinctorial strength. The ability of a given pigment to absorb light (tinctorial strength) increases with decreasing particle diameter, and accordingly increased surface area. Thus, the ability to maintain the pigment at a minimum pigment particle size will yield a maximum tinctorial strength. The primary purpose of a dispersion is to break down pigment aggregates and agglomerates into the primary particles, and therefore achieve optimal benefits of a pigment both visually and economically. When used in a coating composition pigment dispersions exhibit increased tinctorial strength and provided enhanced gloss. However, of concern in obtaining an optimal dispersion is the number of processes involved in creating the pigment dispersion, such as agitating, shearing, milling, and grinding. If these processes are not accurately controlled then the possibility exists for batch to batch color variation and poor color reproducibility. Alternatively, polymerizable pigment dispersions, which exhibit minimal aggregation and agglomeration, are simply mixed into the coating composition and thereby improve color reproducibility by removing the need for these processes in the coating process. Furthermore, due to the reactive functionality of the polymerizable pigment dispersion, during polymerization the pigment becomes an integral part of the resulting coating because it is attached to the reactive functionality. This may impart greater color stability relative to pigment dispersions which simply entrap the pigment particles in the coating matrix. Thus, coatings which incorporate polymerizable pigment dispersions exhibit improved color reproducibility, and improved color stability, greater tinctorial strength and enhanced opacity and gloss. By way of example only, compositions described herein can exhibit acceptable opacity at thicknesses less than 50 microns.
Another object is to improve the appearance of coated articles, and another object is to produce visually acceptable parts. Gloss essentially refers to the smoothness and shine of a surface, and both of these properties are important when considering the visually appearance and ultimate visual acceptability of a coating. As discussed above, the incorporation of polyrnerizable pigment dispersions into the coating composition can yield greater tinctorial strength and enhanced gloss. Furthermore, the incorporation of fillers in the coating composition, along with controlled polymerization conditions, can impart enhanced smoothness. The control of the polymerization process will be described in detail later, briefly however, it involves the use of mixtures of photoinitiators which possess different absorbance characteristics such that longer wavelength radiation can be used to excite a photoinitiator or photoinitiators of the mixture, while shorter wavelength radiation is used to excite the other photoinitiators of the mixture. In this manner, the order of excitation is important. It is desirable that the longer wavelength photoinitiators are excited first, as this allows for improved adhesion and traps the filler components in place. The shorter wavelengths photoinitiators are then excited to complete the polymerization process. If this order of excitation is not used the filler compounds can aggregate and thereby create a matted finish. Thus, former procedure can improve visual appearance and acceptability by to enhancing the surface smoothness, or enhancing the surface shine, or enhancing the surface smoothness and surface shine. However, if a matted appearance is desired the latter procedure may be used.
A further object is to equal or exceed previous performance of parts as to corrosion resistance. There are a variety of corrosion resistance requirements which an effective coating must fulfill. The corrosion resistance testing evaluations include;
salt spray, scab, and cycle corrosion evaluations and any associated creepback. The testing method for evaluating salt spray corrosion involve mounting the test panels in a temperature-controlled chamber, and then spraying the test panel with an aqueous solution of salt or salt mixtures in the form of a fine aerosol. Typically, the solution is a 5% salt (sodium chloride) solution, although the methods can vary according to chamber temperature and the composition of the salt solution. The test panels are inserted into the chamber and the salt solution is sprayed as a very fine fog mist over the samples at a constant temperature. Since the spray is continual, the samples are constantly wet, and thus, constantly subject to corrosion. The samples are rotated frequently to ensure uniform exposure to the salt spray mist. Test duration can be from 24 to 480 hours, or longer. Enhanced corrosion resistance, may be evidenced by exposure of a test panel for at least 400 hours without developing any significant evidence of under-film corrosion, such as blistering or other changes in appearance which may result from pin holes in the coating. In addition, the maximum allowable creepback is 2-4 mm along with at least less than 10% of the surface being corroded within 2-4 mm of sharp edges.
A more rigorous test involves exposure for at least 900 hours without developing any significant evidence of under-film corrosion, such as blistering or other changes in appearance, with the maximum allowable creepback being 2-4 mm and at least less than 10%
of the surface being corroded within 2-4 mm of sharp edges. The UV curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
Scab corrosion testing involves the use of the salt spray procedure however the test panel is scribed such that a scratch is created in the coating. Scab-like corrosion then occurs along the scratch in a coating and manifests itself as a blister like appearance emanating away from the scratch. Enhanced corrosion resistance for scab corrosion may be demonstrated in that after 1 week the test panel exhibits no blistering or surface corrosion, or other change in appearance, with is a maximum creepback of up to 2mm, and at least less than 10% of the surface is corroded within 3 mm of sharp edges. A more rigorous test involves exposure of a scribed test panel for up to 2 weeks without showing evidence of scab corrosion. The UV
curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
Evaluation of coated surfaces using procedures that involve continual exposure to moisture (as occurs in the salt spray test) may not emulate realistic conditions experienced by the coated surface, which in reality will experience periods of wet and dry environments.
Therefore evaluation of a coating using wet/dry cycles, with and without salt spray during the wet cycle, is a more realistic evaluation for daily use of a coating, particularly coatings used in the automotive industry. The continual wetness during the salt spray test does not allow this passive oxide layer to develop. The W curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
Along with corrosion testing, a coating undergoes a number of other evaluation criteria, including, tape adhesion/peel back test with and without humidity, resistance to chipping evaluation, thermal shock testing, and in the case of coatings for the automotive industry, resistance to exposure to automotive fluids. The UV curable, corrosion resistant coating described herein meets and exceeds the requirements for at least one of these tests, in some instances more than one of these tests, and in other instances all these tests.
The tape adhesion/peel back test is exactly how it sounds. The coated surface has cellophane tape applied to it and the tape is cross-scored to ensure efficient adhesion of the tape to the coated surface. The tape is then removed to test the adhesive properties of the coating to the surface, with a minimum of 99% paint retention expected. The UV
curable, corrosion resistant coating described herein may meet or exceed this requirement.
Incorporation of humidity to the tape adhesion/peel back test determines how the adhesive properties of the coating behave under conditions in which corrosion may occur.
The UV curable, corrosion resistant coating described herein may meet or exceeds the requirement for this test, wherein after 96 hours there is a minimum of 99%
paint retention, and no blistering or other change in appearance is observed.
Resistance to chipping testing is primarily used to simulate the effects of the impact of flying debris on the coating of a surface. In particular, the test is used to simulate the effects of the impact of flying gravel or other debris on automotive parts. Typically a Gravelometer , which has been designed to evaluate the resistance of surface coatings (paint, clear coats, metallic plating, etc.) to chipping caused by the impacts of gravel or other flying objects. In general, the test sample is mounted in the back of the Gravelometer, and air pressure is used to hurl approximately 300 pieces of gravel, hexagonal metal nuts, or other angled objects at the test panel. The test sample is then removed, gently wiped with a clean cloth, and then tape is applied to the entire tested surface. Removal of the tape then pulls off any loose fragments of the coating. The appearance of the tested sample is then compared to standards to determine the chipping ratings, or visual examination can also be used.
Chipping ratings consist of a number which designates the number of chips observed. The UV
curable, corrosion resistant coating described herein may meet or exceed the requirement for the chip resistance test with a rating of 6-7.
A "cure" test is used to evaluate completeness of curing, the coating adhesion strength to the surface, and solvent resistance. The procedure used is to take a test panel, coat it with the test sample and then cure according using the cure method of choice, such as actinic radiation or in an oven. The coated and cured test panel is the subject to rubbing to evaluate the number of rubs needed to expose primer, or to expose the surface if primer is not used.
Failure normally is determined by a breakthrough to the substrate surface.
Generally, the cloth used to rub the surface is also soaked in an organic solvent such as methyl ethyl ketone (MEK) as a means to accelerate testing conditions and test for stability to solvent exposure.
One rub is considered to be one back and forth cycle, and highly solvent resistant coating achieve a rating of more than 100 double rubs. In addition, a secondary reading may also be obtained by determining at what point a marring of the surface occurs. The LTV
curable, corrosion resistant coating described herein may meet or exceed the 100 double rubs requirement with a possible secondary rating of 0 or 1.
For evaluation of the heat resistance of a coating, a coated test panel is placed in an oven and evaluated for loss of adhesion, cracking, crazing, fading, hazing, or fogging after various periods of thermal exposure. The types of ovens used include, but are not limited to, convection ovens. The L1V curable, corrosion resistant coating described herein may meet or exceed requirements for heat resistance with no loss of adhesion and no cracking, crazing, fading, hazing, or fogging after least 1 hour held at, at least 210 °C, and at least 10 hrs held at, at least 210 °C.
Thermal shock testing is the most strenuous temperature test, designed to show how the product will perform as it expands and contracts under extreme conditions.
Thermal shock testing creates an environment that will show in a short period of time how a coating would behave under adverse conditions throughout years of change. Several variants of testing include the resiliency of a coating to rapidly changing temperatures, such as that experienced in winter when moving from a warm environment, such as a house, garage or warehouse, into the freezing, cold environment outside, or vice versa. Such thermal shock tests have a rapid thermal ramp rate (30°C per minute) and can be either air-to-air or liquid-to-liquid shock tests. Thermal Shock Testing is at the more severe end on the scale of temperature tests and is used for testing coatings, packaging, aircraft parts, military hardware or electronics destined to rugged duty. Most test items undergo air-to-air thermal shock testing where the test product moves from one extreme atmospheric temperature to another via mechanical means. Fully enclosed thermal shock test chambers can be used to avoid unintended exposure to ambient temperature, whereby miiumizing the thermal shock. In Thermal Shock testing the cold zone of the chamber can be maintained at -54°C (-65°F) and the hot zone can be set for 160°C (320°F). The test panels is held at each stage for at least an hour and then moved back and forth between stages in a large number of cycles.
The number of Thermal Shock cycles can vary from 10 or 20 cycles, up to 1500 cycles. The W curable, corrosion resistant coating described herein may meet and exceed the Thermal Shock testing requirement in which no loss of adhesion, cracking, crazing, fading, hazing, or fogging is observed for up to 20 cycles.
In the case of coatings used in the automotive industry, the resistance to motor vehicle liquids such as engine oil, transmission oil (manual and automatic), power steering fluid, engine coolant, brake fluid, window washer fluid, gasoline (containing MTBE or ethanol), ethanolic fuel, methanol fuel, diesel, and biodiesel, is critical, as it is very likely the coated surface will come into contact with any of these fluids throughout the lifetime of the motor vehicle. The test for resistance to motor vehicle liquids is an immersion test which involves dipping the coated test panel into a bath containing the motor vehicle liquids of interest. In addition, the bath is maintained at various temperatures depending on the specific requirements used for evaluation. After removing the test panel a thumbnail under pressure is dragged across the surface. The UV curable, corrosion resistant coating described herein may meets or exceed the presence of any visible defects, such as color change or paint removal to underlying surfaces, or lifting or peeling of paint film, for the liquids listed above.
In particular, the UV curable, corrosion resistant coating described herein may meet and exceed immersion in engine oil for, at least 20 hours at 120°C, at least 24 hours at 150°C, at least 400 hours at 140°C, and at least 500 hours at 150°C.
For immersion in manual transmission oil the UV curable, corrosion resistant coating described herein may remain intact after at least 8 hours at 60°C, or after at least 8 hours at 90°C, or after at least 20 hours at 90°C, or after at least 24 hours at 90°C; while in automatic transmission fluid it may remain intact after at least 8 hours at 60°C, or after at least 8 hours at 70°C, or after at least 20 hours at 70°C, or after at least 24 hours at temperatures from 70°C.
In power steering fluid and engine coolant the UV curable, corrosion resistant coating described herein may remain intact after at least 8 hours at 60°C, or after at least 8 hours at 70°C, or after at least 20 hours at 60°C, or after at least 24 hours at 70°C.
In addition, upon immersion in brake fluid, window washer fluid, gasoline (containing MTBE or ethanol) ethanolic fuel, and methanol fuels, the UV curable, corrosion resistant coating described herein may remain intact after at least 4 hours at 23°C, or after at least 6 hours at 23°C, or after at least 8 hours at 23°C.
Upon immersion, in diesel and biodiesel, the W curable, corrosion resistant coating described herein may remain intact after at least 8 hours at 23°C, or after at least 20 hours at 23°C, or up to 24 hours at 23°C.
In addition, spot testing for blistering of the UV curable, corrosion resistant coating described herein by contact with corrosive solutions at elevated temperature, such as, by way of example only, 10% sulfuric acid at 65°C, demonstrated the coating shows no marking after at least 6 minutes, in other embodiments, no markings after at least 12 minutes, in other embodiments, no markings after at least 24 minutes, and yet in other embodiments, no markings after at least 60 minutes.
Another object of the invention is to produce opaque, corrosion resistant coatings which may be applied to metals in one coat. It is evident that there is considerable benefit to having a coating composition and process which requires only a single coating step. This is cost effective in terms of the amount of coating composition used, as well as with the overall production time per item coated. Clearly, the more a part needs to be handled prior to becoming a finished product, the more costly it is to produce and therefore, the lower the earnings margins are. Thus, there exists the need for a coating composition which can be applied in a single coating step. Obviously, the coating composition must still impart beneficial qualities, such as corrosion resistance, when applied as a single coat. The UV
curable coating composition utilizes fillers in the mixture of oligomers, monomers, polymerizable pigment dispersion, and photoinitiators to impart desirable rheological characteristics to the resulting film that is applied to the surface prior to exposure to UV
radiation. These rheologicial properties include viscosity and thixotropic behavior, which allows the composition to be sprayed onto a surface, but also allows the film to flow and fill in any gaps without dripping or running off the surface. Such control of the rheological properties of the UV curable coating composition contributes to the ability of the coating procedure to occur in a single step.
The term "cure," as used herein, refers to polymerization, at least in part, of a coating composition.
The term "curable," as used herein, refers to a coating composition which is able to polymerize at least in part.
The term "irradiating," as used herein, refers to exposing a surface to actinic radiation.
The term "co-photoinitiator," as used herein, refers to a photoinitiator which may be combined with another photoinitiator or photoinitiators.
The term "polymerizable pigment dispersions," as used herein, refers to pigments attached to polymerizable resins which are dispersed in a coating composition.
The term "polymerizable resin" or activated resin," as used herein, refers to resins which possess reactive functional groups.
The term "pigment," as used herein, refers to compounds which are insoluble or partially soluble, and are used to impart color.
Still yet another object of the invention is to produce a product applicable by HVLP
or electrostatic bell without the use of any heating apparatus. The UV curable coating composition can be applied to surfaces by spraying, curtain coating, dipping, rolling or brushing. However, spraying is the one of the most efficient methods of application, and this can be accomplished using High Volume Low Pressure (HVLP) methodology or electrostatic spraying technology. Note that HVLP and electrostatic spraying techniques are methods well established in the coating industry, thus it is adventitious to develop coating compositions which utilize them as an application means. In addition, because the coating composition is LTV curable there is no need for any heating apparatus to assist in curing. A
significant benefit to curing without requiring any heating apparatus is that thermally sensitive objects can be coated and UV cured without causing thennal damage. For instance metal objects with incorporated thermally sensitive plastic or rubber components are difficult to heat cure due to potential damage to the plastic or rubber. However, coating and UV
curing the UV
curable composition eliminates this problem. In addition, virtually any thermally sensitive object can be coated using the UV curable coating composition approach described herein.
