CA2540114C - Keyed fibre optic connector - Google Patents

Keyed fibre optic connector Download PDF

Info

Publication number
CA2540114C
CA2540114C CA2540114A CA2540114A CA2540114C CA 2540114 C CA2540114 C CA 2540114C CA 2540114 A CA2540114 A CA 2540114A CA 2540114 A CA2540114 A CA 2540114A CA 2540114 C CA2540114 C CA 2540114C
Authority
CA
Canada
Prior art keywords
keying
receptacle
connector
boss
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2540114A
Other languages
French (fr)
Other versions
CA2540114A1 (en
Inventor
Luc Milette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Belden Canada ULC
Original Assignee
Belden CDT Canada Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002441872A external-priority patent/CA2441872A1/en
Application filed by Belden CDT Canada Inc filed Critical Belden CDT Canada Inc
Priority to CA2540114A priority Critical patent/CA2540114C/en
Priority claimed from PCT/CA2004/001730 external-priority patent/WO2005029147A1/en
Publication of CA2540114A1 publication Critical patent/CA2540114A1/en
Application granted granted Critical
Publication of CA2540114C publication Critical patent/CA2540114C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

A keying system for providing selective interconnection between a receptacle socket and a connector plug terminating an optic fibre, the connector plug adapted for insertion into the receptacle socket. The keying system comprises a raised boss configured to one of a plurality of predefined boss keying geometries and a cavity configured to one of a plurality of predefined cavity keying geometries. The boss is either in one of the receptacle socket or on a forward end of the connector plug and the cavity is formed in the other of the receptacle socket or the forward end of the connector plug. At least one of the predefined boss keying geometries matches at least one of the predefined cavity keying geometries. When the boss keying geometry matches the cavity keying geometry, the boss can be inserted into the cavity thereby interconnecting the connector plug with the receptacle socket. In this manner correct interconnections between connectors and other connectors or sockets can be insured thereby providing an enhanced level of security.

