CA2528725C - Method of preventing hydrogen darkening of optic fibre - Google Patents

Method of preventing hydrogen darkening of optic fibre Download PDF

Info

Publication number
CA2528725C
CA2528725C CA2528725A CA2528725A CA2528725C CA 2528725 C CA2528725 C CA 2528725C CA 2528725 A CA2528725 A CA 2528725A CA 2528725 A CA2528725 A CA 2528725A CA 2528725 C CA2528725 C CA 2528725C
Authority
CA
Canada
Prior art keywords
hydrogen
optic fibre
flowing gas
tubular body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2528725A
Other languages
French (fr)
Other versions
CA2528725A1 (en
Inventor
Gerald V. Chalifoux
Robert B. Logan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrospec Engineering Inc
Original Assignee
PETROSPEC ENGINEERING Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETROSPEC ENGINEERING Ltd filed Critical PETROSPEC ENGINEERING Ltd
Priority to CA2528725A priority Critical patent/CA2528725C/en
Publication of CA2528725A1 publication Critical patent/CA2528725A1/en
Application granted granted Critical
Publication of CA2528725C publication Critical patent/CA2528725C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44382Means specially adapted for strengthening or protecting the cables the means comprising hydrogen absorbing materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A method of preventing hydrogen darkening of optic fibre, which includes a step of providing a protective barrier of hydrogen free flowing gas around the optic fibre, such that the flowing gas sweeps away hydrogen.

Description

TITLE OF THE INVENTION:
Method of preventing hydrogen darkening of optic fibre FIELD OF THE INVENTION
The present invention relates to a method of preventing hydrogen atoms from reacting with and darkening glass optic fibre.

BACKGROUND OF THE INVENTION
Optic fibre is used in oil and gas wells to transmit light waves carrying signals to surface. Hydrogen is invariably present in the hydrocarbon environment of oil and gas wells.
At temperatures above 170 degrees Celsius, optic fibre is susceptible to attack from hydrogen atoms. The hydrogen atoms penetrate protective coverings and react with the optic fibre. This results in a degradation of the signals due to scattering of the light waves.
This signal degradation has come to be known as "hydrogen darkening". Canadian Patent
2,323,042 discloses a method of reducing the time until hydrogen darkening occurs by placing the optic fibre within a tube containing a protective liquid.

SUMMARY OF THE INVENTION
According to the present invention there is provided a method of preventing hydrogen darkening of optic fibre, which includes a step of providing a protective barrier of hydrogen free flowing gas around the optic fibre, such that the flowing gas sweeps away hydrogen atoms.

BRIEF DESCRIPTION OF THE DRAWINGS
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to in any way limit the scope of the invention to the particular embodiment or embodiments shown, wherein:
FIG. 1 is a first installation illustrating the preferred method of preventing hydrogen darkening of optic fibre in accordance with the teachings of the present invention.
FIG. 2 is a second installation illustrating the preferred method of preventing hydrogen darkening of optic fibre in accordance with the teachings of the present invention.

FIG. 3 is a detailed section view of optic fibre used in the first installation illustrated in FIG. 1 and the second installation illustrated in FIG. 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The preferred method of preventing hydrogen darkening of optic fibre will now be described with reference to FIG. 1 through 3.

Referring to FIG. 3, the method provides a protective barrier 12 of substantially hydrogen free flowing gas around the optic fibre 14, such that the flowing gas sweeps away hydrogen. Referring to FIG. 1, a gas supply 16 is provided as the source of flowing gas. A
flow rate of between 2 and 50 standard cubic feet per day has been found to be sufficient, depending on the conditions. In addition, the flowing gas may be provided in an intermittent, rather than continuous flow, to conserve gas and energy, in suitable situations. The gas passes through a metering or control valve 18, and through a pressure gauge 20 that also acts as a bleed off point. This allows the gas pressure to be monitored and controlled.
The gas is then passed through another valve 22, and is an optic fibre 14 is then encased in tubular body 26 at junction 25 that is then strung out through a wellhead 27 and down a well 28.
The details of this can be seen in FIG. 3, where an annulus 30 is defined between optic fibre 14 and tubular body 26, such that the flowing gas passes along annulus 30 to form protective barrier 12. The information collected downhole is then passed back up, through junction 25, and into junction box 24, where the collected information is passed on to a fibre optic SRU (not shown).
Referring to FIG. 1, there may be a turn-around sub 32 that allows tubular body 26 to be brought back to the surface, where the gas is bled off to atmosphere through valve 34.
Alternatively, referring to FIG. 2, the gas may be bled off downhole, and allowed to dissipate into the reservoir.

Examples of suitable flowing gases include air, nitrogen, flourine, helium, argon, oxygen, neon, krypton, xenon, radon, carbon monoxide, carbon dioxide, or a combination of the same. The flowing gas may also contain hydrogen scavenging additives, such as carbon tetrachloride, perfluorohexane, potasssium iodate, or a combination of the same.
An oil and gas well has been chosen for purposes of illustration, it will be appreciated
3 that the same method can be employed in any hydrocarbon environment. For example, this method may have wide application in oil and gas processing facilities.

In this patent document, the word "comprising" is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article "a" does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.

It will be apparent to one skilled in the art that modifications may be made to the illustrated embodiment without departing from the spirit and scope of the invention as hereinafter defined in the Claims.

Claims (5)

What is Claimed is:
1. A method of preventing hydrogen darkening of optic fibre, comprising the step of providing optic fibre within a protective tubular body, an annulus being defined between the optic fibre and the protective tubular body;
inserting the protective tubular body through a well head and down into a hydrocarbon producing well;
circulating a protective barrier of substantially hydrogen free flowing gas along the annulus around the optic fibre, such that the flowing gas sweeps away hydrogen, the hydrogen free flowing gas having hydrogen scavenging additives to remove hydrogen from the free flowing gas before the hydrogen has an opportunity to come into contact with the optic fibre.
2. The method as defined in Claim 1, the flowing gas being selected from air, nitrogen, fluorine, helium, argon, oxygen, neon, krypton, xenon, radon, carbon monoxide, carbon dioxide, or a combination of the same.
3. The method as defined in Claim 1, the hydrogen scavenging additives being selected from carbon tetrachloride, perfluorohexane, potassium iodate or a combination of the same.
4. The method of Claim 1, wherein the flowing gas comprises a flow rate of between 2 and 50 standard cubic feet per day.
5. The method of Claim 1, wherein the flowing gas comprises an intermittent flow of substantially hydrogen free gas.
CA2528725A 2005-11-25 2005-11-25 Method of preventing hydrogen darkening of optic fibre Expired - Fee Related CA2528725C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2528725A CA2528725C (en) 2005-11-25 2005-11-25 Method of preventing hydrogen darkening of optic fibre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2528725A CA2528725C (en) 2005-11-25 2005-11-25 Method of preventing hydrogen darkening of optic fibre

Publications (2)

Publication Number Publication Date
CA2528725A1 CA2528725A1 (en) 2007-05-25
CA2528725C true CA2528725C (en) 2012-03-27

Family

ID=38066738

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2528725A Expired - Fee Related CA2528725C (en) 2005-11-25 2005-11-25 Method of preventing hydrogen darkening of optic fibre

Country Status (1)

Country Link
CA (1) CA2528725C (en)

Also Published As

Publication number Publication date
CA2528725A1 (en) 2007-05-25

Similar Documents

Publication Publication Date Title
US7561776B2 (en) Method of preventing hydrogen darkening of optic fibre
RU2431162C2 (en) Air-permeable borehole fibre-optic cable and method of restoring operational characteristics thereof
US10725237B2 (en) Polymer coated optical fiber
US8090227B2 (en) Purging of fiber optic conduits in subterranean wells
Reinsch et al. Thermal, mechanical and chemical influences on the performance of optical fibres for distributed temperature sensing in a hot geothermal well
CA2709248C (en) Method and apparatus to monitor reformation and replacement of co2/ch4 gas hydrates
GB2461436A (en) Method and apparatus to determine characteristics of an oil based mud downhole
US20050236161A1 (en) Optical fiber equipped tubing and methods of making and using
Brown et al. Optical fiber sensors in upstream oil & gas
NO20035510D0 (en) Profiled recess for instrumented, expandable components
GB2395965A (en) Method and apparatus to monitor,control and log subsea oil and gas wells
US20070283751A1 (en) Downhole Flow Measurement In A Well
CA2662999A1 (en) Fiber optic cable systems and methods to prevent hydrogen ingress
WO2021133391A1 (en) Well interference sensing and fracturing treatment optimization
CA2528725C (en) Method of preventing hydrogen darkening of optic fibre
US20120160496A1 (en) Method for controlling the downhole temperature during fluid injection into oilfield wells
US20160069141A1 (en) Downhole protection apparatus
US8942527B2 (en) Extended temperature fiber optic cable design
US9797783B2 (en) Filter and method and distributed temperature sensor system
GB2354030A (en) Method of producing fluids from an underground reservoir
CA2709698C (en) Purging of fiber optic conduits in subterranean wells
Ghamdi et al. Mitigation Procedures and Best Practices to Conduct Slickline Memory Mode Production Logging In High-Pressure High-Temperature Sour Gas Wells
Hatton et al. Hydrate Plug Dissociation Field Test
Carpenter Reducing Intervention in Subsea Wells With Fiber-Optic Technology
Powers Downhole Fiber Optics Are Changing the Well's Footprint

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20171127