CA2538995A1 - Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy -6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide - Google Patents

Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy -6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide Download PDF

Info

Publication number
CA2538995A1
CA2538995A1 CA002538995A CA2538995A CA2538995A1 CA 2538995 A1 CA2538995 A1 CA 2538995A1 CA 002538995 A CA002538995 A CA 002538995A CA 2538995 A CA2538995 A CA 2538995A CA 2538995 A1 CA2538995 A1 CA 2538995A1
Authority
CA
Canada
Prior art keywords
formula
compound
phenyl
isopropyl
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002538995A
Other languages
French (fr)
Inventor
Donald Eugene Butler
Randall Lee Dejong
Jade Douglas Nelson
Michael Gerard Pamment
Timothy Lee Stuk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warner Lambert Co LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from CA002432064A external-priority patent/CA2432064C/en
Publication of CA2538995A1 publication Critical patent/CA2538995A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

An improved process for the preparation of 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid phenylamide

Description

NOVEL PROCESS FOR THE SYNTHESIS OF 5-(4-FLUOROPHENYL)-1-[2-((2R,4R)-4-HYDROXY-6-OXO-TETRAHYDRO-PYRAN-2-YL)-ETHYL]-2-This application is a divisional of Canadian patent application No. 2,432,064 filed December 27, 2001.
FIELD OF THE INVENTION
An improved synthesis for the preparation of 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid phenylamide is described where methyl cyanoacetate is converted in eight operations or fewer to the desired product, as well as other valuable intermediates used in the process.
The subject matter of this divisional application is restricted to a compound of Formula (6):
O O
(6) o O
wherein R and R1 are as defined herein.
It is to be understood that the expression "the present invention" or the like used in this specification encompasses not only the subject-matter of this divisional application, but that of the parent application also.
BACKGROUND OF THE INVENTION
5-(4-Fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid phenylamide is a valuable -la-intermediate in the synthesis of Lipitor~ (atorvastatin calcium) known by the chemical name [R-(R*,R*)]-2-(4-fluorophenyl)-~,b-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid calcium salt (2:1) trihydrate. The aforementioned compound is useful as an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) and is thus useful as a hypolipidemic and/or hypocholesterolemic agent.
United States Patent No. 4,681,893, which discloses certain trans-6-[2-(3- or 4-carboxamido-substituted-pyrrol-1-yl)alkyl]-4-hydroxy-pyran-2-ones including trans (~)-5-(4-fluorophenyl)-2-(1-methylethyl)-N,4-diphenyl-1-[(2-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1H-pyrrole-3-carboxamide.
United States Patent No. 5,273,995, which discloses the enantiomer having the (R, R) form of the ring-opened acid of trans-5-(4-fluorophenyl)-2-(1-methylethyl)-N,4-diphenyl-1-[(2-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1H-pyrrole-3-carboxamide, i.e., [R-(R*,R*)]-2-{4-fluorophenyl)-~3,b-dihydroay-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H pyrrole-1-heptanoic acid.
United States Patent Nos. 5,003,080; 5,097,045; 5,103,024; 5,124,482;
5.149,837; 5,155,251; 5,216,I74; 5,245,047; 5,248,793; 5,280,126; 5,397.792;
5,342,952; 5.298,627; 5,446,054; 5,470,981; 5,489,690; 5,489,691; 5,510,488;
5,998,633; and 6,087,511, which disclose various processes and key intermediates for preparing atorvastatin.
Crystalline forms of atorvastatin calcium are disclosed in United States Patent Nos. 5,969,156 and 6,121,461.
A synthetic procedure for the preparation of S-(4-fluorophenyI)-1-(2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran_?_yI)_e~yl]-2-isopropyl-4-phenyl-1TI-pyrrole-3-carboxylic acid phenylanlide is disclosed in United States Patent No. 5,273,995.
The asymmetric reduction of j3-ketoesters, as well as (3-diketones, is a well-established transformation in organic synthesis. However, the complexity of these reactions increases in the case of 1,3,5-tricarbonyl systems and poor yields and poor stereoselectivities ofren result. In fact, investigations by Saburi (Tetrahedron, 199?, 1993;49) and Carpentier (Eur. J. Org. Chem. 1999;3421) have independently demonstrated low to moderate diastereo- and/or enantio-selectivities for diketoester asymmetric hydrogenations. Furthermore, the fact that the processes in the prior art require high pressure hydrogenation and extended reaction times makes these procedures impractical and not amenable to large-scale manufacturing processes.
However, we have surprisingly and unexpectedly found that the diol esters of the present invention, (R)-7-[2-(4-fluorophenyI)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-y1]-3,5-dihydroxy-heptanoic acid esters, can be obtained directly from the corresponding 1,3,5-tricarbonyl precursors in a highly stereoselective manner via a mild and effcient ruthenium-catalyzed asymmetric hydrogenation reaction utilizing chiral non-racemic diphosphine Iigands in the presence of secondary activating agents such as protic acids.

oc'rm3cmoz~z .'O il2l(I~~~ll The object of the present invention is a short and efficient process for the preparation of S-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyan-2-yl)-ethyl]-2-isopropyl-4-phenyl-IH-pyrrole-3-carbohylic acid phenylamide. The present process avoids the use of a costly chiral raw material ((R)-4-cyano-3-hydroxy-butyric acid ethyl ester), and a low temperature diastereoselective borane reduction. Furthermore, a key Paal-Knorr condensation step, common to the present and prior art processes, has been improved through a significant decrease in reaction time.
Thus, the present process has significant advantages over the prior art processes and is amenable to large-scale synthesis.
S>rfMMARY OF THE BJVENTION
Accordingly, the first aspect of the present invention is an improved process for the preparation of a compound of Formula (13) I S which comprises:
Step (a) reacting a compound of Formula (I ) O
NC~ (I) OR
wherein R is alkyl, aryl, arylalkyl, or heteroaryl in a solvent with a compound of Formula (2) R I -H (2) O (12/II~~~I~J 1'CT/II3(I1/ll?7Z!
wherein R1 is -XR wherein XisO, S, or Se, or R1 is wherein R2 or R3 is independently alkyl, cycloalkyl, arylalkyl, or aryl, or R2 and R3 together are -(CHZ)4-~
-(CH2)5'~
-(CH(R4)-CH~3-, -(CH(R4)-CH2)4-~
i 5 -(CH(R4)-(CHZ)2-CH(R4))-, -(CH(R'l~(CH2)3-CH(R4))-, -CH2-CH2-A-CH2-CH2-, -CH(R4)-CH2-A-CH2CH2-, -CH(R4)-CH2-A-CH2-CH(R4)-wherein R4 is alkyl of from one to four carbon atoms, A is O, S, or N and R is as defined above to afford a compound of Formula (3) O
NC~Rl (3) wherein R1 is as defined above;

PCT/I 13111 /(127?, O 112/11~~~19 Step (b) reacting a compound of Formula (3) with hydrogen in the presence of a catalyst and a strong acid in a solvent to afford a compound of Formula (4) Y H3N R (4) wherein Y is Cl, Br, TsO, MsO, or HS04, and R1 is as defined above;
Step (c) reacting a compound of Formula (4) with a base in a solvent followed by the addition of a compound of Formula (5) R-C02 H (5) wherein R is as defined above in a solvent to afford a compound of Formula (6) O O
R"O H Rl (6) O O
wherein R and R1 are as defined above;
Step (d) reacting a compound of Formula (6) with Compound {7) F
in a solvent with removal of water to afford a compound of Formula (8) PC'1~/113111/112 i2~
O 112/II;ssl9 F
O
/ \R 1 O) wherein R1 is as defined above;
Step (e) reacting a compound of Formula (8) with a compound of Formula (9) MOOD O (9) R
wherein M is sodium, lithium, potassium, zinc, magnesium, copper, calcium, or aluminum and R1 is as defined above, in a solvent in the presence of a strong base to afford a compound of Formula (10) F
wherein R1 is as defned above;
Step (f) reacting a compound of Formula ( 10) with hydrogen in the presence of a catalyst in a solvent in the presence of an acid to afford a compound of Formula (11) vo~nnn:; m ~,~..rm;u au27:
F

wherein R1 is as defined above or a compound of Formula (1 la) F
Step (g) reacting a compound ofFonnula (1lb) F
Rla wherein R1 a is OH, -XR wherein XisO, S, or Se, or Rla is _ O (I1) ~ n2/n~~si'l I'(~~t~11i3111/112729 _g_ N R~
wherein R2 or R3 is independently allyl, cycloalkyl, arylalkyl, or $ aryl, or R~ and R3 together are -(CH2)4-~
-(CH2)5-~
-(CH(R4}-CH2)3', -(CH(R4)-CH2)4--(CH(R4)-(CH2)2-CH(R4))-, -(CH(R4)-(CH~3-CH(R4))-, -CH2-CH2-A-CH2-CHZ-, -CH(R4)-CH2-A-CH2CH2-, -CH(R4)-CH2-A-CH2-CH(R4)_ wherein R'~ is alkyl of from one to four carbon atoms, A is O, S, or N, and R is as defined above in a solvent in the presence of an acid, followed by reaction with a base, an acylating agent, and an acylation catalyst in a solvent to afford a compound of Formula (12) PC~T/113(I1l(1272 O ll2/Il~~~l') _g_ ( I 2); and Step (h) reacting a compound of Formula (12) with HO-M in an alcohol of Formula (17) or (17b) HOCH2-Aryl (17) or HO-Allyl (17b) wherein M is sodium, lithium, potassium, zinc, magnesium, copper, calcium, or aluminum; or with a compound of Formula (I 6) or (16b) M ~ ~ OCH2-Aryl ( I 6) or M ~ 0 O-A.llyl ( I 6b) wherein M is as defined above in an alcohol of Formula (17) or (17b) wherein aryl or allyl in a compound of Formula (16) or (16b) and (17) or (17b) is the same, in a solvent followed by the addition of hydrogen in-the presence of a catalyst and an acid to afford the compound of Formula (13).
A second aspect of the present invention is an improved process for the preparation of a compound of Formula (8).
F
I
(8) wherein RI is as defined above which comprises:
reacting a compound of Formula (4) O 112/ln~~ i ') I'C'I'/I IW l /n272,.

