CA2535603A1 - The use of friction stir processing and friction stir welding for nitinol medical devices - Google Patents

The use of friction stir processing and friction stir welding for nitinol medical devices Download PDF

Info

Publication number
CA2535603A1
CA2535603A1 CA002535603A CA2535603A CA2535603A1 CA 2535603 A1 CA2535603 A1 CA 2535603A1 CA 002535603 A CA002535603 A CA 002535603A CA 2535603 A CA2535603 A CA 2535603A CA 2535603 A1 CA2535603 A1 CA 2535603A1
Authority
CA
Canada
Prior art keywords
friction stir
joint
tool
welding
medical devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002535603A
Other languages
French (fr)
Inventor
Blair D. London
Murray Mahoney
Alan Pelton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitinol Development Corp
Original Assignee
Nitinol Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitinol Development Corp filed Critical Nitinol Development Corp
Publication of CA2535603A1 publication Critical patent/CA2535603A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding involving metallurgical change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Metallic materials may be joined utilizing a friction stir processing technique. The friction stir processing technique utilizes a shaped, rotating tool to move material from one side of the joint to be welded to the other without liquefying the base material.

Description

THE USE OF FRICTION STIR PROCESSING AND FRICTION STIR
WELDING FOR NITINOL MEDICAL DEVICES
CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of U.S. Provisional Patent Application Serial Number 60/652,104 filed February 11, 2005.
Background of the Invention I. Field of the Invention The present invention relates to the manufacture of medical devices, and more particularly, to the use of friction stir welding and friction stir processing of nickel-titanium alloys for use in the fabrication of medical devices and components.
II. Discussion of the Related Art Nickel-titanium alloys may be utilized in the fabrication of any number of medical devices such as stents, vena cava filters, distal protection devices, occluders and catheters. These medical devices are typically machined from seamless microtubing. The raw material that will ultimately yield a desired small diameter, thin-walled tube appropriate for the fabrication of the above-described devices, is a modestly sized round bar (e.g. one inch in diameter round bar stock) of predetermined length. In order to facilitate the reduction of the initial bar stock into a much smaller tubing configuration, an initial clearance hole must be placed into the bar stock that runs the length of the bar stock.
These tube hollows, i.e. heavy walled tubes, may be created by "gun-drilling,"
i.e. high depth to diameter ratio drilling, the bar stock. Typically, the tubing is manufactured from bars on the order of ten mm to thirty mm that are gun drilled to create the longitudinal hole. These tube hollows are then drawn to the final size. The outside dimension, the wall thickness and the inside dimension are dictated by the sequence of drawing steps and choice of mandrels. The tubing may also be subjected to a number of "hot" and/or "cold"