It is very important to the durability of a motor vehicle that corrosion of underhood components be prevented. In addition, for the desirability of a vehicle, components should have an attractive appearance. Thus it is important that underhood parts be coated with a corrosion preventative, visually acceptable, opaque coating. In addition, the coating should be as environmentally friendly as possible, for the welfare of both the business and the general population. Previously, coatings used for this purpose have been either powders or waterborne liquids. Powder coatings require a large amount of time, energy, and space to be properly cured. Waterbornes often have similar requirements and also show inferior performance. A corrosion resistant UV cured, opaque coating equals or exceeds the performance of powders or waterbornes for underhood use, while cutting production time and space requirements as well as up to 80% less energy.
Sprayable UV curable finishing compositions were described by Andrew Sokol in patent # 5,453,451. These coatings, while intended to reduce emissions, were not formulated to prevent corrosion or produce a one coat finish. Some photoinitiators, co-initiators as well as the fillers necessary to achieve a sprayable, opaque, one coat finish of suitable viscosity were not included. Solid pigment dispersions were not used. Solid pigment dispersions are described patent # 4,234,466. Wlule color matching panels, cured by UV light, were described, the intended usage was for the coloring of plastic and powdery paints. As illustrated in the online edition of Industrial Paint and Powder Magazine, "Faster, Friendlier, and Fewer Rejects," by Dennis I~aminski, posted April 28, 2004, it has been accepted wisdom that pigmented UV coatings are high viscosity, requiring heated recycling. Raw pigments are difficult to disperse in these high viscosity coatings and have required milling.
Pigment dispersions in solvents have been used, but they added to emissions.
Pigment dispersions in reactive diluents have been used, but have been difficult to use in quantities sufficient to provide sufficient pigmentation for coverage in one coat.
Prior to this composition, if one wished to apply a corrosion resistant coating to metal, one had several choices. One could have used a conventional solventborne coating, resulting in increased emissions. One could have used a waterborne coating, resulting in higher production time and/or higher energy and space requirements as well as possible flash-rusting. One could have used powder, with increased use of space and energy as well as an orange-peel appearance. Less common alternatives were e-coats, which required considerable space and energy and finally electron beam curing, which required high energy and extensive safety shielding. One could also have used existing UV curable coatings which would have required heating and special spray equipment. An additional problem with such UV curable coatings is increased energy usage through heat. Such heating and/or temperature cycling may cause breakdown in some UV curable components, especially epoxy acrylates. Heat may also cause unwanted polymerization due to inhibitor loss. In addition, UV curable pigmented coatings may require milling, and thus increased production time. Further, color control is not always precise and stable. Use of this composition reduces emissions, reduces space and production time requirements, and reduces energy usage as compared to previous technologies. This composition's use also improves color control and reproducibility. In addition, no heat is used, so breakdown and undesirable polymerization are not a concern.
Described herein are improved sprayable, 100% solids compositions, methods of using the compositions for coating surfaces, and the processes of coating surfaces. More particularly, described herein are compositions which are comprised of actinic radiation curable material, photoinitiators, fillers, slip and flow enhancers, and polymerizable pigment dispersions, and which may be applied in a single coat by conventional High Volume Low Pressure (HVLP) or electrostatic bell, with no additional heat.
The present invention provides sprayable, ultraviolet light curable, 100%
solids compositions of matter comprising UV curable material, photoinitiators, and solid pigment polymerizable dispersions for applying to metal substrates, to produce an opaque coating.
The compositions are especially advantageous in that they produce opaque, corrosion resistant, UV curable coatings without the use of milling and with no addition of vehicle (i.e.
the use of a solvent). The characteristics of the compositions are that they have zero VOC's, zero HAP's, cure in seconds, for example, but not limited to, 1.5 seconds, (thereby decreasing cure time by 99%), require 80% less floor space, require 80% less energy, are non-flammable, require no thinning, are extremely durable, are high gloss, applied using HVLP or electrostatic bell, do not require flash off ovens, do not require thermal cure, have no thermal stress and no orange peel effect. Further, they enable the user to decrease production time while producing a product with superior, more reproducible appearance. The user stands to save time, energy, and space. In addition, the user may reduce or eliminate emissions as no solvent or vehicles are used.
The present invention also provides processes for applying sprayable, ultraviolet light curable, 100% solids. The characteristics of the processes are that they provide an industrial strength coating, tested to meet OEM standards, have 98% reclamation of overspray, no cooling line required, immediate "pack and ship", decreased parts in process, less workholders, no workholder burn off, eliminate air pollution control systems, safer for the environment, safer for employees, decreased production costs, decreased production time, and increased production.
The compositions of the invention are essentially solvent free, and is therefore referred to as a solids composition. The compositions of the invention, based on total composition weight generally comprise from 0-40% percent by weight oligomer, 5-68% by weight monomer or mixture of monomers, 3-15% solid pigment dispersion or mixture of solid dispersions, 0.5-11% filler or mixture of fillers, and 3-15°So photoinitiator or mixture of photoinitiators and co-initiators, which initiate polymerization when exposed to UV light.
The compositions also comprise up to about 2% of a corrosion inhibitor, and up to about 2%
of a slip and flow enhancer.
The oligomer may be selected from the group consisting of monoacrylates, diacrylates, triacrylates, polyacrylates, urethane acrylates, polyester acrylates; including mixtures thereof. Suitable compounds which may be used in the practice of the present invention include, but are not limited to, trimethylolpropane triacrylate, alkoxylated trimethylolpropane triacrylate, such as ethoxylated or propoxylated trimethyolpropane triacrylate, 1,6-hexane diol diacrylate, isobornyl acrylate, aliphatic urethane acrylates, vinyl acrylates, epoxy acrylates, ethoxylated bisphenol A diacrylates, trifunctional acrylic ester, ZO unsaturated cyclic diones, polyester diacrylates; and mixtures thereof.
Preferably, the oligomer is selected from a group consisting of epoxy acrylates, epoxy diacrylate/monomer blends and aliphatic urethane triacrylate/monomer blends.
Even further preferred, the oligomer is selected from the group consisting of fatty acid modified bisphenol A acrylates, bisphenol epoxy acrylates blended with trimethylolpropane triacrylate, and aliphatic urethane triacrylates blended with 1, 6-hexanediol acrylate.
The monomers are selected from a group comprising trimethylolpropane triacrylate;
adhesion promoters such as, but not limited to, 2-phenoxyethyl acrylate, isobornyl acrylate, acrylate ester derivatives, and methacrylate ester derivatives; and cross-linking agents, such as, but not limited to, propoxylated glyceryl triacrylate.
The rapid polymerization reaction is initiated by a photoinitiator component of the composition when exposed to ultraviolet light. The photoinitiators used in the composition of the present invention are categorized as free radicals; however, other photoinitiator types can be used. Furthermore, combinations of photoinitiators may be used which encompass different spectral properties of the UV sources used to initiate polymerization. In one embodiment, the photoinitiators are matched to the spectral properties of the UV sources. It is to be appreciated that the present invention may be cured by medium pressure mercury arc lights which produce intense UV-C (200-280 nm) radiation, or by doped mercury discharge lamps which produce UV-A (315-400 nm) radiation, or UV-B (280-315 nm) radiation depending on the dopant, or by combination of lamp types depending on the photoinitiator combinations used. In addition, the presence of pigments can absorb radiation both in the UV and visible light regions, thereby reducing the effectiveness of some types of photoinitator. However, phosphine oxide type photoinitiators, for example but not limited to bis acylphosphine oxide, are effective in pigmented, including, by way of example only, black, UV curable coating materials. Phosphine oxides also find use as photoinitiators for white coatings.
Photoinitiators which are suitable for use in the practice of the present invention include, but are not limited to, 1-phenyl-2-hydroxy-2-methyl-1-propanone, oligo{2-hydroxy-2 methyl-1-4-(methylvinyl)phenylpropanone)}, 2-hydroxy 2-methyl-1-phenyl propan-1 one, bis (2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyl phosphine oxide, 1-hydroxycyclohexyl phenyl ketone and benzophenone as well as mixtures thereof.
Other useful initiators include, for example, bis(n,5,2,4- cyclopentadien -1-yl)-bis 2,6 -difluoro-3-(1H-pyrol-1-yl) phenyl titanium and 2-benzyl -2-N,N-dimethyl amino -1- (4-morpholinophenyl) -1- butanone. These compounds are IIZGACURE ~ 784 and IRGACURE O 369, respectively (both from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) Still other useful photoiniators include, for example, 2-methyle -1-4(methylthio)-2-morpholinopropan-1-one, 4-(2-hydroxy) phenyl -2-hydroxy -2-(methylpropyl)ketone, 1-hydroxy cyclohexyl phenyl ketone benzophenone, (n-5,2,4-cyclopentadien -1-yl) > 1,2,3,4,5,6-n)-(1-methylethyl) benzene-iron(+) hexafluorophosphate (-1), 2,2 -dimethoxy -2-phenyl-1-acetophen-one 2,4,6- trimethyl benzoyl-Biphenyl phosphine oxide, benzoic acid, 4-(dimethyl amino) -ethyl ether, as well as mixtures thereof.
Preferably, the photoinitiators and co-photoinitiators are selected from a group consisting of phosphine oxide type photoinitiators, Biphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide, benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR ~ 1173 from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.)), 2, 4, 6,-trimethylbenzophenone, 4-methylbenzophenone, oligo (2-hydroxy-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone), amine acrylates, thioxanthones, benzyl methyl ketal, and mixtures thereof.
More preferably, the photoinitiators and co-photoinitiators are 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR ~ 1173 from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.), phosphine oxide type photoinitiators, IRGACURE
500 (Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.), amine acrylates, thioxanthones, benzyl methyl ketal, and mixtures thereof. In addition, thioxanthone is used as a curing booster. The term "curing booster", as used herein, refers to an agent or agents which boost or other wise enhance, or partially enhance, the curing process.
Pigments, are insoluble white, black, or colored material, typically suspended in a vehicle for use in a paint or ink, and may also include effect pigments such as micas, metallic pigments such as aluminum, and opalescent pigments.
Pigments are used in coatings to provide decorative andlor protective functions, however; due to their insolubility, pigments may be a possible contributing factor to a variety of problems in liquid coatings and/or dry paint films. Examples of some film defects thought to be attributable to pigments include: undesirable gloss due to aggregates, blooming, pigment fading, pigment flocculation and/or settlement, separation of pigment mixtures, brittleness, moisture susceptibility, fungal growth susceptibility, and/or thermal instability.
An ideal dispersion consists of a homogeneous suspension of primary particles.
However, inorganic pigments are often incompatible with the resin in which they axe incorporated, and this generally results in the failure of the pigment to uniformly disperse.
Furthermore, a milling step may be required as dry pigments comprise a mixture of primary particles, aggregates, and agglomerates which must be wetted and de-aggregated before the production of a stable, pigment dispersion is obtained.
The level of dispersion in a particular pigment containing coating composition affects the application properties of the composition as well as the optical properties of the cured film. Improvements in dispersion have been sho~m to result in improvements in gloss, color strength, brightness, and gloss retention.
Treatment of the pigment surface to incorporate reactive functionality has improved pigment dispersion. Examples of surface modifiers include polymers such as polystyrene, polypropylene, polyesters, styrene-methacrylic acid type copolymers, styrene-acrylic acid type copolymers, polytetrafluoroethylene, polychlorotrifluoroethylene, polyethylenetetrafluoroethylene type copolymers, polyaspartic acid, polyglutamic acid, and polyglutamic acid-.gamma.-methyl esters; and modifiers such as silane coupling agents and alcohols.
These surface modified pigments have improved the pigment dispersion in a variety of resins, for example, olefins such as polyethylene, polypropylene, polybutadiene, and the like; vinyls such as polyvinylchloride, polyvinylesters, polystyrene; acrylic homopolymers and copolymers; phenolics; amino resins; alkyds, epoxys, siloxanes, nylons, polyurethanes, phenoxys, polycarbonates, polysulfones, polyesters (optionally chlorinated), polyethers, acetals, polyimides, and polyoxyethylenes.
Various organic pigments can be used in the present invention including, for example, carbon black, azo-pigment, phthalocyanine pigment, thioindigo pigment, anthraquinone pigment, flavanthrone pigment, indanthrene pigment, anthrapyridine pigment, pyranthrone pigment, perylene pigment, perynone pigment and quinacridone pigment.
In addition, various inorganic pigments can be used, for example, but not limited to, titanium dioxide, aluminum oxide, zinc oxide, zirconium oxide, iron oxides:
red oxide, yellow oxide and black oxide, Ultramarine blue, Prussian blue, chromium oxide and chromium hydroxide, barium sulfate, tin oxide, calcium sulfate, talc, mica, silicas, dolomite, zinc sulfide, antimony oxide, zirconium dioxide, silicon dioxide, cadmium sulfide, cadmium selenide, lead chromate, zinc chromate, nickel titanate, clays such as kaolin clay, muscovite and sericite.
Inorganic pigments, as used herein, refers to ingredients which are particulate and substantially nonvolatile in use, and includes those ingredients typically labeled as inerts, extenders, fillers or the like in the paint and plastic trade.
Inorganic pigments for the present invention advantageously are opacifying inorganic pigments, such as pigmentary titanium dioxide. Titanium dioxide pigments include rutile and anatase titanium. Treated inorganic pigments, and especially pigmentary titanium dioxide, find uses in powder paints and similar systems.
Preferably, the solid pigment dispersions used in the composition of the invention are selected from a group consisting of the following pigments bonded with modified acrylic resins carbon black, rutile titanium dioxide, organic red pigment, phthalo blue pigment, red oxide pigment, isoindoline yellow pigment, phthalo green pigment, quinacridone violet, carbazole violet, masstone black, light lemon yellow oxide, light organic yellow, transparent yellow oxide, diarylide orange, quinacridone red, organic scarlet, light organic red, and deep organic red. These polyrnerizable pigment dispersions are distinguishable for other pigment dispersions which disperse insoluble pigment particles in some type of resin and entrap the pigment particles within a polymerized matrix. The pigment dispersions use in the composition of the invention have pigments treated such that they are attached to acrylic resins; consequently the pigment dispersion is polymerizable upon exposure to UV
irradiation and becomes intricately involved in the overall coating properties.
The term "corrosion inhibitor", as used herein, refers to an agent or agents which inhibit, or partially inhibit corrosion. Corrosion inhibitors are formulated into coatings to minimize corrosion of the substrate to which it is applied. Suitable corrosion inhibitors can be selected from organic pigments, inorganic pigments, organometallic pigments or other organic compounds which are insoluble in the aqueous phase. It is also possible to use concomitantly anti-corrosion pigments, for example pigments containing phosphates or borates, metal pigments and metal oxide pigments, for example but not limited to zinc phosphates, zinc borates, silicic acid or silicates, for example calcium or strontium silicates, and also organic pigments corrosion inhibitor based on aminoanthraquinone. In addition inorganic corrosion inhibitors, for example salts of nitroisophthalic acid, tannin, phosphoric esters, substituted benzotriazoles or substituted phenols, can be used.