Description

TITLE OF THE INVENTION
KEYED FIBRE OPTIC CONNECTOR
FIELD OF THE INVENTION
The present invention relates to a keyed fibre optic connector. In particular, the present invention relates to an interlocking connector and receptacle pair for fibre optic cables with a geometric keying system moulded into the interface thereby preventing connectors with a first key from being interconnected via a receptacle having a differing key.
BACKGROUND OF THE INVENTION
Optical fibres terminated by connectors and the receptacles which are adapted to received these connectors are an important part of virtually any fibre optic communications system. For example, such connectors and receptacles may be used to interconnect fibre segments to create longer lengths, to connect optic fibre to active or passive devices, etc.. However, in some cases, for example for security reasons or in order to better manage a telecommunications network, it is desired to physically limit the insertion of a connector plug into a particular receptacle socket, and as a result prevent the transmission of data via that connector plug and receptacle socket.
The prior art reveals a variety of systems for preventing a connector plug from being inserted into a receptacle socket. One of these prior art systems comprises at least one tab arranged at a certain position on the connector plug, each of which is adapted for insertion into a corresponding tab receiving indentation moulded in the receptacle socket. In the absence of such a hollow the tab buts against the opening of the receptacle socket, thereby preventing
2 the connector plug from being completely inserted into the receptacle socket, thereby preventing the connector plug from being correctly interconnected with the receptacle socket. One drawback of these prior art designs is that that the tab, being typically moulded into the plastic connector plug housing, can be easily removed by filing or using a sharp blade or the like. Another drawback is that such prior art designs only allow two types of connector plugs to be differentiated between: connector plugs with a tab and connector plugs without a tab.
The prior art also reveals keying systems such as the US patent application published with the number 2002/0126960 Al comprising a connector plug and receptacle socket. Interconnection of the connector plug and receptacle socket is limited to connector plug/receptacle socket pairs where a key within the receptacle socket mates with a corresponding key receiving slot in the connector plug. A connector plug with a key receiving slot in one position is unable to interconnect with receptacle sockets with a differently positioned key.
As a result, by providing a number of differently positioned keys and key receiving slot a system of selective interconnection between connector plugs and receptacle sockets can be arrived at. These systems, however, are generally impractical in many fibre optic systems given the relatively small size of the connector plug and the receptacle socket.
SUMMARY OF THE INVENTION
In order to address the drawbacks of the prior art, there is provided a keying system for providing selective interconnection between a receptacle socket and a connector plug terminating an optic fibre, the connector plug adapted for insertion into the receptacle socket. The keying system comprises a raised boss configured to one of a plurality of predefined boss keying geometries and a cavity configured to one of a plurality of predefined cavity keying geometries.
3 The boss is either in one of the receptacle socket or on a forward end of the connector plug and the cavity is formed in another of the receptacle socket or the forward end of the connector plug. At least one of the predefined boss keying geometries matches at least one of the predefined cavity keying geometries. When the boss keying geometry matches the cavity keying geometry, the boss can be inserted into the cavity thereby interconnecting the connector plug with the receptacle socket.
There is also provided a receptacle for providing selective interconnection with 0 a connector plug terminating a first optic fibre, the connector plug comprising a cavity having a connector keying geometry formed in a forward end thereof.
The receptacle comprises at least one receptacle socket comprising a raised boss therein, the boss having a shape corresponding to one of a plurality of predefined receptacle keying geometries, the connector keying geometry 5 corresponding to one of the predefined receptacle keying geometries. When the receptacle keying geometry corresponds to the connector keying geometry, the connector plug can be inserted into the receptacle socket.
Furthermore, there is provided a receptacle for providing selective !O interconnection with a connector plug terminating a first optic fibre, the connector plug comprising a boss having a connector keying geometry formed in a forward end thereof. The receptacle comprises at least one receptacle socket comprising a cavity formed therein, the cavity having a shape corresponding to one of a plurality of predefined receptacle keying geometries, the connector keying geometry corresponding to one of the predefined receptacle keying geometries. When the receptacle keying geometry corresponds to the connector keying geometry, the connector plug can be inserted into the receptacle socket.
30 Additionally, there is provided a connector, terminating an optic fibre for
4 providing selective interconnection with a receptacle socket, the receptacle socket comprising a raised boss having a receptacle keying geometry formed therein. The connector comprises a connector plug adapted for insertion into the receptacle socket and comprising a cavity, the cavity having one of a plurality of predefined connector keying geometries formed in a forward end thereof, the receptacle keying geometry corresponding to one of the predefined connector keying geometries. When the receptacle ,keying geometry corresponds to the connector keying geometry, the connector plug can be inserted into the receptacle socket.
Also there is provided a connector terminating an optic fibre for providing selective interconnection with a receptacle socket, the receptacle socket comprising a cavity having a receptacle keying geometry formed therein. The connector comprises a connector plug adapted for insertion into the receptacle socket and comprising a boss having one of a plurality of predefined connector keying geometries formed in a forward end thereof, the receptacle keying geometry corresponding to one of the predefined connector keying geometries.
When the receptacle keying geometry corresponds to the connector keying geometry, the connector plug can be inserted into the receptacle socket.
Furthermore, there is provided a system for providing selective interconnection between first and second optic fibres. The system comprises a receptacle comprising back-to-back receptacle sockets, each of the sockets comprising a raised boss disposed therein and configured to one of a plurality of predefined receptacle keying geometries, a first connector plug terminating the first optic fibre, the plug adapted for insertion into a first of the back-to-back receptacle sockets and comprising a cavity formed in a forward end of the plug, the cavity configured to one of a plurality of predefined connector keying geometries, and a second connector plug terminating the second optic fibre, the plug adapted for insertion into a second of the back-to-back receptacle sockets and comprising a cavity formed in a forward end of the plug, the cavity configured to one of a plurality of predefined connector keying geometries. At least one of the predefined connector keying geometries matches at least one of the predefined receptacle keying geometries and when a receptacle keying geometry of a
5 boss of a first of the back-to-back receptacle sockets corresponds to the connector keying geometry of the first cable and a receptacle keying geometry of a boss of a second of the back-to-back receptacle sockets corresponds to the connector keying geometry of the second cable, the first cable can be inserted in the first socket and the second cable can be inserted in the second 0 socket bringing the first optic fibre into axial alignment with the second optic fibre.
Additionally, there is provided a receptacle for providing selective interconnection between first and second fibre optic cables, each cable comprising a connector plug comprising a cavity having a connector keying geometry formed in a forward end thereof. The receptacle comprises back-to-back receptacle sockets, each of the sockets comprising a raised boss, the boss having a shape corresponding to one of a plurality of predefined receptacle keying geometries. Each of the connector keying geometries !O corresponds to one of the predefined receptacle keying geometries and when the receptacle keying geometry of the boss of a first of the back-to-back receptacle sockets corresponds to the connector keying geometry of the first cable and when the receptacle keying geometry of the boss of a second of the back-to-back receptacle socket corresponds to the connector keying geometry ?.5 of the second cable, the connector plug of the first cable can be inserted in the first socket and the connector plug of the second cable can be inserted in the second socket, thereby interconnecting the first and second cables.
There is also provided a field-configurable receptacle for providing selective 30 interconnection with a connector plug in a fibre optic communications system,
6 the connector plug comprising a connector keying geometry formed in a forward end thereof. The receptacle comprises at least one receptacle socket adapted for receiving the connector plug and comprising a configurable shape, the shape corresponding to one of a plurality of predefined receptacle keying geometries. The he connector keying geometry corresponds to one of the predefined receptacle keying geometries and when the shape is configured to correspond to the connector keying geometry, the connector plug may be inserted into the socket.
In addition, there is provided a field-configurable connector for providing selective interconnection with a receptacle in a fibre optic communications system, the receptacle comprising at least one receptacle socket having a receptacle keying geometry formed therein. The connector comprises a connector plug adapted for insertion into the receptacle socket and comprising a configurable shape corresponding to one of a plurality of predefined connector keying geometries. One of the predefined connector keying geometries corresponds to the receptacle keying geometry and when the receptacle keying geometry corresponds to the connector keying geometry, the connector plug can be inserted into the receptacle socket.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is an orthogonal view of a connector in accordance with an illustrative embodiment of the present invention;
Figure 2 is a front plan view of a connector in accordance with an illustrative embodiment of the present invention;
Figure 3 is an orthogonal view of a receptacle in accordance with an illustrative embodiment of the present invention;
7 Figure 4 is a front plan view of a receptacle in accordance with an illustrative embodiment of the present invention;
Figure 5A is an orthogonal view of a connector in accordance with an alternative illustrative embodiment of the present invention;
Figure 5B is a side plan view of a connector in accordance with an alternative illustrative embodiment of the present invention;
Figure 6 is a front plan view of a receptacle with a connector installed in a socket thereof in accordance with an illustrative embodiment of the present invention;
Figure 7 is a side cut away view along VII-VII in Figure 6;
Figure 8 is an orthogonal view of a connector in accordance with an alternative illustrative embodiment of the present invention;
Figure 9 is a front plan view of a receptacle in accordance with an alternative illustrative embodiment of the present invention;
Figure 10 is an orthogonal view of a connector in accordance with a second alternative illustrative embodiment of the present invention;
Figure 11 is an orthogonal view of a receptacle in accordance with an second alternative illustrative embodiment of the present invention;
Figure 12 is an orthogonal view of a receptacle in accordance with an alternative illustrative embodiment of the present invention;
8 Figure 13 is an orthogonal view of a connector in accordance with a third alternative illustrative embodiment of the present invention;
Figure 14 is an orthogonal view of a connector in accordance with a forth alternative illustrative embodiment of the present invention;
Figure 15 is an orthogonal view of a receptacle in accordance with a forth alternative illustrative embodiment of the present invention;