O

Y H3N R (4) wherein Y is Cl, Br, TsO, MsO, or HS04, and R1 is as defined above with a compound of Formula (20) R-C02 ~ +O M (20) wherein R and M are as defined above with Compound (7) F
in a solvent with removal of water to afford a compound of Formula (8).
A third aspect of the present invention is an improved process for the preparation of compound (I3) OH
3) i ~l which comprises:
Step (a) reacting a compound of Formula (11) with an acetal of Formula (l 5) o mnu~;~,~~ i>c~rmimn~z~~, ORS
R (15) ORSa wherein RS and Rsa are independently the same or different and are, methyl, ethyl, or -(CH~)n- wherein n is an integer of 2 to 4, and R
is as defined above in a solvent in the presence of an acid followed by the addition of an aldehyde corresponding to the previous acetal in the presence of a base to afford a compound of Formula (14) (14) wherein R1 and R are as defined above;
Step (b) reacting a compound of Formula (14) in a nucleophilic solvent in the presence of an acid or optionally reaction with hydrogen in the presence of a catalyst and an acid in a solvent to afford the compound of Formula (13); and Step (c) alternatively, reacting a compound of Formula (11) or (1la) in a non-nucleophilic solvent in the presence of an acid to afford a compound of Formula (13).
I S A fourth aspect of the present invention is a process for the preparation of a compound of Formula (1 lb) R
F

1'CT/1131) 1/112?29 '~ 112/Ilsss 1 ') _1?_ F
RIa wherein R ~ a is OH, -XR wherein X is O, S, or Se, or Rla is wherein R2 or R3 is independently alkyl, cycloalkyl, arylalkyl, or aryl, or R~ and R3 together are -(CH2)4'~
-(CH2)5-~
-(CH(R4~CH2)3', 1 S -(CH(R4)-CH2)4--(CH(R'l)-(CH2)2-CH(R4)~, -(CH(R4~(CH2)3-CH(R.4))-, -CH2-CH2-A-CH2-CH2-, -CH{R.4)-CH2-A-CH2 CH2-, -CH(R.4)-CH2-A-CH2-CH(R4)_ (11 b) ~.~ nzm~~~m r>c'rnamnuz72~~

wherein R4 is allyl of from one to four carbon atoms, A is O, S, or N, and R is alkyl, aryl, arylall:yl, or heteroaryl which comprises:
Step (a) reacting a compound of Formula (10) F

$ wherein Rl is as defined above with one mole of hydrogen in the presence of a catalyst in a solvent in the presence of an acid to afford compounds of Formula (18) and/or Formula (18a) F

(18) and F
O OH O

(18a) \ /

a nznn;~n~ r~c~ritaom~27zo wherein Rl is as defined above; and Step (b) reacting either a compound of Formula (18) or (18a) with hydrogen in the presence of a catalyst in a solvent in the presence of an acid to afford a compound of Formula (1 lb).
A fifth aspect of the present invention is a compound of Formula (6) O O
R- _O H N~~ 1 6 R () O O
wherein R is alkyl, aryl, arylalkyl, or heteroaryl, and RI is XR wherein XisO, S, or Se, or Rl is wherein R2 or R3 is independently alkyl, cycloalkyl, I S arylalkyl, or aryl or R2 and R3 together are -(CH2)4-~
-{CH2)5-~
-(CH(R4)-CH2)3-, -(CH(R4)-CH2)4-, -(CH(R4)-(CH2)2-CH(R4))-, -(CH(R4)-(CH2)3-CH(R4))-, -CH2-CH2-A-CH2-CH2-, -CH(R4)-CH2-A-CH2CH2-, I'C-'r/II3(II/11272'l ~ 112/ll~~~ 1') -CH(R4)-CH2-A-CH2-CH(R4)-wherein R4 is alkyl of from one to four carbon atoms, A is O, S, or N and R is as defined above.
Particularly preferred, is a compound of Formula (6) wherein R is PhCH2-or (CH3)3-C-, and R1 is -NCO .
More particularly preferred, is a compound of Formula (6) wherein R is PhCH2- and R 1 is -NCO.
A sixth aspect of the present invention is a compound of Formula (8) F

(8) wherein R1 is as defined above.
Particularly preferred is a compound of Formula (8) wherein R1 is -N O.
U
A seventh aspect of the present invention is a compound of Formula (10) or a pharmaceutically acceptable salt thereof PC~T/I 13111 /1)272"
O (12/11~~~ 1'J

F
Rl wherein R1 is as defined above.
Particularly preferred is a compound of Formula (10) wherein R1 is -O-tertiary butyl, -O-isopropyl, -O-ethyl, -O-methyl, -NCO, or -NMe2.
An eighth aspect of the present invention is the compound of Formula (12) (12).
A ninth aspect of the present invention is a compound of Formula (18) or a pharmaceutically acceptable salt thereof O O uJ

_I 7_ F
OH O O
Rl 0 (I8) wherein Rl is as defined above, provided that when X is O, R is not t-butyl.
Particularly preferred is a compound of Formula (18) wherein R1 is -O-isopropyl, -O-ethyl, -O-methyl, -NCO, or -NMe2.
A tenth aspect of the present invention is a compound of Formula (18a) or a pharmaceutically acceptable salt thereof F

wherein Rl is as defined for a compound of Formula (2).
Particularly preferred is a compound of Formula (18a) wherein R1 is -O-tertiary butyl, -O-isopropyl, -O-ethyl, -O-methyl, -N O, or-NMe2.
U
O y aa~

t'CT/I]3111/11272') J ()2/I1~~;]') -I s-DETAILED DESCRIPTION OF THE INVENTION
The term "allyl" means a straight or branched hydrocarbon radical having from I to 8 carbon atoms and includes, for example, methyl, ethyl, n-propyl, isopropyl, o-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, $ ra-octyl, and the like.
"Alkoxy" and "thioall:oay" are O-alkyl or S-alkyl of from 1 to 6 carbon atoms as defined above for "alkyl".
The term "cycloalkyl" means a saturated hydrocarbon ring having 3 to 8 carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
The term "aryl" means an aromatic_radical which is a phenyl group, a phenylalkyl group, a phenyl group substituted by 1 to 4 substituents selected from alkyl as defined above, alkoxy as defined above, thioalkaxy as defined above, halogen, trifluoromethyl, dialkylamino as defined above for alkyl, vitro, cyano, 1$ O
-C-N(alkyl)2 as defined above for alkyl, -(CH2)n2-N(alkyl)~ wherein n2 is an integer of 1 to 5 and alkyl is defined above O
and -(CH2)n2-N-C-alkyl as defined above for alkyl and n2.
alkyl The term "allyl" means a hydrocarbon radical of 3 to 8 carbon atoms, 2$ containing a double bond between carbons 2 and 3, unsubstituted or substituted by 1 to 3 substituents on the carbons containing the double bond selected from alkyl or aryl as defined above, and includes, for example, propenyl, 2-butenyl, cinnamyl, and the like.
The term "arylalkyl" means an aromatic radical attached to an alkyl radical wherein aryl and alkyl are as defined above for example, benzyl, phenylethyl, 3-phenylpropyl, (4-chlorophenyl)methyl, and the Like.
"Alkali metal" is a metal in Group IA of the periodic table and includes, for example, lithium, sodium, potassium, and the like.

J u2/n;;~t> PC'TIItWi/n272o "Alkaline-earth metal" is a metal in Group IIA of the periodic table and includes, for example, calcium, barium, strontium, magnesium, and the like.
The term "heteroaryl" means a 5- and 6-membered heteroaromatic radical vtrhich may optionally be fused to a benzene ring containing 1 to 3 heteroatoms selected from N, O, and S and includes, for example, a heteroaromatic radical which is 2- or 3-thienyl, 2- or 3-furanyl, 2- or 3-pyrrolyl, 2-, 3-, or 4-pyridinyl, 2-pyrazinyl, 2-, 4-, or 5-pyrimidinyl, 3- or 4-pyridazinyl, 1H-indol-6-yl, 1H-indol-5-yI, 1H-benzimidazoI-6-yI, 1H-benzimidazol-5-yl, 2-, 4-, or S-thiazolyl, 3-, 4-, or 5-isothiazolyl, 2-, 4-, or 5-imidazolyl, 3-, 4-, or S-pyrazolyl, or 2- or 5-thiadiazolyl and the like optionally substituted by a substituent selected from alkyl as defined above, alkoxy as defined above, thioaIkoxy as defined above, halogen, trifluoromethyl, dialkylamino as defined ahwe for alkyl, vitro, cyano, O
-C-N(alkyl)2 as defined above for alkyl, -(CH2)n2 N(alkyl)2 wherein n2 is an O
n integer of 1 to 5, and alkyl is as defined above, and -(CH2)n2-N-C-alkyl as ~Yl defined above for alkyl and n2.
Pharmaceutically acceptable acid addition salts of the compounds of the present invention include salts derived from inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfanic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfate, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the Like, I'C.'T'/II3t11/11272'l O 112111~~~ I'l Also contemplated are salts of amino acids such as arginate and the like and gluconate, galacturonate (see, for example, Berge S.M. et al., "Pharmaceutical Salts,'' J. ofPharma. Sci., 1977;66:1).
The acid addition salts of said basic compounds are prepared by contacting S the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner.
The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for purposes of the present invention.
Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as canons are sodium, potassium, magnesium, calcium, and the like.
Examples of suitable amines are N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylaanine, ethylenet3iamine, N-methylglucamine, and procaine (see, for example, Berge S.M. et al., "Pharmaceutical Salts," J. ofPharma Sci., 197?;66:1).
The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention.
Additionally, the compounds of the present invention can exist in unsolvated farms as well as solvated forms, including hydrated forms. In general, the solvated forms, including hydrated forms, are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention.
The following list contains abbreviations and acronyms used within the schemes and text:

o ~~zn~;;;m r~cTnt;miuzzz~

H2S0~ Sulfuric acid NaOMe Sodium methoxide MeOH Methanol MtBE Methyl tent-butyl ether GC Gas chromatography PdC Platinum on carbon Pd/C Palladium on carbon H2 Hydrogen HCl Hydrochloric acid Hg Mercury psi Pounds per square inch iPrOH (IPA) Isopropyl alcohol -~

HPLC ~ High pressure liquid chromatography NaOH Sodium hydroxide 1 S CH2Cl2 Dichloromethane (methylene chloride) DMSO-d6 Deuterated dimethylsulfoxide Tetrahydrofiuan Na2S04 Sodium sulfate nBuLi n-Butyllithium NaC1 Sodium chloride KOtBu Potassium tent-butoxide NaHC03 Sodium bicarbonate BnOH Benzyl alcohol Pd(OH)2/C Palladium hydroxide on carbon H20 Water PivOH Pivalic acid PhCHO Benzaldehyde PhCH3 Toluene CDC13 Deuterated chloroform BnONa Sodium benzylate NH40H Ammonium hydroxide wo nzn~;;;o~ ocTnau~n~z~z PhCH(OMe)2 Benzaldehyde dimethyl acetal MsOH Methanesulfonic acid pTsOH para Toluenesulfonic acid CSA Campharsulfonic acid Ph Phenyl h,TaH Sodium hydride KH Potassium hydride EtOAc Ethyl acetate tBuOH(HOtBu) tent-Butanol PhCH2C02H Phenylacetic acid NaNH2 Sodium amide KHMDS Potassium hexamethyldisilazide LAH Lithium aluminum hydride Pd/A1203 Palladium on alumina APCI Atmospheric pressure chemical ionization ESI Electrospray ionization DCI ~ Direct chemical ionization 1 H NMR Proton nuclear magnetic resonance spectroscopy 13C ~ I3C~.bon nuclear magnetic resonance spectroscopy BINAP (R)-(+)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl pTal-BINAP (R~(+)-Bis(di-p-tolyl-phosphino)-1,1'-binaphthyl Cl-Me0-B1PHEP [(R)-(+)-5,5'-Dichloro-6,6'-dimethoxy[l,l'-biphenyl]-2,2'-diyl]-bis-diphenylphosphine C2-TunaPhos [( 12aR)-6, 7-dihydrodibenzo [e,g] [
I ,4] dioxocin-1,12-diyI]-bis-diphenylphosphine C4-TunaPhos [(14aR)-6,7,8,9-tetrahydrodibenzo[b,d][1,6]dioxecin-1,14-diyl]-bis-diphenylphosphine Me0-BIPHEP [( 1 S)-(-)-6,6'-Dimethoxy[ 1,1'-biphenyl]-2,2'-diyl]-bis-diphenylphosphine p-cymene 4-isopropyltoluene ee EnaIltlomellC exCeSS

