CA2551370A1 - Process for sulphur storage effected by means of blocks of sulphur - Google Patents

Process for sulphur storage effected by means of blocks of sulphur Download PDF

Info

Publication number
CA2551370A1
CA2551370A1 CA 2551370 CA2551370A CA2551370A1 CA 2551370 A1 CA2551370 A1 CA 2551370A1 CA 2551370 CA2551370 CA 2551370 CA 2551370 A CA2551370 A CA 2551370A CA 2551370 A1 CA2551370 A1 CA 2551370A1
Authority
CA
Canada
Prior art keywords
sulphur
panels
insulating material
heat insulating
confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA 2551370
Other languages
French (fr)
Other versions
CA2551370C (en
Inventor
Francesco Crescenzi
Alessandro Nardella
Edoardo D'angeli
Ernesto Scafe
Roberto Riva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eni Tecnologie SpA
Eni SpA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2551370A1 publication Critical patent/CA2551370A1/en
Application granted granted Critical
Publication of CA2551370C publication Critical patent/CA2551370C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0216Solidification or cooling of liquid sulfur

Abstract

Process for sulphur storage effected by means of sulphur blocks obtained using confinement panels of the space destined for the construction of said blocks, characterized in that said confinement panels substantially consist of, or contain, or are coated with heat insulating material, thus slowing down the solidification of the liquid sulphur on the walls of the block, improving the resistance of the surfaces of said blocks.

