CA2531932C - Expandable tubing - Google Patents

Expandable tubing Download PDF

Info

Publication number
CA2531932C
CA2531932C CA002531932A CA2531932A CA2531932C CA 2531932 C CA2531932 C CA 2531932C CA 002531932 A CA002531932 A CA 002531932A CA 2531932 A CA2531932 A CA 2531932A CA 2531932 C CA2531932 C CA 2531932C
Authority
CA
Canada
Prior art keywords
tubing
tubular structures
structures
wall
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002531932A
Other languages
French (fr)
Other versions
CA2531932A1 (en
Inventor
Paul David Metcalfe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weatherford Technology Holdings LLC
Original Assignee
Weatherford Lamb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9921557.6A external-priority patent/GB9921557D0/en
Application filed by Weatherford Lamb Inc filed Critical Weatherford Lamb Inc
Publication of CA2531932A1 publication Critical patent/CA2531932A1/en
Application granted granted Critical
Publication of CA2531932C publication Critical patent/CA2531932C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

Expandable tubing has a tubing wall comprising a plurality of deformable tubular structures. The structures have permeable walls and containing a filter medium such that fluid may flow through the structures and the filter medium and thus through the tubing wall.

Description

EXPANDABLE TUBING

This application is a divisional application of Canadian Patent Application Serial No. 2,383,179 filed on September 14, 2000.

This invention relates to a downhole apparatus, and in particular but not exclusively to forms of expandable tubing and to forms of expandable filters and filter supports. The expression "the invention" and the like encompasses the subject matter of both the parent and the divisional applications.

W093/25800 (Shell Internationale Research Maatschappij B.V.) describes a method of completing an uncased section of borehole. A slotted liner provided with overlapping longitudinal slots is fixed in the borehole and a tapering expansion mandrel is pushed or pulled through the liner.

The liner is expanded by the mandrel to support the adjacent borehole wall.

W097/17524 (Shell Internationale Research Maatschappij B.V.) describes a deformable well screen and method for its installation utilising two sections of concentric slotted tubing, such as described in W093/25800, with a series of circumferentially scaled filter segments therebetween. The screen is expanded by pushing or pulling an expansion mandrel through the screen.

The expansion mechanism of these arrangements is such that there is an axial retraction of the tubing on radial expansion. This not only creates difficulties in accurately locating and securing the ends of the tubing in a bore relative to adjacent tubing sections, but also may WO 01/20125 PCT/GB00/035'41. 2 result in undesirable relative axial movement between the tubing and other elements mounted thereon, such as filter segments. Further, in such a filter arrangement, the radial expansion forces which must be applied to the outer section of expandable tubing are transferred via the filter medium or media located between the tubing sections; this limits the range of media which may be utilised in such arrangements to filter materials and configurations which will withstand significant compressive forces, in addition to the significant shear forces which the filter material will experience during expansion of the tubing sections.
It is among the objectives of embodiments of aspects of the invention to provide alternative expandable tubing forms, including expandable filters and filter supports, which overcome such disadvantages.

According to the present invention there is provided expandable tubing having a tubing wall comprising a plurality of deformable tubular structures, at least some of the structures having permeable walls and containing a filter medium such that fluid may flow through the structures and thus through the tubing wall.

This aspect of the invention is useful as a downhole filter or sand screen, the deformable tubular structures forming the wall of the tubing facilitating expansion of the tubing, and the tubular structures potentially serving as filter elements and also accommodating a selected filter medium or media. Also, the use of the tubular structures to accommodate or facilitate expansion assists in avoiding the longitudinal contraction which tends to occur on radial expansion of tubing defining overlapping longitudinally extending slots.

The present invention also provides an expandable tubing having a tubing wall comprising a plurality of longitudinally extending deformable tubular structures, the tubular structures being arranged in side-by-side configuration to define said tubing wall and at least some of the structures having porous walls of sintered ductile material such that fluid may flow through the structures and through the tubing wall.

The present invention also provides an expandable tubing having a tubing wall comprising a plurality of deformable tubular structures, at least some of the structures having walls of porous material initially filled by another removable material to create an initially impermeable structure, such that upon removal of the removable material fluid may flow through the structures and thus through the tubing wall.

The present invention also provides an expandable downhole tubing having a tubing wall comprising a plurality of longitudinally extending deformable tubular structures, the tubular structures being arranged in side-by-side configuration to define the tubing wall and the deformable tubular structures being retained between two expandable sleeves.

The present invention also provides an expandable downhole tubing having a tubing wall comprising a plurality of longitudinally extending deformable tubular structures, 3a the tubular structures being arranged in side-by-side configuration to define the tubing wall and the deformable tubular structures being defined by a plurality of corrugated members.