r~c.'Tm~mniz ~zo HRMS High resolution mass spectrometry mlz Mass to charge ratio tR Retention time The process of tile present invention in its first aspect is a new, improved, economical, and commercially feasible method for the preparation of the compound of Formula (13) The process of the present invention in its first aspect is outlined in Scheme 1. Thus, a compound of Formula (1) wherein R is alkyl, aryl, arylalkyl, or heteroaryl is reacted with a compound of Formula (2) wherein Rl is -XR wherein XisO, S, Se or R1 is wherein R2 or R3 is independently alkyl, cycloalkyl, arylalkyl, or aryl, or R2 and R3 together are , ~ o vznn;~m oc~wa~mmrz -(CH2)4-~
-(CH2)5-~
-(CH(R4)-CH2)3v -(CH(R4)-CH2)4-, -(CH(R4)-(CH2)~-CH(R4))-, -(CH(R4)-(CH2)3-CH(R4))-, -CH2-CH2-A-CH2-CH2-, -CH(R4)-CH2-A-CH2CH2-, -CH(R4)-CH2-A-CH2-CH(R4)-wherein R4 is alkyl of from one to four carbon atoms, A is O, S, or N and R is as defined above in a solvent such as, for example, methyl tertiary butyl ether, and the like, to afford a compound of Formula (3) whereas R1 is as defined above. Preferably, the reaction is carried out with a compound of Formula (2) wherein Rl-H is morpholine in methyl tertiary butyl ether.
A compound of Formula (3) is reacted with hydrogen in the presence of a catalyst such as, for example, PtIC, PdIC in the presence of an acid such as,.
for example, a strong acid, for example, hydrochloric acid, hydrobromic acid, p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, and the like (optionally the reduction is carried out with Sponge Nill~iøOH, metal hydrides, and the like, to afford the free base of a compound of Formula (4)) in a solvent such as, for example, methanol, ethanol, and the like to afford a compound of Formula (4) wherein Y is Cl, Br, TsO, MsO, or HS04 and Rl is as defined above.
Preferably, the reaction is carried out. in the presence of PdC, hydrochloric acid and hydrogen in methanol.
A compound of Formula (4) is reacted with a base such as, for example, sodium methoxide and the like in a solvent such as, for example, tetrahydrofiuan, toluene, methyl tertiary butyl ether, and the like, and in an alcohol such as, for example, isopropanol, ethanol, methanol, and the like, to afford the free base PC'(~/I1311 (/(1272') O 1)2IOSS~ 1') followed by reaction with a compound of Formula (5) wherein R is as defined above in a solvent such as, for example, isopropanol, tetrahydrofuran, and the like to afford a compound of Formula (6) wherein R is as defined above. Optionally, the free base of a compound of Formula (4) may be reacted with a compound of Formula (5) to afford a compound of Formula (6). Preferably, the reaction is carried out with sodium methoxide in methyl tertiary butyl ether and methanol to afford the free base followed by reaction with phenylacetic in tetrahydrofuran.
A compound of Formula (6) is reacted with the compound of Formula (7) in a solvent such as, for example, a protic, an aprotic, a polar or a non-polar solvent, for example, tetrahydrofuran and the like with removal of water with the aid of a chemical drying agent such as, for example, molecular sieves and the like or with the aid of a Dean-Stark water trap ox using azeotropic distillation with a suitable solvent such as, for example toluene and the like to afford a compound of Formula (8) wherein Rl is as defined above. Preferably, the reaction is carried out with activated 3A molecular sieves in tetrahydrofuran.
A compound of Formula (8) is reacted with a compound of Formula (9) wherein M is sodium, lithium, potassium, zinc, magnesium, copper, calcium, or aluminum and RI is as defined above in a solvent such as, for example, a nonreactive aprotic solvent, for example, tetrahydrofuran, toluene, and the like in the presence of a strong base such as, for example, n-butyllithium, lithium or potassium hexamethyldisilazide, lithium diisopropylamide, and the like to afford a compound of Formula (10) wherein Rl is as defined above. Preferably, the reaction is carried out with a compound of Formula (9) wherein M is sodium, the base is n-butyllithium and the solvent is tetrahydrofuran.
The carbonyls of a compound of Formula (10) in Scheme 1 are shown in the keto form. However, a compound of Formula (10) can undergo "keto-enol"
tautomerism and thus can exist in several tautomeric forms which are encompassed within the present invention.
A compound of Formula (10) is treated with hydrogen in the presence of a catalyst such as, for example, a chiral non-racemic ruthenium (II~diphosphine complex. For example, a ruthenium catalyst precursor such as [dichloro-(1,5-cyclooctadiene)) ruthenium (II) oligomer and chiral diphosphine iigand such as 112/ll;~s 1 ~J PC~r/f 1311 i/112729 [(R)-(+)-2,2'-bis(Biphenyl-phosphino)-l,l'-binaphthyl]. However, any chiral non-racemic ruthenium (II)/diphosphine combination may be employed in this reduction reaction. For example, ruthenium (II] catalyst precursors include [dibromo-(1,5-cyclooctadiene)] ruthenium (II) dimer, [bis-(2-methallyl)cycloocta-S 1,5-dime] ruthenium (II) complex and (dichloro(p-cymene)] ruthenium (II) dimer, and the like. Examples of effective chiral diphosphine ligands include 2,2'-bis(di p-tolyl-phosphino)-1,1'-binaphthyl, 2-Biphenyl-phosphinomethyl-4-diphenylphosphino-I -tert-butoxy-carbonylpyrrolidine, tricyclo[8.2.2 ~4,7]hexadeca-4,6,10,12,13,15-hexaene-5,11-diyl-bis(diphenylphosphine) derivatives, 4,4'-bid.ibenzofuran-3,3'-diylbis(diphenylphosphine), 6,6'-dimethoxy[1,1'-biphenyl]-2,2'-diyl]bis-diphenylphosphine, [5,5'-dichloro-6,6'-dirriethoxy[l,l'-biphenyl]-2,2'-diyI]-bis-diphenylphosphine, and 1,2-bis(2,5-dimethylphospholano) derivatives and the like in a.solvent such as, for example, methanol, ethanol, isopropanol, and the Like, optionally in the presence of a co-solvent, for example, dichloromethane, tetrahydrofuran, toluene and the like in the presence of an acid such as, for example, hydrochloric acid, hydrobromic acid, DowexC9 ion exchange resin, and the like to afford a compound of Formula (11) or a compound ofFormula (1la) wherein Rl is as defined above. Preferably, the reaction is carried out with dichloro(p-cymene) ruthenium (Il] dimer and [(R)-(+~5,5'-dichloro-6,6'-dimethoxy[1,1'-biphenyl]-2,2'-diyl]-bis-diphenylphosphine in methanol in the presence of hydrobromic acid.
A compound of Formula (1 lb) wherein Rla is wherein Rla is OH, -XR
wherein X is O, S, or Se, or RIa is wherein R2 or R3 is independently alkyl, cycloalkyl, O I)2/(I;ss 1') 1'C1~/I (3111 /112729 _27-arylalhyl, or aryl, or R~ and R3 together are -(CH2)4-~
-(CH2)S--(CH(R~)-CH2)3-, -(CH(R4)-CH2)4-, -(CH(R4)-(CH2)2-CH(R4))-, -(CH(R4)-(CH2)3-CH(R4))-, -CH2-CH2-A-CH2-CH2-, -CH(R4)-CH2-A-CH2CH2-, -CH(R'1)-CH2-A-CH2-CH(R'1)-wherein R4 is alkyl of from one to four carbon atoms, A is O, S, or N, and R is alkyl, aryl, arylaIkyl, or heteroaryl is reacted with an acid such as, for example, p-toluenesulfonic acid, camphor-sulfonic acid, sulfuric acid, hydrogen chloride, and the like in a non-nucleophilic solvent such as, for example, toluene, acetonitrile, dichloromethane, methyl tertiary butyl ether, and the like, followed by reaction with a base, such as, for example, triethylamine, pyridine, diisopropylethylamine, and the like, and with an acylating agent, such as, for example, acetic anhydride, benzoyl chloride, benzyl chloroformate, and the like, in the presence of 4-dimethylaminopyridine to afford the compound of Formula (12). Preferably, the reaction is carried out in toluene in the presence of p-toluenesulfonic acid, followed by treatment with triethylamine, acetic anhydride, and 4-dimethylaminopyridine in toluene.
A compound of Formula (12) is reacted with HO-M in an alcohol of Formula (17) or (17b) wherein M is sodium, lithium, potassium, zinc, magnesium, copper, calcium, or aluminum, or with a compound of Formula (16) or (16b) wherein M is as defined above in an alcohol of Formula (17) or (17b) wherein aryl or allyl in a compound of Formula (16) or (16b) and (17) or (17b) is the same, in an optional cosolvent, such as, for example, a nonnucleophilic solvent, for 1'C'l~/1I3111/1127Z9 O 112/Ilsss 1 ~) _'7 $ _ example, acetone, tetrahydrofuran, 1,2-dimethoxyethane, and the like, followed by the addition of hydrogen in the presence of a catalyst, such as, for example, Pd(OH)2/C, Pd/C, Pd/A 1203, and the like, in the presence of an acid, such as, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, and the like, to afford the compound of Formula (13). Preferably, the reaction is carried out with sodium hydroxide in benzyl alcohol followed by hydrogenation in the presence of Pd(OH)2/C and sulfuric acid.
The process of the present invention in its second aspect is outlined in Scheme 2. Thus, a compound ofFormula (4), prepared as described in Scheme 1, is reacted with a compound of Formula (20) wherein R and M are as defined above and a compound of Formula (7) with removal of water with the aid of a chemical drying agent such as, for example; molecular sieves and the Iike or with the aid of a Dean-Stark water trap or using azeotropic distillation with a suitable solvent such as, for example tetrahydrofuran, toluene, and the Like, to afford a compound of Formula (8) wherein Rl is as defined above. Preferably, the reaction is carried out with a compound of Formula (20) wherein R is PhCH2 and M is sodium in the presence of activated 3A molecular selves in tetrahydrofuran.
The process of the present invention in its third aspect is outlined in Scheme 3. Thus, a compound of Formula (11) is reacted with an acetal of Formula (15) wherein RS and RSa are independently the same or different and are, methyl, ethyl, or -(CH~n- wherein n is an integer of 2 to 4, and R is as defined above in the presence of an acid such as, for example, hydrochloric acid, pyridinium p-toluenesulfonate,p-toluenesulfonic acid and the like in a solvent such as, for example, toluene, dichloromethane, methyl tertiary butyl ether, and the like, followed by the addition of an aldehyde corresponding to the previous acetal of Formula (15) in the presence of a strong base.such as, for example, a non-nucleophilic base, for example, potassium tertiary butoxide, potassium bis(trimethylsilyl) amide, 1,8-diazabicycloj5.4.0a undec-7-ene and the like, to afford a compound of Formula (14) wherein R1 and R are as defined above.
Preferably, the reaction is carried out with benzaldehyde dimethyl acetal in toluene in the presence ofp-toluenesulfonic acid followed by the addition of ben2:aldehyde and potassium tertiary butoxide in tetrahydrofuran.