Description

PROCESS FOR SULPHUR STORAGE EFFECTED BY MEANS OF BLOCKS OF
SULPHUR
The present invention relates to a process for sulphur storage by means of blocks obtained using suitable panels.
The storage of sulphur, obtained in the liquid state from hydrocarbon fields through the Claus process, is cur-rently effected in solidified sulphur blocks having consid-erable dimensions (sides in the order of hundreds of me-ters). The blocks are obtained using metal panels, normally of aluminum, positioned along the perimeter of the surface destined for the construction of the blocks. Liquid sulphur is poured into the confined area, and is left to solidify in subsequent layers, until the upper edge of the metal panels is reached. The perimetric panels are removed, after solidification, and assembled at a greater height until the whole block is obtained. At the end of the construction all the block surfaces are exposed to atmospheric agents, in particular to erosive phenomena, which are particularly se-rious on the side walls of the blocks. The erosion of the walls, in addition to causing the sulphur to spread around the block, contributing to the environmental pollution of the site, can, in some cases, cause collapses, with further risks for the safety of the workers.
In the block construction process, the solidification of the outer walls takes place more rapidly than inside the block as the heat exchange with the external environment is more effective. Fast solidification causes the formation of a particularly fragile material, making the wall mechani-cally more unstable and increasing the effects of the ero-sive phenomena induced by atmospheric agents.
We have now found that by slowing down the heat ex-change of the walls with the atmosphere, by interposing a layer of heat insulating material, the solidification of liquid sulphur on the walls of the block occurs more slowly and the solid formed has better mechanical properties and is more resistant to the stress produced by atmospheric agents.
The process for sulphur storage, object of the present invention, effected by means of sulphur blocks obtained by using confinement panels of the space destined for the con-struction of said blocks, is characterized in that said confinement panels are substantially made of, or contain, or are coated with heat insulating material, thus slowing down the solidification of liquid sulphur on the block
- 2 -walls. When the confinement panel does not substantially consist of heat insulating material alone, it can be either metallic, for example aluminum, or non-metallic, preferably wood or polymeric material.
The heat insulating material is preferably selected from an expanded material, glass wool, rock wool or cork;
more preferably the expanded material can be selected from expanded polystyrene and expanded polyurethane.
The heat insulating material can be in the form of sheets, preferably having a thickness of a few centimetres, more preferably from 1 to 5 cm, and a density preferably from 10 to 60 kg/m3.
The heat insulating material should also be selected on the basis of whether it must adhere or not to the so lidified sulphur.
For easy laying, the sheets of heat insulating mate-rial can preferably have fitting edges so as to form a con-tinuous layer.
More specifically, the process is effected according to whether the confinement panels substantially consist of, or contain, or are coated with heat insulating material, i.e. depending on whether the heat insulating material is present in the panel before its positioning or is applied after the positioning of the same.
When the confinement panel is coated with heat insu-
- 3 -lating material, the process can include the following steps:
~ positioning of the confinement panels and laying of a layer of heat insulating material on the inner wall of said metal or plastic panels;
~ pouring of liquid sulphur until the first layer of sulphur is filled and the possible consequent adhe-sion of said heat insulating material to the solidi-fied sulphur;
~ possible re-positioning of said panels for the pour-ing of further sulphur layers and the further laying of heat insulating material to form subsequent levels of the sulphur block and the corresponding introduc-tion of liquid sulphur and possible consequent adhe-sion of said heat insulating material to the solidi-fied sulphur until the entire block has been con-structed.
Should the confinement panel substantially consist of, or contain heat insulating material, i.e. is equipped with said insulating material before its positioning, the panel can be left for the further protection of the block or it can be re-positioned at the upper levels of the block.
In the case of a confinement panel substantially con-sisting of, or containing insulating material before its positioning and left for further protection of the block,
- 4 -the steps are substantially the following:
~ positioning of the confinement panels substantially consisting of, or already containing the heat insu-lating material on the inner wall of said panels;
~ pouring of liquid sulphur until the first layer of sulphur is full and the possible consequent adhesion of said heat insulating material to the solidified sulphur;
possible positioning of further confinement panels analogous to the previous ones for pouring further sulphur layers for forming subsequent levels of the sulphur block and the corresponding introduction of liquid sulphur until the entire block has been con-structed.
In the case of confinement panels, substantially con-sisting of or containing insulating material before its po-sitioning, re-positioned at the upper levels of the block, the steps are substantially the following:
~ positioning of the confinement panels substantially consisting of, or already containing heat insulating material, on the inner wall of said panels;
pouring of liquid sulphur until the first layer of sulphur is full;
~ possible re-positioning of said panels for pouring further sulphur layers for forming subsequent levels
- 5 -of the sulphur block, and the corresponding introduc-tion of liquid sulphur until the entire block has been constructed.
If the confinement panel is coated with heat insulat-ing material, or when the confinement panel substantially consists of, or contains heat insulating material and is left for further protection of the block, the layer of in-sulating material is preferably selected so as to strictly and firmly adhere to the solidified sulphur, so that the wall is even more stable from a mechanical point of view and is more efficaciously protected from environmental agents.
The solidification processes of sulphur in contact with the insulating material and the adhesion of the panel to the solidified sulphur do in fact cause an increase in the mechanic resistance of the wall and an efficient pro-tection against collapsing and erosive phenomena, substan-tially reducing the environmental impact of the deposit.
All the process described above can be optionally com-pleted by the laying of insulating material also for im-proving the resistance of the upper surface of the block.
The improvement of the resistance of the upper surface can be obtained by solidifying the last layers of the block, keeping the confinement panels folded towards the inside of the block, positioned at an acute angle with respect to the
- 6 -horizontal plane. In this way, the upper surface of the block, which is tilted, will also solidify in contact with the insulating panels, thus acquiring the same advantages as the side walls. In order to avoid the sharp intersection of the block walls, the meeting lines of the side walls and those between the side walls and the upper wall, can be rounded for a higher solidity and strength of the entire block.
Some examples are now provided, which represent em bodiments of the present invention and which should not be considered as limiting its scope.
Example 1 The inside of a cube having metal walls with a side of 50 cm. is covered with a layer of expanded polystyrene 2 cm thick and with a density of 50 Kg/m3. Liquid sulphur is poured into said cube thus prepared, in successive layers of 10 cm. Each layer of liquid sulphur is left to solidify and cool at room temperature before pouring the subsequent layer. Once the cube has been filled, the metal walls are removed and the sulphur cube is vertically sectioned so as to collect 5 cm-thick samples from the walls, for mechani-cal characterization.
Table 1 shows the mechanical characteristics of the cube wall samples prepared by insulating the walls and com paring them with those of an identical cube prepared with -out insulation.
Table 1. Mechanical characteristics Sample Flexural strengthDensity Porosity ( ) Unit (MPa) (g/cm3) (/.) without insulation76.1 12.8 1.87 + 0.02 4.5 with insulation222.9 35.1 1.90 + 0.06 3.2 Test samples of 5x5x20 cm, surfaces not rectified Porosity with respect to the monocline phase Example 2 The inside of the same cube of example 1 is covered with a layer of expanded polyurethane 2 cm thick and with a density of 35 Kg/m3.
The same procedures are adopted as in example 1.
Table 2 shows the mechanical characteristics of the cube wall samples prepared by insulating the walls and com-paring them with those of an identical cube prepared with-out insulation.
Table 2. Mechanical characteristics Sample Flexural strengthDensity Porosity ( ) 2 Unit (MPa) (g/cm3) (%) without insulation76.1 12.8 1.87 + 0.02 4.5 with insulation122.5 28.2 1.89 + 0.05 3.6 Test samples of 5x5x20 cm, surfaces not rectified Porosity with respect to the monocline phase Example 3 The inside of the same cube of example 1 is covered _ g _ with a layer of rock wool, 2 cm thick and with a density of 150 Kg/m3.
The same procedures are adopted as in example 1.
Table 3 shows the mechanical characteristics of the cube wall samples prepared by insulating the walls and com-paring them with those of an identical cube prepared with-out insulation.
Table 3. Mechanical characteristics Sample Flexural strengthDensity Porosity ( ) Unit (MPa) (g/cm3) ('%) without insulation76.1 12.8 1.8 % + 0.02 4.5 with insulation140 62 1.88 + 0.06 4.1 Test samples of 5x5x20 cm, surfaces not rectified Porosity with respect to the monocline phase Example 4 The inside of the same cube of example 1 is covered with a layer of expanded polystyrene, 2 cm thick and with a density of 15 Kg/m3.
The same procedures are adopted as in example 1, but also adding the insulation of the upper wall.
Table 4 shows the mechanical characteristics of the cube wall samples prepared by insulating the walls and com-paring them with those of an identical cube prepared with-out insulation.