working steps to achieve particular properties for the tubing. It is important to note that other industrially relevant methods of creating the tube hollows from bar stock may be utilized by those skilled in the art of tubing manufacture.
An alternate approach to the manufacture of tubing involves starting from sheet or other flat raw material products. In starting with a sheet of material, the manufacturing process is greatly simplified. Typically, the raw material sheet is formed into cylindrical structures and joined by any number of known welding techniques. This method has been tried, and documented by Horikawa et al. (SMST-94, 347-352, 1994), on a 0.4 mm thick nickel-titanium sheet. The sheet was electron beam welded and subsequently hot worked and cold worked to 1.0 mm and 0.5 mm outer diameters. What was observed was that the welded tubes often broke during cold drawing and had non-uniform inner surfaces. Although not mentioned in the Horikawa et al. paper, the breaks during manufacture were likely due to the properties of the weld zone common to welding techniques that melt the base material. Such fusion welding techniques or methods, for example, electron beam, inert gas and laser, are known for creating weld zone microstructures that are significantly different from the base material and consequently the weld zone has inferior mechanical properties relative to the remainder of the tubing that limit the usefulness of the end product. Furthermore, welding dissimilar materials such as nickel-titanium alloys and stainless steel by fusion methods leads to the formation of brittle intermetallic compounds in the weld zone.
Accordingly, there exists a need for welding technique that avoids the problems described herein.
SUMMARY OF THE INVENTION
The present invention overcomes the disadvantages associated with currently utilized welding techniques as briefly described above.
In accordance with one embodiment, the present is directed to a method of welding nickel-titanium alloys. The method comprises positioning a rotating tool in the joint between a first material and a second material, rotating the tool at a predetermined velocity to move the material from one side of the joint to the other side of the joint, and moving the rotating tool from one end of the joint to the other end of the joint.
In accordance with another embodiment, the present invention is directed to a method of modifying the surface of a nickel-titanium alloy. The method comprises plunging a rotating tool into the surface of a metallic material to a predetermined depth, rotating the tool at a predetermined velocity to manipulate the microstructure of the metallic material, and moving the rotating tool along the surface of the metallic material.
The process of friction stir welding of the present invention relies not on the melting of material, but rather on the transfer of material from one side of a joint to the other side of the joint. The speed of rotation and the design of the friction stir welding tool determines the speed and amount of material transferred. Without melting the base material, none of the negative effects associated with currently utilized welding techniques are manifested in the final work product.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other aspects of the present, invention will best be appreciated with reference to the detailed description of the invention in conjunction with the accompanying drawings, wherein:
Figure 1 is a diagrammatic representation of the friction stir welding process in accordance with the present invention.
Figure 2 illustrates the surface of a friction stir processed nickel-titanium sheet in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Friction stir welding is a process wherein a rotating tool is positioned in the joint between two pieces of material that are to be joined together and moved along the joint while rotating at a predetermined velocity. The design of the tool and the rotation thereof causes the transfer of material from one side of the joint to the other side of the joint, thereby effectively welding the two pieces of material together. As this is substantially a "cold" weld, there are no deleterious effects on the base material caused by heating associated with currently utilized welding techniques.
Although this process may be utilized in welding any number of metallic materials together, it is particularly advantageous in the welding of nickel-titanium alloys. For example, one product that may be manufactured by friction stir welding is nickel-titanium microtubing, which could then be further processed into final dimensions for any number of medical devices as briefly described above. The friction stir welded tubing may be utilized as microcatheters or as a starting material for any number of medical devices including stents, distal protection filters, vena cava filters, occluders and anastomotic devices. Friction stir welding may also be utilized to weld nickel-titanium alloys with other medical grade engineering materials, such as stainless steel, titanium alloys (alpha, beta and alpha + beta), cobalt-based alloys (L605) and refractory metal alloys. This technique may also be utilized to join or otherwise secure more highly radiopaque materials to nickel-titanium alloys, including gold, platinum, palladium, silver, tantalum, tungsten and molybdenum. By joining or welding these more highly radiopaque materials to the nickel-titanium alloys, the entire device or desired regions of the device become more radiopaque. Accordingly, bands of tantalum, for example, may be welded to the ends of a nickel-titanium stent so that positioning under x-ray fluoroscopy may be more easily achieved.
Friction stir processing is related to friction stir welding. It involves utilizing the friction stir tool to process this surface of a material or component without a weld joint being created. The surface microstructure may be substantially altered, for example, a refined grain size, by the heat and plastic deformation of friction stir processing. The heat generated by friction stir welding and friction stir processing is significantly lower than the heat of traditional welding techniques. Greatly improved material properties have been achieved in aluminum, copper-based alloys and iron-based alloys with friction stir processing.
Friction stir welding and friction stir processing offer new opportunities in the manufacture nickel-titanium medical devices and components. These techniques allow solid-state joining or solid-state surface processing to obtain optimized forms or optimized properties that are not available otherwise.
Traditional fusion welding methods dramatically alter the microstructure of nickel-titanium that, at least degrades the shape memory or superelastic properties, and at worst, creates a weld zone containing intermetallics (e.g., Ti2Ni), which render the material brittle and therefore unusable. Friction stir processing also allows surface processing of the material to, for example, create a more wear resistant surface layer. This feature may be extremely important for applications subjected to fretting or fretting-corrosion environments.
Friction stir processing and friction stir welding are related solid-state techniques that make use of plastically deforming and mixing materials) on a very localized scale without creating solidification structures such as intermetallics and artifacts such as voids. These methods may be used for a wide range of medical devices based on nickel-titanium, stainless steel, titanium alloys, cobalt alloys, and other materials. Furthermore, these techniques may be used in the formation of the tubing or flat-stock forms (sheet, strip) that are eventually used to manufacture medical devices.
Alternatively, it is envisioned that these techniques may also be used on the finished or semi-finished devices to provide unique characteristics, such as joining a nickel-titanium device to a dissimilar component.
Friction stir welding allows for the continuous joining of materials in the solid state, i.e., without melting and re-solidification occurring in the weld zone.
This solid-state welding technique employs a non-consumable rotating tool with superior high-temperature properties as compared to those of the material or materials to be joined. Any number of suitable materials may be utilized in the fabrication of the rotating tool, including polycrystalline cubic boron nitride (PCBN) and tungsten-rhenium (W-Re). The selection of tool material depends on the materials to be joined. The tool may comprise any suitable shape depending on the application.
The rotating tool is similar to the tool bit utilized with a router or shaper.
In the exemplary embodiment described herein, the rotating tool is placed in the chock of a milling machine so that it may be rotated at a predetermined rotational velocity, plunged into the joint between the materials to be joined and held at this predetermined depth, and moved along the joint to complete the weld. As briefly described above, the speed of rotation and the shape of the tool cause the material from one side of the joint to move to the other side of the joint thereby resulting in a welded joint. The direction of tool rotation determines the direction of material movement. Essentially, material from both sides of the joint is moved by the rotating tool. The speed of rotation also factors into the rate of material movement. The speed of rotation may be in the range from about 200 rpm to about 2000 rpm, and preferably in the range from about 400 rpm to about 800 rpm.
Referring to Figure 1, there is illustrated, in schematic form, the rotating tool 100 in the joint 250 between two work piece materials 200 and 300. In a typical butt joint configuration with the two work piece materials 200 and 300 rigidly clamped, the rotating tool 100 is plunged into the joint 250 until the tool 100 is at a sufficient depth to transfer material through the depth of the entire joint. The tool 100 comprises a pin or probe section 102 that allows the tool 100 to be plunged into the joint 250, and a shaped shoulder portion 104 that provides for the transfer of material from one side of the joint 250 to the other side of the joint 250. There is a transition region, not illustrated, between the probe 102 and the shoulder 104. The shape of the tool 100 is designed to move the material. As is illustrated, in the exemplary embodiment, the tool has a substantially cylindrical shape.
Once the tool 100 is positioned in the joint 250, the tool 100 is traversed along the joint 250. The plastic deformation caused by the shoulder 104 and the probe 102 along with the frictional effects heat the material near the joint 250 interface causing material flow on both sides of the joint as illustrated.
With this process, a metallurgically sound joint between the two materials 200 and 300 is created. In Figure 1, arrow 106 illustrates the direction of rotation of the tool 100 with the leading edge 108 of the rotating tool shoulder 104 and the trailing edge 110 of the rotating tool shoulder 104. Based upon the direction of rotation, there is a retreating side of the weld 112 at an advancing side of the weld 114.
Referring now to Figure 2, there is illustrated the results of friction stir processing. In friction stir welding, the tool 100 illustrated in Figure 1 is plunged into the joint between the pieces to be joined. In friction stir processing, the tool 100 is only in contact with the surface of the material.
The depth of penetration depends on the characteristics to be achieved. As described above, the tool 100 may be utilized to modify the surface microstructure of the material, thereby causing a substantial modification to the finished device. For example, by utilizing friction stir processing, the microstructure may be designed such that medical devices such as stents may be designed with a wide range of geometries that are adaptable to various loading conditions. In other words, by altering the microstructure, for example, grain size, the strength of the device or component may be altered.
Essentially, the causal relationship between material structure, in this instance, grain size, and the measurable strength, in this instance yield strength, is explained by the classic Hall-Petch relationship where strength is inversely proportional to the square root of grain size as given by ~, °' / G.S. ' wherein ay is the yield strength as measured in MPa and G.S. is grain size is measured in millimeters as the average granular diameter.
Although shown and described is what is believed to be the most practical and preferred embodiments, it is apparent that departures from specific designs and methods described and shown will suggest themselves to those skilled in the art and may be used without departing from the spirit and scope of the invention. The present invention is not restricted to the particular constructions described and illustrated, but should be constructed to cohere with all modifications that may fall within the scope for the appended claims.