o n?io;;~n~ r~CTnaunu2~?o A compound of Formula (14) is reacted with hydrogen in the presence of a catalyst such as, for example, palladium on carbon or platinum on carbon and the like in the presence of an acid such as, for example, hydrochloric acid and the like in a solvent such as, for example, toluene, tetrahydrofuran, methyl tertiary butyl ether, ethyl acetate, and the like, and an alcohol, such as, for example, methanol, ethanol, and the like, to afford a compound of Formula (13). Preferably, the reaction is carried out in toluene in the presence of platinum on carbon in the presence of methanol in the presence of hydrochloric acid.
Optionally, a compound of Formula {14) is reacted with an acid such as, for example, hydrochloric acid, pyridinium p-toluenesulfonate, p-toluenesulfonic acid, and the like, in a solvent such as, for example, toluene, dichloromethane, methyl tertiary butyl ether, and the like to afford the compound of Formula (13).
Preferably, the reaction is carried out in methylene chloride in the presence of p-toluenesulfonic acid.
Alternatively, a compound of Formula (I 1) is reacted with an acid, such as, for example, hydrochloric acid, hydrobromic acid, p-toluenesulfonic acid, and the like, in a non-nucleophilic solvent, such as, for example, toluene, acetonitrile, methyl tertiary butyl ether, tetrahydrofuran, and the like, to afford a compound of Formula (13). Preferably, the reaction is carried out in toluene in the presence of p-toluenesulfonic acid.
The process of the present invention in its fourth aspect is outlined in Scheme 4. Thus, a compound of Formula (10) wherein R1 is as defined above is reacted with one molar equivalent of hydrogen in the presence of a catalyst using the methodology described above for the conversion of a compound of Formula (10) to a compound of Formula (11) to afford either a compound of Formula (18) or Formula (18a) wherein R1 is as defined above or a mixture thereof. A
mixture of compounds of Formula (18) and (18a) may be separated using conventional methodology, such as, for example, chromatography and the like. Preferably, a mixture of compounds of Formula ( i 8) and ( 18a) is separated using HPLC.
A compound of Formula (18) or (18a) or a mixture thereof is reacted with hydrogen in the presence of a catalyst as described above for preparing a compound of Formula ( 11 ) to afford a compound of Formula (11 b) wherein RI a '~O 112/11~~;19 PC'1~/II3111/11272'~

is as defined above. Preferably, the reaction is carried out using at least one molar equivalent of hydrogen.
The compound of Formula (13) can be converted to atorvastatin calcium (19) using the procedures disclosed in United States Patents No. 5,273,995 and 5,969,156.
The following nonlimiting examples illustrate the inventors' preferred methods for preparing the compounds of the invention.

r~c°rnamnlz,zo n IIZ/Ils~~l9 Scheme 1 o ~ r "' -- ~ ~' U
~ Z ~ ~ = ?r o d o o d =
~

Z Z Z
~1 Q ;, Q n.
Q Q _ O

t1 ~ N

v OZ

x 7 ~J

.Sa > . a o u"
z ~ ~ ~ i o /

Q

p a uJ
N z _ O
O

x " O LL N
Y ~ a n x ~

o Y _ z o -- O x w -i Z o U

~z i t t N

U

. H

V ~ a O

Z
QO ~

~+~

a$

L

~

O o m N

Z .S~

I

r U
Z /

1'( "!'/ l IW l /112729 W 112/ll~~~l') Scheme 2 F
o O O+
O O~ RCOZ M (20), THF (-Hy0) Y H3N~ ~/ ~R1 F R
\ /
/ \ °° (7) t8) HN

\ /

PCT/If3111/11272!~
.'O fl2l(1~~~1'~

Scheme 3 i.) RCH(ORS)(ORS') H+, PhCH3 R~
ii). RCHO, KO~Bu THF
\ /
iii. Pd-C, Hz, HCI
PhCH3-MeOH
iv. (-MeOHIHyO) p IlZ/11~~~1'l PC~I~JI13111/1127?9 Scheme 4 O O O Ru(I!)IDiphosphine ~R~ Hz (1 molar equiv.) HBr, MeOH
(10) and Ru(11)IDiphosphl H~, HBr, MeOt R'' r~c~rn au auz~zo 'O 112/ll~s~l'J

E~LAMPLE 1 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroay-6-oxo-tetrahydro-pyran-2-yl}-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide Step 1: 3-Morpholin-4-yl-3-oxo-propionitrile NC~OMe HN~ NC~N~
MrBE ' A nitrogen inerted reactor equipped with reflux condenser, nitrogen inlet and mechanical stirring is charged with moiphoIine (1.2 moI), methyl cyanoacetate (1.0 mol) and MtBE (52 mL). The homogeneous solution is heated to ca. 55°C and stirred at that temperature for 12 to 18 hours. MtBE
(33 mL) is added over ca. 15 minutes, and the solution is slowly cooled below 50°C
where nucleation becomes evident. Additional MtBE (66 mL) is added over a 1-hour period. During this time, the reaction is allowed to cool to near ambient temperature. After complete MtBE addition, the reaction is cooled with stirring to ca. 0°C. The resulting precipitate is collected via filtration and the cake is washed with additional MtBE (ca. 40 mL). The solid is dried under vacuum at ea.
45°C to provide 3-morpholin-4-yl-3-oxo-propionitrile (139 g). This material is used in subsequent steps without further purification.
m/z (APCI(m+1)) 154.9;calcd for C~H1pN202 154.07.
Step 2: 3-Amino-I-mornholin-4-yl-propan-1-one; hydrochloride NC~ Pt/C, HZ ~ O
N~ CI H3N N
v0 HCI, MeOH O
A nitrogen inerted reactor is charged with 5% Pt-C (43 g; 58% water-wet) followed by 3-morpholin-4-yl-3-oxo-propionitrile (2.8 mol). A solution of MeOH
(3.4 L) and 12N HCl (3.08 mol) is added at such a rate as to maintain an internal temperature of ca. 25°C. The vessel and its contents are degassed via three N2 pressure purges (SO psi). The atmosphere is switched to hydrogen via three H2 pressure purges (50 psi), and the reaction is stirred vigorously at ca.
25°C under a 'O 0?/1);;~19 PCT/IBI11 /11272!

sustained pressure of hydrogen (50 psi) for ca. 24 hours. The H2 pressure is released and replaced with N2. The reaction is passed through filter agent, which is subsequently washed with MeOH (500 mL). The reaction is concentrated in vacuo to a volume of ca. 1.4 L, and IPA (2.2 L) is added. The reaction mixture is cooled to 0°C and filtered. The filter cake is washed with MtBE (500 mL) and dried under vacuum at ca. 30°C to provide 3-amino-I-morpholin-4-yl-propan-1-one, hydrochloride as a white solid (439 g). This material is used in subsequent steps without further purification.
1 H NMR (400 MHz, DMSO) b 2.72 (t, 2H, J = 6.78), 2.96 (t, 2H, J= 6.77), 3.83-3.44 (m, 2H), 3.52-3.58 (m, 2 H), 8.08 (bs, 3H).
13C NMR (100 MHz, DMSO) 8 168.4, 65.9, 45.1, 41.45, 35.1, 29.6.
Free base: mlz (APCI(m+I)) 159.2; calcd for C7H14N202 158.11.
Step 3: 3-Amino-1-momhoIin-4-yI-propan-1-one; compound with phenylacetic acid O i. 25% NaOMe / O O
O O+ ~ MeOH, MtBE ~ ~ ~ Q+
CI H3N N~ O H3N N
~O ii. PhCH2C02H ' A reactor is charged with 3-amino-1-morpholin-4-yl-propan-1-one;
hydrochloride (765 mmol). MeOH (380 mL) is added, and the mixture is stirred vigorously at room temperature for ca. 10 minutes. MtBE (380 mL) is added and the resulting slurry is cooled to -10°C, where a 25% (w/w) MeOH
solution of NaOMe (765 mmol) is added slowly via addition funnel at such a rate as to maintain an internal temperature of ca. -I O°C. The resulting suspension is stirred vigorously under a N2 atmosphere as it is allowed to warm to 0°C.
Solids are removed via filtration, rinsing with additional MtBE (50 mL). Solvent is removed in vacuo to provide the free base as a crude oil that is taken up in MtBE (600 mL).
The mixture is cooled with vigorous agitation to ca. 0°C; where phenylacetic acid (765 mmol) is added slowly as a solution in MtBE (300 mL). The reaction mixture is stirred an additional 10 minutes after complete addition, during which time the product precipitates out of solution. The solids are collected via filtration, o min;;;m nc°rimmnz~zo washed with additional MtBE (100 mL) and dried under vacuum at 540°C to provide 3-amino-1-morpholin-4-yl-propan-1-one; compound with phenylacetic acid (191 g). This material is carried on to subsequent steps without further purification, or optionally, it can be re-precipitated from MtBE.
S 1H NMR (400 MHz, DMSO) b 2.55 (t, 2H, J= 6.78), 2.86 (t, 2H, J= 6.78) 3.62 (t, 2H), 3.42 (t, 21-x, 6 ~2 (bs, 3H), 7.25-7.I2 (m, SH).
13C NMR (100 MHz, DMSO) b 174.2, 169.0, 138.2, 129.2, 127.8, 125.5, 66.0, 45.2, 44.4, 41.4, 35.7, 31.b.
Step 4: 5-(4-Fluorophenyl)-2-isopropyl-1-(3-morpholin-4-yl-3-oxo-uropyll-4-phenyl-1H pyr-role-3-carboxylic acid phenylamide METHOD A
F
I

I ~ I Q Q ~ THF
N + O H3N N
N O ~0 (-H20) I/ O
A nitrogen inerted reactor, equipped with a suitable reflex condenser and soxhlet extractor containing freshly activated 3A molecular sieves (4-8 mesh;
97.2 g), is charged with 3-amino-1-morpholin-4-yl-propan-1-one, compound with phenylacetic acid (765 mmol) and 2-[2-(4-fluorophenyl)-2-oxo-1-phenyl-ethyl]-4-rnethyl-3-oxo-pentanoic acid phenylamide (450 mmol). THF (360 mL) is added, and the resulting solution is stirred vigorously as the reaction is heated at reflex temperature for ca. 24 hours, during which time the product begins to precipitate.
Half saturated aqueous NaHC03 (100 mL) is added, and the reaction mixture is cooled with continued stirring to ca. 0°C. MtBE (100 mL) is added, and the solids are collected via filtration. The solid is washed with distilled water (100 mL) and MtBE (2 x 100 mL), collected, and dried under vacuum at 550°C to afford 5-(4-fluorophenyl)-2-isopropyl-1-(3-morpholin-4-yl-3-oxo-propyl)-4-phenyl-1H
pyrrole-3-carboxylic acid phenylamide as a white solid (194 g). This material is carried on to subseQuent steps without further purification.

() 112/11~~;19 PCT/I E3111/(1272'l mlz (APCI(m-1)) 538.2; (APCI(m+I) 540.2; calcd for C33H34~303 539.26.
METHOD B
F
O
O M
H ~O + CI H3N
N O .
0 THF (-H20) A nitrogen inerted reactor, equipped with a suitable reflux condenser and soxhlet extractor containing freshly activated 3A molecular sieves (4-8 mesh;
36 g), is charged with 3-amino-1-morphol..~~-4-yl-propan-1-one hydrochloride (170 mmol), phenylacetic acid sodium salt (170 mmol) and 2-[2-(4-fluorophenyl~
2-oxo-1-phenyl-ethyl-4-methyl-3-oxo-pentanoic acid phenylamide (100 mmol).
THF (150 mL) is added, and the resulting solution is stirred vigorously as the reaction is heated at reflux temperature for ca. 24 hours, during which time the product begins to precipitate. Aqueous NaHC03 (100 mL) is added slowly, and the reaction mixture is cooled with continued stirring to ca. 0°C. MtBE
(I00 mL) is added, and the solids are collected via filtration. The yellow-colored solid is washed with distilled water (15 mL) and MtBE (2 x 15 mL), collected, and dried under vacuum at _<50°C to afford 5-(4-fluorophenyl)-2-isopropyl-1-(3-morpholin-4-yl-3-oxo-propyl)-4-phenyl-1H pyrroIe-3-carboxylic acid phenylamide as a white solid (42.1 g). This material is carried on to subsequent steps without further purification.
mlz (APCI(m-1)) 538.2; (APCI(m+1) 540.2; calcd for C33H34~303 539.26.