The present invention also provides an expandable downhole tubing having a tubing wall comprising a plurality of longitudinally extending deformable tubular structures, the tubular structures being arranged in side-by-side configuration to define the tubing wall and the deformable tubular structures having discontinuities therein.
The tubular structures may extend longitudinally, helically, or be positioned in any appropriate orientation.
A substantially axial orientation may offer more straightforward assembly and resistance to bending, however for other applications a helical arrangement may offer greater flexibility and resistance to radial compressive forces.

The tubular structures may be of any material, structure or form which provides the desired degree of deformability, permeability and the desired degree of structural strength. In one embodiment, the tubular structures are of sintered ductile metal, while in other embodiments drilled or slotted tubes may be utilised. If sintered metal, or some other porous material of similar structure, is utilised to form the tubular structures, the pores of the material may be initially filled or occupied by another material to create an impermeable structure. This filling material may be subsequently removed, for example by application of an appropriate solvent, which may be produced fluid, or exposure to elevated temperature as experienced in deeper bores.

W0 01/20125 PCT/GB00/0?" ~

The tubular structures may be connected to one another by any appropriate method, for example metal structures may be welded or brazed to one another, or the structures may be retained between two expandable sleeves or tubes.

In other embodiments, the tubular structures may be defined by appropriately shaped sheets or elements, or unitary structures, for example two corrugated sheets or tubes which have been welded or otherwise secured together, or by extruding or otherwise forming the tubing wall in a form which incorporates tubular structures. These embodiments may form other aspects of the invention, in which the tubular structures are impermeable, that is fluid is prevented from flowing through the tubing wall, in one or both of the unexpanded and expanded configurations.

The tubular structures may feature substantially continuous walls, or may have discontinuities therein, for example the tubular structures may be substantially C-shaped.

The tubular structures may accommodate a filter medium of'media, such as woven wire, porous foam, wire mesh or wire wool, or indeed any medium presently utilised as a filter and which could be located within a tubular structure and withstand the change in shape experienced by the tubular structures during expansion. Alternatively or in addition, the tubular structures may be lined with a filter media in the form of a flexible or deformable porous material.
The aperture or pore size defined by the tubular structures or- the filter media therein may be selected as 5 appropriate, depending on the intended application of the tubing: the tubing may provide a relatively coarse filter, for preventing passage of relatively large solids, or may be such that passage of liquid or very fine solids is -prevented or restricted, and only passage of gas is permitted, by use of a tubular structure-lining material such an expanded PTFE, as produced under the Gore-Tex trade mark by W.L_ Gore & Associates_ In another aspect, the invention provides an expandable downhole tubing having a tubing wall comprising a plurality of longitudinally extending deformable tubular structures, said tubular structures being arranged in side-by-side configuration to define said tubing wall, wherein said deformable tubular structures are defined by at least one corrugated member and are retained between two expandable sleeves.

These and other aspects of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is a diagrammatic representation of an expandable tubing in accordance with an aspect of the present invention;

Figure 2 shows the tubing of.:Figure 1 following expansion;

5a Figure 3 is a diagrammatic representation of part of a wall of an expandable tubing in accordance with a further aspect of the present invention;

Figure 4 shows the tubing of Figure 3 following expansion;

Figure 5 illustrates an expandable tubing in accordance with a still further aspect of the present WO 01/20125 PCT/GB00/0?

invention; and Figures 6 to 9 are diagrammatic representations..of walls of expandable tubings in accordance with further aspects of the present invention.

Reference is first made to Figures 1 and 2 of the drawings, which illustrate a form of expandable tubing 10, in accordance with an aspect of the present invention, and which may be utilised as or as part of a sand screen or other downhole filter arrangement. Typically, the tubing will be run into a bore in, the "unexpanded" form as illustrated in Figure 1, anchored in the bore, and then expanded to the larger diameter expanded form as illustrated in Figure 2, with a degree of expansion in excess of 3011 being achievable.

The tubing wall 12 comprises a plurality of axially extending tubular structures in the form of small diameter tubes 14 formed of sintered metal. The tubes 14 provide a porous sand filtering media.

Expansion of the tubing 10 is primarily accommodated by a flattening of the tubes 14, and the expanded tubing is shown in Figure 2 of the drawings. This expansion may be achieved by means of a conventional expanding cone or mandrel, which is pushed or pulled through the tubing 10.
As the tubes 14 deform there will also be some deformation and variation in the sizes of the pores, apertures and passages in the walls of the tubes, however pore size variation may be predicted to some extent, and in any event it is difficult to form a porous sintered metal product with closely controlled pore size.

Reference is now made to Figures 3 and 4 of the drawings, which illustrate part of an alternative expandable tubing 20, in which the tubing wall 22 comprises a plurality of solid tubes 24 having holes 26 drilled therein. The tubes 24 accommodate filter media 28 which may be in the form of deformable woven wire, porous foam, wire mesh or wire wool. On expansion of the tubing, to the form illustrated in Figure 4, the aperture or pore size of the filter media 28 will not tend to change (although the filter media may be subject to some compaction), providing a greater degree of predictability than the tubing 10 described above.