Figure 16 is an orthogonal view of a receptacle in accordance with a fifth alternative illustrative embodiment of the present invention;
Figure 17 is a front plan view of a receptacle in accordance with a fifth 5 alternative illustrative embodiment of the present invention;
Figure 18 is a side cut away view along XVIII in Figure 17 of a receptacle in accordance with a fifth alternative illustrative embodiment of the present invention;
?.0 Figure 19A is an orthogonal view of an illustrative embodiment of an installer modifiable connector keying system;
Figure 19B is a front orthogonal view of a second illustrative embodiment of an ?5 installer modifiable connector keying system; and Figure 20 is a front orthogonal view of a receptacle for mounting on active devices in accordance with an illustrative embodiment of the present invention.
9 DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS
Referring now to Figure 1, a fibre optic connector in accordance with an illustrative embodiment of the present invention will be described. The connector, generally referred to using the reference numeral 2, which serves to connect a fibre optic cable 4 to a receptacle (not shown) is disclosed. As illustrated, connector 2 forms part of a cable assembly with an LC type connector plug attached at one end. It should be noted that although the illustrative embodiment of the present invention is described in reference to LC
type connectors, it is not intended to limit the invention to this type of connector.
Accordingly, the present invention may also be used, for example, with LC, SC, FC, MU and other similar connectors having a ferrule guide and/or support.
Still referring to Figure 1, the connector is comprised of a connector plug housing 6, fabricated from a suitable non-conductive material such as glass filled thermoplastic, through which the optic fibre 8 extends protruding from a forward end 10 thereof. The optic fibre 8 is held rigidly within a hollow ferrule 12, fabricated from a suitable stiff non-conductive material such as ceramics, -which is in turn held in axial alignment within the plug housing 6, thus ensuring that the optical fibre is maintained in substantially axial alignment with the central axis A of the plug housing 6. Typically, ferrule 12 is held rigidly inside the plug housing 6, but may also be spring loaded allowing some movement of the ferrule 12, and thus the optic fibre 8, forward and backwards along the central axis A.
A cavity 14, also in axial alignment with the central axis A, is moulded or machined into the forward end 10 of the plug housing 6 with the optic fibre 8/ferrule assembly 12 being axially aligned therein. A flexible locking tab or latch 16 is attached to the outside of the plug housing 6 allowing the plug housing 6 to be removeably attached to a suitable receptacle (not shown). The join between optic fibre cable 4 and the plug housing 6 is protected by means of a flexible strain-relieving boot 18, typically manufactured from rubber, rubberised plastic or the like. A pair of raised tabs as in 20 may be moulded to the outside of the plug housing which, as will be seen below, mate with 5 corresponding indentations in the receptacle (both not shown).
During fabrication, the optic fibre 8 is typically inserted through the ferrule 12 and bonded thereto with an appropriate adhesive or bonding technique. The ends of the optic fibre 8/ferrule 12 are then cut and polished according to a
10 predefined geometry dictated to the standard being implemented. The polishing results in an exposed end 22 of the optic fibre 8 extending forward of the forward end 10 of the plug housing, thereby allowing light to propagate to and from the optic fibre 8.
Referring now to Figure 2, a first illustrative embodiment of a keying system in accordance with the present invention will be described in more detail. The cavity 14, through which the optic fibre 8/ferrule 12 assembly extends, is configured to one of a plurality of predefined connector keying geometries.
The connector keying geometry is illustratively provided by a cavity having a cavity ?.0 keying geometry having an oval or egg shaped cross section with a first generally circular concentric portion of radius X1 and a keying portion 24 extending a distance of X2 from the centre of the optic fibre 8, with X2 being illustratively greater than radius X1. As illustrated in Figure 2, the cavity keying portion 24, for example a flute, notch or protuberance, is illustratively symmetric about an axis B, with axis B at a predetermined connector keying angle 0 from the horizontal plane C. Of course, the maximum point of extension X2 from the core of the optic fibre 8 must be chosen such that it is sufficiently less than distance y between the centre of the optic fibre 8 and the outer surface of the plug housing 6 to ensure that sufficient material remains between the cavity and the outer surface of the plug housing 6 for all keying angles 9. The other
11 dimensions of the cavity keying portion 24 such as the width and profile, are preferably selected such that the cavity keying portion 24 is difficult to modify, for example by removing the cavity keying portion 24 using a knife or the like in the case of a protuberance, or to modify without destroying the connector 2, thereby deterring the user from modifying the connector 2 for other purposes.
The cross section of the cavity keying portion 24 could alternatively be of a different shape, for example a square notch or concave depression in the side wall of the cavity 14, or could also be asymmetric. As will be seen below, the combination of the cavity keying portion 24 with the connector keying angle 0 provides one embodiment for the connector portion of the keying system.
Referring now to Figure 3, a receptacle in accordance with an illustrative embodiment of the present invention will be described. The receptacle, generally referenced using the numeral 26, illustratively comprises a receptacle housing 28 fabricated from a non-conductive material such as glass filled thermoplastic into which are moulded one or more receptacle sockets 30.
Referring to Figure 1 in addition to Figure 3, the sockets 30 are dimensioned for receiving the forward end 10 of the plug housing 6 which is held snugly therein.
Note that, although in the present illustrative embodiment a receptacle 26 having a duplex configuration with two (2) sockets 30 is disclosed, the receptacle 26 could also be simplex with a single socket 30, or provide for three (3) or more sockets 30.
Referring back to Figure 3, the receptacle housing 28 can be fastened to a patch bay panel or the like (not shown) by means of a pair of integrated flanges 32 and/or by screws or similar fasteners inserted through the cut outs 34 in the flanges.
Each receptacle socket 30 is terminated by a rear wall 36 and onto which is
12 moulded a raised boss 38, illustratively of an oval or egg shape, having a circular ferrule accepting bore 40 therein. Also moulded into the socket 30 is a reciprocal locking mechanism 42 which, referring to Figure 1 in addition to Figure 3, mates with the latch 16, thereby securely interlocking the connector with the receptacle 26 when the connector plug housing 6 is completely inserted into the socket 30. A pair of indentations 44 are also moulded in the socket 30 which mate with the corresponding tabs 20 moulded into the connector plug housing 6. The tabs 20 prevent a connector 2 from being completely inserted into a receptacle 26 which does not have these indentations. Note that in an alternative embodiment both the tabs 20 and indentations 44 could be absent without otherwise affecting the present invention.