!'CT/lB111/11272°
() 112/Il~ss l ~) METHOD C
F
i) morpholine, MeOH
ii) PUC, H2, HCI MeOH
O iii) NaOMe, MeOHIM~BE
NC~OMe iv) PhCHzCOyH, THF (-H20) F
O
N O
O
A nitrogen inerted reactor equipped with reflux condenser, nitrogen inlet and mechanical stirring is charged with morpholine (1.2 mol), methyl cyanoacetate (1.0 mol), and MtBE (S2 ~.z ). The homogeneous solution is heated to ca. SS°C and stirred at that temperature for 12 to 18 hours. MtBE
{33 mL) is added ovei ca. 1 S minutes, and the solution is slowly cooled below SO°C until nucleation becomes evident. Additional MtBE (66 mL) is added over a 1-hour period. During this time, the reaction is allowed to cool to near ambient temperature. After complete MtBE addition, the reaction is cooled with stirring to ca. 0°C. The resulting precipitate is collected via filtration and the cake is washed with additional MtBE (40 mL). The crude 3-mozpholin-4.-yl-3-oxo-propionitrile is taken up in MeOH (2 L) and transfen ed to a nitrogen inerted pressure reactor that has been charged with S% Pt-C {SS g; 58% water-wet). HCl (12 N; 1.1 mod) is added at such a rate as to maintain an internal temperature of ca.
2S°C. The vessel and its contents are degassed via three N2 pressure purges (SO psi). The atmosphere is switched to hydrogen via three H2 pressure purges (50 psi), and the reaction is stirred vigorously at ca. 2S°C under a sustained pressure of hydrogen (SO psi) for ca. 24 hours. The H2 pressure is released and replaced with N2, The reaction is passed through filter agent, which is subsequently washed with MeOH
(S00 mL). The reaction is concentrated to a MeOH-wet solid, which is reslurried in IPA (100 mL). The slurry is cooled to 0°C and filtered. The filter cake is washed with cold (0°C) IPA (75 mL) and reslurried in MeOH (500 mL) and MtBE (S00 mL). The slurry is cooled with agitation to -10°C where a 2S% (w/w) ~> min;;;m r~c~rnaumn2~2u solution of NaOMe in MeOH (I moI) is added dropwise at such a rate as to maintain an internal reaction temperature of <_-5°C. The resulting suspension is filtered to afford a clear solution of free base. The solvent is removed in vacuo to provide a crude oil that is taken up in THF (450 mh) and cooled to ca.
0°C. This solution is transferred into a nitrogen inerted reactor that contains phenylacetic acid ( 1.0 mol) and 2-[2-(4-fluorophenyI)-2-oxo-1-phenyl-ethyl]-4-methyl-3-oxo-pentanoic acid phenylamide (590 mmol). The reactor is equipped with a suitable reflux condenser and soxhlet extractor containing freshly activated 3A
molecular sieves (4-8 mesh; 125 g). The resulting solution is stirred vigorously as the reaction is refluxed under a N2 atmosphere for ca. 24 hours, during which time the product begins to precipitate. Half saturated aqueous NaHC03 (130 mL) is added slowly, and the reaction mixture is~cooled with continued stirring to ca.
0°C. MtBE (130 mL) is added, and the solids are collected via filtration. The solid is washed with distilled water (I30 mL) and MtBE (2 x 130 mL), collected, and dried under vacuum at 550°C to afford S-(4-fluorophenyI)-2-isopropyl-1-(3-morpholin-4-yl-3-oxo-propyl)-4-phenyl-IH pyrrole-3-carboxylic acid phenylamide as a white solid (223 g). This material is carried on to subsequent steps without further purification.
m/z (APCI(m-1)) 538.2; (APCI(m+1) 540.2; calcd for C33H34FN303 539.26.
Step 5' 7-[2 ~4-Fluorophenyl)-5-isoprowl-3-nhenyl-4-phenylcarbamoyl-pyrrol I
y,,-3.5-dioxo-heptanoic acid, ethyl ester METHOD A
F
F
i. NaH, THF
O O ii. ~BuLi ~O~
ii. HG
A dry, nitrogen inerted reactor is charged with sodium hydride (300 mmol). Anhydrous THF (150 mh) is added and the resulting mixture is cooled under nitrogen to ca. -20°C. Ethyl acetoacetate (307 mmol) is added at I'C~~f /1 fill l /112729 'O 112/11"W ') such a rate as to maintain an internal reaction temperature of S-10°C.
The addition is followed by a THF rinse (30 mL) and the resulting solution is stirred for approximately 45 minutes at S-10°C. The temperature is allowed to cool to ca.
-18°C. A 10.0 M solution of n-BuLi in hexanes (300 mmol) is added at such a rate as to maintain an internal reaction temperature of S-4°C. The addition is followed by a THF rinse (30 mL) and the resulting orange solution is stirred for about 90 minutes at S-4°C. The temperature is allowed to cool to ca. -25°C. To the solution of dienolate is added S-(4-fluorophenyl~2-isopropyl-1-(3-morpholin-4-yl-3-oxo-propyl)-4-phenyl-1H -pyrrole-3-carboxylic acid phenylamide (74 mmol), and the resulting slurry is stirred at ca. -23°C for 20 hours. The reaction is quenched into a mixture of 18% aqueous HCI (898 mmol) and MtBE {20 mL) at such a rate as to maintain an internal reaction temperature of 5-2°C.
The reactor and transfer system is rinsed with THF (30 mL) and transferred to the reaction mixture. The two-phase solution is allowed to warm to ca. 20°C with stirring. The mixture is transferred to a separatory funnel, and the phases are allowed to separate. The organic layer is washed with water (33 mL) and saturated aqueous NaCI (33 mL). All aqueous layers are back-extracted with MtBE (40 mL). The two organic layers are combined and concentrated in vacuo to a crude oil maintaining an internal batch temperature of 560°C. EtOH (24 mL) is added to the oil and, again, the mixture is concentrated in vacuo. EtOH (330 mL) and water (33 mL) are immediately added to the resulting oil, and the solution of product is allowed to stand at <_10°C for ca. 14 hours. The resulting solid is collected, washed with cold 20% aqueous EtOH (100 mL) and dried in vacuo to afford 7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl)-3,5-dioxo-heptanoic acid, ethyl ester (35.6 g) as a white solid. This material is carried on to subsequent steps without further purification, or optionally, it can be re-precipitated from IPA/H20.
HRMS mlz (ESI(m-1)) 581.2463; calcd for C35H35~205 582.2530.
In a process analogous to Step 5 METHOD A, by substituting the appropriate ester or amide of acetoacetic acid for ethyl acetoacetate, one obtains the following compounds:

ocT/i amn2~z<~
'O U2/Ils~~ I') 7-[2-{4-Fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, terJ-butyl ester.
HRMS ml~ (ESI(m-1)) 609.2772; APCI(m+1) 611.3; calcd for C37H39FN2~5 610.2843.
7-[2-{4-Fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, isopropyl ester.
m/z (DCI(m+1 )) 597; calcd for C36H37~205 596.27.
7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, methyl ester.
m/z (DCI(m+1)) 569; calcd for C34H33~205 568.24.
7-[2-(4-Fluorophenylr5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, morpholino aside.
HRMS m/z (ESI(m-1)) 622.2715; calcd for C37H3gFN305 623.2795.
7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-I-yl]-3,5-dioxo-heptanoic acid, N,N-dimethyl amide.
mlz (DCI(m+1)) 582; calcd for C35H36~304 581.27.
METHOD B
7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yll-3.5-dioxo-heptanoic acid, tert-butyl ester F
O
/ ~N~
~O
iN + Na0 0 0 ' _ i. ~BuLi, THF
HN
O
A nitrogen inerted reactor is charged with the sodium salt of tent-butyl acetoacetate (100 mmol). Anhydrous toluene (71.5 mL) and THF (8.2 mL, 1 Ol mmol) are added, and the resulting solution is cooled under a positive pressure of nitrogen to ca.-I 0°C. A 10 M hexanes solution of n-BuLi ( 104 mmol) is added at such a rate as to maintain an internal reaction temperature of Sl °C.
The resulting solution is stirred an additional 20 to 30 minutes after complete p 112111sss1') PC:T/II3111/(1272') addition as the temperature is allowed to cool to ca. -6°C. Meanwhile, 5-(4-fluorophenyl)-2-isopropyl- I -(3-morphoIin-4-yI-3-oxo-propyI)-4-phenyl-1 H
pyrrole-3-carboxylic acid phenylamide (25 mmol) is charged to a second nitrogen inerted reactor. Anhydrous THF (50 mL) is added at room temperature, and the resulting slurry is cooled to ca. -IO°C and stirred for IS to 90 minutes. The solution of dienolate is added to the slurry of morpholine amide at such a rate as to maintain an internal reaction temperature ca. -5°C. Following this addition, the slurry is stirred at ca. -5°C for ?2 hours. Water (35 mL) is added with vigorous agitation at such a rate as to maintain an internal reaction temperature of <_0°C.
Concentrated 37% hydrochloric acid (19.0 mL, 229 mmol) is added at such a rate as to maintain an internal reaction temperature of SO°C. The two-layered reaction mixture is vacuum distilled, removing >SO°/-of the organic solvents.
The distillation is stopped and the lower aqueous layer is discarded. Water (SS
mL) is added and the vacuum distillation is continued until a majority of the organic solvents are removed. [Note: It is preferable to drain and replace the aqueous layer before initiating the vacuum distillation.] IPA (100 mL) is added followed by water (100 mL). The mixture is stirred for >6 hours, allowing for solidification of the product. The solid is collected via filtration, and the cake is washed with pre-mixed 1:1 IPA:H20. The resulting solid is dried in vacuo at 35°C to provide 7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol=1-yIj-3,5-dioxo-heptanoic acid, tert-butyl ester {14.1 g) as a white solid. This material is carried on to subsequent steps without further purification, or optionally, it can be re-precipitated from toluene.
HRMS m/z (ESI(m-1)) 609.2772; APCI(m+1) 611_3; calcd for C37H39FN2O5 610.2843.
In a process analogous to Step 5 METHOD B, by substituting the sodium salt of the appropriate ester or amide of acetoacetic acid for the sodium salt of tert-butyl acetoacetate, one obtains the following compounds:
7-[2-(4-Fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-I-y1J-3,5-dioxo-hepianoic acid, ethyl ester.
HRMS m/z (ESI(m-1)) 581.2463; calcd for C35H35~205 582.2530.