Furthermore, sparingly water-soluble titanium or zirconium complexes of carboxylic acids and resin bound ketocarboxylic acids are particularly suitable as corrosion inhibitors in coating compositions for protecting metallic surfaces. In addition, the "key" embodiment is an all-solids, non-metal corrosion inhibitor, including by way of example only, Cortec Corporation's (4119 White Bear Parkway, St. Paul, MN, U.S.A.), M-235 product, and any other upgrades and superseding products.
The term "filler" refers to a relatively inert substance, added to modify the physical, mechanical, thermal, or electrical properties of a coating. In addition fillers are used to reduce costs.
The particle size of fillers can vary from micron sized particles to manometer sized particles. Polymer nanocomposites are the blend of manometer-sized fillers with either a thermoset or UV curable polymers. Polymer nanocomposites have improved properties compared to conventional filler materials. These improved properties range include improved tensile strength, modulus, heat distortion temperature, barrier properties, UV
resistance, and conductivity.
The fillers used in the composition of the invention are selected from a group consisting of amorphous silicon dioxide prepared with polyethylene wax, synthetic amorphous silca with organic surface treatment, untreated amorphous silicon dioxide, alkyl quaternary bentonite, colloidal silica, acrylated colloidal silica, alumina, zirconia, zinc oxide, niobia, titania aluminum nitride, silver oxide, cerium oxides, and combinations thereof.
The term "flow and slip enhancer", as used herein, refers to an agent or agents which enhance or partially enhance the flow and slip characteristics of a coating.
To provide good substrate wetting and slip with no migration properties to the coated surface it is desirable to incorporate some type of flow and slip enhancer (also referred herein as slip and flow enhancer) into the composition. Slip and flow enhancing agents are additives which reduce the friction coefficient and surface tension, thereby facilitating spreading and improving of slip characteristics of coating films. Examples of slip and flow enhancing agents axe, but not limited to, various waxes, silicones, modified polyesters, acrylated silicone, molybdenum disulfide, tungsten disulfide, EBECRYL ~ 350 (UCB Surface Specialties, Brussels, Belgium), EBECRYL ~ 1360 (UCB Surface Specialties, Brussels, Belgium), and (Sartomer, Exton, PA, U.S.A.), polytetrafluoroethylene, a combination of polyethylene wax and polytetrafluoroethylene, dispersion of low molecular weight polyethylene or polymeric wax, silicone oils, and the like.
Possible methods of applying the composition of the invention include spraying, brushing, curtain coating, dipping, and rolling. To enable spraying onto a desired surface the pre-polymerization viscosity must be controlled. This is achieved by the use of low molecular weight monomers which take the place of organic solvents. However, these monomers also participate and contribute to final coating properties and do not evaporate.
The lacle of solvent use with these coating compositions makes them inherently environmentally friendly. Furthermore, without the need to thermally cure, or drying stages with these coatings, there is no longer a need for large ovens, which decreases the space and energy commitment of the coating end-user.
The viscosity of the composition of the invention is from about 2 centipoise to about 1500 centipoise. Preferably, the composition of the invention wherein has a viscosity of approximately 500 centipoise or less at room temperature, allowing coverage in one coat with application by HVLP or electrostatic bell essentially without the addition of heat.
It is customary that metals to be coated. Desirable coatings prevent corrosion as well as producing an attractive appearance. Historically, metals have been coated primarily by solventborne paints, powder, or waterborne paints. More recently, ultraviolet curable coatings, especially cleax hardcoats have been used. All of these technologies have their flaws. Solventborne paints often show superior performance, but produce undesirable emissions. They also require time, space and energy to cure. Use of powder may decrease emissions, but also requires considerable time, space, and energy to cure.
Powder coatings also often display an "orange peel" appearance that may be undesirable.
Waterborne paints may decrease emissions and energy usage. Waterbornes still require considerable space and time, especially if air drying is used. In addition they may promote flash-rusting and have other performance characteristics inferior to other technologies. The use of UV curing eliminates many emissions, saves space, and decreases both production time and energy usage. However, opaque UV curable coatings have not been available with the spraying characteristics and corrosion resistance that industry requires. Previously, 100% solids UV
curable coatings have also shown poor wetting of pigments, causing an undesirable appearance.
6. 100% Solids, UV Curable Coating Composition Use The composition of the present invention is a significant improvement as it does not contain any water or organic solvent which must be removed before complete curing is achieved. Therefore, the composition of the present invention is much less hazardous to the environment, and is economical because it requires less space, less energy and less time. In addition, the composition of the invention can be applied in as a single coat, and gives a corrosion resistant coating. Therefore, use of the composition of the invention to coat various products, such as automotive parts, decreases coating time and therefore increases production.
Figure 1 is a schematic of the process used for coating objects with the IJV
curable coating composition. The first stage of the assemblage is an optional mounting station, in which the object to be coated is attached to a movable unit, by way of example only, a spindle, a hook, or a baseplate. The object can be attached using, by way of example only, nails, screws, bolts and nuts, tape, and glue. In addition, human workers can perform the task of attachment, or alternatively, robots can be used to do the same function.
Next, the mounted object is translated by an optional means for moving to an Application Station. The optional means for moving can be achieved, by way of example only, conveyer belts, rails, tracks, chains, containers, bins, and carts. In addition, the means for moving can be mounted on a wall, or a floor, or a ceiling, any combination thereof. The Application Station is the location at which the desired object is coated with the necessary coating composition. The means for applying the coating composition is located at the Application Station. The means for applying the coating composition include, by way of example only, high pressure low volume spraying (HVLP) equipment, electrostatic spraying equipment, brushing, rolling, dipping, blade coating, curtain coating or a combination thereof. The multiple means for applying the coating composition can be incorporated and arranged at the Application Station whereby it is ensured that top, bottom and side coverage of the object occurs.
In addition, the mounted object is optionally rotated, on at least one axis, prior to and during the application of the coating composition to ensure uniform coverage. When application of the coating composition is complete, the mounted coated object may continue to rotate, or may cease rotating. The Application Station may also include an optional reclamation system to reclaim any oversprayed coating composition, and whereby reclaim at least 98% of oversprayed coating composition. This composition recycling system allows for significant savings in the use and production of coating compositions, as the reclaimed composition can be applied to different objects in the process line. The mounted coated object may now be translated from the Application Station, by the optional means for moving, to the Irradiation Station (also referred to herein as a curing chamber), wherein curing of the coated object occurs. The Irradiation Station is located further along the production line at a separate location from the Application Station. In one embodiment the Irradiation Station has a means for limiting exposure of actinic radiation to other portions of the assemblage. Multiple means are envisioned, including, but not limited to, doors, curtains, shields, and tunnels which incorporate angulax or curved paths along the production line. The means for limiting exposure of actinic radiation of the Irradiation Station are used, such as, by way of example only, either closing doors, placement of shields, or closing curtains, to protect operators form exposure to UV radiation, and to shield the Application Station to ensure that no curing occurs there. Inside the Irradiation Station there are three sets of UV lamps arranged to ensure top, bottom and side exposure to the UV radiation. In addition each UV
lamp set contains two separate lamp types; by way of example only, one a mercury arc lamp and the other a mercury arc lamp doped with iron, to ensure proper three dimensional curing. Thus, there are actually six lamps with in the Irradiation Station. Alternatively, this three dimensional curing can be achieved by using only two lamps, by way of example only, one a mercury arc lamp and the other a mercury arc lamp doped with iron, with a mirror assembly arranged to ensure exposure to the UV radiation and curing of the top, bottom and sides of the coated object. Regardless of the specific approach used, location of the two lamp types within the Irradiation Station is adventitious as it does not require transport of the coated object to separate locations for partial curing and then complete curing.
In one embodiment, after translation of the mounted coated object inside the Irradiation Station, the doors close and the mounted coated obj ect is again optionally rotated.
The longer wavelength lamps, by way of example only, mercury arc lamp doped with iron, are activated for the partial curing stage, and then the sorter wavelength lamps, by way of example only, mercury arc lamp, are activated for the full cure stage. The longer wavelength lamps do not need to be completely off before the shorter wavelength lamps are turned on.
Following the two curing stages, all lamps are turned off and rotation of the mounted coated and completely cured obj ect is stopped, the doors on the other side of the Irradiation Station are opened and the fully cured mounted object is translated, using the optional means for moving, to an optional Removal Station. At the optional Removal Station coated, fully cured object may be removed from the mounting and, either moved to a storage facility, using the optional means for moving, or immediately packed and shipped. In addition, human workers can perform the task of removal, or alternatively, robots can be used to do the same function.
No cooling is required prior to removal, as no heat is required for the application or curing steps, with all steps occurring at ambient temperature.
Figure 2 is a flow chart outlining a typical approach when using the composition of the invention. Initially, the composition is prepared to the desired specification regarding opacity, color, corrosion resistance, gloss, etc. Generally the components are mixed together using, by way of example only, a sawtooth blade or a helical mixer, until a smooth coating mixture is obtained. In addition, mixing can be achieved by shaking, stirring, rocking, or agitating. Next, this composition is applied to the desired surface using HVLP
or electrostatic bell, and then cured by using either a single UV light source, or a combination of light sources which emit spectral frequencies that overlap the required wavelengths needed to excite the specific photoinitiators used in the composition. After curing is complete, the coated surface is ready for immediate handling and shipping. Figure 3 depicts an illustration of the components required to create an opaque, corrosion resistant, UV
curable coating.
Figure 4 shows the arrangement of spray heads used for coating, although other coating techniques can be used such as dipping, flow, or curtain coating. Figure 5 indicates the UV
lamp arrangement for complete three dimensional curing. Finally, Figure 6 illustrate the beneficial ability for immediate "pack and ship", without the need to wait for parts to cool or for solvent emissions to dissipate.
This process can be applied, by way of example only, to the coating of underhood parts used in the automotive industry. Underhood parts generally refer to automotive parts which are not immediately visible, unless the vehicle is lifted, or the covering to the engine compartment (i.e. hood) is lifted or removed. Some examples, but not limited to, of underhood parts which can be coated with the composition of the invention using this process are oil filters, dampers, brake rotors, engine blocks, engine manifolds, alternator casings, and battery casings. Advantages for the use of these compositions and methods is that the coating does not ball up and come off of completely cured, coated objects, and in the case of dampers, one benefit of the increased adhesion is decreased squeakiness of the dampers.
Previous technology involves the application of conventional opaque, corrosion resistant coatings to provide a finish to underhood parts of motor vehicles.
These coatings have, in the past been solventborne. More recently, in the interest of lower emissions, these coatings have been waterborne or powder. Refernng to Figure 4, numbers 19 through 25 are taken from previous technologies, such as HVLP or electrostatic sprayers (19, 21, and 25), conveyer systems (23), rotating part holders (22 and 24), and the paxt to be coated (20). All these technologies require long curing times and larger space. In addition, large amounts of energy are often required. A system for destruction of volatile solvents involved in curing may also be required. With powder, a system for collection of particulates may be required.
A 100% solids UV curable coating is one that contains no added solvents or water which would require evaporation or to be driven off by heat. As a result, there are no emissions from solvent. No space is required for large ovens. No time is required for evaporation or baking. Energy use is up to 80% lower, because heating is unnecessary. With this process, emissions can be lower still, while saving space, time and energy and requiring no final system for pollution control. Furthermore, the process of the invention has the ability to reclaim any oversprayed, uncured solids.
It has been assumed that opaque coatings could not be well enough cured by UV
radiation to fully penetrate to the base substrate and to meet the quality demands of the automotive industry. By combination of a properly formulated 100% solids UV
curable coating, Figure 3, and appropriate frequencies of light, Figure 5, 26-28, these results may be obtained. Such a coating is cured by exposure to ultra-violet light, instead of heat or exposure to air. Since this curing process is almost instantaneous, requiring (for example) an average of 1.5 seconds per light (Figure 5), both time and energy are conserved. Curing lights used may be high pressure mercury lamps, mercury lamps doped with gallium or iron, or in combination as required. Lamps may be powered by direct application of voltage, by microwaves, or by radio-waves.
Referring to Figure 3, a coating is prepared using a mixture of photoinitiators sufficient to encompass all necessary frequencies of light. These are used to work with the pairs of lights in Figure 5, 26-28. Photoinitiators are compounds that absorb ultra-violet light and use the energy of that light to promote the formation of a dry layer of coating. In addition, the coating must contain a combination of oligomer and monomers such that necessary corrosion resistance is obtained. Oligomers are molecules containing several repeats of a single molecule. Monomers are substances containing single molecules that can link to oligomers and to each other. Proper choice of monomer also promotes adhesion to a properly prepared surface.
Polymerization, in particular acrylate double bond conversion and induction period, can be affected by the choice of oligomers, photoinitiators, inhibitors, and pigments, as well as UV lamp irradiance and spectral output. In comparison to clear coat formulations, the presence of pigments has made curing much more complex due to the absorption of the UV
radiation by the pigment. Thus, the use of variable wavelength UV sources, along with matching of absorption characteristics of photoinitiators with UV source spectral output, can allow for curing of pigmented formulations.
Light sources used for UV curing: include arc lamps, such as carbon arc lamps, xenon arc lamps, mercury vapor lamps, tungsten halide lamps, lasers, the sun, sunlamps, and fluorescent lamps with ultra-violet light emitting phosphors. Medium pressure mercury and high pressure xenon lamps have various emission lines at wavelengths which are absorbed by most commercially available photoinitiators. In addition, mercury arc lamps can be doped with iron or gallium. Alternatively, lasers are monochromatic (single wavelength) and can be used to excite photoinitiators which absorb at wavelengths that are too weak or not available when using arc lamps. For instance, medium pressure mercury arc lamps have intense emission lines at 254 nm, 265 nm, 295 nm, 301 nm, 313 nm, 366 nm, 405/408 nm, 436 nm, 546 nm, and 577/579 nm. Therefore, a photoinitiator with an absorbance maximum at 350 nm may not be a efficiently excited using a medium pressure mercury arc lamp, but could be efficiently initiated using a 355 nm Nd:YV04 (Vanadate) solid-state lasers.
Commercial UV/Visible light sources with varied spectral output in the range of 250-450 nm may be used directly for curing purposes; however wavelength selection can be achieved with the use of optical bandpass filters. Therefore, as described herein, the user can take advantage of the optimal photoinitiator absorbance characteristics.
Regardless of the light source, the emission spectra of the lamp must overlap the absorbance spectrum of the photoinitiator. Two aspects of the photoinitator absorbance spectrum need to be considered. The wavelength absorbed and the strength of absorption (molar extinction coefficient). For example, the photoinitiators HMPP and TPO
in DAROCUR ~ 4265 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) have absorbance peaks at 270-290 nm and 360-380 nm, while MMMP in IRGACURE ~ 907 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) absorbs at 350 nm and IRGACURE ~ 500 (which is a blend of IRGACURE
184 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) and benzophenone) absorbs between 300 nm and 450 nm.