Referring now to Figure 4, each socket 30 is configured to one of a plurality of predefined receptacle keying geometries. Illustratively, the receptacle keying geometry is provided by a raised boss 38 having a boss keying geometry, mounted on the rear wall 36 of the socket 30 comprising an oval or egg shaped cross section having a first generally circular concentric portion of radius x1 and a keying portion 46 projecting a distance of x2 from the centre of the ferrule cavity 40, x2 being illustratively greater than radius xl, although in a given implementation the distance of x2 could also be smaller than x1. The boss keying portion 46 is illustratively symmetric about an axis such as D, with axis D at a predetermined receptacle keying angle co i from the horizontal plane E.
Referring to Figure 2 in addition to Figure 4, in order for a connector 2 to correctly mate with a receptacle 26, the keying angles 0 and yo as well as the lengths X1, X2 and xi, x2 must match such that the cross section of the raised boss 38 is the mirror image of the cross section of the cavity 14 and that the cavity 14 fits snugly over the raised boss 38. For example, in the illustrative embodiment if the keying angles 9 and co do not match, then a portion of the
13 front surface 10 of the connector, plug housing 6 will butt against the boss keying portion 46 of the raised boss 38 thereby preventing the connector 2 from being correctly inserted into the receptacle 26.
It is foreseen that a combination of eight (8) keying angles 0 and co equally distributed around 360 (for example 0 , 45 , 90 , 1350, 180 , 225 , 270 , 315 ) will provide adequate keying for most applications, although it will be understood that this could easily be extended to sixteen (16) or even greater with precision manufacturing of the connector 2 and receptacle 26. Referring back to Figure 4, it is also foreseen that receptacles 26 can have multiple sockets 301, 302, 303 each socket 301, 302, 303 having a raised boss 381, 382, 383 with differing keying angles col, ç02, ç03. It will be understood that although a receptacle 26 is shown with three raised bosses 38i, 382, 383, and three keying angles coi, co 2, ç03 a receptacle 26 could easily be manufactured having many sockets 30, each socket 30 having a corresponding raised boss 38 and keying angle co in any one of a number of combinations. It should also be understood that multiple connectors 2 with different connector keying angles 0 can also be bundled together into a multiple connector assembly (not shown).
It should also be understood that sockets such as 304 may be included with raised bosses such as 384 which are circular in cross section without the inclusion of a receptacle keying portion, thereby allowing conventional non-keyed connectors to be inserted into the receptacle 26.
Note that, although the above illustrative embodiment has been described with the cavity 14 being moulded or machined into the forward end 10 of the plug housing 6 and the raised boss 38 being located within the receptacle socket 30, a person of ordinary skill in the art would understand that, with appropriate modifications, the cavity 14 could be moulded or otherwise formed into the receptacle socket 30 and the boss formed in the forward end 10 of the plug housing 6.
14 Of note is that the present system can be designed for use as a one way system or a two way system. A one way system being defined as a system where keyed connectors can only be connected with a keyed receptacle and a two way system is defined as a system where keyed connectors are backward compatible with legacy system receptacles (or vice versa), allowing for example, keyed connectors to be used with existing receptacles.
Referring to Figure 4, for example, in an illustrative embodiment of a two way system using existing circular legacy bosses as in 384 is disclosed. These legacy bosses 384 allow for the plug housing 6 of a connector 2 to be correctly inserted into the socket 304 regardless of the connector keying angle 0 (provided, of course, the length X1 of Figure 2 is less than the length X2 and corresponds to the radius of the legacy boss 304).
Referring to Figure 5A in addition to Figure 4, an illustrative embodiment of a one way system is disclosed. In order to stop a keyed connector 2 from being inserted into a socket such as socket 304, a tab 39 could be moulded into or otherwise attached to the outside of the plug housing 6. Referring to Figure 5B, as known in the art, existing LC type behind the wall (BTW) connectors and receptacles include such an assembly. However, the tabs of these prior art connectors extend only partially along the plug housing 6 and stop at a position Z1 well short of the forward end 10 of the plug housing 6. By extending the tab 39 such that it stops at a position Z2 closer to the forward end 10 of the plug housing 6, the plug housing 6 can also be prevented from being fully inserted into legacy LC receptacles. In order for such a connector 2 to be correctly inserted into a receptacle 26, the socket 30 will have to be modified to include a notch within which the tab 39 fits. It will be apparent now to a person of ordinary skill in the art that, in the absence of a receiving groove in the receptacle (all not shown) for the tab 39, or a groove of the correct depth, the tab 39 would butt against the receptacle housing thereby preventing the user from inserting the plug housing 6 completely into the socket 30.
It is also foreseen that the plug housings 6 and the sockets 30 be colour coded, 5 with a given colour corresponding to a given pair of keying angles 0, ç , in order to aid the user in determining which connector 2 belongs in which socket 30. Additionally, other coding means such as symbols, alphanumeric characters, etc., may be used alone or in combination with colours to provide a variety of means for distinguishing keyed connectors and receptacle sockets I 0 from one another.
Referring now to Figure 6, a connector 2 inserted into the first socket 30 of a duplex receptacle 26 is shown. Referring to Figure 7 in addition to Figure 6, and assuming that the keying angles 0, ca are a matched pair, on insertion the
15 forward end 10 of the plug housing 6 butts against the rear wall 36 of the socket 30. At this point the latch 16 is engaged by the reciprocal locking mechanism 42 thereby holding the plug housing 6 securely in the socket 30.
Simultaneously, the ferrule 12 containing the optic fibre is inserted into the ferrule accepting bore 40 and the raised boss 38 is encircled by the cavity 14, ?.0 with the exposed end 22 of the optic fibre 8 being substantially in alignment with reference plane F. Insertion of a second connector (not shown) into a similar socket 46 moulded into the rearward side of the receptacle 26 and in back-to-back relationship with the socket 30 would have the effect bringing the exposed end of the second connector's optic fibre into close contact with the ?.5 exposed end 22 of the optic fibre 8, with the optic fibres being substantially axially aligned, and thereby allowing light propagating in one of the optic fibres to be transferred to the other. Typically (although not necessarily), sockets as in 30, 46 in back-to-back relationship would have the same predefined receptacle keying geometries to ensure that fibre optic cables having compatible 30 connector keying geometries could be interconnected.
16 The connector 2 can be readily removed from the receptacle 26 by depressing the latch 16, thereby releasing the reciprocal locking mechanism 42.
Referring to Figure 8, a connector 2 in accordance with an alternative illustrative embodiment of the present invention is disclosed. In this embodiment the cavity 14 includes two connector keying portions 24, 24' corresponding to two different connector keying angles 8, 9'. In this manner, connectors 2 can be provided which mate with the sockets having receptacle keying portions with different keying angles co, provided, of course, that the receptacle keying angle co matches with one of the connector keying angles 9, 9'. It will now be apparent to a person of ordinary skill in the art that the number, of connector keying portions 24 at a variety of keying angles 0 could be increased to provided for a variety of keying situations.
Referring to Figure 9 in addition to Figure 8, receptacles 26 having sockets 301, 302, 303 with raised bosses 381, 382, 383 are disclosed. Raised bosses 382, are depicted as having multiple receptacle keying portions (respectively) 462', 462" and 463', 463", 463m. When combined with a corresponding set of connectors 2 having multiple connector keying portions 24, 24', etc., this allows for a wide variation in the number of potential keys which can be used in a given implementation.
Referring now to Figure 10, a connector 2 in accordance with a second alternative embodiment is disclosed including a plug housing 6 having a cavity 48 therein, with the cavity 48 machined or moulded to comprise a generally circular section 50 and a protuberance 52 such as a ridge, tab or the like running axially along the inside of the cavity 48. Similar to the keying system as discussed hereinabove, the protuberance 52 is positioned along the inside of the cavity at the requisite keying angle 9. Referring now to Figure 11 in
17 addition to Figure 10, a receptacle 26 comprised of one or more sockets 30 having raised bosses 54 is shown. The raised bosses 54 are moulded or machined to include an indentation 56, for example such as a notch, slot or flute, therein. Similar to the ridge 52, the indentation 56 is positioned on the raised boss 54 at a requisite keying angle ç .
It should be understood that although the protuberance 52 and corresponding indentation 56 have been portrayed as being symmetrically concave in cross section, other shapes of cross sections, for example a Square or triangular notch, could also be applied in the context of the present invention.
Additionally, the shapes could be asymmetric.
Referring now to Figure 12 in addition to Figure 11, in order to prevent a standard connector cable (not shown) from being inserted into a socket 30 keyed by a raised boss 54 having an indentation 56 therein, tabs 57 can be moulded or otherwise bonded to the inside of the sockets 301, 302 in the receptacle 26. In order for a connector to be inserted into a given socket 301 or 302 it will be necessary that the connector plug housing (not shown) be modified to include a suitable notch therein for reception of the tab 57.
Referring to Figure 13, a connector 2 in accordance with a third alternative illustrative embodiment of the present invention is disclosed. In this embodiment the plug housing 6 is machined or moulded to include a cavity 58 therein having both an indentation 60 and a protuberance 62 therein. The indentation 60 and a protuberance 62 are positioned within the cavity 58 at requisite keying angles as discussed hereinabove. Such a connector 2 would mate with a receptacle having a socket therein with a raised boss including both an indentation and a protuberance located at keying angles (all not shown) matching the keying angles of the indentation 60 and the protuberance 62 of the connector 2.
18 Referring to Figure 14, a connector 2 in accordance with a forth alternative illustrative embodiment of the present invention is disclosed. In this embodiment the plug housing 6 is machined or moulded to include a cavity 64 having a cross section which varies depending on the depth of the cavity 64.
Illustratively, the cavity 64 is comprised of an inner aligning portion 66, illustratively cylindrical, and an outer portion having an illustratively oval or egg shaped cross section with a depth Z and a keying portion 70. In line with the keyed connectors as already disclosed hereinabove, the keying portion 70 is positioned at a predetermined keying angle 0 from the horizontal axis C.
Referring to Figure 15 in addition to Figure 14, the corresponding receptacle is comprised of one or more sockets 30 having a raised boss 72 machined, moulded or otherwise formed into a rear wall 36 thereof. The raised boss 72 is comprised of a lower portion 74 having an illustratively oval or egg shaped cross section and an upper aligning portion 76, illustratively cylindrical.
Additionally, the lower portion 74 has a protruding keying portion 78 which is positioned at a predetermined keying angle co from the horizontal axis E. As will now be apparent to a person of ordinary skill in the art, provided the keying angles 0, yo match, in order for the connector 2 to be inserted completely into the receptacle socket 30, the thickness Z of the lower portion 74 of the raised boss 72 must be the same or less than the depth Z of the upper portion 66 of the cavity 64.
Still referring to Figures 14 and 15, provided the keying angles 0, co match and the thickness Z is the same as or less than the depth Z, when the plug housing 6 is inserted into the socket 30 of the receptacle 26, the cavity 64 will mate with the raised boss 72, thereby allowing the connector 2 to be securely fastened to the receptacle. If the keying angles 0, co do not match, then illustratively the forward end 10 of the plug housing 6 will butt against the protruding keying
19 portion 78 of the raised boss 72 thereby preventing correct insertion of the plug housing 6 in the socket 30. Similarly, if the thickness z is somewhat greater than the depth z then plug housing 6 will be prevented from being completely inserted into the socket 30, thereby preventing the flexible locking tab or latch 16 from being engaged.
Referring now to Figures 16, 17 and 18, a receptacle 26 in accordance with a fifth alternative embodiment of the present invention will be disclosed. The receptacle 26 is similar as to described hereinabove with the difference that the receptacle keying portion 46 of the raised boss includes a bevelled or chamfered outer surface 80 in order to facilitate insertion of a connector (not shown) into the socket 30. Other types of surfaces, for example rounded, could also be implemented in order to facilitate insertion of a connector.
It is also foreseen that the present keying system be field configurable by the installer in order to provide connectors and receptacles with an installer selected keying. Referring to Figure 19A, for example, the cavity 14 would be provided in an interchangeable module 82 for insertion into a suitably adapted receiving cut out 84 in the forward end 10 of the plug housing 6. The module would be held in place within the plug housing by clips, an adhesive or other suitable securing means.
Referring to Figure 19B, alternatively the raised bosses 38 could be manufactured separately from the receptacle 26 and including a shaft 86 having a second geometry, for example a regular geometric form, such as a triangle, square, hexagon, octagon or the like, a series of grooves 88 therein.
The shaft 86 would be rotated to the requisite receptacle keying angle and inserted in a shaft receiving opening 90 having a first geometry in the rear wall 36 of each socket 30 until the raised boss is in contact with the rear wall 36.
The shaft receiving opening 90 could include, for example, a ridged inner surface 92 adapted to mate with the series of grooves 88 on the shaft 86. The shaft 86 could also be held in place within the shaft receiving opening 90 by an adhesive, for example.
5 Alternatively, the cavities and raised bosses of the invention could be modifiable and adaptable through removal from or addition to the cavities or raised bosses through the provision of a suitable tool (for example by cutting away a portion of a raised boss or fluting the inside of a cavity).
0 Referring to Figure 20, although the above invention has been described using BTVV receptacles for interconnecting two connectors, the keying system could also be moulded into single sided receptacles 94 for mounting on active components, attenuators and the like (not shown).
15 Although the present invention has been described hereinabove by way of an illustrative embodiment thereof, this embodiment can be modified at will without departing from the spirit and nature of the subject invention.

Claims (76)

WHAT IS CLAIMED IS:
1. A keying system for providing selective interconnection between one of a set of related receptacle sockets and one of a set of related connector plugs, each of the set of connector plugs terminating an optic fibre, each of the set of connector plugs adapted for insertion into a matching one of the set of receptacle sockets, the keying system comprising:
a set of raised bosses, each of said bosses configured to one of a plurality of predefined boss keying geometries; and a set of cavities, each of said cavities configured to one of a plurality of predefined cavity keying geometries;
wherein a unique one of said set of bosses is in each of the set of receptacle sockets and a unique one of said set of cavities is in a forward end of each of the set of connector plugs;
wherein one of said predefined boss keying geometries matches one of said predefined connector keying geometries; and wherein only when said boss keying geometry matches said cavity keying geometry can said boss be inserted into said cavity thereby interconnecting the connector plug with the receptacle socket.
2. The keying system of claim 1, wherein each of said set of bosses comprises a concentric portion and a keying portion and each of said set of cavities comprises a concentric portion and a keying portion.
3. The keying system of claim 2, wherein said boss concentric portion and said cavity concentric portion have a circular cross section of substantially the same diameter.
4. The keying system of claim 2, wherein said boss keying portion comprises at least one protuberance and said cavity keying portion comprises at least one indentation.
5. The keying system of claim 4, wherein said at least one protuberance is a ridge and said at least one indentation is a notch.
6. The keying system of claim 4, wherein said boss concentric portion further comprises an upper aligning portion and said cavity concentric portion further comprises an inner aligning portion.
7. The keying system of claim 4, wherein said protuberances have a height which is substantially equal to a depth of said indentations.
8. The keying system of claim 4, wherein said at least one protuberance comprises a chamfered outer surface.
9. The keying system of claim 2, wherein said boss keying portion comprises at least one indentation and said cavity keying portion comprises at least one protuberance.
10. The keying system of claim 9, wherein said at least one protuberance is a ridge and said at least one indentation is a notch.
11. The keying system of claim 2, wherein said boss keying portion comprises at least one protuberance and at least one indentation.
12. The keying system of claim 2, wherein said cavity keying portion comprises at least one protuberance and at least one indentation.
13. The keying system of claim 2, wherein said keying portions are arranged at a predefined angle around a centre of said concentric portions.
14. The keying system of claim 13, wherein said predefined angle is selected from the group consisting of 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°.
15. The keying system of claim 1, wherein each of the set of receptacle sockets further comprises an opening in a rear wall thereof and each of said set of bosses further comprises a shaft, said opening adapted to receive said shaft.
16. The keying system of claim 15, wherein said shaft is secured in said opening using an adhesive.
17. The keying system of claim 15, wherein said opening comprises a first geometry and said shaft comprises a second geometry adapted to match said first geometry such that when said shaft is received in said opening, said shaft is prevented from rotating in said opening.
18. The keying system of claim 17, wherein said first and second geometries are regular thereby allowing said shaft to be inserted into said opening at one of a plurality of predefined keying angles.
19. The keying system of claim 18, wherein said predefined angle is selected from the group consisting of 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°.
20. The keying system of claim 18, wherein said first and second geometries are selected from a group consisting of triangular, square, hexagonal and octagonal.
21. The keying system of claim 18, wherein said first and second geometries are comprised of an equally spaced series of grooves and ridges.
22. The keying system of claim 21, wherein said first and second geometries each comprise eight (8) grooves and eight (8) ridges.
23. The keying system of claim 1, wherein each of the set of connector plugs further comprises a cut out and a module, one of said set of cavities being formed in said module, and wherein said cut out is adapted to receive said module.
24. The keying system of claim 23, wherein said module can be inserted into said cut out at one of a plurality of predefined angles.
25. The keying system of claim 23, wherein said cut out is square.
26. The keying system of claim 1, wherein each of the set of connector plugs is a LC type connector plug and each of the set of receptacle sockets is adapted to receive a LC type connector plug.
27. The keying system of claim 1, wherein each of the set of connector plugs is an SC type connector plug and each of the set of receptacle sockets is adapted to receive a SC type connector plug.
28. The keying system of claim 1, wherein each of the set of connector plugs is a MU type connector plug and each of the set of receptacle sockets is adapted to receive a MU type connector plug.
29. The keying system of claim 1, wherein each of the set of connector plugs is a FC type connector plug and the receptacle socket is adapted to receive a FC type connector plug.
30. The keying system of claim 1, wherein the optic fibre is retained within a ferrule and each of said set of bosses further comprises an opening therein, said opening adapted to receive the ferrule when one of said set of bosses is inserted into a matching one of said set of cavities.
31. The keying system of claim 30, wherein the ferrule is coaxial with said cavity and said opening is coaxial with said boss.
32. The keying system of claim 1, wherein matching pairs of receptacles and connector plugs are identified using a common identifying code.
33. The keying system of claim 32, wherein said common identifying code is a common color.
34. A receptacle for providing selective interconnection with one of a set of connector plugs, each of the connector plugs in the set comprising a cavity having a unique cavity keying geometry formed in a forward end thereof and a fibre optic ferrule disposed within the cavity, the receptacle comprising:
at least one receptacle socket comprising a raised ferrule receiving boss on a rear wall thereof, said boss having a shape corresponding to a selected one of a plurality of unique boss keying geometries, each unique cavity keying geometry corresponding to one of said unique boss keying geometries; and wherein when said selected boss keying geometry corresponds to the unique cavity keying geometry, the connector plug can be inserted into said receptacle socket as said boss is received in the cavity and the ferrule inserted into said boss.
35. The receptacle of claim 34, wherein said boss comprises a concentric portion and a keying portion.
36. The receptacle of claim 35, wherein said concentric portion has a circular cross section.
37. The receptacle of claim 35, wherein said keying portion comprises at least one protuberance.
38. The receptacle of claim 37, wherein said protuberance comprises a chamfered outer surface.
39. The receptacle of claim 37, wherein said boss concentric portion further comprises an upper aligning portion.
40. The receptacle of claim 39, wherein said protuberance has a height which is less than a height of said upper aligning portion.
41. The receptacle of claim 40, wherein said protuberance has a height which is substantially half said upper aligning portion height.
42. The receptacle of claim 37, wherein said at least one protuberance is a ridge.
43. The receptacle of claim 35, wherein said boss keying portion comprises at least one indentation.
44. The receptacle of claim 43, wherein said at least one indentation has a depth which is less than a height of said concentric portion.
45. The receptacle of claim 44, wherein said indentation depth is substantially half said concentric portion height.
46. The receptacle of claim 43, wherein said at least one indentation is a notch.
47. The receptacle of claim 35, wherein said boss keying portion comprises at least one protuberance and at least one indentation.
48. The receptacle of claim 37, wherein said boss further comprises an upper aligning portion.
49. The receptacle of claim 35, wherein said keying portion is arranged at a predefined angle around a centre of said concentric portion.
50. The receptacle of claim 49, wherein said predefined angle is selected from the group consisting of 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°.
51. The receptacle of claim 34, wherein the ferrule is coaxial with the cavity and said opening is coaxial with said boss.
52. The receptacle of claim 34, wherein said at least one receptacle socket is adapted to receive a LC type connector plug.
53. The receptacle of claim 34, wherein said at least one receptacle socket is adapted to receive a MU type connector plug.
54. The receptacle of claim 34, wherein said at least one receptacle socket is adapted to receive a FC type connector plug.
55. The receptacle of claim 34, wherein said boss geometry is such that a non-keyed connector plug can be inserted in said receptacle socket.
56. A connector terminating an optic fibre for providing selective interconnection with one of a set of receptacle sockets, each of the receptacle sockets in the set comprising a raised ferrule receiving boss on a rear wall thereof having a unique boss keying geometry, the connector comprising:

a connector plug adapted for insertion into the set of receptacle sockets and comprising a cavity, said cavity having a selected one of a plurality of unique cavity keying geometries formed in a forward end thereof and a fibre optic ferrule disposed within said cavity, each unique boss keying geometry corresponding to a respective one of said unique cavity keying geometries; and wherein when the unique boss keying geometry corresponds to said selected cavity keying geometry, said connector plug can be inserted into the receptacle socket as the boss is received in said cavity and said ferrule inserted into the boss.
57. The connector of claim 56, wherein said cavity comprises a concentric portion and a keying portion.
58. The connector of claim 57, wherein said concentric portion has a circular cross section.
59. The connector of claim 57, wherein said keying portion comprises at least one indentation.
60. The connector of claim 59, wherein said concentric portion further comprises an aligning portion.
61. The connector of claim 60, wherein a depth of said indentations is less than a depth of said aligning portion.
62. The connector of claim 61, wherein said indentation depth is substantially half said aligning portion depth.
63. The connector of claim 57, wherein said keying portion comprises at least one protuberance.
64. The connector of claim 63, wherein said protuberances are chamfered.
65. The connector of claim 63, wherein said concentric portion further comprises an aligning portion.
66. The connector of claim 65, wherein a height of said protuberances is less than a depth of said aligning portion.
67. The connector of claim 66, wherein said protuberance height is substantially half of said aligning portion depth.
68. The connector of claim 59, wherein said at least one indentation is a notch.
69. The connector of claim 63, wherein said at least one protuberance is a ridge.
70. The connector of claim 56, wherein said keying portion comprises at least one protuberance and at least one indentation.
71. The connector of claim 57, wherein said keying portion is arranged at a predefined angle around a centre of said concentric portion.
72. The connector of claim 71, wherein said predefined angle is selected from the group consisting of 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°.
73. The connector of claim 56, wherein said connector plug is a LC type connector plug.
74. The connector of claim 56, wherein said connector plug is a MU type connector plug.
75. The connector of claim 56, wherein said connector plug is a FC type connector plug.
76. The connector of claim 56, wherein said connector keying geometry is such that said connector plug can be inserted into a conventional receptacle socket.
CA2540114A 2003-09-22 2004-09-22 Keyed fibre optic connector Active CA2540114C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2540114A CA2540114C (en) 2003-09-22 2004-09-22 Keyed fibre optic connector

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US50418903P 2003-09-22 2003-09-22
CA2,441,872 2003-09-22
US60/504,189 2003-09-22
CA002441872A CA2441872A1 (en) 2003-09-22 2003-09-22 Keyed fibre optic connector
CA2540114A CA2540114C (en) 2003-09-22 2004-09-22 Keyed fibre optic connector
PCT/CA2004/001730 WO2005029147A1 (en) 2003-09-22 2004-09-22 Keyed fibre optic connector

Publications (2)

Publication Number Publication Date
CA2540114A1 CA2540114A1 (en) 2005-03-31
CA2540114C true CA2540114C (en) 2014-01-21

Family

ID=36406214

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2540114A Active CA2540114C (en) 2003-09-22 2004-09-22 Keyed fibre optic connector

Country Status (1)

Country Link
CA (1) CA2540114C (en)

Also Published As

Publication number Publication date
CA2540114A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US7674046B2 (en) Fibre optic connector keying system
US7258493B2 (en) Keyed fibre optic connector
US5289554A (en) Keying element for fiber connector
AU2007342442B2 (en) Multi-fiber fiber optic receptacle and plug assembly
CA2179833C (en) Anti-snag duplex connector
US6357934B1 (en) Optical fiber boot for a connector that provides anti-snagging and polarity identification
EP2035874B1 (en) An optical connector
US7540667B2 (en) Positional differentiating connector assembly
EP2548061B1 (en) Simplex connectors for multicore optical fiber cables
EP1861739B1 (en) Multi-fiber fiber optic receptacle and plug assembly
EP0928978B1 (en) Connector for plastic optical fiber
US20220137314A1 (en) Keying for connector systems
US7048447B1 (en) Optical connector
EP1116974A2 (en) Removably mounted fiber optic connector and associated adapter
EP1065542A1 (en) Polarity reversal for fiber optic connections
CA2623190A1 (en) Fiber optic receptacle and plug assembly including alignment sleeve insert
CA2915714C (en) Optical fiber furcation assembly and method
GB2515748A (en) Fibre optic adaptor and method for optically connecting fibre optic cable assemblies together
EP1671169B1 (en) Keyed fibre optic connector
CA2441872A1 (en) Keyed fibre optic connector
CA2540114C (en) Keyed fibre optic connector
US6471418B1 (en) Optical connector
GB1598732A (en) Coupling optical fibres
MXPA06003216A (en) Keyedfibre optic connector
US20050058401A1 (en) Keyed adapter and connector

Legal Events

Date Code Title Description
EEER Examination request