o nzn~;;;i> r~c~rnamnl2~z~~
7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, isopropyl ester.
mlz (DCI(m+1 )) 597; calcd for C36H37~205 596.27_ 7-[2-(4-Fluorophenyl}-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yI]-3,5-dioxo-heptanoic acid, methyl ester.
m/z (DCI(m+1)) 569; calcd for C34H33~205 568.24.
7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, morpholino amide.
HRMS mlz (ESI(m-1)) 622.2715; calcd for C37H3gFN305 623.2795.
7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yI]-3,5-dioxo-heptanoic acid,11~N dimethyl amide.
mlz (DCI(m+1)) 582; calcd for C35H36~304 581.27.
Step 6: (5R1-7-f2-(4-Fluorophenyl)-S-isopronyl-3-nhenyl-4-phenylcarbamoyl-~yrrol-1-yl]-3.5-dihydroxy-heptanoic acid, methyl ester METHOD A
RuCl2(DMF)~(R~CI-Me0-BIPHEI
HZ, HBr, MeOH
\ ~
A nitrogen inerted pressure reactor is charged with 7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-ylJ-3,5-dioxo-heptanoic acid, ethyl ester (100.0 mmol) and MeOH (250 mL). The resulting slurry is heated with stirring to ca. 55°C to afford a homogeneous solution. The vessel and its contents are degassed via three 50 psi pressure purges with argon. Under a steady flow of argon, 1 M methanolic HBr (7.0 mmol) and the RuCl2(DMF)n[(R)-CI-Me0-BIPHEP)] catalyst (0.5 mmol) are added, and the reactor is given an additional 50 psi pressure purge with argon. The atmosphere is switched to hydrogen via three 50 psi pressure purges. The reaction is stirred vigorously at 65°C under a O 112/11;;19 PCT/IB111/(1272') -4$-sustained pressure of hydrogen (50 psi) until hydrogen uptake ceases. The reaction is allowed to cool to ambient temperature, and the hydrogen pressure is released and replaced with nitrogen. The crude MeOH solution of (SR)-7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-S dihydroxy-heptanoic acid, methyl ester is carried on to subsequent steps without purification, or optionally, it can be isolated via flash column chromatography on silica gel, eluting with ethyl acetate-heptane mia-tures.
HPLC analysis (YMC ODS AQ SS; 1 mL/min; 30°C; 254 nm: CH3CN/H20, 60:40 (0-22 min) to 100:0 (27-37 min) to 60:40) indicated a syn:anti ratio of 1:1.5.
Chiral HPLC analysis (Chiralcel OD-H column; 5% EtOH:Hexanes; tR(3R,SR) _ 23.1 min./tR(3R,SS) = 18.0 min.ltR(3S,SS) = 24.8 min./tR(3S,SR) = 19.9 min.) indicated an enantiomeric excess at C-5 of >_98%, favoring the (R) configuration.
m1z (DCI(m+1)) 573; calcd for C34H37~205 572.27.
In a process analogous to Step 6 METHOD A, using the appropriate alcoholic solvent in place of MeOH, one obtains the following compounds, for example:
(SR}-7-[2-(4-Fluorophenyl}-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid, ethyl ester.
m/z (DCI(m+1)) 587; calcd for C35H39~205 586.28.
Chiral HPLC analysis (Chiralcel OD-H column; 5% EtOH:Hexanes;
tR(3R,SR) = 17.6 min./tR(3R,SS) = 14.7 min./tR(3S,SS) = 20.9 min./tR(3S,SR) _ 15.9 min.) indicated an enantiomeric excess at C-5 of >_98%, favoring the (R) configuration.
(SR)-7-[2-(4-Fluorophenyl}-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrroI-1-yl]-3,5-dihydroxy-heptanoic acid, isopropyl ester.
mlz (DCI(m+1)) 601; calcd for C36H41FN2O5 600.30.
In a process analogous to Step 6 METHOD A, using the appropriate ester or amide from Step 5 in a non-nucleophilic/non-coordinating solvent (e.g., toluene) in place of MeOH, and acetic acid in place of HBr, one can avoid transesterification and obtain the following compounds, for example:

J u?~~n;W9 PCTnaunu27zv (SR)-7-[2-(4-FIuorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid, tert-butyl ester.
m/z (APCI(m+1)) 615.3; calcd for C37H43FN2O5 614.32.
(SR)-7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid, morpholino amide.
m/z (APCI(m-1+HC02H)) 672.3; calcd for C37H42FN3O5 627.31.
(SR}-7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid, N,N dimethyl amide.
mlz (APCI(m+1)) 586; calcd for C35H40~304 585.30.
In a process analogous to Step 6 METHOD A, using alternative Ru(II)-chiral diphosphine complexes in place of.RnCl2~Ng')n[(R)-Cl-Me0-BIPHEP)]
as the hydrogenation catalyst, one can obtain the identical products with varying enantiomeric excess at C-5. For example, in the reduction of 7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, ethyl ester to (SR}-7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-phenylcarbamoyl pyrrol-1-ylJ-3,5-dihydroxy-heptanoic acid, methyl ester proceeded as follows:
RuCl2(DMF)n[(R)-(+)-BINAP] complex provided product with 90% ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC analysis.
RuCl2(DMF)n[(Rr(+) pTol-BINAP] complex provided product with 91%
ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC
analysis.
RuCl2(DMF)n[(R~(+rC4-TunaPhos] complex provided product with 93% ee (favoring the (R) co~guration) at C-5 as determined by chiral HPLC
analysis.
RuCl2(DIvIF)n[(R.~(+)-C2-TunaPhos] complex provided product with 98% ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC
analysis.
RuCl2(DMF)n[(S}-(-)-Me0-BIPHEP] complex provided product with 95% ee (favoring the (S) configuration) at C-5 as determined by chiral HPLC
analysis.

t'cTnaom2~z~) O 112/I1;~~1') RuCl2[(R)-(+)-Cl-Me0-BIPHEP] (NEt3)n complex provided product with >_98% ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC
analysis.
RuCl2[(R)-(+)-BINAP] (NEt3)n complex provided product with 91% ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC analysis, RuCl2[(R)-(+) pTol-BINAP] (NEt3)n complex provided product with 91 % ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC
analysis.
[Ru(TFA)2((R)-(+)-Cl-MeO-BIPHEP)]n complex provided product with ?98% ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC
analysis.
[Ru(TFA)2((R}-(+)-BINAP)]n complex provided product with 90% ee (favoring the (R) configuration) at C-5 as determined by chiral HPLC analysis.
METHOD B
~ S A nitrogen inerted pressure reactor is charged with benzene ruthenium (In chloride dimer (11 mg) and (R)-(+}-C2-TunaPhos (26 mg). The reactor is given a pressure purge with N2 and N2-sparged MeOH (1.0 mL) is added via syringe. The resulting mixture is thoroughly purged with N2 and stirred at 25°C for 30 minutes. .
A solution of 7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, tert-butyl ester (0.5 g) in N2-sparged MeOH (4.5 mL) is added to the reactor via syringe, and the resulting mixture is allowed to stir under N2 at 60°C for 30 minutes. The solution is stirred at 60°C
under a sustained H2 pressure of 60 psi for 22 hours. The reaction is cooled to ambient temperature where it is repeatedly purged with N2. The crude MeOH
solution of (SR)-7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yI]-3,5-dihydroxy-heptanoic acid, methyl ester is carried on to subsequent steps without purification, or optionally, it can be isolated via flash column chromatography on silica gel, eluting with ethyl acetate-heptane mixtures.

> 112f11s~~t9 PCT~/Ifalll/11272') I-iPLC analysis (YMC ODS AQ S5; 1 mL/min; 30°C; 254 nm: CH3CN/H20, 60:40 (0-22 min.) to 100:0 (27-37 min.) to 60:40) indicated a syn:anti ratio of 1:1.4.
Chiral HPLC analysis (Chiralcel OD-H column; 5% EtOH:Hexanes; tR(3R,SR) _ 23.1 min./tR(3R,SS) = 18.0 min./tR(3S,SS) = 24.8 min./tR(3S,SR) =19.9 min.) indicated an enantiomeric excess at C-5 of >_97%, favoring the (R) configuration.
m/Z (DCI(m+1)) 573; calcd for C34H37~205 572.27.
Sten 7: 5-(4-Fluorophenyl)-2-isoproQyl-1-f2-((S)-6-oxo-3,6-dihydro-2H ovran-2-yl -ethyl]'-4-phenyl-IH pyrrole-3-carboxylic acid phenylamide F
i. KOH,.H20, (-MeOH) ii. H', PhMe, (-HZO) iii. Ac20, NEt3, DMAP
A suitable nitrogen inerted reactor is charged with KOH (110.0 mmol) and water (300 mL). To this rapidly stirring solution is added the crude Step 6 solution of (SR}-7-[2-(4-fluorophenyl)-5-isopropyl-3 phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid, methyl ester (ca. 100 m~mol/>98% ee) in MeOH
(250 mL). The mixture is heated under a nitrogen atmosphere to an internal temperature of ca. 85°C. During this time, MeOH is removed via distillation. The resulting reaction mixture is allowed to cool to 45°C, where it is washed with MtBE (2x150 mL). The MtBE phases are separated and discarded. To the 45°C
aqueous phase is added toluene (125 mL), followed by a slow addition of 6N HCl ~ (20 mL). The two-phase mixture is stirred for I O minutes, and the layers are separated. The aqueous phase is extracted with a second portion of toluene (I25 mL) and discarded. The combined organics are heated to reflux under a nitrogen atmosphere. During this time, I30 mL of distillate is collected and discarded. The resulting solution is cooled to ca. 60°C, where hIEt3 (140 mmol), J 112/Ils~~ 1') PCT/I (31111112729 DMAP (2.0 mmol) and Ac20 (70.0 mmol) are added successively at such a rate as to maintain an internal reaction temperature of 55°C to 65°C.
This solution is stirred for ca. 1.5 hrs at 60°C. The mia-ture is cooled to 50°C, where 1N HCl (100 mL) is added slowly. The two-phase mixture is stirred for 10 minutes, the phases are separated, and the aqueous phase discarded. The organic phase is washed with second portions of 1N HCl (100 mL) and water (100 mL) while maintaining a temperature of 45°C to 55°C. The toluene solution is diluted with Bu20 (200 mL) and the resulting solution is slowly cooled to 0°C with continuous agitation. The resulting solid is collected on a filter funnel and dried under vacuum to provide S-(4-fluorophenyl)-2-isopropyl-1-[2-((S)-6-oxo-3,6-dihydro-2H pyran-2-yl)-ethylJ-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide as a white to off white solid (34.4 g). This material is carried on to subsequent steps without further purification, or optionally, it can be re-precipitated from 1PA/H20.
mlz (DCI(m+1)) 523; calcd for C33H31~2~3 522.23.
Chiral HPLC analysis (Chiralpak AD column; 1 mL/min; 30°C; 254 nm;
10%
IPA:Hexanes; tR(R) = 18 min./tR(S) = 16 min.) indicated an enantiomeric excess of >98%, favoring the (R) configuration.
Step 8: 5-(4-FIuorophenyl)-1~~~2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyll-2-isopropyl-4-phenyl-l~I pyrrole-3-carboxylic acid phenylamide U y/l);~;1 ~) I'C'T/ I E3111 /1127?'' METHOD A

F _ F OH ~ O
\ / ~ \ /
BnOH, MOH _ ~ ~ PdJC, li~~ HY
\ / ~i \ /
'D
+ ~ i An argon-purged reactor is charged with 5-(4-fluorophenyl)-2-isopropyl-1-[2-((S)-6-oxo-3,6-dihydro-2H pyran-2-yl)-ethyl]-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide (0.020 moli>99% ee) and benzyl alcohol (52 mL).
The reaction mixture is cooled to -10°C and NaOH (0.040 mol) is added. After stirring for 19 hours at -10°C the reaction is quenched with 37% HCl (0.042 mol) and diluted with water (25 mL) and toluene (25 mL). After the mixture is warmed to ambient temperature, the lower aqueous layer is discarded. The upper organic layer is combined with 20% Pd(OH)2/C (1.0 g) and H2S04 (0.01 moles) and hydrogenated under 50 psi hydrogen at 50°C for 16 hours. The reaction mixture is heated to 80°C and filtered through diatomaceous earth. The reactor and catalyst cake is rinsed with hot toluene (I 0 mL). The lower aqueous layer is discarded.
The upper organic Iayer is washed with a warm solution of aqueous HCl (0.16 g .
37% HCl in 25 mL hot water) and heated to reflux for 2.5 hours under argon, removing water azeotropicaIly. The reaction mixture is cooled to 65°C
and seeded with 5-(4-fluorophenyl~l-[2-((2R,4R~4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-112/(1"sl9 PCT'/II301/11272') ethyl]-2-isopropyl-4-phenyl-lHpyrroIe-3-carboxylic acid phenylamide. After 2 hours the reaction mixture is allowed to slowly cool to ambient temperature.
The resulting slurry is cooled to about 0°C. The product is collected and washed with cold toluene (25 znL). The resulting solid is dissolved in hot toluene (95 mL) and cooled to 65°C and held for 2 hours. The reaction mixture is slowly cooled to ambient temperature and further cooled to 0°C. The product is collected, washed with cold toluene (25 mL) and dried in vacuo at 70°C overnight to afford S-.(4-fluorophenylj-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl}-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide (8.4 g) as a white solid.
HPLC analysis (YMC ODS AQ S5; 1 mlJmin; 30°C; 254 run: CH3CN/H20, 60:40 (0-22 min.) to 100:0 (27-37 min.) to 60:40) indicated an antiayn ratio of >99:1.
Chiral HPLC analysis (Chiralcel OF; 1 mL/min; 60°C; 254 nm; 20%
IPA:Hexanes; tR(3R,SR} = 26 min./tR(3R,SS) = 59 min./tR(3S,SS) = 33 min./
tR(3S,SR) = 37 min.) indicated an enantiomeric excess at C-5 of >99%, favoring the (R) configuration.
m/z (DCl(m+1 )) 541; calcd for C33H33~204 540.24.
In a process analogous to Step 8 METHOD A, substituted benzylic alcohol derivatives (e.g., p-methoxy-benzyl alcohol) may be used in place of benzyl alcohol to afford the corresponding compounds.