Table 4. Mechanical characteristics Sample Flexural strengthDensity Porosity ( ) Unit (MPa) (g/cm~) (%) without insulation76.1 12.8 1.87 + 0.02 4.5 with insulation180.4 22.3 1.91 + 0.03 2.5 Test samples of 5x5x20 cm, surfaces not rectified Porosity with respect to the monocline phase

Claims (9)

1. Process for sulphur storage effected by means of sul-phur blocks obtained using confinement panels of the space destined for the construction of said blocks, characterized in that said confinement panels substantially consist of, or contain, or are coated with heat insulating material, thus slowing down the solidification of liquid sulphur on the block walls.
2. Process according to claim 1, wherein the confinement panel is made of metal or wood or polymeric material.
3. Process according to claim 1, wherein the heat insu-lating material is selected from an expanded material, glass wool, rock wool or cork.
4. Process according to claim 2, wherein the expanded material is selected from expanded polystyrene, and ex-panded polyurethane.
5. Process according to claim 1, wherein the insulating material is in the form of sheets having a thickness se-lected from 1 to 5 cm and a density ranging from 10 to 60 Kg/m3.
6. Process according to claim 1, wherein the confinement panels are covered with heat insulating material comprising the following steps:
.cndot. positioning of the confinement panels and laying of a layer of heat insulating material on the inner wall of said metal or plastic panels;
.cndot. pouring of liquid sulphur until the first layer of sulphur is filled and the possible consequent adhe-sion of said heat insulating material to the solidi-fied sulphur;
.cndot. possible re-positioning of said panels for the pour-ing of further sulphur layers and the further laying of heat insulating material to form subsequent levels of the sulphur block and the corresponding introduc-tion of liquid sulphur and possible consequent adhe-sion of said heat insulating material to the solidi-fied sulphur until the entire block has been con-structed.
7. Process according to claim 1, wherein the confinement panels substantially consist of, or contain heat insulating material before positioning the same, comprising the fol-lowing steps:
.cndot. positioning of the confinement panels substantially consisting of, or already containing the heat insu-lating material on the inner wall of said panels;
.cndot. pouring of liquid sulphur until the first layer of sulphur is full and the possible consequent adhesion of said heat insulating material to the solidified sulphur;
.cndot. possible positioning of further confinement panels analogous to the previous ones for pouring further sulphur layers for forming subsequent levels of the sulphur block and the corresponding introduction of liquid sulphur until the entire block has been con-structed.
8. Process according to claim 1, wherein the confinement panels substantially consist of, or contain the heat insulating material before positioning the same, com-prising the following steps:
.cndot. positioning of the confinement panels substan-tially consisting of, or already containing heat insulating material, on the inner wall of said panels;
.cndot. pouring of liquid sulphur until the first layer of sulphur is full;
.cndot. possible re-positioning of said panels for pour-ing further sulphur layers for forming subsequent levels of the sulphur block, and the correspond-ing introduction of liquid sulphur until the en-tire block has been constructed.
9. Process according to claim 6 or 7 or 8 wherein an im-provement of the resistance of the upper surface is ob-tamed by solidifying the last layers of the block, keeping the confinement panels folded towards the inside of the block, positioned at an acute angle with respect to the horizontal plane.
CA2551370A 2005-07-08 2006-06-29 Process for sulphur storage effected by means of blocks of sulphur Expired - Fee Related CA2551370C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI20051293 ITMI20051293A1 (en) 2005-07-08 2005-07-08 PROCEDURE FOR DETACHMENT OF SULFUR DETACHED BY SULFUR BLOCKS
ITMI2005A001293 2005-07-08

Publications (2)

Publication Number Publication Date
CA2551370A1 true CA2551370A1 (en) 2007-01-08
CA2551370C CA2551370C (en) 2014-09-16

Family

ID=35708575

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2551370A Expired - Fee Related CA2551370C (en) 2005-07-08 2006-06-29 Process for sulphur storage effected by means of blocks of sulphur

Country Status (2)

Country Link
CA (1) CA2551370C (en)
IT (1) ITMI20051293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022499A1 (en) * 2008-08-27 2010-03-04 Mierzewski Edward Structurally reinforced sulfur blocks and processes of making
WO2012143387A1 (en) 2011-04-19 2012-10-26 Ausy S.R.L. Procedure for the storage and handling of sulphur blocks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022499A1 (en) * 2008-08-27 2010-03-04 Mierzewski Edward Structurally reinforced sulfur blocks and processes of making
WO2012143387A1 (en) 2011-04-19 2012-10-26 Ausy S.R.L. Procedure for the storage and handling of sulphur blocks

Also Published As

Publication number Publication date
ITMI20051293A1 (en) 2007-01-09
CA2551370C (en) 2014-09-16

Similar Documents

Publication Publication Date Title
CA2551370A1 (en) Process for sulphur storage effected by means of blocks of sulphur
US20070220826A1 (en) Fire-resistant and heat-insulating door/wall structure
EP2366847B1 (en) Insulating and draining board
US20080134628A1 (en) Fire-Protection Walls of Cementitious Composite Materials
CN106223499A (en) A kind of manufacture method of composite building thermal insulation template
KR20050022974A (en) Sound- and water-proofing panel and preparing method thereof
CN207846958U (en) A kind of insulation and decoration board mounting structure
CN211399019U (en) Vacuum heat-insulating plate
CN111618236A (en) Water-based paint for aluminum-copper alloy casting lost foam
JP2007039291A (en) Tile and its manufacturing method
CN209369086U (en) A kind of heat preserving exterior wall for building
CN217353173U (en) Heat insulation board and composite self-heat-insulation building block
CN105735520B (en) A kind of exterior wall support member, insulation and decoration integrated plate, external thermal insulation system and construction method
CN219952800U (en) Archaize building heat preservation structure
RU161839U1 (en) FACING PLATE
CN208604775U (en) A kind of composite fire-proof heat-preserving wall
CN218374569U (en) Cast-in-place concrete fireproof isolation wall
CN215167463U (en) Inorganic fire-proof decorative structure of outer wall
CN209585323U (en) A kind of polyurethane composite rock wool fireproofing insulation board
CN205224382U (en) Thermal insulation building block
CN219261505U (en) Light insulating brick with stable structure
CN216587177U (en) Light fire compartment wall that fire behavior is strong
CN217150739U (en) High temperature resistant EPS polystyrene cystosepiment
CN1373039A (en) Process for preparing thermal insulating and isolating composite silicate board wich hard sandwich
EP0106144A2 (en) Fire protection material and its use

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831