Claims (2)

1. A method of welding nickel-titanium alloys comprising:
positioning a rotating tool in the joint between a first material and a second material;
rotating the tool at a predetermined velocity to move the material from one side of the joint to the other side of the joint; and moving the rotating tool from one end of the joint to the other end of the joint.
2. A method of modifying the surface of a nickel-titanium alloy comprising;
plunging a rotating tool into the surface of a metallic material to a predetermined depth;
rotating the tool at a predetermined velocity to manipulate the microstructure of the metallic material; and moving the rotating tool along the surface of the metallic material.
CA002535603A 2005-02-11 2006-02-08 The use of friction stir processing and friction stir welding for nitinol medical devices Abandoned CA2535603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65210405P 2005-02-11 2005-02-11
US60/652,104 2005-02-11

Publications (1)

Publication Number Publication Date
CA2535603A1 true CA2535603A1 (en) 2006-08-11

Family

ID=36423607

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002535603A Abandoned CA2535603A1 (en) 2005-02-11 2006-02-08 The use of friction stir processing and friction stir welding for nitinol medical devices

Country Status (4)

Country Link
US (1) US20060283918A1 (en)
EP (1) EP1690627A3 (en)
JP (1) JP2006218543A (en)
CA (1) CA2535603A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560695A (en) * 2019-09-03 2019-12-13 西安建筑科技大学 Titanium-based functional gradient material with porous surface and preparation method thereof
DE102018130521A1 (en) 2018-11-30 2020-06-04 Volkswagen Aktiengesellschaft Device and method for producing a component assembly and motor vehicle

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0609669D0 (en) * 2006-05-15 2006-06-28 Welding Inst Friction stir method
WO2008023760A1 (en) 2006-08-25 2008-02-28 Osaka University Method for welding metal material
JP5255781B2 (en) * 2007-04-17 2013-08-07 英俊 藤井 Stainless steel joining method
BRPI0917209A2 (en) * 2008-08-14 2015-11-10 Smith International Methods of Covering Tube Joints with Reinforced Materials Used Friction Welding
WO2010019735A2 (en) * 2008-08-14 2010-02-18 Smith International, Inc. Methods of treating hardbanded joints of pipe using friction stir processing
GB2492510B (en) 2010-03-31 2018-01-31 Smith International Article of manufacture having a sub-surface friction stir welded channel
GB2492031A (en) 2010-03-31 2012-12-19 Smith International Downhole tool having a friction stirred surface region
JP5016142B1 (en) * 2011-01-26 2012-09-05 三菱日立製鉄機械株式会社 Friction stir welding rotary tool and friction stir welding method
CN105209209A (en) * 2013-01-22 2015-12-30 犹他大学研究基金会 Friction spot welding and friction seam welding
JP6000299B2 (en) * 2013-04-10 2016-09-28 株式会社フルヤ金属 Method for producing inner container for reaction vessel
CN105033447B (en) * 2015-09-18 2017-08-25 哈尔滨工业大学 A kind of strong adjustable friction stir welding tools of deformation depth sounding in interface
US11958126B2 (en) * 2020-10-06 2024-04-16 GE Precision Healthcare LLC Containers for retaining anesthetic agent and manufacturing methods thereof
JP7425781B2 (en) * 2021-12-16 2024-01-31 株式会社東芝 Dissimilar metal joining method and joining device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815653B1 (en) * 2000-05-08 2008-03-20 브라이엄 영 유니버시티 Friction stir welding of metal matrix composites, ferrous alloys, non-ferrous alloys, and superalloys using a superabrasive tool
US6780525B2 (en) * 2001-12-26 2004-08-24 The Boeing Company High strength friction stir welding
US7000303B2 (en) * 2002-10-24 2006-02-21 The Boeing Company Method of repairing a crack in a component utilizing friction stir welding
US6913186B2 (en) * 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018130521A1 (en) 2018-11-30 2020-06-04 Volkswagen Aktiengesellschaft Device and method for producing a component assembly and motor vehicle
CN110560695A (en) * 2019-09-03 2019-12-13 西安建筑科技大学 Titanium-based functional gradient material with porous surface and preparation method thereof
CN110560695B (en) * 2019-09-03 2021-10-22 西安建筑科技大学 Titanium-based functional gradient material with porous surface and preparation method thereof

Also Published As

Publication number Publication date
JP2006218543A (en) 2006-08-24
EP1690627A3 (en) 2007-06-13
US20060283918A1 (en) 2006-12-21
EP1690627A2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US20060283918A1 (en) Use of friction stir processing and friction stir welding for nitinol medical devices
JP6500317B2 (en) Friction bonding method
US7530486B2 (en) Applications of friction stir welding using a superabrasive tool
US7337940B2 (en) Apparatus and method for friction stir welding of high strength materials, and articles made therefrom
Özdemir et al. Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel
US7845545B2 (en) Three-body joining using friction stir processing techniques
Casalino et al. Influence of shoulder geometry and coating of the tool on the friction stir welding of aluminium alloy plates
US8157154B2 (en) Three-body joining using friction stir processing techniques
EP3213861B1 (en) Method of joining titanium and titanium-based alloys to ferrous metals using tantalum
CN105209209A (en) Friction spot welding and friction seam welding
Kannan et al. Optimization of friction welding by taguchi and ANOVA method on commercial aluminium tube to Al 2025 tube plate with backing block using an external tool
US20130299561A1 (en) Friction stir joining of curved surfaces
JP5174775B2 (en) Friction stirring tool
Kalvala et al. Friction assisted solid state lap seam welding and additive manufacturing method
Shamsolhodaei et al. Effect of laser positioning on the microstructure and properties of NiTi-copper dissimilar laser welds
Khourshid et al. Friction stir welding study on aluminum pipe
JP2017531563A (en) Heat bonding method for butt connection of metal parts
Khourshid et al. Analysis and design of Friction stir welding
JPH08501497A (en) Friction welding of molybdenum-rhenium alloy
WO2016149193A1 (en) Solid state methods for joining dissimilar metal guidewire segments without the use of tertiary material
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
Zhang et al. Friction stir welding
Chandra et al. Influence of rotational speed on the dissimilar friction welding of heat-treated aluminum alloys
JP7008392B2 (en) Friction stir welding tool
Yasui et al. High-speed weldability between 6063 and S45C by friction stir welding. Study of welding of dissimilar metals by friction stir welding (1st report)

Legal Events

Date Code Title Description
FZDE Discontinued