12/0"~ 19 I'CT/I 13111 /112729 METHOD B

OH ~ O
\ / ~ L PdIC. HCI
\ / v i~o.nr~
N
\ / /~ MOH ~ / / '~ iL H'. PhAAe NFi (-iis0) An argon-purged reactor is charged with S-(4-fluorophenyl)-2-isopropyl-1-[2-((S)-6-oxo-3,6-dihydro-2H pyran-2-yl)-ethyl]-4-phenyl-1H pyrrole-3-S carboxylic acid phenylamide (19.1 mmolh99% ee) and allyl alcohol (SO mL).
The reaction mixture is cooled to -S°C and LiOH (38.2 mmol) is added, After stirring for 1 hour at -S°C the reaction is quenched with 37% HCl (42 mmol) and toluene (12S mL). After the mixture is warmed to ambient temperature, the reaction is concentrated to a volume of ca. 75 mL. Additional toluene (S0 mL) is added and the reaction is concentrated via distillation to a crude oil that solidifies upon standing. The crude residue is taken up in DME (340 mL). To this solution is added deionized water (20 mL), p-toluenesulfonic acid (2.25 g) and S% Pd/C
(11 g; 50% water-wet). The resulting mixture is heated to 45°C under a atmosphere for 1.5 hours and at ambient temperature for an additional 16 hours.
The solution is passed through f lter aid to remove catalyst, and solvent is removed in vacuo. The residue is taken up in toluene (SO mL). Water (75 mL) and KOH (9S0 mg) are added, and the reaction mixture is heated to 6S°C
where the layers are separated. The aqueous phase is washed with toluene (2S mL) at 65°C

J 112111~~~19 PCT/IB111111272~!

and the combined toluene layers are discarded. To the aqueous phase is added toluene (50 mL), followed by 6N HCl (3.8 mL). The mixture is stirred vigorously at 65°C for 5 minutes and the phases are separated. The toluene phase is heated to reflux for 2.5 hours under argon, removing water azeotropically. The reaction mih-ture is cooled to 65°C and seeded with 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl}-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide. After 2 hours the reaction mixture is allowed to slowly cool to ambient temperature. The resulting slurry is cooled to about 0°C.
The product is collected and washed with cold toluene (25 mL). The resulting solid is dissolved in hot toluene (95 mL) and cooled to 65°C and held for 2 hours.
The reaction mixture is slowly cooled to ambient temperature and further cooled to 0°C. The product is collected, washeu wi'~h cold toluene (25 mL) and dried in vacuo at 70°C overnight to afford 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yI)-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide as a white solid.
HPLC analysis (YMC ODS AQ S5; 1 mLJmin; 30°C; 254 nm: CH3CN/H20, 60:40 (0-22 min) to i 00:0 (27-37 min) to 60:40) indicated an antiayn ratio of >99:1.
Chiral HPLC analysis (ChiralCel OF; I mL/min; 60°C; 254 nm; 20%
IPA:Hexanes; tR(3R,SR) = 26 minJtR(3R,SS) = 59min. tR(3S,SS) = 33 min./
tR(3S,SR) = 37 min.) indicated an enantiomeric excess at C-5 of >99%, favoring the (R) configuration.
m/z (DCI(m+I)) 54I; calcd for C33H33~204 540.24.
In a process analogous to Step 8 METHOD B, allylic alcohol derivatives (e.g., crotyl alcohol) may be used in place of allyl alcohol to afford the corresponding compounds.

II2111~~~ 19 PCT11I311111i27?9 METHOD C

I
F
O
'H(~1?~ ~ / ~ / N L Pd~C~ I~+1, HCI
PhAAe-AAoOfi OiBu~ hF
_ li ~H+i~0 u~ I-!Cl FriMe, D
A nitrogen inerted reactor is charged with (SR)-7-[2-(4-fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-I-yl]-3,5-dihydroxy-heptanoic acid, tert-butyl ester (10.0 mmol), benzaldehyde dimethyl acetal (44.0 mmol), toluene (40 mL) andp-toluenesulfonic acid monohydrate (1.0 mmol). The reaction is stirred vigorously under vacuum for ca. 20 hours, or until complete reaction as determined by analysis of an aliquot by HPLC. The solution is cooled under a nitrogen atmosphere to ca. -S°C where a 1M THF solution of KOtBu (9.0 mmol) is added in three equal portions, separated by 30 to 45 minutes.
The resulting solution is allowed to stir an additional 12 to 14 hours at 0°C. The reaction is quenched by the slow addition of 1N HCl (10 mL). The resulting two-phase mixture is allowed to warm to ca. 15°C and is transferred to a separatory funnel where the aqueous phase is removed and discarded. The organic phase is washed with saturated aqueous NaCI (100 mL), dried over anhydrous MgS04 (25 g), filtered and concentrated in vacuo to a crude oil. This material is carried on to subsequent steps without purification, or optionally, it can be re-precipitated from ether/hexanes.
mlz (APCI(m+1)) 703.4; calcd for Cq.4H47FN205 702.35.
In a process analogous to Step 8 METHOD C OPERATION A using the appropriate ester from Step 6 in place of (SR)-7-(2-(4-fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid, tert-butyl ester, one obtains the following compounds, for example:
7 112I11;~~19 PCT/1I311110272'J
-5 $-((4R,6R)-6-{2-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-ethyl}-2-phenyl-(1,3]dioxan-4-yI)-acetic acid methyl ester.
((4R,6R)-6-{2-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-ethyl}-2-phenyl-[1,3]dioxan-4-yl)-acetic acid ethyl ester.
((4R,6R)-6-{2-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrtol-I-yl]-ethyl}-2-phenyl-[I,3]dioxan-4-yl)-acetic acid isopropyl ester.
OPERATION B
A nitrogen inerted pressure reactor is charged with ((4R,6R)-6-{2-[2-(4-fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl)-ethyl)-2-phenyl-[1,3]dioxan-4-yl)-acetic acid tert-butyl ester from OPERATION A (5.0 g), 5% Pd/C (0.45 g; 50% H20-wet), 2N HCI in MeOH (I.9 mL), toluene (I 1 mL), 1 S and MeOH (3.1 mL). The vessel and its contents are degassed via two cycles of partial evacuation and nitrogen pressurization (25 mm Hg and 50 psi, respectively). The atmosphere is switched to hydrogen via three cycles of partial evacuation and hydrogen pressurization (25 mm Hg and 50 psi, respectively).
The reaction is stirred vigorously at 40°C under a positive pressure of H2 (ca. 50 psi) for ca. 2.5 hours. The reaction is allowed to cool to ambient temperature, and the hydrogen pressure is released and replaced with nitrogen. The reaction is passed through filtering agent to remove the catalyst, rinsing thoroughly with MeOH
(2 x 5 mL). To this solution is added KOH (0.6 g) in water (25 mL). The reaction is stirred vigorously under a nitrogen atmosphere and heated to an internal reaction temperature of ca. 90°C, removing MeOH via distillation. The two-phase mixture is allowed to cool to 70°C and the upper toluene phase is separated and discarded.
The aqueous phase is washed with a second portion of toluene (10 mL) at 70°C.
This organic wash is also separated and discarded. To the aqueous phase is added toluene (10 mL), followed by a slow addition of 2N HCl (5 mL). The two-phase mixture is stirred for 10 minutes and the layers are separated. The aqueous phase is extracted with a second portion oftoluene (10 mL) and is discarded. The fl uzin;;;m r~cTnamniz~zo combined organics are heated to reflux under a Dean-Stark water trap for 2.5 hours under argon. The reaction mixture is cooled to 65°C and seeded with 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide. After 2 hours S the reaction mixture is allowed to slowly cool to ambient temperature. The resulting slurry is cooled to ca. 0°C. The product is collected and washed with cold toluene (S mL). The resulting solid is dissolved in hot toluene (20 mL) and cooled to 65°C and held for 2 hours. The reaction mixture is slowly cooled to ambient temperature and then to 0°C. The product is collected, washed with cold toluene (S mL) and dried in vacuo at 70°C ovenlight to afford 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1 H pyrrole-3-carboxylic acid pheny'~amide as a white solid.
m/z (DCI{m+1)) 541; calcd for C33H33~204 540.24.
METHOD D
F
O O O
iv. HO-C. iii. !1G
Phhb-MeOH
~'h. H&. MeOH
V KDi+tii0 O fi. PhCHO. PTsOK Pt~Nk vi, Hd. P1i41e. G
G. Kd9u, RtNb ~ ' A nitrogen inerted pressure reactor is charged with 7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dioxo-heptanoic acid, ethyl ester (100.0 mmol) and EtOH (250 mL). The resulting slurry is heated with stirring to ca. SS°C to afford a homogeneous solution. The vessel and its contents are degassed via three 50 psi pressure purges with argon. Under a steady flow of argon, 1 M ethanolic HBr (7.0 mmol) and the RuCl2([(R)-BINAP] NEt3 catalyst (0.5 mmol) are added, and the reactor is given an additional SO psi pressure purge with argon. The atmosphere is switched to hydrogen via three 54 psi pressure purges. The reaction is stirred vigorously at 65°C under a sustained pressure of hydrogen (50 psi) until H2 uptake ceases. The reaction is allowed to cool to ca.
50°C, where the hydrogen pressure is released and replaced with nitrogen. The 1>2/II~~W~l I'CT/If3111/(12729 -S ~-crude EtOH solution of (SR)-7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid, methyl ester is diluted with toluene (250 mL). To this solution is added benzaldehyde (150 mmol) and p-TsOH monohydrate (5 mmol). The resulting reaction mixture is heated to a pot temperature of 110°C, removing EtOH and water via their toluene azeotropes. The solution is cooled under a nitrogen atmosphere to ca. -5°C where a 1 M THF solution of KOtBu (90 mmol) is added in three equal portions, separated by 30 to 45 minutes. The resulting solution is allowed to stir an additional 12 to 14 hours at 0°C. The reaction is quenched by the slow addition of 1N HCl (100 mL). The resulting two-phase mixture is allowed to warm to ca.
15°C and is transferred to a separatory funnel where the aqueous phase is removed and discarded. The organic phase is washed with saturated aqueous NaCI (25 mL), dried over anhydrous MgS04 (5 g), filtered and concentrated in vacuo to a crude oil that is taken up in MeOH (200 mL). This solution is transferred to a nitrogen inerted pressure reactor containing 5% Pd/C (5 g; SO% water-wet). Concentrated HCl (2 mL) is added and the reaction is stirred under a sustained pressure of (50 psi) for ca. 3 hours at 50°C. The reaction mixhire is cooled to ambient temperature, the H2 is replaced by N2, and the catalyst is removed via filtration.
This solution of (3R,SR)-7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-ylJ-3,5-dihydrox3~-heptanoic acid, methyl ester is transferred to a nitrogen inerted reactor charged with KOH (110.0 mmol) and water (300 mL). The mixture is heated under a nitrogen atmosphere to an internal temperature of ca. 85°C. During this time, MeOH is removed via distillation. The resulting reaction mixture is allowed to cool to 45°C, where it is washed with MtBE (2 x 150 mL). The MtBE phases are separated and discarded. To the 45°C
aqueous phase is added toluene (125 mL), followed by a slow addition of 6N HCl (20 mL). The two-phase mixture is stirred for 10 minutes and the layers are separated. The aqueous phase is extracted with a second portion of toluene (125 mL) and is discarded. The combined organics are heated to reflux under a Dean-Stark water trap for 2.5 hours under argon. The reaction mixture is cooled to 65°C and seeded with 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-7 112111~~~ t 9 I'C~i~/I I3111/I)2729 -$ g-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide. After 2 hours the reaction mixture is allowed to slowly cool to ambient temperature. The resulting slurry is cooled to ca. 0°C. The product is collected and washed vrith cold toluene (100 mL). The resulting solid is dissolved in hot toluene (350 mL) and cooled to 65°C where it is held for 2 hours. The reaction mixture is slowly cooled to ambient temperature and then to 0°C. The product is collected, washed with cold toluene (100 mL) and dried in vacuo at 70°C to afford 5-(4-fluorophenyl)-1-[2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide as a white solid.
m/z (DCI(m+I)) 541; calcd for C33H33~204 540.24.
Step 9: (R,RI-7-f2-(4-Fluorophenyl)-5-isopropyl-3 phenyl-4-phenylcarbamoyl-pyrrol-1-yll-3,5-dihydroxy-heptanoic acid, calcium salt.
t) NaOH, water MtBE, CH30H
2) Ca(OAc}~ Ca"