Reference is now made to Figure 5 which illustrates a similar form of expandable tubing 40 to that shown in Figure 1, except that the pores 42 of the material forming the tube walls are initially filled by another removable material 44 thus (temporarily) creating an impermeable structure. This filling material 44 may be subsequently dissolved, or removed by exposure to elevated temperatures.

Figure 6 illustrates a further alternative embodiment of the present invention in which the tubular structures 52 are retained between two expandable sleeves 54, 55 Figure 7 illustrates a wall section 60 of tubing 60 of WO 01/20125 P4tT/GS00/03.--'8 a further embodiment of the present invention wherein the tubular structures 62 are defined by inner and outer corrugated sheets 64, 66. These sheets 64, 66 are welded together at 68.

Reference is now made to Figure 8, which shows a wall section of tubing 70 of another embodiment of the invention, which tubing features an alternative form of tubular structures 72 to define the bounding walls of the expandable tubing 70. In this particular example, the tubular structures 72 do not have continuous walls, being substantially C-shaped.

Figure 9 illustrates a wall section of tubing 80 of a further embodiment of the invention. In this embodiment, the porous tubular structures 82 are lined with afilter membrane 84. In this example the membrane 84 is a flexible porous material, in particular expanded PTFE, as sold under the GORE-TEX trade mark, and is impervious to selected liquids, and only permits passage of gas therethrough.

It will be apparent to those of the skill in the art that the above-described embodiments are merely exemplary of the various aspects of the present invention, and that various modifications and improvements may be made thereto without departing from the scope of the present invention.

Claims (11)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An expandable downhole tubing having a tubing wall comprising a plurality of longitudinally extending deformable tubular structures, said tubular structures being arranged in side-by-side configuration to define said tubing wall, wherein said deformable tubular structures are defined by at least one corrugated member and are retained between two expandable sleeves.
2. The tubing of claim 1, wherein at least some of the structures have permeable walls such that fluid may flow through the structures and thus through the tubing wall.
3. The tubing of claim 1 or 2, wherein the tubing is adapted to prevent flow of particulates through the tubing wall.
4. The tubing of any one of claims 1 to 3, wherein the tubular structures are of sintered ductile metal.
5. The tubing of any one of claims 1 to 3, wherein the tubular structures are apertured tubes.
6. The tubing of any one of claims 1 to 5, wherein the tubular structures are of porous material and the pores of the material are initially filled by another removable material to create an intitially impermeable structure.
7. The tubing of any one of claims 1 to 6, wherein the tubular structures have discontinuities therein.
8. The tubing of claim 7, wherein the tubular structures are substantially C-shaped.
9. The tubing of any one of claims 1 to 8, wherein the tubular structures are lined with a filter medium.
10. The tubing of claim 9, wherein the filter medium lining is a flexible porous material.
11. The tubing of claim 10, wherein the flexible porous material is adapted to prevent passage of selected liquids therethrough but to permit passage of gas therethrough.
CA002531932A 1999-09-14 2000-09-14 Expandable tubing Expired - Lifetime CA2531932C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9921557.6A GB9921557D0 (en) 1999-09-14 1999-09-14 Downhole apparatus
GB9921557.6 1999-09-14
CA002383179A CA2383179C (en) 1999-09-14 2000-09-14 Expandable tubing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002383179A Division CA2383179C (en) 1999-09-14 2000-09-14 Expandable tubing

Publications (2)

Publication Number Publication Date
CA2531932A1 CA2531932A1 (en) 2001-03-22
CA2531932C true CA2531932C (en) 2009-06-09

Family

ID=35874907

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002531932A Expired - Lifetime CA2531932C (en) 1999-09-14 2000-09-14 Expandable tubing

Country Status (1)

Country Link
CA (1) CA2531932C (en)

Also Published As

Publication number Publication date
CA2531932A1 (en) 2001-03-22

Similar Documents

Publication Publication Date Title
CA2383179C (en) Expandable tubing
CA2538112C (en) Multi-layer screen and downhole completion method
AU740328B2 (en) Expandable downhole tubing
US20020070031A1 (en) Well completion method and apparatus
US5366012A (en) Method of completing an uncased section of a borehole
CA2144014C (en) Coiled well screen
AU2373399A (en) Coiled tubing screen
US7318481B2 (en) Self-conforming screen
AU710745B2 (en) Deformable well screen and method for its installation
AU2008334603B2 (en) Wellbore system
CA2401068A1 (en) Isolation of subterranean zones
US5083614A (en) Flexible gravel prepack production system for wells having high dog-leg severity
CA2706279C (en) Method of expanding a tubular element in a wellbore
US20100270036A1 (en) Method of expanding a tubular element in a wellbore
AU2006236559B2 (en) Self conforming screen
GB2394239A (en) Downhole systems for filtering and zonal isolation, including expandable sand screens
CA2531932C (en) Expandable tubing

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20200914

MKEX Expiry

Effective date: 20200914