The addition of pigment to a formulation increases the opacity of the resulting coating and can affect any through curing abilities. Furthermore, the added pigment can absorb the incident curing radiation and thereby affect the performance of the photoinitiator. Thus, the curing properties of opaque pigmented coatings can depend on the pigment present, individual formulation, irradiation conditions, and substrate reflection.
Therefore consideration of the respective UV/Vis absorbance characteristics of the pigment and the photoinitiator can be used to optimize UV curing of pigmented coatings.
Generally, photoinitiators used for curing pigmented formulations have a higher molar extinction coefficient between the longer wavelengths (300 nm-450 nm) than those used for curing clear formulations. Although, the presence of pigments can absorb radiation both in the UV and visible light regions, thereby reducing absorption suitable for radiation curing, phosphine oxide type photoinitiators, for example but not limited to bis acylphosphine oxide, are 1 S effective in pigmented, including, by way of example only, black, UV
curable coating materials. Phosphine oxides also find use as photoinitiators for white coatings.
The mercury gas discharge lamp is the UV source most widely used for curing, as it is a very efficient lamp with intense lines UV-C (200-280 nm) radiation, however it has spectral emission lines in the UV-A (315-400 nm) and in the UV-B (280-513 nm) regions.
The mercury pressure strongly affects the spectral efficiency of this lamp in the UV-A, UV-B and UV-C regions. Furthermore, by adding small amounts (doping) of silver, gallium, indium, lead, antimony, bismuth, manganese, iron, cobalt and/or nickel to the mercury as metal iodides or bromides, the mercury spectrum can be strongly changed mainly in the UV-A, but also in the UV-B and UV-C regions. Doped gallium gives intensive lines at 403 and 417 nm;
whereas doping with iron raises the spectral radiant power in the UV-A region of 358-388 nm by a factor of 2, while because of the presence of iodides UV-B and UV-C
radiation are decreased by a factor of 3 to 7. As discussed above, the presence of pigments in a coating formulation can absorb incident radiation and thereby affect the excitation of the photoinitiator. Thus, it is desirable to tailor the UV source used with the pigment dispersions and the photoinitiator , photoinitiator mixture or photoinitiator/co-initiator mixture used. For instance, by way of example only, an iron doped mercury arc lamp (emission 358-388 nm) is ideal for use with photoinitator IRGACURE O 500 (absorbance between 300 and 450 nm).
In addition, multiple lamps with a different spectral characteristics, or sufficiently different in that there is some spectral overlap, can be used to excite mixtures of photoinitiator or mixtures of photoinitatiors and co-initiators. For instance, by way of example only, the use of a iron doped mercury arc lamp (emission 358-388 nm) in combination with a pure mercury arc lamp (emission 200-280 mn). The order in which the excitation sources are applied can be adventitiously used to obtain enhanced coating characteristic, such as, by way of example only, smoothness, shine, adhesion, abrasion resistance and corrosion resistance. Initial exposure of the coated surface with the longer wavelength source is beneficial, as it traps the filler particle in place and initiates polymerization near the surface, thereby imparting a smooth and adherent coating. Following this with exposure to the higher energy, shorter wavelength radiation enables for a fast cure of the remaining film that has been set in place by the initial polymerization stage.
Automotive parts may be properly cleaned and prepared using conventional technology. In particularly this involves extensive degreasing and washing.
Referring to Figure 4 the coating is then applied using either HVLP or electrostatic technology, this is the same technology used to apply conventional coatings. Alternative applications might involve 1 S dipping, flow, or curtain coating of parts. Referring to Figure 5, the coating is then exposed to single UV light or an arrangement of lights used to obtain complete three dimensional curing. After curing the part does not require any cooling step, or time for solvent evaporation to occur, thus the part is available for immediate packing and shipping.
EXAMPLES
Example 1 In an embodiment of this composition approximately 26% of aliphatic urethane triacrylate blended with 1, 6-hexanediol acrylate (EBECRYL ~ 264, from UCB
Surface Specialties, Brussels, Belgium), 18% of 2-phenoxyethyl acrylate, 7% of propoxylated glyceryl triacrylate, 26% of isobornyl acrylate, 9% methacrylate ester derivative (EBECRYL
~ 168, from UCB Surface Specialties, Brussels, Belgium), 6% 2-hydroxy-2-methyl-phenyl-propan-1-one, and 2% of a mixture of diphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide, oligo (2-hydroxy -2 -methyl-1-(4 - (1-methylvinyl)phenyl)propanone), 2, 4, 6,-trimethylbenzophenone, and 4-methylbenzophenone, (ESACURE ~ KTO 46, from Lamberti S.p.A., Gallarate (VA), Italy), 4% of black pigment dispersion (PC 9317 from Elementis, Staines, UK) and 2% amorphous silicon dioxide are mixed to form a blaclc coating. All components are combined using either a conventional mixer with a sawtooth blade or a helical mixer, until a smooth coating is obtained. This coating may be applied by HVLP or electrostatic bell and cured by UV light.
Example 2 In an embodiment of this composition a clear coating is prepared that is 37.5%
of a blend bisphenol epoxy acrylate with 25% trimethylolpropane triacrylate (EBECRYL
3720-TP25, from UCB Surface Specialties, Brussels, Belgium), 34.1% 2-phenoxyethyl acrylate, 15.8% trimethylolpropane triacrylate, 7.3% methacrylate ester derivative (EBECRYL ~ 168, from UCB Surface Specialties, Brussels, Belgium), and 5.3% of IRGACURE OO 500 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.). A mixture of solid pigment dispersions is prepared using rutile titanium dioxide bonded to a modified acrylic (PC 9003 from Elementis, Staines, UK) to which 1.2%
l0 of a similarly bonded carbon black (PC 9317 from Elementis, Staines, UK) is added. To the clear coating is added 10.1% of the pigment dispersion mixture, 1% amorphous silicon dioxide prepared with polyethylene wax (SYLOID ~ RAD 2005, from the Grace Davison division of WR Grace & Co., Columbia, MD, U.S.A.), 0.2% synthetic amorphous silica with organic surface treatment (SYLOID ~ RAD 2105, from the Grace Davison division of WR
l5 Grace ~ Co., Columbia, MD, U.S.A.), and 2.1% diphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide. These additions are dispersed throughout the clear coating by a helical mixer until a smooth coating is produced. This coating may be applied by HVLP
and cured by UV light.
Example 3 20 In another embodiment of this composition 67% of isoborny acrylate is blended with 16% rutile titanium dioxide bonded to a modified acrylic (PC 9003 from Elementis, Staines, UK), 1 % diphenyl (2, 4, 6 - trimethylbenzoyl) phosphine oxide, 2% of IRGACURE
(from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.), 8%
amorphous silicon dioxide prepared with polyethylene wax (LANCO MATTE 2000 O, from 25 Lubrizol, Wickliffe, Ohio U.S.A), 4% amine acrylate (CN386, from Sartomer, Exton, PA, U.S.A.), and 2% amorphous silicon dioxide prepared with polyethylene wax (SYLOID
RAD 2005, from the Grace Davison division of WR Grace & Co., Columbia, MD, U.S.A.).
All components are combined using either a conventional mixer with a sawtooth blade or a helical mixer, until a smooth coating is obtained. This coating may be applied by HVLP and 30 cured by UV light. CN386 (from Sartomer, Exton, PA, U.S.A.) is a difunctional amine coinitiator which, when used in conjunction with a photosensitizer such as benzophenone, promotes rapid curing under UV light.
Example 4 A further embodiment is the procedure used for making a clear coat. The components of the coatings composition are mixed under air, as the presence of oxygen prevents premature polymerization. It is desired that exposure light be kept to a minimum, in particularly the use of sodium vapor lights should be avoided. However, the use of darkroom lighting may be an option. The components used in the manufacture of the coating composition which come in contact with monomers and coating mixture, such as mixing vessels and mixing blades, should be made of stainless steel or plastic, preferably polyethylene or polypropylene. Polystyrene and PVC should be avoided, as the monomers and coating mixture will dissolve them. In addition, contact of the monomers and coating mixture with mild steel, alloys of copper, acids, bases, and oxidizers should be avoided.
Furthermore, brass fittings must be avoided, as they will cause premature polymerization or gelling. For the manufacture of clear coatings it is only essential to obtain thorough mixing, and consequently the control of shear is not necessary. Adequate mixing of the clear coating composition can be obtained after 1-3 hours using a 1/3 horse power (hp) mixer and a 50 gallon cylindrical tank. Smaller quantities, up to 5 gallons, can be adequately mixed after 3 hours using a laboratory mixer (1/15 -1/10 hp). Round walled vessels are desired as this avoids accumulation of solid oligomer in corners and any subsequent problems associated with incomplete mixing. Another, parameter is that the mixers blades should be placed off of the bottom of the mixing vessel, at a distance of one half of the diameter of the mixer. The oligomers are added to the mixing vessel first, and if necessary the oligomers are gently warmed to aid in handling. Oligomers should not be heated over 120 °F, therefore if warming is needed the use of a temperature controlled heating oven or heating mantle is recommended. Band heaters should be avoided. Monomers and colloidal suspensions are added next, in any order, followed by the ester/monomer adhesion promoters.
Photoinitiators are added last to ensure that the time the complete composition is exposed to light is minimized. With the mixing vessel shielded from light exposure the mixing is then carried out after all the components are added. After mixing, there are air bubbles present and the coating may appear cloudy. These bubbles rapidly dissipate, leaving a clear coating composition. As a final step, prior to removing the coating composition from the mixing vessel, the bottom of the mixing vessel is scraped to see if any un-dissolved oligomer is present. This is done as a precaution to ensure thorough mixing has taken place. If the composition is thoroughly mixed then the coating composition is filtered through a 1 micron filter using a bag filter. The composition is then ready for use.
Example 5 A further embodiment is the manufacture procedure for pigmented coatings. Here a mixer of sufficient power and configuration is used to create laminar flow and efficiently bring the pigment dispersions against the blades of the mixer. For small laboratory quantities below 400 mLs, a laboratory mixer or blender is sufficient, however for quantities of up to half of a gallon a 1/15 -1110 hp laboratory mixer can be used, but mixing will take several days. For commercial quantities, a helical or saw-tooth mixer of at least 30 hp with a 250 gallon round walled, conical bottomed tank may be used. To make a pigmented composition a clear coating composition is mixed first, see example 4. The pigment dispersion mixtures are premixed prior to addition to the clear coat composition as this ensures obtaining the correct color. The premixing of the pigments dispersions is easily achieved by shaking the pigments dispersion in a closed container, while wearing a dust mask. The fillers and the premixed pigments/pigment dispersions are then added to the clear coat composition and mixed for 1 %a to 2 hours. Completeness of mixing is determined by performing a drawdown and checking for un-dissolved pigment. This is accomplished by drawing off a small quantity of the pigmented mixture from the bottom of the mixing tank and applying a thin coating onto a surface. This thin coating is then examined for the presence of any pigment which had not dissolved. The mixture is then run through a 100 mesh filter. A
thoroughly mixed pigmented coating composition will show little or no un-dissolved pigment.
Example 6 Another embodiment is the incorporation of nano-particulates into a coating composition by mixing 26% of aliphatic urethane triacrylate blended with 1, 6-hexanediol acrylate (EBECRYL ~ 264, from UCB Surface Specialties, Brussels, Belgium), 18%
of 2-phenoxyethyl acrylate, 7% of propoxylated glyceryl triacrylate, 26% of isobornyl acrylate, 9% methacrylate ester derivative (EBECRYL ~ 168, from UCB Surface Specialties, Brussels, Belgium), 6% 2-hydroxy-2-methyl-1-phenyl-propan-1-one, and 2% of a mixture of diphenyl (2, 4, 6 - trimethylbenzoyl) phosphine oxide, oligo (2-hydroxy -2 -methyl-1-(4 - (1-methylvinyl)phenyl)propanone), 2, 4, 6,- trimethylbenzophenone, and 4-methylbenzophenone, (ESACURE ~ KTO 46, from Lamberti S.p.A., Gallarate (VA), Italy), 4% of black pigment dispersion (PC 9317 from Elementis, Staines, UK), 1 %
nanometer sized alumina particles, and 1% amorphous silicon dioxide are mixed to form a black coating. All components are combined using either a conventional mixer with a sawtooth blade or a helical mixer, until a smooth coating is obtained. This coating may be applied by HVLP or electrostatic bell and cured by UV light.
Example 7 Still another embodiment is the process for coating an oil filter external surface with an actinic radiation curable, substantially all solids composition as described in example 1, using a black pigment dispersion. A process begins by attaching an oil filter to a rotatable spindle, and then attaching this combination to a conveyer belt system. Note that rotation of the rotatable spindle/oil filter assembly during the coating procedure ensures a complete coating of the oil filter surface. The rotatable spindle/oil filter assembly is then moved via the conveyer belt system into the coating application section, locating the rotatable spindle/oil filter assembly in the vicinity of electrostatic spraying system. The electrostatic spraying system has three spray heads arranged to ensure top, bottom and side coverage of the object being coated. Rotation of the spindle/oil filter assembly begins prior to spraying of the coating composition (described in example 1) from the three spray heads. The coating composition is then applied simultaneously from the three electrostatic spray heads, while the spindle/oil filter assembly continues to rotate. The coated spindle/oil filter assembly is then L 5 transported by the conveyer belt into a curing chamber located further down the process line.
The curing chamber has two sets of doors which are closed during curing to protect operators form exposure to UV radiation. Inside the curing chamber the three sets of UV
lamps are arranged to ensure top, bottom and side exposure to the UV radiation.
Furthermore each UV
lamp set contains two separate lamp types; one a mercury arc lamp and the other a mercury ?0 arc lamp doped with iron, to ensure proper curing. Therefore there are actually six lamps with in the curing chamber. Note that this three dimensional curing can be achieved by using only two lamps, one a mercury arc lamp and the other a mercury arc lamp doped with iron, with a mirror assembly to ensure exposure to the top, bottom and sides. Once inside the curing chamber the doors close and the spindle/oil filter assembly is again rotated. The ;5 mercury arc lamp doped with iron is then activated for the partial curing stage, and then the mercury arc lamp is activated for full cure. Note that the mercury arc lamp doped with iron does not need to be completely off before the mercury arc lamp is turned on.
Both lamps are turned off and rotation of the spindle/oil filter assembly is stopped. The doors on the other side of the curing chamber are opened and the fully cured oil filter with a black pigmented 0 corrosion resistant coating is then moved via the conveyer belt to a packaging area away from the curing chamber. The oil filter is then removed from the rotatable spindle, packed and shipped.
Example 8:
Still another embodiment is the process for coating a damper external surface with an actinic radiation curable, substantially all solids composition as described in example 6, using a blue pigment dispersion. A process begins by attaching an damper to a rotatable spindle, and then attaching this combination to a conveyer belt system. Note that rotation of the rotatable spindle/damper assembly during the coating procedure ensures a complete coating of the damper surface. The rotatable spindle/damper assembly is then moved via the conveyer belt system into the coating application section, locating the rotatable spindle/damper assembly in the vicinity of electrostatic spraying system. The electrostatic spraying system has three spray heads arranged to ensure top, bottom and side coverage of the object being coated. Rotation of the spindle/damper assembly begins prior to spraying of the coating composition (described in example 6) from the three spray heads.
The coating composition is then applied simultaneously from the three electrostatic spray heads, while the spindle/damper assembly continues to rotate. The coated spindle/damper assembly is then transported by the conveyer belt into a curing chamber located fizrther down the process line.
The curing chamber has two sets of doors which are closed during curing to protect operators form exposure to LTV radiation. Inside the curing chamber the three sets of UV
lamps are arranged to ensure top, bottom and side exposure to the LTV radiation.
Furthernlore each UV
lamp set contains two separate lamp types; one a mercury arc lamp and the other a mercury arc lamp doped with iron, to ensure proper curing. Therefore there are actually six lamps with in the curing chamber. Note that this three dimensional curing can be achieved by using only two lamps, one a mercury arc lamp and the other a mercury arc lamp doped with iron, with a mirror assembly to ensure exposure to the top, bottom and sides. Once inside the curing chamber the doors close and the spindle/damper assembly is again rotated. The mercury arc lamp doped with iron is then activated for the partial curing stage, and then the mercury arc lamp is activated for full cure. Note that the mercury arc lamp doped with iron does not need to be completely off before the mercury arc lamp is turned on.
Both lamps are turned off and rotation of the spindle/damper assembly is stopped. The doors on the other side of the curing chamber are opened and the fully cured damper with a blue pigmented corrosion resistant coating is then moved via the conveyer belt to a packaging area away from the curing chamber. The damper is then removed from the rotatable spindle, packed and shipped.
Example 9:
A further embodiment is testing the stability of the UV curable coating described in example 1. The stability of the cured composition coated onto an oil filter, as described in example 7, to resistance to motor vehicle liquids, in particular engine oil was conducted using an immersion test. The test involves dipping the coated and cured oil filter into a bath containing the engine oil at temperature of 120°C. The coated and cured oil filter is kept in this temperature bath for 24 hours and removed. After removing the coated and cured oil filter from the temperature bath a thumbnail under pressure is dragged across the surface in an attempt to damage the surface. Any indication of damage is looked for, and if no damage is observed the coated and cured oil filter is placed back into the bath for further testing.
All percentages given are by weight. EBECRYLs ~ are available from UCB Surface Specialties, Brussels, Belgium. SYLOIDs ~ are available from the Grace Davison division of WR Grace & Co., Columbia, MD, U.S.A. Cited solid pigment dispersions are available from Elementis, Staines, UK. IRGACURE ~ and DAROCUR ~ photoinitiators are available D from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.. LANCO MATTE 2000 D is available from Lubrizol, Wickliffe, Ohio U.S.A.
CN3~6 and CN990 are available from Sartomer, Exton, PA, U.S.A. ESACURE O KTO
46 is available from Lamberti S.p.A., Gallarate (VA), Italy.
Z0 While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the pauticular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Figure 1 is a schematic of the process used for coating objects with the IJV
curable coating composition. The first stage of the assemblage is an optional mounting station, in which the object to be coated is attached to a movable unit, by way of example only, a spindle, a hook, or a baseplate. The object can be attached using, by way of example only, nails, screws, bolts and nuts, tape, and glue. In addition, human workers can perform the task of attachment, or alternatively, robots can be used to do the same function.
Next, the mounted object is translated by an optional means for moving to an Application Station. The optional means for moving can be achieved, by way of example only, conveyer belts, rails, tracks, chains, containers, bins, and carts. In addition, the means for moving can be mounted on a wall, or a floor, or a ceiling, any combination thereof. The Application Station is the location at which the desired object is coated with the necessary coating composition. The means for applying the coating composition is located at the Application Station. The means for applying the coating composition include, by way of example only, high pressure low volume spraying (HVLP) equipment, electrostatic spraying equipment, brushing, rolling, dipping, blade coating, curtain coating or a combination thereof. The multiple means for applying the coating composition can be incorporated and arranged at the Application Station whereby it is ensured that top, bottom and side coverage of the object occurs.
In addition, the mounted object is optionally rotated, on at least one axis, prior to and during the application of the coating composition to ensure uniform coverage. When application of the coating composition is complete, the mounted coated object may continue to rotate, or may cease rotating. The Application Station may also include an optional reclamation system to reclaim any oversprayed coating composition, and whereby reclaim at least 98% of oversprayed coating composition. This composition recycling system allows for significant savings in the use and production of coating compositions, as the reclaimed composition can be applied to different objects in the process line. The mounted coated object may now be translated from the Application Station, by the optional means for moving, to the Irradiation Station (also referred to herein as a curing chamber), wherein curing of the coated object occurs. The Irradiation Station is located further along the production line at a separate location from the Application Station. In one embodiment the Irradiation Station has a means for limiting exposure of actinic radiation to other portions of the assemblage. Multiple means are envisioned, including, but not limited to, doors, curtains, shields, and tunnels which incorporate angulax or curved paths along the production line. The means for limiting exposure of actinic radiation of the Irradiation Station are used, such as, by way of example only, either closing doors, placement of shields, or closing curtains, to protect operators form exposure to UV radiation, and to shield the Application Station to ensure that no curing occurs there. Inside the Irradiation Station there are three sets of UV lamps arranged to ensure top, bottom and side exposure to the UV radiation. In addition each UV
lamp set contains two separate lamp types; by way of example only, one a mercury arc lamp and the other a mercury arc lamp doped with iron, to ensure proper three dimensional curing. Thus, there are actually six lamps with in the Irradiation Station. Alternatively, this three dimensional curing can be achieved by using only two lamps, by way of example only, one a mercury arc lamp and the other a mercury arc lamp doped with iron, with a mirror assembly arranged to ensure exposure to the UV radiation and curing of the top, bottom and sides of the coated object. Regardless of the specific approach used, location of the two lamp types within the Irradiation Station is adventitious as it does not require transport of the coated object to separate locations for partial curing and then complete curing.
In one embodiment, after translation of the mounted coated object inside the Irradiation Station, the doors close and the mounted coated obj ect is again optionally rotated.
The longer wavelength lamps, by way of example only, mercury arc lamp doped with iron, are activated for the partial curing stage, and then the sorter wavelength lamps, by way of example only, mercury arc lamp, are activated for the full cure stage. The longer wavelength lamps do not need to be completely off before the shorter wavelength lamps are turned on.
Following the two curing stages, all lamps are turned off and rotation of the mounted coated and completely cured obj ect is stopped, the doors on the other side of the Irradiation Station are opened and the fully cured mounted object is translated, using the optional means for moving, to an optional Removal Station. At the optional Removal Station coated, fully cured object may be removed from the mounting and, either moved to a storage facility, using the optional means for moving, or immediately packed and shipped. In addition, human workers can perform the task of removal, or alternatively, robots can be used to do the same function.
No cooling is required prior to removal, as no heat is required for the application or curing steps, with all steps occurring at ambient temperature.
Figure 2 is a flow chart outlining a typical approach when using the composition of the invention. Initially, the composition is prepared to the desired specification regarding opacity, color, corrosion resistance, gloss, etc. Generally the components are mixed together using, by way of example only, a sawtooth blade or a helical mixer, until a smooth coating mixture is obtained. In addition, mixing can be achieved by shaking, stirring, rocking, or agitating. Next, this composition is applied to the desired surface using HVLP
or electrostatic bell, and then cured by using either a single UV light source, or a combination of light sources which emit spectral frequencies that overlap the required wavelengths needed to excite the specific photoinitiators used in the composition. After curing is complete, the coated surface is ready for immediate handling and shipping. Figure 3 depicts an illustration of the components required to create an opaque, corrosion resistant, UV
curable coating.
Figure 4 shows the arrangement of spray heads used for coating, although other coating techniques can be used such as dipping, flow, or curtain coating. Figure 5 indicates the UV
lamp arrangement for complete three dimensional curing. Finally, Figure 6 illustrate the beneficial ability for immediate "pack and ship", without the need to wait for parts to cool or for solvent emissions to dissipate.
This process can be applied, by way of example only, to the coating of underhood parts used in the automotive industry. Underhood parts generally refer to automotive parts which are not immediately visible, unless the vehicle is lifted, or the covering to the engine compartment (i.e. hood) is lifted or removed. Some examples, but not limited to, of underhood parts which can be coated with the composition of the invention using this process are oil filters, dampers, brake rotors, engine blocks, engine manifolds, alternator casings, and battery casings. Advantages for the use of these compositions and methods is that the coating does not ball up and come off of completely cured, coated objects, and in the case of dampers, one benefit of the increased adhesion is decreased squeakiness of the dampers.
Previous technology involves the application of conventional opaque, corrosion resistant coatings to provide a finish to underhood parts of motor vehicles.
These coatings have, in the past been solventborne. More recently, in the interest of lower emissions, these coatings have been waterborne or powder. Refernng to Figure 4, numbers 19 through 25 are taken from previous technologies, such as HVLP or electrostatic sprayers (19, 21, and 25), conveyer systems (23), rotating part holders (22 and 24), and the paxt to be coated (20). All these technologies require long curing times and larger space. In addition, large amounts of energy are often required. A system for destruction of volatile solvents involved in curing may also be required. With powder, a system for collection of particulates may be required.
A 100% solids UV curable coating is one that contains no added solvents or water which would require evaporation or to be driven off by heat. As a result, there are no emissions from solvent. No space is required for large ovens. No time is required for evaporation or baking. Energy use is up to 80% lower, because heating is unnecessary. With this process, emissions can be lower still, while saving space, time and energy and requiring no final system for pollution control. Furthermore, the process of the invention has the ability to reclaim any oversprayed, uncured solids.
It has been assumed that opaque coatings could not be well enough cured by UV
radiation to fully penetrate to the base substrate and to meet the quality demands of the automotive industry. By combination of a properly formulated 100% solids UV
curable coating, Figure 3, and appropriate frequencies of light, Figure 5, 26-28, these results may be obtained. Such a coating is cured by exposure to ultra-violet light, instead of heat or exposure to air. Since this curing process is almost instantaneous, requiring (for example) an average of 1.5 seconds per light (Figure 5), both time and energy are conserved. Curing lights used may be high pressure mercury lamps, mercury lamps doped with gallium or iron, or in combination as required. Lamps may be powered by direct application of voltage, by microwaves, or by radio-waves.
Referring to Figure 3, a coating is prepared using a mixture of photoinitiators sufficient to encompass all necessary frequencies of light. These are used to work with the pairs of lights in Figure 5, 26-28. Photoinitiators are compounds that absorb ultra-violet light and use the energy of that light to promote the formation of a dry layer of coating. In addition, the coating must contain a combination of oligomer and monomers such that necessary corrosion resistance is obtained. Oligomers are molecules containing several repeats of a single molecule. Monomers are substances containing single molecules that can link to oligomers and to each other. Proper choice of monomer also promotes adhesion to a properly prepared surface.
Polymerization, in particular acrylate double bond conversion and induction period, can be affected by the choice of oligomers, photoinitiators, inhibitors, and pigments, as well as UV lamp irradiance and spectral output. In comparison to clear coat formulations, the presence of pigments has made curing much more complex due to the absorption of the UV
radiation by the pigment. Thus, the use of variable wavelength UV sources, along with matching of absorption characteristics of photoinitiators with UV source spectral output, can allow for curing of pigmented formulations.
Light sources used for UV curing: include arc lamps, such as carbon arc lamps, xenon arc lamps, mercury vapor lamps, tungsten halide lamps, lasers, the sun, sunlamps, and fluorescent lamps with ultra-violet light emitting phosphors. Medium pressure mercury and high pressure xenon lamps have various emission lines at wavelengths which are absorbed by most commercially available photoinitiators. In addition, mercury arc lamps can be doped with iron or gallium. Alternatively, lasers are monochromatic (single wavelength) and can be used to excite photoinitiators which absorb at wavelengths that are too weak or not available when using arc lamps. For instance, medium pressure mercury arc lamps have intense emission lines at 254 nm, 265 nm, 295 nm, 301 nm, 313 nm, 366 nm, 405/408 nm, 436 nm, 546 nm, and 577/579 nm. Therefore, a photoinitiator with an absorbance maximum at 350 nm may not be a efficiently excited using a medium pressure mercury arc lamp, but could be efficiently initiated using a 355 nm Nd:YV04 (Vanadate) solid-state lasers.
Commercial UV/Visible light sources with varied spectral output in the range of 250-450 nm may be used directly for curing purposes; however wavelength selection can be achieved with the use of optical bandpass filters. Therefore, as described herein, the user can take advantage of the optimal photoinitiator absorbance characteristics.
Regardless of the light source, the emission spectra of the lamp must overlap the absorbance spectrum of the photoinitiator. Two aspects of the photoinitator absorbance spectrum need to be considered. The wavelength absorbed and the strength of absorption (molar extinction coefficient). For example, the photoinitiators HMPP and TPO
in DAROCUR ~ 4265 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) have absorbance peaks at 270-290 nm and 360-380 nm, while MMMP in IRGACURE ~ 907 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) absorbs at 350 nm and IRGACURE ~ 500 (which is a blend of IRGACURE
184 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.) and benzophenone) absorbs between 300 nm and 450 nm.
The addition of pigment to a formulation increases the opacity of the resulting coating and can affect any through curing abilities. Furthermore, the added pigment can absorb the incident curing radiation and thereby affect the performance of the photoinitiator. Thus, the curing properties of opaque pigmented coatings can depend on the pigment present, individual formulation, irradiation conditions, and substrate reflection.
Therefore consideration of the respective UV/Vis absorbance characteristics of the pigment and the photoinitiator can be used to optimize UV curing of pigmented coatings.
Generally, photoinitiators used for curing pigmented formulations have a higher molar extinction coefficient between the longer wavelengths (300 nm-450 nm) than those used for curing clear formulations. Although, the presence of pigments can absorb radiation both in the UV and visible light regions, thereby reducing absorption suitable for radiation curing, phosphine oxide type photoinitiators, for example but not limited to bis acylphosphine oxide, are 1 S effective in pigmented, including, by way of example only, black, UV
curable coating materials. Phosphine oxides also find use as photoinitiators for white coatings.
The mercury gas discharge lamp is the UV source most widely used for curing, as it is a very efficient lamp with intense lines UV-C (200-280 nm) radiation, however it has spectral emission lines in the UV-A (315-400 nm) and in the UV-B (280-513 nm) regions.