An argon-purged reactor is charged with S-(4-fluorophenyl}-1-j2-((2R,4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1H pyrrole-3-carboxylic acid phenylamide (14.8 mmol), MtBE (45 mL) and MeOH (20 mL). A solution of NaOH (15.2 mmoI) in water (103 mL) is added and the reaction mixture heated to 52°C. After heating for ca. 1 hour, the reaction mixture is cooled to 34°C and the layers are allowed to separate. The upper organic layer is discarded. The lower aqueous layer is washed with MtBE (33 mL) at ca. 33°C. The lower aqueous layer is diluted with MtBE (2 mL) and heated to 52°C under argon. A warm solution of Ca(OAc)2~H20 (7.5 mmol) in water (44 mL) is added over ca. 2 hours. About 5 minutes after the start of the Ca(OAc)2 addition, the reaction mixture is seeded with a slurry of (R,R)-7-j2-(4 fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-ylJ-3,5 1'("1'/113111/1127 .' O 112Hn;~ 19 dihydroxy-heptanoic acid, calcium salt (0.08 mmol) in water (1.2 mL) and, methanol (0.4 mL). After the Ca(OAc)2 addition is complete, the reaction mixture is held for ca. 1 S minutes at S2°C and cooled to 20°C. The product is collected, washed sequentially with a 2:1 solution of aqueous methanol (48 mL) and water S (49 mL). After drying in vacuo at 70°C, (R.,R)-7-(2-(4-fluorophenyl)-S-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1-yl)-3,5-dihydroxy-heptanoic acid, calcium salt (8.7 g) is obtained as a white solid. The analytical specifications of this material are in agreement with the values reported in the prior art.
PREPARATION OF CATALYSTS
EXA MPLE A
RuCl~nj~Rl-(+)-Cl-Me0-BIPHEP] complex A suitable reaction flask is charged with DMF (17.5 mL). The vessel and its contents are degassed via two cycles of partial evacuation and nitrogen pressurization (25 mm Hg and 10 psi, respectively). The excess nitrogen pressure is released, and benzene ruthenium(B) chloride dimer (0.50 mmol) and (R)-(+)-Cl-Me0-BIPHEP (1.10 mmol) are added in rapid succession. The vessel and its contents are again degassed via two cycles of partial evacuation and nitrogen pressurization (25 mm Hg and 10 psi, respectively). The excess nitrogen pressure is released, and the reactor is heated to ca. 100°C for I 0 minutes.
The resulting solution is allowed to cool to <_50°C where solvent is removed in vacuo, affording RuCl2(DMF)n[(R)-(+~Cl-Me0-BIPHEP] as a rusty-brown solid. The crude complex is used directly in subsequent reactions without purification or unambiguous characterization, or optionally, can be stored under an inert atmosphere for future use.
In a process analogous to EXAMPLE A using the appropriate chiral diphosphine ligand in place of (R)-(+)-Cl-Me0-BIPHEP, the following complexes can be obtained, for example:
RuCl2(DMF)n[(R)-(+)-BINAP)n complex.
RuCl2(DMF)n((R)-(+) pTol-B1NAP)n complex.

v'p 1)2/11;~~19 I'CT/II3(11/1127 RuCl2(DMF)n[(R)-(+)-C4-TunaPhos]n complex.
RuCl2(DMF)n[(R)-(+)-C2-TunaPhos]n complex.
RuCl2(DMF)n[(S)-(-}-Me0-BIPHEP]n complex.
EXAMPLE B
RuCl~ftR -~+)-BINApI (NEt3~n complex A nitrogen inerted pressure reactor is charged with dichloro-(1,5-cyclooctadiene)-ruthenium (II) dimer (0.15 mmol) and (R)-(+)-BINAP (0.32 mmol). Toluene (8.0 mL) is added, followed by triethylamine (4.5 mmol). The vessel and its contents are degassed via two cycles of partial evacuation and nitrogen pressurization (25 mm Hg and 10 psi, respectively). The excess nitrogen pressure is released, and the reactor is sealed and heated to ca. 140°C
where it is maintained for ca. 4 hours. The resulting clear red solution is allowed to cool to 540°C where solvent is removed in vacuo, affording RuCl2[(R)-{+)-BINAP]
(NEt3)n complex as a rusty-brown solid. The crude complex is used directly in subsequent reactions without purification or unambiguous characterization, or optionally, can be stored under an inert atmosphere for future use.
In a process analogous to EXAMPLE B using the appropriate chiral diphosphine ligand in place of (R)-(+)-B1NAP, the following complexes can be obtained, for example:
RuCl2[(R)-(+)-Cl-Me0-BIPHEP] (NEt3)n complex.
RuCl2j(R)-(+)-BINAP] (NEt3)n complex.
RuCl2[(R)-(+~pTol-BINAP] (NEt3)n complex.
EXAIvIPLE C
Ru A 2((R)-t+1-CI-Me0-BIPHEPIIn complex A suitable reaction flask is charged with acetone (50 mL). The vessel and its contents are degassed via two cycles of partial evacuation and argon pressurization (25 mm Hg and 10 psi, respectively). The excess argon pressure is released, and (0.50 mmol) and (R)-(+~CI-Me0-BIPHEP (0.51 mmoI) are added in rapid succession. The vessel and its contents are again degassed via two cycles O 02/11~~;1'J PC~1'/IBnI/11272' of partial evacuation and argon pressurization (25 mm Hg and 10 psi, respectively). The excess argon pressure is released, and the reactor is stirred vigorously at ca. 30°C. Trifluoroacetic acid (1.2 mmol) is added via syringe and the reaction mixture is stirred for an additional 1-hour period. Solvent is removed in vacuo, ~~ith careful omission of 02, to afford [Ru(TFA)2((R)-(+)-Cl-Me0-BIPHEP)]n complex as a solid. The crude complex is used directly in subsequent reactions without purification or unambiguous characterization, or optionally, can be stored under an inert atmosphere for future use.
In a process analogous to EXAMPLE C using the appropriate chiral diphosphine ligand in place of (R)-(+)-Cl-Me0-BIPHEP, the following complexes can be obtained, for example:
[Ru(TFA)2((R)-(+)-Me0-BIPHEP)]n complex.
[Ru(TFA)2((R)-(+)-BINAP)]n.complex.
[Ru(TFA)Z((R~(+) pTol-BINAP)]n complex.

Claims (2)

1. A compound of Formula (6) wherein R is alkyl, aryl, arylalkyl, or heteroaryl, and wherein R1 is -XR wherein X is O, S, or Se, or R1 is wherein R2 or R3 is independently alkyl, cycloalkyl, arylalklyl, or aryl, or R2 and R3 together are - (CH2) 4-, - (CH2) 5-, - (CH (R4) -CH2) 3-, - (CH (R4) -CH2) 4-, - (CH (R4) - (CH2) 2-CH (R4)) -, - (CH (R4) - (CH2)3-CH (R4)) --CH2-CH2-A-CH2-CH2-, -CH (R4) -CH2-A-CH2H2-, or -CH(R4) -CH2-A-CH2-CH (R4) -wherein R4 is alkyl of from one to four carbon atoms, A is O, S, or N, and R is as defined above.
2. The compound according to claim 1, wherein R is PhCH2- or (CH3) 3-C-, and R1 is
CA002538995A 2001-01-09 2001-12-27 Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy -6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide Abandoned CA2538995A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26050501P 2001-01-09 2001-01-09
US60/260,505 2001-01-09
CA002432064A CA2432064C (en) 2001-01-09 2001-12-27 Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002432064A Division CA2432064C (en) 2001-01-09 2001-12-27 Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide

Publications (1)

Publication Number Publication Date
CA2538995A1 true CA2538995A1 (en) 2002-07-18

Family

ID=36319926

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002538995A Abandoned CA2538995A1 (en) 2001-01-09 2001-12-27 Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy -6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide

Country Status (1)

Country Link
CA (1) CA2538995A1 (en)

Similar Documents

Publication Publication Date Title
EP1353917B1 (en) Novel process for the synthesis of 5-(4-fluorophenyl)-1-(2-((2r, 4r)-4-hydroxy -6-oxo-tetrahydro-pyran-2-yl)-ethyl)-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide
EP1732886B1 (en) Polymorphs of atorvastatin tert.-butylester and use as intermediates for the preparation of atorvastatin
EP1834944A1 (en) Process for preparing C7 intermediates and their use in the preparation on N-substituted pyrrole derivatives
RU2279430C2 (en) Method for preparing 5-(4-fluorophenyl)-1-[2-(2r,4r)-4-hydroxy-6-oxotetrahydropyran-2-yl)ethyl]-2-isopropyl-4-phenyl-1h-pyrrol-3-carboxylic acid phenylamide
CA2538995A1 (en) Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy -6-oxo-tetrahydro-pyran-2-yl)-ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide
AU2002222430B8 (en) Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2R, 4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-YL)-ethyl]-2-isopropyl-4-phenyl-1H-phenyl-1H-pyrrole-3-carboxylic acid phenylamide
EP1724256A2 (en) Novel process for the synthesis of 5-(4-fluorphenyl)-1-2(2-((2r,4r)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)-ethyl)-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide
AU2002222430A1 (en) Novel process for the synthesis of 5-(4-fluorophenyl)-1-[2-((2R, 4R)-4-hydroxy-6-oxo-tetrahydro-pyran-2-YL)-ethyl]-2-isopropyl-4-phenyl-1H-phenyl-1H-pyrrole-3-carboxylic acid phenylamide
PL217253B1 (en) Polymorphs of a 1-pyrrole derivative, intermediate for the preparation of atorvastatin
KR20050039844A (en) Process for preparing 5-(4-fluorophenyl)-1-[2-((2r,4r)-4-hydroxy-6-oxo-tetrahydro-pyran-2-yl)ethyl]-2-isopropyl-4-phenyl-1h-pyrrole-3-carboxylic acid phenylamide

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead