CA2552275A1 - An integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil - Google Patents

An integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil Download PDF

Info

Publication number
CA2552275A1
CA2552275A1 CA 2552275 CA2552275A CA2552275A1 CA 2552275 A1 CA2552275 A1 CA 2552275A1 CA 2552275 CA2552275 CA 2552275 CA 2552275 A CA2552275 A CA 2552275A CA 2552275 A1 CA2552275 A1 CA 2552275A1
Authority
CA
Canada
Prior art keywords
hydrocarbonaceous
stream
zone
desulfurization
hydrocracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA 2552275
Other languages
French (fr)
Other versions
CA2552275C (en
Inventor
Tom N. Kalnes
Vasant P. Thakkar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Original Assignee
UOP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UOP LLC filed Critical UOP LLC
Priority to CA2552275A priority Critical patent/CA2552275C/en
Publication of CA2552275A1 publication Critical patent/CA2552275A1/en
Application granted granted Critical
Publication of CA2552275C publication Critical patent/CA2552275C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Abstract

An integrated hydrocracking process which is capable of desulfurizing a heavy residual hydrocarbonaceous feedstock (5) and desulfurizing a feedstock (11) comprising diesel boiling range hydrocarbons to produce ultra low sulfur diesel (22) and low sulfur fuel oil (23).

Description

AN INTEGRATED PROCESS FOR THE PRODUCTION
OF ULTRA LOW SULFUR DIESEL AND LOW SULFUR FUEL OIL
BACKGROUND OF THE INVENTION

[0001] The field of art to which this invention pertains is the hydrocracking of a hydrocarbonaceous feedstock. Petroleum refiners often produce desirable products such as turbine fuel, diesel fuel and other products known as middle distillates as well as lower boiling hydrocarbonaceous liquids such as naphtha and gasoline by hydrocracking a hydrocarbon feedstock derived from crude oil, for example. Feedstocks most often subjected to hydrocracking are gas oils and heavy gas oils recovered from crude oil by distillation. A
typical gas oil comprises a substantial portion of hydrocarbon components boiling above 371 C, usually at least 50 percent by weight boiling above 371 C. A typical vacuum gas oil normally has a boiling point range between 315 C and 565 C.
[0002] Hydrocracking is generally accomplished by contacting in a hydrocracking reaction vessel or zone the gas oil or other feedstock to be treated with a suitable hydrocracking catalyst under conditions of elevated temperature and pressure in the presence of hydrogen so as to yield a product containing a distribution of hydrocarbon products desired by the refiner. The operating conditions and the hydrocracking catalysts within a hydrocracking reactor influence the yield of the hydrocracked products.
[0003] One of the preferred hydrocarbonaceous products from a hydrocracking process is diesel or diesel boiling range hydrocarbons. Marketable products must meet minimum specifications and over the years, it has been recognized that due to environmental concerns and newly enacted rules and regulations, saleable products including diesel fuel must meet lower and lower limits on contaminants such as sulfur and nitrogen. Recently new regulations were proposed in the United States and Europe which basically require the complete removal of sulfur from liquid hydrocarbons which are used as transportation fuels such as gasoline and diesel.
[0004] Although a wide variety of process flow schemes, operating conditions and catalysts have been used in commercial hydrocracking activities, there is always a demand for new hydrocracking methods which provide lower costs and improved product characteristics.

The present invention is able to economically hydrocrack a hydrocarbonaceous feedstock while simultaneously producing ultra low sulfur diesel product and low sulfur fuel oil.
[0005] Residual oils are the liquid or semi-liquid products recovered as a non-distillable bottoms fraction or residue in the distillation of petroleum. The residual oils are highly carbonaceous refractory materials variously referred to as asphaltum oil, liquid asphalt, black oil, petroleum tailings, residium, residual reduced crude, atmospheric tower bottoms and vacuum tower bottoms. In general, the hydrotreating of residual oils is designed for the conversion of C7- insoluble asphaltenes and other hydrocarbonaceous matter to more valuable petroleum products and separation of sulfurous components to render the residual oil more useful.

INFORMATION DISCLOSURE
[0006] US-A-6,096,191 B 1 discloses a catalytic hydrocracking process wherein a hydrocarbonaceous feedstock and a liquid recycle stream are contacted with hydrogen and a hydrocracking catalyst to obtain conversion to lower boiling hydrocarbons.
The: resulting effluent from the hydrocracking zone is hydrogen stripped at essentially the same pressure as the hydrocracking zone and at least a portion is recycled to the hydrocracking reaction zone.
SUMMARY OF THE INVENTION
[0007] The present invention is an integrated hydrocracking process which hydrocracks a first feedstock while desulfurizing a second feedstock having a majority boiling at a temperature greater than 565 C in a first desulfurization zone and desulfurizing a third feedstock comprising diesel boiling range hydrocarbons in a second desulfurization zone. At least a portion of the diesel boiling range hydrocarbons produced in the hydrocracking zone are desulfurized in the second desulfurization zone.
[0008] Other embodiments of the present invention encompass further details such as types and descriptions of feedstocks, hydrocracking catalysts, desulfurization catalysts and preferred operating conditions including temperatures and pressures, all of which are hereinafter disclosed in the following discussion of each of these facets of the irivention.

BRIEF DESCRIPTION OF THE DRAWING
[0009] The drawing is a simplified process flow diagram of a preferred embodiment of the present invention. The above described drawing is intended to be schematically illustrative of the present invention and is not to be a limitation thereof.

DETAILED DESCRIPTION OF THE INVENTION
[0010] An integrated hydrocracking process has been discovered which is capable of desulfurizing a heavy residual hydrocarbonaceous feedstock and desulfurizing a feedstock comprising diesel boiling range hydrocarbons to produce ultra low sulfur diesel.
[0011] The first feedstock to the hydrocracking process is preferably gas oil feedstocks containing hydrocarbon components which boil above 288 C and more preferably feeds containing at least 25 volume percent boiling between 3150C and 538 C.
Preferred feedstocks include atmospheric gas oils, vacuum gas oils, and coker distillates.
[0012] The first feedstock is reacted with hydrogen in a hydrocracking zone containing hydrocracking catalyst to produce diesel boiling range hydrocarbons. The hydrocracking zone may contain one or more beds of the same or different catalyst. In one embodiment, the preferred hydrocracking catalysts utilize amorphous bases or low-level zeolite bases combined with one or more Group VIII or Group VIB metal hydrogenating components. In another embodiment, the hydrocracking zone may contain a catalyst which comprises, in general, any crystalline zeolite cracking base upon which is deposited a Group VIII metal hydrogenating component. Additional hydrogenating components may be selected from Group VIB for incorporation with the zeolite base. The zeolite cracking bases are sometimes referred to in the art as molecular sieves and are usually composed of silica, alumina and one or more exchangeable cations, such as sodium, magnesium , calcium, rare earth metals, etc.
They are further characterized by crystal pores of relatively uniform diameter between 4 and 14 Angstroms. It is preferred to employ zeolites having a relatively high silica/alumina mole ratio between 3 and 12. Suitable zeolites found in nature include, for example, mordenite, stilbite, heulandite, ferrierite, dachiardite, chabazite, erionite and faujasite. Suitable synthetic zeolites include, for example, the B, X, Y and L crystal types, e.g., synthetic faujasite and mordenite. The preferred zeolites are those having crystal pore diameters between 8-12 Angstroms, wherein the silica/alumina mole ratio is 4 to 6. A prime example of'a zeolite falling in the preferred group is synthetic Y molecular sieve.
[0013] The natural occurring zeolites are normally found in a sodium form, an alkaline earth metal form, or mixed forms. The synthetic zeolites are nearly always prepared first in the sodium form. In any case, for use as a cracking base it is preferred that most or all of the original zeolitic monovalent metals be ion-exchanged with a polyvalent metal and/or with an ammonium salt followed by heating to decompose the ammonium ions associated with the zeolite, leaving in their place hydrogen ions and/or exchange sites which have actually been decationized by further removal of water. Hydrogen or "decationized" Y
zeolites of this nature are more particularly described in US-A-3,130,006.
[0014] Mixed polyvalent metal-hydrogen zeolites may be prepared by ion-exchanging first with an ammonium salt, then partially back exchanging with a polyvalent metal salt and then calcining. In some cases, as in the case of synthetic mordenite, the hydrogen forms can be prepared by direct acid treatment of the alkali metal zeolites. The preferred cracking bases are those which are at least 10 percent, and preferably at least 20 percent, metal-cation-deficient, based on the initial ion-exchange capacity. A specifically desirable and stable class of zeolites are those wherein at least 20 percent of the ion exchange capacity is satisfied by hydrogen ions.
[0015] The active metals employed in the preferred hydrocracking catalysts of the present invention as hydrogenation components are those of Group VIII, i.e., iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum. In addition to these metals, other promoters may also be employed in conjunction therewith, including the metals of Group VIB, e.g., molybdenum and tungsten. The amount of hydrogenating metal in the catalyst can vary within wide ranges. Broadly speaking, any amount between 0,05 percent and 30 percent by weight may be used. In the case of the noble metals, it is normally preferred to use 0.05 to 2 weight percent. The preferred method for incorporating the hydrogenating metal is to contact the zeolite base material with an aqueous solution of a suitable compound of the desired metal wherein the metal is present in a cationic form.
Following addition of the selected hydrogenating metal or metals, the resulting catalyst powder is then filtered, dried, pelleted with added lubricants, binders or the like if desired, and calcined in air at temperatures of, e.g., 371 -648 C in order to activate the catalyst and decompose ammonium ions. Alternatively, the zeolite component may first be pelleted, followed by the addition of the hydrogenating component and activation by calcining. The foregoing catalysts may be employed in undiluted form, or the powdered zeolite catalyst may be mixed and copelleted with other relatively less active catalysts, diluents or binders such as alumina, silica gel, silica-alumina cogels, activated clays and the like in proportions ranging between 5 and 90 weight percent. These diluents may be employed as such or they may contain a minor proportion of an added hydrogenating metal such as a Group VI.B and/or Group VIII metal.
[0016] Additional metal promoted hydrocracking catalysts may also be utilized in the process of the present invention which comprises, for example, aluminophosphate molecular sieves, crystalline chromosilicates and other crystalline silicates.
Crystalline chromosilicates are more fully described in US-A-4,363,718.
[0017] The hydrocracking of the first hydrocarbonaceous feedstock in contact with a hydrocracking catalyst is conducted in the presence of hydrogen and preferably at hydrocracking conditions which include a temperature from 232 C to 468 C, a pressure from 3448 kPa gauge to 20685 kPa gauge, a liquid hourly space velocity (LHSV) from 0.1 to 30 hr 1, and a hydrogen circulation rate from 337 normal m3/m3 to 4200 normal m3/m3. In accordance with the present invention, the operating conditions are selected to produce diesel boiling range hydrocarbons.
[0018] The resulting effluent from the hydrocracking zone is admixed with a second hydrocarbonaceous feedstock having a majority boiling at a temperature greater than 565 C
and introduced into a first desulfurization zone containing desulfurization catalyst. The second hydrocarbonaceous feedstock is preferably selected from the group consisting essentially of reduced crude, vacuum reduced crude and tar sand bitumen.
Preferred desulfurization conditions include a temperature from 204 C to 482 C and a liquid hourly space velocity from 0.1 to 10 hr"1. It is contemplated that the desulfurization zone may also perform other hydroprocessing reactions, such as aromatic saturation, nitrogen removal, cetane improvement, demetallation and color improvement, for example.
[0019] Suitable desulfurization catalysts for use in the present invention are any known conventional hydrotreating catalysts and include those which are comprised of at least one Group VIII metal, preferably iron, cobalt and nickel, more preferably cobalt and/or nickel and at least one Group VI metal, preferably molybdenum and tungsten, on a high surface area support material, preferably alumina. Other suitable desulfurization catalysts include zeolitic catalysts, as well as noble metal catalysts where the noble metal is selected from palladium and platinum. It is within the scope of the present invention that more than one type of desulfurization catalyst be used in the same reaction vessel. The Group VIII
metal is typically present in an amount ranging from 2 to 20 weight percent, preferably from 4 to 12 weight percent. The Group VI metal will typically be present in an amount ranging from I to 25 weight percent, preferably from 2 to 25 weight percent. Typical desulfurization temperatures range from 204 C to 482 C with pressures from 3.45 MPa to 20.7 MPa.
[0020] The resulting effluent from the first desulfurization zone is passed to a hot, high pressure separator operated at a pressure essentially equal to the pressure in the first desulfurization zone and a temperature in the range from 204 C to 454 C to recover a vaporous hydrocarbonaceous stream containing hydrogen, and a liquid hydrocarbonaceous stream.
[0021] The vaporous hydrocarbonaceous stream containing hydrogen and the third hydrocarbonaceous feedstock containing diesel boiling range hydrocarbons is reacted in a second desulfurization containing desulfurization catalyst. This desulfurization catalyst may be selected from any known desulfurization catalyst, such as that described hereinabove, for example. The type of catalyst in the second desulfurization zone may be the sarne or different than the catalyst in the first desulfurization zone. The operating conditions in the second desulfurization zone are preferably selected from those desulfurization conditions described hereinabove. The third feedstock containing diesel boiling range hydrocarbons preferably boils in the range from 149 C to 399 C.
[0022] The resulting effluent from the second desulfurization zone is cooled, partially condensed and introduced into a cold vapor-liquid separator preferably operated at a temperature from 15.6 C to 60 C to recover a hydrogen-rich vapor stream which is preferably recycled, at least in part, to the hydrocracking zone, and a liquid hydrocarbonaceous stream.
[0023] The liquid hydrocarbonaceous stream containing distillable hydrocarbons and including diesel boiling range hydrocarbons recovered from the cold, high pressure vapor-liquid separator and the liquid hydrocarbon stream containing non-distillable hydrocarbons recovered from the hot, high pressure vapor-liquid separator is preferably introduced into a fractionation zone to produce various hydrocarbon product streams including, for example, a naphtha stream, a kerosene stream, a diesel stream and a heavy hydrocarbonaceous stream containing hydrocarbons boiling at a temperature greater than 565 C. At least a. portion of the recovered diesel stream is recycled and introduced into the second desulfurization zone to ensure that the net recovered diesel stream meets the required low sulfur specifications.
[0024] With reference to the drawing, a feedstream comprising vacuum gas oil is introduced into the process via line I and is admixed with a hydrogen-rich gaseous stream provided via line 28 and the resulting admixture is introduced via line 2 into hydrocracking zone 3. A resulting hydrocracking zone effluent is transported via line 4 and is admixed with a residual oil stream containing compounds boiling at a temperature greater than 565 C and the resulting admixture is transported via line 6 and introduced into desulfurization zone 7.
A resulting desulfurized stream is removed from desulfurization zone 7 via line 8 and introduced into hot, high pressure vapor-liquid separator 9. A hot liquid hydrocarbonaceous stream is removed from hot high pressure vapor-liquid separator 9 via line 25 and introduced into fractionation zone 20. A vaporous hydrocarbonaceous stream is removed from hot high pressure vapor-liquid separator 9 via line 10 and is joined by a hydrocarbonaceous stream containing diesel boiling range hydrocarbons and the resulting admixture is transported via line 12 and is joined by a recycle stream containing diesel boiling range hydrocarbons provided by line 24 and the resulting admixture is transported via line 13 and introduced into desulfurization zone 14. A resulting desulfurized hydrocarbonaceous stream is removed from desulfurization zone 14 via line 15 and introduced into heat-exchanger 16. A
resulting cooled effluent is removed from heat-exchanger 16 via line 17 and introduced into colci high pressure separator 18. A hydrogen-rich gaseous stream is removed from cold high pressure separator 18 via line 26 and is joined by a makeup hydrogen stream provided via line 27 and the resulting admixture is transported via line 28 and joins the fresh feedstock introduced via line 1 as hereinabove described. A liquid hydrocarbonaceous stream is removed from cold high pressure separator 18 via line 19 and introduced into fractionation zone 20. A
riaphtha stream is removed from fractionation zone 20 via line 21 and recovered. A net diesel stream is removed from fractionation zone 20 via line 22 and recovered. A desulfurized and demetallized, heavy hydrocarbonaceous stream containing compounds boiling at a temperature greater than 565 C is removed from fractionation zone 20 via line 23 and recovered. A stream containing diesel boiling range hydrocarbons is removed from actionation zone 20 via line 24 and is introduced via line 13 into desulfurizationi zone 14 as described hereinabove.
[0025] The foregoing description and drawing clearly illustrate the advantages encompassed by the process of the present invention and the benefits to be afforded with the use thereof.

Claims (10)

1. A hydrocracking process for the production of ultra low sulfur diesel wherein the process comprises:

(a) reacting a first hydrocarbonaceous feedstock (1) and hydrogen (28) in a hydrocracking zone (3) containing hydrocracking catalyst to produce diesel boiling range hydrocarbons;

(b) introducing a hydrocracking zone effluent (4) produced in step (a) and a second hydrocarbonaceous feedstock (5) heaving a majority boiling at a temperature greater than 565°C into a first desulfurization zone (7) containing desulfurization catalyst to produce a first desulfurization zone effluent stream (8);

(c) passing the first desulfurization zone effluent stream (8) to a hot, high pressure vapor-liquid separator (9) to recover a first vaporous hydrocarbonaceous stream containing hydrogen (10) and a first liquid hydrocarbonaceous stream (25);

(d) introducing the first vaporous hydrocarbonaceous stream containing hydrogen and a third hydrocarbonaceous feedstock (11) comprising diesel boiling range hydrocarbons into a second desulfurization zone (14) containing desulfurization catalyst to produce a second desulfurization zone effluent stream (15);

(e) passing the second desulfurization zone effluent stream (15) to a cold vapor-liquid separator (18) to recover a hydrogen-rich gaseous stream (26) and a second liquid hydrocarbonaceous stream (19); and (f) passing the first liquid hydrocarbonaceous stream (25) and the second liquid hydrocarbonaceous stream (19) to a fractionation zone (20) to produce a hydrocarbonaceous stream (24) comprising diesel boiling range hydrocarbons and a hydrocarbonaceous stream (23) comprising hydrocarbons boiling at a temperature greater than 565°C.
2. The process of claim 1 wherein at least a portion of the hydrocarbonaceous stream (24) comprising diesel boiling range hydrocarbons produced in step (f) is introduced into the second desulfurization zone (14).
3. The process as defined in any one of claims 1-2 wherein at least 25% by volume of the first hydrocarbonaceous feedstock (1) boils between 315°C and 538°C.
4. The process as defined in any one of claims 1-3 wherein the third hydrocarbonaceous feedstock (11) boils in the range from 149°C to 399°C.
5. The process as defined in any one of claims 1-4 wherein the hydrocracking zone (3) is operated at conditions which include a temperature from 232°C to 468°C and a pressure from 3.45 MPa to 20.7 MPa.
6. The process as defined in any one of claims 1-5 wherein the first desulfurization zone (7) is operated at conditions which include a temperature from 204°C to 482°C and a pressure from 3.45 MPa to 20.7 MPa.
7. The process as defined in any one of claims 1-6 wherein the second desulfurization zone (14) is operated at conditions which include a temperature from 204°C to 482°C and a pressure from 3.45 MPa to 20.7 MPa.
8. The process as defined in any one of claims 1-7 wherein the cold vapor-liquid separator (18) is operated at a temperature from 15.6°C to 60°C.
9. The process as defined in any one of claims 1-8 wherein the first hydrocarbonaceous feedstock (1) comprises a vacuum gas oil.
10. The process as defined in any one of claims 1-9 wherein the second hydrocarbonaceous feedstock (5) is selected from the group consisting essentially of reduced crude, vacuum reduced crude and tar sand bitumen.
CA2552275A 2006-07-12 2006-07-12 An integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil Active CA2552275C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2552275A CA2552275C (en) 2006-07-12 2006-07-12 An integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2552275A CA2552275C (en) 2006-07-12 2006-07-12 An integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil

Publications (2)

Publication Number Publication Date
CA2552275A1 true CA2552275A1 (en) 2008-01-12
CA2552275C CA2552275C (en) 2013-12-10

Family

ID=38920812

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2552275A Active CA2552275C (en) 2006-07-12 2006-07-12 An integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil

Country Status (1)

Country Link
CA (1) CA2552275C (en)

Also Published As

Publication number Publication date
CA2552275C (en) 2013-12-10

Similar Documents

Publication Publication Date Title
US7591940B2 (en) Combination hydrocracking process for the production of ultra low sulfur diesel
US7837860B1 (en) Process for the production of low sulfur diesel and high octane naphtha
US7074321B1 (en) Combination hydrocracking process for the production of low sulfur motor fuels
CA2281429C (en) Integrated hydrotreating and hydrocracking process
US7094332B1 (en) Integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil
CA2344953C (en) Improved hydrocracking process
US6623623B2 (en) Simultaneous hydroprocessing of two feedstocks
US7005057B1 (en) Hydrocracking process for the production of ultra low sulfur diesel
CA2569348C (en) An integrated process for the production of low sulfur diesel
US7470358B1 (en) Integrated process for the production of low sulfur diesel
US7470357B1 (en) Hydrocarbon conversion process
WO2006062712A2 (en) Hydrocarbon conversion process
US20080023372A1 (en) Hydrocracking Process
US7097760B1 (en) Hydrocarbon process for the production of ultra low sulfur diesel
US6638418B1 (en) Dual recycle hydrocracking process
US7384542B1 (en) Process for the production of low sulfur diesel and high octane naphtha
US7842180B1 (en) Hydrocracking process
CA2351196C (en) Simultaneous hydroprocessing of two feedstocks
US7108779B1 (en) Hydrocarbon desulfurization process
CA2657780C (en) A hydrocarbon desulfurization process
EP1752511B1 (en) A hydrocracking process for the production of ultra low sulfur diesel
CA2423946A1 (en) Hydrocracking process
CA2491012C (en) An improved hydrocracking process
CA2525650C (en) A hydrocracking process for the production of ultra low sulfur diesel
CA2552275C (en) An integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil

Legal Events

Date Code Title Description
EEER Examination request