The mercury pressure strongly affects the spectral efficiency of this lamp in the UV-A, UV-B and UV-C regions. Furthermore, by adding small amounts (doping) of silver, gallium, indium, lead, antimony, bismuth, manganese, iron, cobalt and/or nickel to the mercury as metal iodides or bromides, the mercury spectrum can be strongly changed mainly in the UV-A, but also in the UV-B and UV-C regions. Doped gallium gives intensive lines at 403 and 417 nm;
whereas doping with iron raises the spectral radiant power in the UV-A region of 358-388 nm by a factor of 2, while because of the presence of iodides UV-B and UV-C
radiation are decreased by a factor of 3 to 7. As discussed above, the presence of pigments in a coating formulation can absorb incident radiation and thereby affect the excitation of the photoinitiator. Thus, it is desirable to tailor the UV source used with the pigment dispersions and the photoinitiator , photoinitiator mixture or photoinitiator/co-initiator mixture used. For instance, by way of example only, an iron doped mercury arc lamp (emission 358-388 nm) is ideal for use with photoinitator IRGACURE O 500 (absorbance between 300 and 450 nm).
In addition, multiple lamps with a different spectral characteristics, or sufficiently different in that there is some spectral overlap, can be used to excite mixtures of photoinitiator or mixtures of photoinitatiors and co-initiators. For instance, by way of example only, the use of a iron doped mercury arc lamp (emission 358-388 nm) in combination with a pure mercury arc lamp (emission 200-280 mn). The order in which the excitation sources are applied can be adventitiously used to obtain enhanced coating characteristic, such as, by way of example only, smoothness, shine, adhesion, abrasion resistance and corrosion resistance. Initial exposure of the coated surface with the longer wavelength source is beneficial, as it traps the filler particle in place and initiates polymerization near the surface, thereby imparting a smooth and adherent coating. Following this with exposure to the higher energy, shorter wavelength radiation enables for a fast cure of the remaining film that has been set in place by the initial polymerization stage.
Automotive parts may be properly cleaned and prepared using conventional technology. In particularly this involves extensive degreasing and washing.
Referring to Figure 4 the coating is then applied using either HVLP or electrostatic technology, this is the same technology used to apply conventional coatings. Alternative applications might involve 1 S dipping, flow, or curtain coating of parts. Referring to Figure 5, the coating is then exposed to single UV light or an arrangement of lights used to obtain complete three dimensional curing. After curing the part does not require any cooling step, or time for solvent evaporation to occur, thus the part is available for immediate packing and shipping.
EXAMPLES
Example 1 In an embodiment of this composition approximately 26% of aliphatic urethane triacrylate blended with 1, 6-hexanediol acrylate (EBECRYL ~ 264, from UCB
Surface Specialties, Brussels, Belgium), 18% of 2-phenoxyethyl acrylate, 7% of propoxylated glyceryl triacrylate, 26% of isobornyl acrylate, 9% methacrylate ester derivative (EBECRYL
~ 168, from UCB Surface Specialties, Brussels, Belgium), 6% 2-hydroxy-2-methyl-phenyl-propan-1-one, and 2% of a mixture of diphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide, oligo (2-hydroxy -2 -methyl-1-(4 - (1-methylvinyl)phenyl)propanone), 2, 4, 6,-trimethylbenzophenone, and 4-methylbenzophenone, (ESACURE ~ KTO 46, from Lamberti S.p.A., Gallarate (VA), Italy), 4% of black pigment dispersion (PC 9317 from Elementis, Staines, UK) and 2% amorphous silicon dioxide are mixed to form a blaclc coating. All components are combined using either a conventional mixer with a sawtooth blade or a helical mixer, until a smooth coating is obtained. This coating may be applied by HVLP or electrostatic bell and cured by UV light.
Example 2 In an embodiment of this composition a clear coating is prepared that is 37.5%
of a blend bisphenol epoxy acrylate with 25% trimethylolpropane triacrylate (EBECRYL
3720-TP25, from UCB Surface Specialties, Brussels, Belgium), 34.1% 2-phenoxyethyl acrylate, 15.8% trimethylolpropane triacrylate, 7.3% methacrylate ester derivative (EBECRYL ~ 168, from UCB Surface Specialties, Brussels, Belgium), and 5.3% of IRGACURE OO 500 (from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.). A mixture of solid pigment dispersions is prepared using rutile titanium dioxide bonded to a modified acrylic (PC 9003 from Elementis, Staines, UK) to which 1.2%
l0 of a similarly bonded carbon black (PC 9317 from Elementis, Staines, UK) is added. To the clear coating is added 10.1% of the pigment dispersion mixture, 1% amorphous silicon dioxide prepared with polyethylene wax (SYLOID ~ RAD 2005, from the Grace Davison division of WR Grace & Co., Columbia, MD, U.S.A.), 0.2% synthetic amorphous silica with organic surface treatment (SYLOID ~ RAD 2105, from the Grace Davison division of WR
l5 Grace ~ Co., Columbia, MD, U.S.A.), and 2.1% diphenyl (2, 4, 6 -trimethylbenzoyl) phosphine oxide. These additions are dispersed throughout the clear coating by a helical mixer until a smooth coating is produced. This coating may be applied by HVLP
and cured by UV light.
Example 3 20 In another embodiment of this composition 67% of isoborny acrylate is blended with 16% rutile titanium dioxide bonded to a modified acrylic (PC 9003 from Elementis, Staines, UK), 1 % diphenyl (2, 4, 6 - trimethylbenzoyl) phosphine oxide, 2% of IRGACURE
(from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.), 8%
amorphous silicon dioxide prepared with polyethylene wax (LANCO MATTE 2000 O, from 25 Lubrizol, Wickliffe, Ohio U.S.A), 4% amine acrylate (CN386, from Sartomer, Exton, PA, U.S.A.), and 2% amorphous silicon dioxide prepared with polyethylene wax (SYLOID
RAD 2005, from the Grace Davison division of WR Grace & Co., Columbia, MD, U.S.A.).
All components are combined using either a conventional mixer with a sawtooth blade or a helical mixer, until a smooth coating is obtained. This coating may be applied by HVLP and 30 cured by UV light. CN386 (from Sartomer, Exton, PA, U.S.A.) is a difunctional amine coinitiator which, when used in conjunction with a photosensitizer such as benzophenone, promotes rapid curing under UV light.
Example 4 A further embodiment is the procedure used for making a clear coat. The components of the coatings composition are mixed under air, as the presence of oxygen prevents premature polymerization. It is desired that exposure light be kept to a minimum, in particularly the use of sodium vapor lights should be avoided. However, the use of darkroom lighting may be an option. The components used in the manufacture of the coating composition which come in contact with monomers and coating mixture, such as mixing vessels and mixing blades, should be made of stainless steel or plastic, preferably polyethylene or polypropylene. Polystyrene and PVC should be avoided, as the monomers and coating mixture will dissolve them. In addition, contact of the monomers and coating mixture with mild steel, alloys of copper, acids, bases, and oxidizers should be avoided.
Furthermore, brass fittings must be avoided, as they will cause premature polymerization or gelling. For the manufacture of clear coatings it is only essential to obtain thorough mixing, and consequently the control of shear is not necessary. Adequate mixing of the clear coating composition can be obtained after 1-3 hours using a 1/3 horse power (hp) mixer and a 50 gallon cylindrical tank. Smaller quantities, up to 5 gallons, can be adequately mixed after 3 hours using a laboratory mixer (1/15 -1/10 hp). Round walled vessels are desired as this avoids accumulation of solid oligomer in corners and any subsequent problems associated with incomplete mixing. Another, parameter is that the mixers blades should be placed off of the bottom of the mixing vessel, at a distance of one half of the diameter of the mixer. The oligomers are added to the mixing vessel first, and if necessary the oligomers are gently warmed to aid in handling. Oligomers should not be heated over 120 °F, therefore if warming is needed the use of a temperature controlled heating oven or heating mantle is recommended. Band heaters should be avoided. Monomers and colloidal suspensions are added next, in any order, followed by the ester/monomer adhesion promoters.
Photoinitiators are added last to ensure that the time the complete composition is exposed to light is minimized. With the mixing vessel shielded from light exposure the mixing is then carried out after all the components are added. After mixing, there are air bubbles present and the coating may appear cloudy. These bubbles rapidly dissipate, leaving a clear coating composition. As a final step, prior to removing the coating composition from the mixing vessel, the bottom of the mixing vessel is scraped to see if any un-dissolved oligomer is present. This is done as a precaution to ensure thorough mixing has taken place. If the composition is thoroughly mixed then the coating composition is filtered through a 1 micron filter using a bag filter. The composition is then ready for use.
Example 5 A further embodiment is the manufacture procedure for pigmented coatings. Here a mixer of sufficient power and configuration is used to create laminar flow and efficiently bring the pigment dispersions against the blades of the mixer. For small laboratory quantities below 400 mLs, a laboratory mixer or blender is sufficient, however for quantities of up to half of a gallon a 1/15 -1110 hp laboratory mixer can be used, but mixing will take several days. For commercial quantities, a helical or saw-tooth mixer of at least 30 hp with a 250 gallon round walled, conical bottomed tank may be used. To make a pigmented composition a clear coating composition is mixed first, see example 4. The pigment dispersion mixtures are premixed prior to addition to the clear coat composition as this ensures obtaining the correct color. The premixing of the pigments dispersions is easily achieved by shaking the pigments dispersion in a closed container, while wearing a dust mask. The fillers and the premixed pigments/pigment dispersions are then added to the clear coat composition and mixed for 1 %a to 2 hours. Completeness of mixing is determined by performing a drawdown and checking for un-dissolved pigment. This is accomplished by drawing off a small quantity of the pigmented mixture from the bottom of the mixing tank and applying a thin coating onto a surface. This thin coating is then examined for the presence of any pigment which had not dissolved. The mixture is then run through a 100 mesh filter. A
thoroughly mixed pigmented coating composition will show little or no un-dissolved pigment.
Example 6 Another embodiment is the incorporation of nano-particulates into a coating composition by mixing 26% of aliphatic urethane triacrylate blended with 1, 6-hexanediol acrylate (EBECRYL ~ 264, from UCB Surface Specialties, Brussels, Belgium), 18%
of 2-phenoxyethyl acrylate, 7% of propoxylated glyceryl triacrylate, 26% of isobornyl acrylate, 9% methacrylate ester derivative (EBECRYL ~ 168, from UCB Surface Specialties, Brussels, Belgium), 6% 2-hydroxy-2-methyl-1-phenyl-propan-1-one, and 2% of a mixture of diphenyl (2, 4, 6 - trimethylbenzoyl) phosphine oxide, oligo (2-hydroxy -2 -methyl-1-(4 - (1-methylvinyl)phenyl)propanone), 2, 4, 6,- trimethylbenzophenone, and 4-methylbenzophenone, (ESACURE ~ KTO 46, from Lamberti S.p.A., Gallarate (VA), Italy), 4% of black pigment dispersion (PC 9317 from Elementis, Staines, UK), 1 %
nanometer sized alumina particles, and 1% amorphous silicon dioxide are mixed to form a black coating. All components are combined using either a conventional mixer with a sawtooth blade or a helical mixer, until a smooth coating is obtained. This coating may be applied by HVLP or electrostatic bell and cured by UV light.
Example 7 Still another embodiment is the process for coating an oil filter external surface with an actinic radiation curable, substantially all solids composition as described in example 1, using a black pigment dispersion. A process begins by attaching an oil filter to a rotatable spindle, and then attaching this combination to a conveyer belt system. Note that rotation of the rotatable spindle/oil filter assembly during the coating procedure ensures a complete coating of the oil filter surface. The rotatable spindle/oil filter assembly is then moved via the conveyer belt system into the coating application section, locating the rotatable spindle/oil filter assembly in the vicinity of electrostatic spraying system. The electrostatic spraying system has three spray heads arranged to ensure top, bottom and side coverage of the object being coated. Rotation of the spindle/oil filter assembly begins prior to spraying of the coating composition (described in example 1) from the three spray heads. The coating composition is then applied simultaneously from the three electrostatic spray heads, while the spindle/oil filter assembly continues to rotate. The coated spindle/oil filter assembly is then L 5 transported by the conveyer belt into a curing chamber located further down the process line.
The curing chamber has two sets of doors which are closed during curing to protect operators form exposure to UV radiation. Inside the curing chamber the three sets of UV
lamps are arranged to ensure top, bottom and side exposure to the UV radiation.
Furthermore each UV
lamp set contains two separate lamp types; one a mercury arc lamp and the other a mercury ?0 arc lamp doped with iron, to ensure proper curing. Therefore there are actually six lamps with in the curing chamber. Note that this three dimensional curing can be achieved by using only two lamps, one a mercury arc lamp and the other a mercury arc lamp doped with iron, with a mirror assembly to ensure exposure to the top, bottom and sides. Once inside the curing chamber the doors close and the spindle/oil filter assembly is again rotated. The ;5 mercury arc lamp doped with iron is then activated for the partial curing stage, and then the mercury arc lamp is activated for full cure. Note that the mercury arc lamp doped with iron does not need to be completely off before the mercury arc lamp is turned on.
Both lamps are turned off and rotation of the spindle/oil filter assembly is stopped. The doors on the other side of the curing chamber are opened and the fully cured oil filter with a black pigmented 0 corrosion resistant coating is then moved via the conveyer belt to a packaging area away from the curing chamber. The oil filter is then removed from the rotatable spindle, packed and shipped.
Example 8:
Still another embodiment is the process for coating a damper external surface with an actinic radiation curable, substantially all solids composition as described in example 6, using a blue pigment dispersion. A process begins by attaching an damper to a rotatable spindle, and then attaching this combination to a conveyer belt system. Note that rotation of the rotatable spindle/damper assembly during the coating procedure ensures a complete coating of the damper surface. The rotatable spindle/damper assembly is then moved via the conveyer belt system into the coating application section, locating the rotatable spindle/damper assembly in the vicinity of electrostatic spraying system. The electrostatic spraying system has three spray heads arranged to ensure top, bottom and side coverage of the object being coated. Rotation of the spindle/damper assembly begins prior to spraying of the coating composition (described in example 6) from the three spray heads.
The coating composition is then applied simultaneously from the three electrostatic spray heads, while the spindle/damper assembly continues to rotate. The coated spindle/damper assembly is then transported by the conveyer belt into a curing chamber located fizrther down the process line.
The curing chamber has two sets of doors which are closed during curing to protect operators form exposure to LTV radiation. Inside the curing chamber the three sets of UV
lamps are arranged to ensure top, bottom and side exposure to the LTV radiation.
Furthernlore each UV
lamp set contains two separate lamp types; one a mercury arc lamp and the other a mercury arc lamp doped with iron, to ensure proper curing. Therefore there are actually six lamps with in the curing chamber. Note that this three dimensional curing can be achieved by using only two lamps, one a mercury arc lamp and the other a mercury arc lamp doped with iron, with a mirror assembly to ensure exposure to the top, bottom and sides. Once inside the curing chamber the doors close and the spindle/damper assembly is again rotated. The mercury arc lamp doped with iron is then activated for the partial curing stage, and then the mercury arc lamp is activated for full cure. Note that the mercury arc lamp doped with iron does not need to be completely off before the mercury arc lamp is turned on.
Both lamps are turned off and rotation of the spindle/damper assembly is stopped. The doors on the other side of the curing chamber are opened and the fully cured damper with a blue pigmented corrosion resistant coating is then moved via the conveyer belt to a packaging area away from the curing chamber. The damper is then removed from the rotatable spindle, packed and shipped.
Example 9:
A further embodiment is testing the stability of the UV curable coating described in example 1. The stability of the cured composition coated onto an oil filter, as described in example 7, to resistance to motor vehicle liquids, in particular engine oil was conducted using an immersion test. The test involves dipping the coated and cured oil filter into a bath containing the engine oil at temperature of 120°C. The coated and cured oil filter is kept in this temperature bath for 24 hours and removed. After removing the coated and cured oil filter from the temperature bath a thumbnail under pressure is dragged across the surface in an attempt to damage the surface. Any indication of damage is looked for, and if no damage is observed the coated and cured oil filter is placed back into the bath for further testing.
All percentages given are by weight. EBECRYLs ~ are available from UCB Surface Specialties, Brussels, Belgium. SYLOIDs ~ are available from the Grace Davison division of WR Grace & Co., Columbia, MD, U.S.A. Cited solid pigment dispersions are available from Elementis, Staines, UK. IRGACURE ~ and DAROCUR ~ photoinitiators are available D from Ciba Specialty Chemicals 540 White Plains Road, Tarrytown, New York, U.S.A.. LANCO MATTE 2000 D is available from Lubrizol, Wickliffe, Ohio U.S.A.
CN3~6 and CN990 are available from Sartomer, Exton, PA, U.S.A. ESACURE O KTO
46 is available from Lamberti S.p.A., Gallarate (VA), Italy.
Z0 While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the pauticular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Claims (155)
1. An actinic radiation curable, substantially all solids composition comprising a mixture of oligomers, monomers, photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions.
2. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture further comprises 0-40% by weight of oligomer or mixture of oligomers.
3. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture further comprises 5-68% by weight of monomer or mixture of monomers.
4. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture further comprises 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators.
5. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture comprises 0.5-11% by weight of filler or mixture of fillers.
6. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture comprises 3-15% by weight of polymerizable pigment dispersion or mixture of polymerizable dispersions.
7. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight of monomer or mixture of monomers.
8. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight monomer or mixture of monomers and 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators.
9. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers, 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% by weight of filler or mixture of fillers.
10. The actinic radiation curable, substantially all solids composition of claim 1 wherein the mixture comprises 0-40% percent by weight oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers, 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11% by weight of filler or mixture of fillers, and 3-15% by weight of solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions; whereby the room temperature viscosity of the composition is up to about 500 centipoise.
11. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the oligomers are selected from a group consisting of epoxy acrylates, epoxy diacrylate/monomer blends, silicone acrylate, aliphatic urethane triacrylate/monomer blends, fatty acid modified bisphenol A acrylates, bisphenol epoxy acrylates blended with trimethylolpropane triacrylate, aliphatic urethane triacrylates blended with 1, 6-hexanediol acrylate, and combinations thereof.
12. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the oligomers are selected from a group consisting of epoxy acrylates, epoxy diacrylate/monomer blends, aliphatic urethane triacrylate/monomer blends, and combinations thereof.
13. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the oligomers are selected from a group consisting of fatty acid modified bisphenol A acrylates, bisphenol epoxy acrylates blended with trimethylolpropane triacrylate, aliphatic urethane triacrylates blended with 1, 6-hexanediol acrylate, and combinations thereof.
14. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the oligomer is bisphenol epoxy acrylates blended with trimethylolpropane triacrylate.
15. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the monomers are selected from a group consisting of trimethylolpropane triacrylate, 2-phenoxyethyl acrylate, isobornyl acrylate, propoxylated glyceryl triacrylate, methacrylate ester derivatives, and combinations thereof.
16. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the monomers are selected from a group consisting of trimethylolpropane triacrylate, 2-phenoxyethyl acrylate, methacrylate ester derivatives, and combinations thereof.
17. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the photoinitiators are selected from a group consisting of diphenyl (2, 4, 6 - trimethylbenzoyl) phosphine oxide, a thioxanthone, dimethyl ketal, benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2, 4, 6,-trimethylbenzophenone, 4-methylbenzophenone, oligo (2-hydroxy-2-methyl - 1-(4-(1-methylvinyl)phenyl)propanone), amine acrylates, and combinations thereof.
18. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the photoinitiators are selected from a group consisting of diphenyl (2, 4, 6 - trimethylbenzoyl) phosphine oxide, benzophenone, 1-hydroxycyclohexyl phenyl ketone, and combinations thereof.
19. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein at least one photoinitiator is a phosphine oxide.
20. The actinic radiation curable, substantially all solids composition of any of claims 1-10, wherein the fillers are selected from a group consisting of amorphous silicon dioxide prepared with polyethylene wax, synthetic amorphous silica with organic surface treatment, untreated amorphous silicon dioxide, alkyl quaternary bentonite, colloidal silica, acrylated colloidal silica, alumina, zirconia, zinc oxide, niobia, titania aluminum nitride, silver oxide, cerium oxides, and combinations thereof.
21. The actinic radiation curable, substantially all solids composition of any of claims 1-10, wherein the fillers are selected from a group consisting of amorphous silicon dioxide prepared with polyethylene wax, synthetic amorphous silica with organic surface treatment, and combinations thereof.
22. The actinic radiation curable, substantially all solids composition of claim 20 wherein the average size of the filler particles is less than 500 nanometers.
23 . The actinic radiation curable, substantially all solids composition of claim 20 wherein the average size of the filler particles is less than 100 nanometers.
24. The actinic radiation curable, substantially all solids composition of claim 20 wherein the average size of the filler particles is less than 50 nanometers.
25. The actinic radiation curable, substantially all solids composition of claim 20 wherein the average size of the filler particles is less than 25 nanometers.
26. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the polymerizable pigment dispersions are comprised of pigments attached to activated resins.
27. The actinic radiation curable, substantially all solids composition of claim 26, wherein the activated resins are selected from a group consisting of acrylate resins, methacrylate resins, and vinyl resins.
28. The actinic radiation curable, substantially all solids composition of claim 26, wherein the pigments are selected from a group consisting of carbon black, rutile titanium dioxide, organic red pigment, phthalo blue pigment, red oxide pigment, isoindoline yellow pigment, phthalo green pigment, quinacridone violet, carbazole violet, masstone black, light lemon yellow oxide, light organic yellow, transparent yellow oxide, diarylide orange, quinacridone red, organic scarlet, light organic red, and deep organic red.
29. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the polymerizable pigment dispersions are selected from the group consisting of carbon black attached to modified acrylic resins, rutile titanium dioxide attached to modified acrylic resins, and combinations thereof.
30. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, further comprising a corrosion inhibitor.
31. The actinic radiation curable, substantially all solids composition of claim 30, wherein the corrosion inhibitor is an all solids corrosion inhibitor present in an amount up to about 3% by weight.
32. The actinic radiation curable, substantially all solids composition of claim 30, wherein the corrosion inhibitor is M-235.
33. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, further comprising a flow and slip enhancer.
34. The actinic radiation curable, substantially all solids composition of claim 33, wherein the flow and slip enhancer is present in an amount up to about 3% by weight.
35. The actinic radiation curable, substantially all solids composition of claim 33, wherein the flow and slip enhancer is selected from the group consisting of acrylated silicone, EBECRYL ® 350, EBECRYL ® 1360, and CN990.
36. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, further comprising a curing booster.
37. The actinic radiation curable, substantially all solids composition of claim 36, wherein the curing booster is present in an amount up to about 0.5% by weight.
38. The actinic radiation curable, substantially all solids composition of claim 36, wherein the curing booster is thioxanthone.
39. The actinic radiation curable, substantially all solids composition of any of claims 1-9 having a room temperature viscosity up to about 500 centipoise.
40. The actinic radiation curable, substantially all solids composition of claim 1 wherein the composition has been applied to a surface.
41. The coated surface of claim 40.
42. The coated surface of claim 41, wherein the surface comprises metal, wood, plastic, stone, glass, or ceramic.
43. The coated surface of claim 41 wherein the coating has been applied to the surface by means of spraying, brushing, rolling, dipping, blade coating, curtain coating or a combination thereof.
44. The coated surface of claim 41 wherein the coating has been applied to the surface by means of a high pressure low volume spraying apparatus.
45. The coated surface of claim 41 wherein the coating has been applied to the surface by means of an electrostatic spraying apparatus.
46. The coated surface as in any of claims 43-45, wherein the coating is applied in a single application.
47. The coated surface as in any of claims 43-45, wherein the coating is applied in multiple applications.
48. The coated surface as in any of claims 43-45, wherein the surface is partially covered by the coating.
49. The coated surface as in any of claims 43-45, wherein the surface is fully covered by the coating.
50. The coated surface of claim 41, wherein exposure of the coated surface to actinic radiation the surface coating becomes partially cured.
51. The coated surface of claim 41, wherein exposure of the coated surface to actinic radiation the surface coating becomes fully cured.
52. The partially cured coated surface of claim 50.
53. The completely cured coated surface of claim 51.
54. The partially cured coated surface of claim 52, wherein the partially cured coating is opaque.
55. The partially cured coated surface of claim 52, wherein the partially cured coating is glossy.
56. The completely cured coated surface of claim 53, wherein the completely cured coating is opaque.
57. The completely cured coated surface of claim 53, wherein the completely cured coating is hard.
58. The completely cured coated surface of claim 53, wherein the completely cured coating is glossy.
59. The completely cured coated surface of claim 53, wherein the completely cured coating is corrosion resistant.
60. The completely cured coated surface of claim 53, wherein the completely cured coating is abrasion resistant.
61. The actinic radiation curable, substantially all solids composition as in any of claims 1-10, wherein the composition is curable with actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof.
62. The actinic radiation curable, substantially all solids composition of claim 61, wherein the UV radiation is selected from the group consisting of UV-A
radiation, UV-B
radiation, UV-B radiation, UV-C radiation, UV-D radiation, or combinations thereof.
radiation, UV-B
radiation, UV-B radiation, UV-C radiation, UV-D radiation, or combinations thereof.
63. The completely cured coated surface of claim 53, wherein the surface is part of an article of manufacture.
64. An article of manufacture comprising the completely cured coated surface of claim 53.
65. The article of manufacture of claim 64 wherein the article of manufacture is selected from the group consisting of a motor vehicle, a motor vehicle part, a motor vehicle accessory, gardening equipment, a lawnmower, and a lawnmower part.
66. The article of manufacture of claim 65 wherein the article of manufacture is a motor vehicle part.
67. The article of manufacture of claim 66 wherein the motor vehicle part is an underhood part.
68. The article of manufacture of claim 67 wherein the underhood part is selected from the group consisting of an oil filter, a damper, a battery casing, an alternator casing, and an engine manifold.
69. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no marking after contact with at least 10% sulfuric acid at a temperature of at least 65°C for at least 6 minutes.
70. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no marking after contact with at least 10% sulfuric acid at a temperature of at least 65°C for at least 12 minutes.
71. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no softening and no blistering after immersion in engine coolant for at least 8 hours at a temperature of at least 6O °C.
72. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no softening and no blistering after immersion in engine coolant for at least 20 hours at a temperature of at least 60 °C.
73. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no softening and no blistering after immersion in power steering oil for at least 8 hours at a temperature of at least 60 °C.
74. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no softening and no blistering after immersion in power steering oil for at least 24 hours at a temperature of at least 60 °C.
75. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no surface corrosion after 400 hours of exposure to salt spray.
76. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no surface corrosion after 900 hours of exposure to salt spray.
77. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no loss of adhesion after heating at a temperature of at least 200 °C in a convection oven for at least 1 hour.
78. The article of manufacture of claim 66 wherein the completely cured coated surface exhibits no loss of adhesion after heating at a temperature of at least 200 °C in a convection oven for at least 10 hours.
79. The article of manufacture of claim 65 wherein the article of manufacture is a motor vehicle selected from the group consisting of an automobile, a bus, a truck, a tractor, and an off-road vehicle.
80. The article of manufacture of claim 65 wherein the article of manufacture is a motor vehicle accessory and the motor vehicle is selected from the group consisting of an automobile, a bus, a truck, a tractor, a recreational vehicle, and an off-road vehicle.
81. The article of manufacture of claim 65 wherein the article of manufacture is a motor vehicle part and the motor vehicle is selected from the group consisting of an automobile, a bus, a truck, and an off-road vehicle.
82. The automobile of claim 79.
83. The lawnmower of claim 65.
84. A method for producing the actinic radiation curable, substantially all solids composition of claim 1 comprising adding components to a container, wherein the components include at least one oligomer, at least one monomer, at least one photoinitator, at least one co-photoinitiator, at least one filler, and at least one polymerizable pigment dispersion and using a means for mixing the components to form a smooth composition.
85. The composition of claim 1 further comprising a suitable container.
86. The composition of claim 1 wherein the suitable container is a can.
87. An assemblage for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising:
(a) a means for applying to the object an actinic radiation curable, substantially all solids composition;
(b) a means for irradiating the object with a first actinic radiation so as to partially cure the coated surface; and (c) a means for irradiating the object with a second actinic radiation so as to completely cure the coated surface;
wherein the coating does not show marks upon contact with a 10% solution of at 65 °C for up to at least 6 minutes.
(a) a means for applying to the object an actinic radiation curable, substantially all solids composition;
(b) a means for irradiating the object with a first actinic radiation so as to partially cure the coated surface; and (c) a means for irradiating the object with a second actinic radiation so as to completely cure the coated surface;
wherein the coating does not show marks upon contact with a 10% solution of at 65 °C for up to at least 6 minutes.
88. The assemblage for coating a surface of an object of claim 87 wherein the actinic radiation curable, substantially all solids composition is comprised of a mixture of oligomers, monomers, photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions.
89. The assemblage for coating a surface of an object of claim 88, wherein the means for irradiating so as to partially cure the coated surface and the means for irradiating so as to completely cure the coated surface are located at an irradiation station so as to not require the transport of the object.
90. The assemblage for coating a surface of an object of claim 89, wherein the means for applying the composition is located at an application station, wherein the object must be moved from the application station to the irradiation station.
91. The assemblage for coating a surface of an object of claim 90, further comprising a means for moving the object from the application station to the irradiation station.
92. The assemblage for coating a surface of an object of claim 91, wherein the means for moving comprises a conveyer belt.
93. The assemblage for coating a surface of an object of claim 90, wherein the irradiation station comprises a means for limiting the exposure of actinic radiation to the application station.
94. The assemblage for coating a surface of an object of claim 88, further comprising a means for rotating the object around at least one axis.
95. The assemblage for coating a surface of an object of claim 88, further comprising an mounting station wherein the object to be coated is attached to a movable unit.
96. The assemblage for coating a surface of an object of claim 95, wherein the movable unit is capable of rotating the object around at least one axis.
97. The assemblage for coating a surface of an object of claim 95, wherein the movable unit is capable of moving the object from the application station to the irradiation station.
98. The assemblage for coating a surface of an object of claim 95, further comprising a removal station wherein the completely cured coated object is removed from the movable unit.
99. The assemblage for coating a surface of an object of claim 98 wherein the completely cured coated object does not require cooling prior to removal from the movable unit.
100. The assemblage for coating a surface of an object of claim 88, wherein the means for applying includes spraying means, brushing means, rolling means, dipping means, blade coating, and curtain coating means.
101. The assemblage for coating a surface of an object of claim 100, wherein the means for applying includes a spraying means.
102. The assemblage for coating a surface of an object of claim 101, wherein the spraying means includes equipment for high volume low pressure (HVLP) spraying.
103. The assemblage for coating a surface of an object of claim 100 wherein the means for applying occurs at ambient temperature.
104. The assemblage for coating a surface of an object of claim 101, wherein the spraying means includes equipment for electrostatic spraying.
105. The assemblage for coating a surface of an object of claim 90, wherein the application station further comprises a means for reclaiming actinic radiation curable, substantially all solids composition that is non-adhering to the surface of the object.
106. The assemblage for coating a surface of an object of claim 105 wherein the reclaimed actinic radiation curable, substantially all solids composition is subsequently applied to a different object.
107. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers.
108. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 5-68% by weight of monomer or mixture of monomers.
109. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators.
110. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 0.5-11% by weight of filler or mixture of fillers.
111. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 3-15% by weight of polymerizable pigment dispersion or mixture of polymerizable dispersions.
112. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight of monomer or mixture of monomers.
113. The assemblage for coating a surface of an object of claim 2, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers and 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators.
114. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers, 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% by weight of filler or mixture of fillers.
115. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers, 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11% by weight of filler or mixture of fillers, and 3-15% by weight of solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions; whereby the room temperature viscosity of the composition is up to about 500 centipoise.
116. The assemblage for coating a surface of an object of claim 88, wherein the first actinic radiation includes actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof.
117. The assemblage for coating a surface of an object of claim 88, wherein the second actinic radiation includes actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof.
118. The assemblage for coating a surface of an object of claim 90, wherein the irradiation station includes an arrangement of mirrors.
119. The assemblage for coating a surface of an object of claim 88, wherein the object is selected from the group consisting of a motor vehicle, a motor vehicle part, a motor vehicle accessory, gardening equipment, a lawnmower, and a lawnmower part.
120. The assemblage for coating a surface of an object of claim 119 wherein the article of manufacture is an motor vehicle part.
121. The assemblage for coating a surface of an object of claim 120 wherein the motor vehicle part is an underhood part.
122. The assemblage for coating a surface of an object of claim 121 wherein the underhood part is selected from the group consisting of an oil filter, a damper, brake rotor, a battery casing, an alternator casing, and an engine manifold.
123. A process for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising:
a. attaching the object onto a conveying means;
b. applying an actinic radiation curable composition at an application station onto the surface of the object;
c. moving the coated object via the conveying means to an irradiation station;
d. irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and e. irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation;
wherein the coating does not show marks upon contact with a 10% solution of H2SO4 at 65 °C for up to at least 6 minutes.
a. attaching the object onto a conveying means;
b. applying an actinic radiation curable composition at an application station onto the surface of the object;
c. moving the coated object via the conveying means to an irradiation station;
d. irradiating and partially curing the coated surface at the irradiation station with a first actinic radiation; and e. irradiating and completely curing the coated surface at the irradiation station with a second actinic radiation;
wherein the coating does not show marks upon contact with a 10% solution of H2SO4 at 65 °C for up to at least 6 minutes.
124. The process for coating a surface of an object with an actinic radiation curable, substantially all solids composition of claim 123 further comprising attaching the object to a rotatable spindle prior to the application step.
125. The process for coating a surface of an object with an actinic radiation curable, substantially all solids composition of claim 1244 further comprising moving the conveying means after attaching the object to the rotatable spindle so as to locate the object near an application station.
126. The process for coating a surface of an object with an actinic radiation curable, substantially all solids composition of claim 125 further comprising applying an actinic radiation curable composition at the application station as the spindle holding the object rotates.
127. The process for coating a surface of an object with an actinic radiation curable, substantially all solids composition of claim 123 wherein the irradiation station comprises a curing chamber containing a first actinic radiation source and a second actinic radiation source.
128. The process for coating a surface of an object with an actinic radiation curable, substantially all solids composition of claim 123 further comprising moving the completely cured coated object via the conveying means outside the curing chamber wherein the coated object is packed for storage or shipment.
129. The process for coating a surface of an object with an actinic radiation curable, substantially all solids composition of claim 123 wherein the conveying means comprises a conveyer belt.
130. The process for coating a surface of an object of claim 123 wherein the actinic radiation curable, substantially all solids composition is comprised of a mixture of oligomers, monomers, photoinitatiors, co-photoinitiators, fillers, and polymerizable pigment dispersions.
131. The process for coating a surface of an object of claim 130, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, and 5-68% by weight of monomer or mixture of monomers.
132. The process for coating a surface of an object of claim 130, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers and 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators.
133. The process for coating a surface of an object of claim 130, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight of oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers, 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators and 0.5-11% by weight of filler or mixture of fillers.
134. The process for coating a surface of an object of claim 130, wherein the actinic radiation curable, substantially all solids composition comprises 0-40% percent by weight oligomer or mixture of oligomers, 5-68% by weight of monomer or mixture of monomers, 3-15% by weight of photoinitiator or mixture of photoinitiators and co-initiators, 0.5-11% by weight of filler or mixture of fillers, and 3-15% by weight of solid polymerizable pigment dispersion or mixture of solid polymerizable dispersions; whereby the room temperature viscosity of the composition is up to about 500 centipoise.
135. The process for coating a surface of an object of claim 123, wherein the application station comprises equipment for electrostatic spray.
136. The process for coating a surface of an object of claim 123, wherein the application station comprises equipment suitable for High pressure Low Volume (HVLP) coatings application.
137. The process for coating a surface of an object of claims 135-136, wherein the coating is applied in a single application.
138. The process for coating a surface of an object of claims 135-136, wherein the coating is applied in multiple applications.
139. The process for coating a surface of an object of claims 135-136, wherein the surface is partially covered by the coating.
140. The process for coating a surface of an object of claims 135-136, wherein the surface is fully covered by the coating.
141. The process for coating a surface of an object of claim 123 wherein the time between the first actinic radiation step and the second actinic radiation step is less than 5 minutes.
142. The process for coating a surface of an object of claim 141 wherein the time between the first actinic radiation step and the second actinic radiation step is less than 1 minute.
143. The process for coating a surface of an object of claim 142 wherein the time between the first actinic radiation step and the second actinic radiation step is less than 15 seconds.
144. The process for coating a surface of an object of claim 123, wherein the irradiation station includes at least one light capable of providing actinic radiation selected from the group consisting of visible radiation, near visible radiation, ultra-violet (UV) radiation, and combinations thereof.
145. The process for coating a surface of an object of claim 123, wherein the irradiation station includes at least one light source capable of providing actinic radiation selected from the group consisting of UV-A radiation, UV-B radiation, UV-B
radiation, UV-C radiation, UV-D radiation, or combinations thereof.
radiation, UV-C radiation, UV-D radiation, or combinations thereof.
146. The process for coating a surface of an object of claim 123, wherein the irradiation station includes an arrangement of mirrors such that the coated surface is cured in three dimensions.
147. The process for coating a surface of an object of claim 123, wherein the irradiation station includes an arrangement of light sources such that the coated surface is cured in three dimensions.
148. The process for coating a surface of an object of claim 147, wherein each light source emits different spectral wavelength ranges.
149. The process for coating a surface of an object of claim 148, wherein the different light sources have partially overlapping spectral wavelength ranges.
150. A production line for coating a surface of an object with an actinic radiation curable, substantially all solids composition comprising the process of claim 123.
151. A facility for producing objects coated with an actinic radiation cured substantially all solids composition comprising the production line of claim 150.
152. The coated object of claim 151, wherein the object is an underhood part of a vehicle.
153. The article of manufacture of claim 152 wherein the completely cured coated surface of the underhood part exhibits no loss of adhesion after at least 1 hour at a temperature of at least 210 °C.
154. The assemblage for coating a surface of an object of claim 88, wherein the actinic radiation curable, substantially all solids composition further comprises an all solids corrosion inhibitor.
155. The process for coating a surface of an object of claim 130, wherein the actinic radiation curable, substantially all solids composition further comprises an all solids corrosion inhibitor.
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/771,867 US20050170100A1 (en) | 2004-02-04 | 2004-02-04 | Process for applying an opaque, corrosion resistant, 100% solids, UV curable finish to parts for underhood use in motor vehicles |
US10/771,867 | 2004-02-04 | ||
US55128704P | 2004-03-08 | 2004-03-08 | |
US60/551,287 | 2004-03-08 | ||
US87253104A | 2004-06-21 | 2004-06-21 | |
US10/872,531 | 2004-06-21 | ||
US10/983,022 US7151123B2 (en) | 2004-02-04 | 2004-11-05 | Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof |
US10/982,998 | 2004-11-05 | ||
US10/982,998 US20050170101A1 (en) | 2004-02-04 | 2004-11-05 | Environmentally friendly assemblages, facilities, and processes for applying an opaque,100% solids, actinic radiation curable coating to objects |
US10/983,022 | 2004-11-05 | ||
PCT/US2005/003394 WO2005076894A2 (en) | 2004-02-04 | 2005-02-04 | Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles and coating methods and assemblages thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2553856A1 true CA2553856A1 (en) | 2005-08-25 |
Family
ID=34865510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002553856A Abandoned CA2553856A1 (en) | 2004-02-04 | 2005-02-04 | Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles and coating methods and assemblages thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1716182A4 (en) |
CA (1) | CA2553856A1 (en) |
WO (1) | WO2005076894A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115948111A (en) * | 2022-12-09 | 2023-04-11 | 中创新航科技股份有限公司 | Photocuring coating and battery comprising same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1995285A1 (en) * | 2007-05-21 | 2008-11-26 | Hexion Specialty Chemicals Research Belgium S.A. | Photocurable compositions for road marking paint |
GB2458963B (en) * | 2008-04-05 | 2012-06-06 | Trade Fabrication Systems Ltd | A method for manufacturing a coated timber panel |
CN102083866A (en) * | 2008-06-11 | 2011-06-01 | 巴斯夫欧洲公司 | Method for tack free surface photocuring of free radically polymerizable resins under visible light photoexcitation |
CA2752556C (en) * | 2009-02-20 | 2017-08-29 | Encore Rail Systems, Inc. | Methods for repair and preventative maintenance of railroad ties using uv curable polymers |
RU2534530C2 (en) * | 2009-10-23 | 2014-11-27 | Ульмадан-Р.Д. Апс | Surface-processing agent, containing film-forming resin composition and thereof application |
CN106192559A (en) * | 2016-07-25 | 2016-12-07 | 洋紫荆油墨(浙江)有限公司 | A kind of high adhesion force exempts from bottoming paper UV coating composition and manufacture method thereof |
CN108816685B (en) * | 2018-07-11 | 2021-07-20 | 张家港市金帆箱柜有限公司 | Anticorrosion technology of power battery compartment |
IT201800010863A1 (en) * | 2018-12-06 | 2020-06-06 | Ind Chimica Adriatica S P A In Sigla Ica S P A | MECHANICAL REFLECTION AND RADIATION SYSTEM FOR THE CROSS-LINKING OF UV CURED PAINTS. |
CN114384022B (en) * | 2021-12-23 | 2024-08-27 | 老虎表面技术新材料(苏州)有限公司 | Method for testing application stability of powder coating composition in electrostatic spraying process |
CN115873493A (en) * | 2022-12-01 | 2023-03-31 | 立美固(深圳)地坪科技有限公司 | LED (light-emitting diode) cured floor coating and coating process thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL89202A0 (en) * | 1988-05-17 | 1989-09-10 | M & T Chemicals Inc | Liquid,uv curable urethane acrylate oligomers and compositions comprising them |
US20030207959A1 (en) * | 2000-03-13 | 2003-11-06 | Eduardo Napadensky | Compositions and methods for use in three dimensional model printing |
US6682872B2 (en) * | 2002-01-22 | 2004-01-27 | International Business Machines Corporation | UV-curable compositions and method of use thereof in microelectronics |
-
2005
- 2005-02-04 CA CA002553856A patent/CA2553856A1/en not_active Abandoned
- 2005-02-04 WO PCT/US2005/003394 patent/WO2005076894A2/en not_active Application Discontinuation
- 2005-02-04 EP EP05712730A patent/EP1716182A4/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115948111A (en) * | 2022-12-09 | 2023-04-11 | 中创新航科技股份有限公司 | Photocuring coating and battery comprising same |
Also Published As
Publication number | Publication date |
---|---|
EP1716182A2 (en) | 2006-11-02 |
EP1716182A4 (en) | 2007-09-12 |
WO2005076894A3 (en) | 2006-04-27 |
WO2005076894A2 (en) | 2005-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7151123B2 (en) | Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof | |
US7425586B2 (en) | Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof | |
CA2553856A1 (en) | Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles and coating methods and assemblages thereof | |
US7238731B2 (en) | Environmentally friendly coating compositions for coating metal objects, coated objects therefrom, and methods, processes and assemblages for coating thereof | |
US7498362B2 (en) | Environmentally friendly coating compositions for coating metal objects, coated objects therefrom and methods, processes and assemblages for coating thereof | |
US20050170101A1 (en) | Environmentally friendly assemblages, facilities, and processes for applying an opaque,100% solids, actinic radiation curable coating to objects | |
US7192992B2 (en) | Environmentally friendly, 100% solids, actinic radiation curable coating compositions for coating thermally sensitive surfaces and/or rusted surfaces and methods, processes and assemblages for coating thereof | |
US7323248B2 (en) | Environmentally friendly coating compositions for coating composites, coated composites therefrom, and methods, processes and assemblages for coating thereof | |
CN100445303C (en) | Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles and coating methods and assemblages thereof | |
US7153892B2 (en) | Environmentally friendly, actinic radiation curable coating compositions for coating thermoplastic olefin objects and methods, processes and assemblages for coating thereof | |
US20050234152A1 (en) | Enviromentally friendly, 100% solids, actinic radiation curable coating compositions for coating surfaces of wooden objects and methods, processes and assemblages for coating thereof | |
EP1274516B1 (en) | Method for repairing coatings | |
CN1934140A (en) | Environmentally friendly coating compositions and coated articles and coating methods and process and assemblages thereof | |
JP2012046767A (en) | Composite transparency | |
JP2004533518A (en) | Solvent-containing coatings curable by physical, thermal or thermal and actinic radiation and uses thereof | |
CN104603217B (en) | UV-curable coating compositions and methods for using the same | |
US20080254303A1 (en) | Monomer matt additives and uses thereof | |
CN112724821A (en) | Safety type long-wavelength LED photocureable coating for covering property, coating device and method thereof, and application of coating device and method to rail vehicles | |
CA2534497A1 (en) | Chemical composition and method of polymerisation thereof for use on vehicle bodywork repair | |
JP5096309B2 (en) | Solvent-containing mixture curable with UV-A radiation, its production process and its use | |
JP5503104B2 (en) | Light curable colored paints and painted resin products | |
WO2011000111A1 (en) | Uv photoactivatable curable paint formulations and cured coatings thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |