CA2517987C - Adjustable rotating guides for spider or elevator - Google Patents

Adjustable rotating guides for spider or elevator Download PDF

Info

Publication number
CA2517987C
CA2517987C CA002517987A CA2517987A CA2517987C CA 2517987 C CA2517987 C CA 2517987C CA 002517987 A CA002517987 A CA 002517987A CA 2517987 A CA2517987 A CA 2517987A CA 2517987 C CA2517987 C CA 2517987C
Authority
CA
Canada
Prior art keywords
casing
tubular
members
axis
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002517987A
Other languages
French (fr)
Other versions
CA2517987A1 (en
Inventor
David Shahin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weatherford Technology Holdings LLC
Original Assignee
Weatherford Lamb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weatherford Lamb Inc filed Critical Weatherford Lamb Inc
Publication of CA2517987A1 publication Critical patent/CA2517987A1/en
Application granted granted Critical
Publication of CA2517987C publication Critical patent/CA2517987C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/24Guiding or centralising devices for drilling rods or pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/02Rod or cable suspensions
    • E21B19/06Elevators, i.e. rod- or tube-gripping devices
    • E21B19/07Slip-type elevators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/10Slips; Spiders ; Catching devices
    • E21B19/102Slips; Spiders ; Catching devices using rollers or spherical balls as load gripping elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/16Connecting or disconnecting pipe couplings or joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Drilling And Boring (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

The present invention provides a method and apparatus for gripping one or more tubulars (30), which may include casing, during a tubular handling operation, drilling operation, and/or drilling with casing operation. The gripping apparatus (100) comprises a housing (11, 12, 15) having a bore extending therethrough and one or more gripping members (20) which extend radially within the bore to grippingly engage a tubular or casing when activated.
Adjustable guides (80) attached to a portion of the gripping apparatus (15) facilitate rotational movement of the casing during the drilling operation when the gripping members (20) of the gripping apparatus (100) are deactivated.

Description

WO 2004/079154 CA 02517987 2007-11-01 pCT/US2004/006754 ADJUSTABLE ROTATING GUIDES FOR SPIDER OR ELEVATOR

BACKGROUND OF THE INVENTION
Field of the Invention
[0002] Embodiments of the present invention generally relate to an apparatus and method for handling tubulars and drilling with tubulars to form a wellbore.
More particularly, embodiments of the present invention relate to drilling with casing. Even more particularly, embodiments of the present invention relate to a gripping apparatus for supporting casing for use in a drilling with casing operation.

Description of the Related Art
[0003] In conventional well completion operations, a wellbore is formed to access hydrocarbon-bearing formations by the use of drilling. In drilling operations, a drilling rig is disposed above the subterranean formation where the access will be formed. A
rig floor of the drilling rig is the surface from which casing strings, cutting structures, and other supplies are lowered to form a subterranean wellbore lined with casing. A
hole is formed in a portion of the rig floor above the desired location of the wellbore.
The axis that runs through the center of the hole formed in the rig floor is well center.
[oooa] Drilling is accomplished by utilizing a drill bit that is mounted on the end of a drill support member, commonly known as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on the drilling rig. After drilling to a predetermined depth, the drill string and drill bit are removed and a section of casing is lowered into the wellbore.

[0005] Often, it is necessary to conduct a pipe handling operation to connect sections of casing to form a casing string or to connect sections of tubular to form a tubular string. The pipe handling operation to connect sections of casing may be used
4 PCT/US2004/006754 to produce a casing string which extends to the drilled depth. Pipe handling operations require the connection of casing sections to one another to line the wellbore with casing. To threadedly connect the casing strings, each casing section may be retrieved from its original location (e.g., a rack beside the drilling platform) and suspended above well center so that each casing section is in line with the casing section previously disposed within the wellbore. The threaded connection is made up by a device which imparts torque to one casing section relative to the other, such as a power tong or a top drive. The casing string formed of the two casing sections is then lowered into the previously drilled wellbore.

[0006] It is common to employ more than one string of casing in a wellbore. In this respect, the well is drilled to a first designated depth with a drill bit on a drill string. The drill string is removed. Sections of casing are connected to one another and lowered into the wellbore using the pipe handling operation described above to form a first string of casing longitudinally fixed in the drilled out portion of the wellbore.
Next, the well is drilled to a second designated depth through the first casing string, and a second, smaller diameter string of casing comprising casing sections is hung off of the first string of casing. This process is typically repeated with additional casing strings until the well has been drilled to total depth. In this manner, wellbores are typically formed with two or more strings of casing.

[0007] The handling of casing strings has traditionally been performed with the aid of a spider along with an elevator. Spiders and elevators are used to grip the casing strings at various stages of a pipe handling operation. Typically, spiders include a plurality of slips circumferentially surrounding the exterior of the casing string. The slips are housed in what is commonly referred to as a"bowl". The bowl is regarded to be the surfaces on the inner bore of the spider. The inner sides of the slips usually carry teeth formed on hard metal dies for engaging the pipe string. The exterior surface of the slips and the interior surface of the bowl have opposing engaging surfaces which are inclined and downwardly converging. The inclined surfaces allow the slip to move vertically and radially relative to the bowl. In effect, the inclined surfaces serve as a camming surface for engaging the slip with the casing string. Thus, when the weight of the casing string is transferred to the slips, the slips will move downwardly with respect to the bowl. As the slips move downward along the inclined surfaces, the inclined surfaces urge the slips to move radially inward to engage the casing string.
In this 257815_1 2 respect, this feature of the spider is referred to as "self tightening."
Further, the slips are designed to prohibit release of the casing string until the casing string load is supported by another means such as the elevator.

[0008] In the making up or breaking out of casing string and/or tubular string connections, the spider is typically used for securing the casing string or tubular string in the wellbore. Additionally, an elevator suspended from a rig hook is used in tandem with the spider. The elevator may include a self-tightening feature similar to the one in the spider. In operation, the spider remains stationary while securing the casing string in the wellbore. The elevator positions a casing string section above the casing string for connection. After completing the connection, the elevator pulls up on the casing string to release the casing string from the slips of the spider. Freed from the spider, the elevator may now lower the casing string into the wellbore. Before the casing string is released from the elevator, the spider is allowed to engage the pipe string again to support the casing string. After the load of the casing string is switched back to the spider, the elevator may release the casing string and continue the makeup process.
[0009] As an alternative to the conventional method, drilling with casing is a method often used to place casing strings within the wellbore. This method involves attaching a cutting structure in the form of a drill bit to the lower end of the same string of casing which will line the wellbore. Drilling with casing is often the preferred method of well completion because only one run-in of the working string into,the wellbore is necessary to form and line the wellbore for each casing string.

10010] Drilling with casing is typically accomplished using a top drive powered by a motor because the top drive is capable of performing both functions of imparting torque to the casing string to make up the connection between casing strings during pipe handling operations and drilling the casing string into the formation. Figure 1 shows two exemplary gripping apparatuses 100, 200 used in a typical drilling with casing operation. Connected to a drilling rig 105 is a traveling block 115 suspended by wires 150 from draw works 120. A top drive 110 with an elevator 200 connected thereto is suspended from the traveling block 115. The elevator 200 typically is connected to the top drive 110 by bails 125. A motor 140 is the part of the top drive 110 used to rotate a first and second casing string 210, 130 when drilling with casing or to rotate the second casing string 130 when connecting the second casing string 130 to the first casing 257815_1 3 string 210 which has been previously located within a wellbore 180. Located within a rig floor 135 of the drilling rig 105 is a rotary table 145 into which the spider 100 can be placed. The spider 100 and the elevator 200 are both used to grippingly and rotationally support casing strings 210, 130 axially at various stages of a typical operation; therefore, both the spider 100 and the elevator 200 are deemed "gripping apparatuses" for purposes of the present invention.

[0011] Current spiders and elevators useable in drilling with casing operations are capable of either being actuated to grippingly engage the casing string to prevent rotational or axial movement of the casing string or, in the alternative, of being unactuated to release the casing string completely to allow axial and rotational movement of the casing string while the casing string is drilled into the formation.
Because only these two positions are possible with current gripping apparatuses, problems occur when using the gripping apparatuses while drilling with casing.
When performing a drilling with casing operation with the current spiders or elevators in the unactuated position, the casing string is not centered within the wellbore while drilling because the casing string is not supported along its diameter and thus is free to move within the wellbore while drilling. Furthermore, because the casing string is loose inside the gripping apparatus, the slips of the gripping apparatus often contact the outer diameter of the casing string being rotated while drilling and can cause damage to the casing string. When the slips contact the outer diameter of the casing string, damage may also result to the slips. Additionally, the rotational movement is hindered in the current gripping apparatus by any contact of the casing string with parts of the gripping apparatus.

[0012] There is therefore a need for a gripping apparatus useful during a drilling with casing operation. There is a further need for a gripping apparatus which is capable of accommodating more than one pipe size so that the casing is centered on the well center while drilling with casing. There is an even further need for a gripping apparatus which allows the casing string to freely rotate while preventing damage to the casing and positioning the casing over the well center during a drilling with casing operation.

257815_1 4 SUMMARY OF THE INVENTION

[0013] Embodiments of the present invention generally provide a gripping apparatus for supporting a casing. In one aspect, the apparatus includes a housing having a longitudinal opening extending therethrough and one or more gripping members which, when the gripping apparatus is actuated, move radially toward the casing to contact the casing. In another aspect, the apparatus may include one or more guides to facilitate movement of the casing within the housing of the gripping apparatus. The one or more guides may be positioned around the opening in a manner capable of centering the pipe. The one or more guides may be adjustable radially within the opening to accommodate different sizes of casing.

[0014] In another embodiment, the one or more guides may comprise one or more rolling members in the vertical position, wherein the one or more rolling members are positioned so that an axis of the rolling members is parallel to an axis of the longitudinal opening so that the rolling members are capable of imparting a rolling motion along the inner diameter of the casing while the casing is rotated. The rolling members may be adjustable between the parallel position and a position wherein the axis of the rolling members is perpendicular to the axis of the casing. In another aspect, the rolling members may be adjustable to a position between the parallel position and the perpendicular position.

[0015] Providing guides with rolling members in the vertical position allows the casing to be rotated to drill with the casing without contacting the one or more gripping members with the casing. Furthermore, the guides of the present invention allow the casing to be centered within the gripping apparatus and the wellbore for the drilling with casing operation or the casing lowering operation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
257815_1 5 [0017] Figure 1 is a side view of a typical drilling rig with a top drive, spider, and elevator.

[0018] Figure 2 is a downward, side view of a gripping apparatus according to the present invention.

[0019] Figure 3 is a sectional view of the guides located within the gripping apparatus of Figure 2.

[0020] Figure 4 is a sectional view of the guides of Figure 2.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0021] Figure 2 shows an exemplary gripping apparatus 100 which can be used with guides 80 of the present invention. It is understood that the guides 80 are useable with any gripping apparatus 100, 200, including but not limited to elevators and spiders, which are used in a drilling with casing operation, a pipe handling operation, or a conventional drilling operation. As shown in Figure 2, the gripping apparatus 100 is a flush mounted spider disposable within a rotary table 145, as shown in Figure 1, although the following description may also be applied to an elevator 200. The gripping apparatus 100 has a body 10 with any number of body sections 11, 12, preferably two body sections 11, 12 as shown, for housing one or more gripping members 20 and a cover assembly 15 for the body 10. A flange 30 may be formed on an upper portion of the body sections 11, 12 for connection to the cover assembly 15.

[0022] The body 10 of the gripping apparatus 100 may be formed by pivotally coupling two body sections 11, 12 with one or more connectors 35. Connectors may be used to couple the two body sections 11, 12 together upon placement in the rotary table 145. The connectors 35 may be hinges disposed on both sides of each body section 11, 12. Alternatively, the body sections 11, 12 may be hinged on one side and selectively locked together on the other side. A gap 37 exists between each connector 35 on body section 11 for mating with its respective connector 35 formed on body section 12. Likewise, a gap 37 exists between each connector 35 on body section 12 for mating with its respective connector 35 formed on body section 11. A
hole 38 is formed through each connector 35 to accommodate at least one connecting member such as a pin 40. The holes 38 in the connectors 35 are substantially aligned 257815_1 6 so that the pin 40 may be disposed through the holes 38 to secure the two body sections 11, 12 together to form the body 10.

[0023] A bowl 25 extends vertically through a lower portion of the body 10 to house the gripping members 20. The bowl 25 is a progressive recess along an inner wall of the body sections 11, 12. The progressive recess of the bowl 25 creates an inclined portion of the inner wall, which mates with the back of the gripping members 20. The gripping members 20 preferably comprise a slip assembly comprised of slips for engaging the casing string 210 and/or 130 upon activation.

[0024] The body 10 of the gripping apparatus 100 is covered by the cover assembly 15, which may also have two or more separate sections placed above the respective body sections 11, 12. If the cover assembly 15 is sectioned in this way, the cover assembly 15 may open and close along with the body 10 of the gripping apparatus 100.
The sections of the cover assembly 15 form a hole whose center generally coincides with the center of the body 10. The cover assembly 15 has holes 5 which extend therethrough to mate with holes 7 through the body 10. One or more connecting members such as pins 6 are placed through the holes 5 and the holes 7 to rotationally and axially fix the cover assembly 15 relative to the body 10.

[0025] Figure 3 shows one section of the cover assembly 15 of the gripping apparatus 100 of Figure 2. For each section of the cover assembly 15, there is at least one guide 80. Preferably, the gripping apparatus 100 has three guides 80 radially spaced substantially equally apart along the center of the cover assembly 15.
Preferably, the guides 80 are attached below the top of the cover assembly 15.

[0026] Figures 3 and 4 depict the guides 80, which preferably comprise rollers and are oriented at least substantially vertically with respect to the cover assembly 15 and generally parallel to the axis of the wellbore 180 (as shown in Figure 1), so that their rolling motion is generally parallel to the diameter of the cover assembly 15. A
connecting member such as a pin 86 extends from each of the rollers 84 so that each end of the pin 86 resides within a clevis 82 disposed therearound.

[0027] Preferably, the guides 80 are adjustable radially inward and outward from the cover assembly 15 to accommodate various casing string 210, 130 sizes. To this end, the clevis 82 may include a shaft 88 insertable into a mounting device 90 for 257815_1 7 attachment to the cover assembly 15. The shaft 88 may be adjustable within the mounting device 90 to radially extend or contract the rollers 80 with respect to the mounting device 90 so that the gripping apparatus 100 is useable with various casing string sizes (diameters). The shaft 88 may be adjusted to extend or retract the rollers 84 manually, hydraulically, by a fluid-operated piston/cylinder assembly, by means of a solenoid arrangement, or any other suitable mechanism. Further, such adjustment mechanism may be integrated with a fluidic or electric control system to facilitate remote control and position monitoring. The guides 80 may be adjusted radially inward or outward so that each guide is the same distance from the cover assembly 15.
In the alternative, if the three guides 80 are used (or at least multiple guides 80), the guides 80 may be adjusted radially inward or outward so that one of the guides 80 is at a distance from the cover assembly 15 greater than the distance between the two remaining guides 80 and the cover assembly 15. The guides 80 may be adjusted to exist at different distances from the cover assembly 15, for example, to accommodate a casing string which is to be inserted into the gripping apparatus 100 which is not in line with the central axis of the gripping apparatus 100.

[0028] In another aspect of the present invention, the guides 80 may be adjustable between the vertical position with respect to the cover assembly 15, as shown in Figures 2-4, and the horizontal position with respect to the cover assembly 15 wherein the rolling motion of the rollers is along the length of an inserted casing string 210, 130.
A pivoting mechanism may connect the shaft 88 to the spider 100 so that the rollers 84 along with the shaft 88 are pivotable between the vertical position and the horizontal position with respect to the gripping apparatus 100, according to the operation which is conducted. The rollers 84 may also be pivoted to a position in between the vertical and the horizontal position, so that the rollers 84 are at an angle with respect to the gripping apparatus 100. The angled position may be desirable while rotating the casing string 210, 130 while simultaneously lowering the casing string 210, 130 within the gripping apparatus 100 so that the rollers 84 accommodate the movement of the casing string 210, 130 and roll more easily along the outer diameter of the casing string 210, 130.

[0029] In operation, the spider 100 is flush mounted in the rotary table 145, as shown in Figure 1. The orientation of the guides 80 is adjusted to accommodate the incoming first casing string 210 axially and rotationally. For example, if the operation performed involves merely lowering the first casing string 210 into the wellbore 180 257815_1 8 without drilling, the rollers 84 may be oriented horizontally with the axis of the rollers 84 being perpendicular to the axis of the wellbore 180 so that their rolling motion is along the length of the casing string 210 as it is inserted into the wellbore 180.
Orienting the rollers 84 horizontally permits axial longitudinal movement of the first casing string 210 within the wellbore 180, while essentially preventing rotational movement of the first casing string 210 within the wellbore 180. In the alternative, if the operation performed involves drilling with the first casing string 210, the guides 80 may be oriented vertically with the axis of the rollers 84 parallel to the axis of the wellbore 180 so that their rolling motion is along the diameter of the first casing string 210 as it is rotated.
Rollers 84 oriented in this fashion permit the first casing string 210 to rotate within the wellbore 180 while the first casing string 210 is simultaneously being lowered into the wellbore 180. Both positions of the rollers 84 facilitate movement of the first casing string 210 within the body 10 and aid in centering the first casing string 210 within the gripping assembly 100. The rollers 84 may also be oriented to exist between the horizontal and vertical position.

[0030] The rollers 84 may also be adjusted radially outward or inward from the gripping apparatus 100 to accommodate the diameter of the first casing string 210.
The shaft 88 of the clevis 82 moves through the mounting device 90 to adjust the rollers 84 radially. The shaft 88 may be moved through the mounting device 90 manually or by fluid pressure contacting an end of the shaft 88 opposite the clevis 82.

[0031] After any adjustments to the gripping apparatus 100 are accomplished, the first casing string 210 may be retrieved from its original location, such' as a rack (not shown), and if necessary through a v-door (not shown) of the drilling rig 105 by the elevator 200. The elevator 200 comprises a clamp (not shown) with one or more gripping members such as slips (not shown) which grippingly engage the first casing string 210, preferably below a coupling (not shown) threaded onto the upper portion of the first casing string 210. It is contemplated that the first casing string 210 may alternatively be grippingly engaged at any other location on the first casing string 210 than the coupling. The first casing string 210 may comprise one section of casing or may comprise any number of casing sections connected, preferably threaded together.
[0032] After the first casing string 210 is connected to a lower end of the top drive 110, the first casing string 210 is lowered into the wellbore 180 while simultaneously 257815_1 9 rotating. The first casing string 210, which preferably has an earth removal member such as a cutting structure (not shown) (preferably a drill bit) disposed at its lower end to drill the wellbore 180, is lowered into the wellbore 180 by cables 150 traveling through the draw works 120. Because the gripping members 20 are initially unactuated and in a retracted position within the bowl 25, the first casing string 210 is allowed to move downward through the spider 100. At the same time that the first.casing string 210 is moving downward, the first casing string 210 may be rotated by the motor 140 of the top drive 110 so that the cutting structure located at the lower end of the first casing string 210 drills into a formation 215 below the drilling rig 105 to form the wellbore 180.
While the first casing string 210 is rotating, the draw works 120, cables 150, traveling block 115, top drive 110, and elevator 200 resist the torque imparted by the top drive 110, and therefore are rotationally fixed. As the first casing string 210 is drilled into the formation 215 by the top drive 110, the gripping members 20 of the spider 100 remain unactuated so that they do not engage the outer diameter of the first casing string 210.
As such, the first casing string 210 is allowed to move downward to form the wellbore 180. Furthermore, because the rollers 84 are previously oriented vertically, the first casing string 210 is allowed to rotate with respect to the wellbore 180 as well as with respect to the body 10 of the spider 100, so that a drilling with casing operation may be performed through the spider 100.

[0033] After the first casing string 210 is drilled into the formation 215 to the desired depth so that an upper portion of the first casing string 210 still exists above the rig floor 135, the spider 100 is activated so that the gripping members 20 engage the upper portion of the first casing string 210 and prevent the first casing string 210 from furrher downward movement into the wellbore 180. The gripping members 20 are activated to move along the incline of the bowl 25 to grip the first casing string 210. The gripping members 20 may be urged along the incline of the bowl 25 by a piston and cylinder assembly, as shown in co-pending U.S, Patent Number 6,892,835 filed July 29, 2002, or, in the alternative, may be moved along the incline by the weight of the first casing string 210 upon the gripping members 20.
In either instance, the incline of the bowl 25 causes the gripping members 20 to move radially toward the outer diameter of the first casing string 210 to contact the first casing string 210 and hinder further downward movement of the first casing string 210 within the wellbore 180.

257815_1 10 [0034] After the spider 100 stops the first casing string 210 from further downward movement within the wellbore 180, the top drive 110 and elevator 200 are disengaged from the first casing string 210. The elevator 200 retrieves a second casing string 130 from its original location, such as from the rack (not shown), and connects the second casing string 130 to the top drive 110. The second casing string 130 is lowered toward the wellbore 180 substantially in line with the first casing string 210 with respect to well center to mate with the first casing string 210. Then a makeup operation is performed, and the top drive 110 may be activated so that the motor 140 rotates the second casing string 130 to threadedly connect the second casing string 130 to the first casing string 210.

[0035] The spider 100 is then unactuated again to release the gripping members from the first casing string 210. Releasing the gripping members 20 causes the gripping members 20 to move radially away from the first casing string 210.
The gripping members 20 may be released by actuating the piston and cylinder assembly according to the above-mentioned co-pending application. In the alternative, the gripping members 20 may be released by pulling up on the casing 130, by using an elevator for example.

[0036] Because the first casing string 210 and the second casing string 130 are now threadedly connected to one another, the elevator 200 and connection to the top drive 110 hold the entire casing string 210, 130 above the wellbore 180. The top drive 110 may again impart rotation to the casing string 210, 130 while the casing string 210, 130 is simultaneously lowered, so that the drill bit (not shown) at the lower end of the first casing string 210 drills to a second depth within the formation 215. The rollers 84 are adjusted radially outward or inward to accommodate the diameter of the second casing string 140 when the second casing string 140 reaches the spider 100. The process as described above is then repeated until the desired number of casing strings is disposed within the wellbore 180 to reach the desired depth within the formation 215.

[0037] The above description of embodiments of the present invention contemplates the spider 100 being flush mounted within the rig floor 135. Alternative embodiments include the spider 100 being mounted or located above or on the rig floor 135, as with conventional spiders, or mounted or located below the rig floor 135.

257815_1 11 [0038] Moreover, above-described embodiments include rotating the entire casing string while drilling the casing into the formation. Other embodiments of the present invention involve rotating only a portion of the casing string, for example the earth removal member (preferably a drill bit) by a mud motor or other torque-conveying device. Yet further embodiments of the present invention involve merely lowering the casing string into the formation to form a wellbore while circulating drilling fluid out from the casing string ("jetting") without rotation of any portion of the casing string. Any combination of rotation of the casing string, rotation of a portion of the casing string, and/or jetting may be utilized in embodiments of the present invention.

[0039] Although the above discussion of embodiments of the present invention describes the spider 100 in terms of drilling with casing, the spider 100 may also be used in casing handling operations to support any type of tubular body during any wellbore operation. Specifically, the spider 100 may be utilized to support a tubular when making up and/or breaking out threadable connections between tubulars and/or lowering tubulars into the wellbore. Tubulars usable with the spider 100 of the present invention include but are not limited to drill pipe, liner, tubing, and slotted tubulars.
Additionally, the spider 100 described above may be used for running casing into a previously-formed wellbore, drilling with casing, running one or more tubulars into the wellbore, forming a tubular string (e.g., by threadedly connecting tubulars), and/or connecting casing sections (preferably by threadable connection) to one another.

[003,0] While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
257815_1 12

Claims (87)

1. A gripping apparatus for supporting a tubular comprising:
a housing having a bore extending therethrough;
one or more gripping members moveable radially within the bore to grippingly engage the tubular; and one or more guide rolling members to facilitate movement of the tubular within the housing, wherein the one or more guide rolling members are radially movable into engagement with the tubular.
2. The gripping apparatus of claim 1, wherein the one or more guide rolling members facilitate rotational movement of the tubular within the housing.
3. The gripping apparatus of claim 1, wherein the one or more guide rolling members are positioned in a manner capable of centering the tubular.
4. The gripping apparatus of claim 1, wherein the one or more guide rolling members are adjustable to accommodate tubulars of different sizes.
5. The gripping apparatus of claim 1, wherein the one or more guide rolling members are oriented radially inward toward the tubular with respect to the housing.
6. The gripping apparatus of claim 1, wherein the one or more guide rolling members are extendable further radially inward toward the tubular than the one or more gripping members.
7. The gripping apparatus of claim 1, wherein the one or more guide rolling members comprises:
a clevis having a shaft at one end;
a pin for coupling a roller to the clevis; and a mounting assembly, wherein the shaft is adjustable within the mounting assembly.
8. The gripping apparatus of claim 7, wherein the shaft is adjustable within the mounting assembly by fluid pressure.
9. The gripping apparatus of claim 7, wherein the clevis is disposed parallel to the rotational axis of the tubular.
10. The gripping apparatus of claim 1, wherein the one or more guide rolling members are rollable along the outer diameter of the tubular.
11. The gripping apparatus of claim 1, wherein an axis of the one or more guide rolling members is substantially parallel to an axis of the housing.
12. The gripping apparatus of claim 1, wherein an axis of the one or more guide rolling members is substantially parallel to an axis of the tubular.
13. The gripping apparatus of claim 1, wherein the one or more guide rolling members are adjustable from a first position wherein an axis of the one or more guide rolling members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more guide rolling members is not substantially parallel to the axis of the tubular.
14. The gripping apparatus of claim 1, wherein an axis of the one or more guide rolling members is approximately equidistant from an axis of the housing.
15. The gripping apparatus of claim 1, wherein the tubular is casing.
16. A method of drilling with casing into a formation, comprising:
providing a gripping apparatus having an opening therethrough and one or more gripping members disposed therein, the gripping apparatus comprising one or more guide rolling members disposed within the opening;
adjusting the one or more guide rolling members radially within the opening;

lowering a first casing having an earth removal member operatively attached to its lower end into the formation while rotating the first casing; and contacting the first casing with the one or more guide rolling members while lowering the first casing.
17. The method of claim 16, wherein lowering the first casing comprises rotating the first casing.
18. The method of claim 16, wherein adjusting the one or more guide rolling members radially within the opening comprises adjusting the axis of the one or more guide rolling members radially to accommodate misalignment between an axis of the first casing and an axis of the opening.
19. The method of claim 16, further comprising:
drilling the first casing to a desired depth within the formation; and activating the gripping apparatus to cause the one or more gripping members to grippingly engage an outer diameter of the first casing.
20. The method of claim 16, further comprising:
drilling the first casing to a desired depth within the formation; and activating the gripping apparatus to inhibit axial movement of the first casing.
21. The method of claim 20, further comprising:
connecting a second casing to the first casing;
lowering the second casing into the formation while rotating the second casing; and contacting the second casing with the one or guide rolling members while rotating the second casing.
22. The method of claim 16, wherein the one or more guide rolling members roll along the outer diameter of the first casing while the first casing is rotating.
23. The method of claim 16, wherein adjusting the one or more guide rolling members further comprises pivoting the one or more guide rolling members from rollable along an outer diameter of the first casing while the first casing is rotating to rollable along the outer diameter of the first casing while the first casing is moving axially within the gripping apparatus.
24. The method of claim 16, wherein adjusting the one or more guide rolling members further comprises pivoting the one or more guide rolling members from a position wherein the axis of the one or more guide rolling members is parallel to the axis of the first casing to a position wherein the axis of the one or more guide rolling members is not parallel to the axis of the first casing.
25. The method of claim 16, further comprising contacting the first casing with the one or more guide rolling members while lowering the first casing.
26. The method of claim 25, wherein the rotating and lowering the first casing is simultaneous.
27. The method of claim 16, wherein extending the one or more guide rolling members comprises calculating the extension of the one or more guide rolling members necessary to contact an outer diameter of the first casing string.
28. A gripping apparatus for supporting a tubular comprising:
a housing having a bore extending therethrough;
one or more gripping members moveable radially within the bore to grippingly engage the tubular; and one or more guide rolling members to facilitate movement of the tubular within the housing, wherein the one or more guide rolling members are adjustable from a first position wherein an axis of the one or more guide rolling members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more guide rolling members is not substantially parallel to the axis of the tubular.
29. The method of claim 16, wherein the first casing is lowered relative to the one or more guide rolling members.
30. The method of claim 16, wherein adjusting the one or more rolling members comprises moving the one or more rolling members radially inward into engagement with the first casing.
31. A gripping apparatus for supporting a tubular comprising:
a housing having a bore extending therethrough;
one or more gripping members moveable radially within the bore to grippingly engage the tubular; and one or more guide rolling members to facilitate movement of the tubular within the housing, wherein the one or more guide rolling members are oriented radially inward toward the tubular with respect to the housing.
32. A gripping apparatus for supporting a tubular comprising:
a housing having a bore extending therethrough;
one or more gripping members moveable radially within the bore to grippingly engage the tubular; and one or more guide rolling members to facilitate movement of the tubular within the housing, wherein the one or more guide rolling members are extendable further radially inward toward the tubular than the one or more gripping members.
33. An apparatus for supporting a tubular in a wellbore, comprising:
a housing having a bore extending therethrough, the bore adapted to receive the tubular; and one or more guide members attached to the housing to facilitate rotational movement of the tubular within the wellbore, wherein the one or more guide members are radially movable into engagement with the tubular.
34. The apparatus of claim 33, wherein the one or more guide members are positioned in a manner capable of centering the tubular in the bore.
35. The apparatus of claim 33, wherein the one or more guide members are disposed at or below a rig floor.
36. The apparatus of claim 33, wherein the one or more guide members are oriented radially inward toward the tubular with respect to the housing.
37. The apparatus of claim 33, wherein the one or more guide members facilitate axial movement of the tubular within the wellbore.
38. The apparatus of claim 33, wherein the one or more guide members comprise:

a clevis having a shaft at one end;
a pin for coupling a roller to the clevis; and a mounting assembly, wherein the shaft is adjustable within the mounting assembly.
39. The apparatus of claim 38, wherein the shaft is adjustable within the mounting assembly by fluid pressure.
40. The apparatus of claim 38, wherein the clevis is disposed parallel to the rotational axis of the tubular.
41. The apparatus of claim 33, wherein the one or more guide members are rollable along the outer diameter of the tubular.
42. The apparatus of claim 33, wherein an axis of the one or more guide members is substantially parallel to an axis of the housing.
43. The apparatus of claim 33, wherein an axis of the one or more guide members is substantially parallel to an axis of the tubular.
44. The apparatus of claim 33, wherein the one or more guide members are adjustable from a first position wherein an axis of the one or more guide members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more guide members is not substantially parallel to the axis of the tubular.
45. The apparatus of claim 33, wherein the apparatus includes at least two guide members and an axis of each of the at least two guide members is approximately equidistant from an axis of the housing.
46. The apparatus of claim 33, wherein the tubular is casing.
47. The apparatus of claim 33, wherein the one or more guide members comprise one or more rollers.
48. The apparatus of claim 33, wherein the one or more guide members are adjustable to accommodate tubulars of different sizes.
49. The apparatus of claim 33, wherein the one or more guide members are disposed within the wellbore.
50. A method of forming a wellbore using a casing having an earth removal member, comprising:
providing a tubular handling apparatus having an opening for receiving the casing and one or more guide members for engaging the casing;
adjusting the one or more guide members radially into engagement with the casing; and rotating the casing with respect to the opening to form the wellbore.
51. The method of claim 50, comprises moving the casing axially with respect to the opening.
52. The method of claim 50, wherein adjusting the one or more guide members radially comprises adjusting an axis of the one or more guide members radially to accommodate misalignment between an axis of the casing and an axis of the opening.
53. The method of claim 50, further comprising providing the tubular handling apparatus with one or more gripping members.
54. The method of claim 53, further comprising:
drilling the casing to a desired depth; and activating the one or more gripping members to inhibit axial movement of the casing.
55. The method of claim 50, further comprising positioning the one or more guide members at or below a rig floor.
56. The method of claim 50, wherein adjusting the one or more guide members further comprises pivoting the one or more guide members from a position wherein the axis of the one or more guide members is parallel to the axis of the casing to a position wherein the axis of the one or more guide members is not parallel to the axis of the casing.
57. The method of claim 50, wherein the one or more guide members comprise one or more rollers.
58. An apparatus for supporting a tubular in a wellbore, comprising:
a housing having a bore extending therethrough, the bore adapted to receive the tubular; and one or more rolling members attached to the housing to facilitate movement of the tubular within the wellbore, wherein the one or more rolling members are disposed at or below a rig floor and are radially movable into engagement with the tubular.
59. The apparatus of claim 58, wherein the one or more rolling members are oriented radially inward toward the tubular with respect to the housing.
60. The apparatus of claim 58, wherein the one or more rolling members are adjustable from a first position wherein an axis of the one or more rolling members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more rolling members is not substantially parallel to the axis of the tubular.
61. The apparatus of claim 58, wherein the apparatus includes at least two rolling members and an axis of each of the at least two rolling members is approximately equidistant from an axis of the housing.
62. The apparatus of claim 58, wherein the tubular is casing.
63. The apparatus for claim 58, wherein the one or more rolling members are disposed within the wellbore.
64. The apparatus of claim 58, wherein the one or more rolling members are adjustable to accommodate tubulars of different sizes.
65. An apparatus for supporting a tubular in a wellbore, comprising:
a housing having a bore extending therethrough, the bore adapted to receive the tubular; and one or more guide members attached to the housing to facilitate movement of the tubular within the wellbore, wherein the one or more guide members are radially movable into engagement with the tubular and wherein the one or more guide members include:
a clevis having a shaft at one end;
a pin for coupling a roller to the clevis; and a mounting assembly, wherein the shaft is adjustable within the mounting assembly.
66. The apparatus of claim 65, wherein the shaft is adjustable within the mounting assembly by fluid pressure.
67. The apparatus of claim 65, wherein the clevis is disposed parallel to the rotational axis of the tubular.
68. An apparatus for supporting a tubular in a wellbore, comprising:
a housing having a bore extending therethrough, the bore adapted to receive the tubular; and one or more guide members attached to the housing to facilitate movement of the tubular within the wellbore, wherein the one or more guide members are radially movable into engagement with the tubular and wherein the one or more guide members are adjustable from a first position wherein an axis of the one or more guide members is substantially parallel to an axis of the tubular to a second position wherein the axis of the one or more guide members is not substantially parallel to the axis of the tubular.
69. The apparatus of claim 68, wherein the one or more guide members are oriented radially inward toward the tubular with respect to the housing.
70. The apparatus of claim 68, wherein the one or more guide members are rollable along the outer diameter of the tubular.
71. The apparatus of claim 68, wherein an axis of the one or more guide members is substantially parallel to an axis of the tubular.
72. The apparatus of claim 68, wherein the apparatus includes at least two guide members and an axis of each of the at least two guide members is approximately equidistant from an axis of the housing.
73. The apparatus of claim 68, wherein the tubular is casing.
74. The apparatus of claim 68, wherein the one or more guide members comprise one or more rollers.
75. The apparatus of claim 68, wherein the one or more guide members are adjustable to accommodate tubulars of different sizes.
76. The apparatus of claim 68, wherein the one or more guide members are disposed within the wellbore.
77. A method of forming a wellbore using a casing having an earth removal member, comprising:
providing a tubular handling apparatus having an opening for receiving the casing and one or more rolling members for engaging the casing, wherein the one or more rolling members are positioned at or below a rig floor;
adjusting the one or more rolling members radially into engagement with the casing; and moving the casing with respect to the opening to form the wellbore.
78. The method of claim 77, wherein moving the casing comprises moving the casing axially with respect to the opening.
79. The method of claim 77, wherein moving the casing comprises rotating the casing in the wellbore.
80. The method of claim 77, wherein adjusting the one or more rolling members radially comprises adjusting an axis of the one or more rolling members radially to accommodate misalignment between an axis of the casing and an axis of the opening.
81. The method of claim 77, further comprising:
drilling the casing to a desired depth; and activating the one or more gripping members to inhibit axial movement of the casing.
82. The method of claim 77, further comprising positioning the one or more rolling members at or below a rig floor.
83. The method of claim 77, wherein adjusting the one or more rolling members further comprises pivoting the one or more rolling members from a position wherein the axis of the one or more rolling members is parallel to the axis of the casing to a position wherein the axis of the one or more rolling members is not parallel to the axis of the casing.
84. The method of claim 77, further comprising providing the tubular handling apparatus with one or more gripping members.
85. The method of claim 84, wherein the tubular handling apparatus comprises a spider.
86. The method of claim 77, wherein the one or more rolling members comprise one or more rollers.
87. The apparatus of claim 33, wherein the apparatus comprises a spider.
CA002517987A 2003-03-05 2004-03-05 Adjustable rotating guides for spider or elevator Expired - Fee Related CA2517987C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US45215403P 2003-03-05 2003-03-05
US60/452,154 2003-03-05
PCT/US2004/006754 WO2004079154A1 (en) 2003-03-05 2004-03-05 Adjustable rotating guides for spider or elevator

Publications (2)

Publication Number Publication Date
CA2517987A1 CA2517987A1 (en) 2004-09-16
CA2517987C true CA2517987C (en) 2008-10-14

Family

ID=32962693

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002517987A Expired - Fee Related CA2517987C (en) 2003-03-05 2004-03-05 Adjustable rotating guides for spider or elevator

Country Status (4)

Country Link
CA (1) CA2517987C (en)
GB (2) GB2415984B (en)
NO (2) NO335158B1 (en)
WO (1) WO2004079154A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415984B (en) * 2003-03-05 2007-10-03 Weatherford Lamb Adjustable rotating guides for spider or elevator
DE102009020222A1 (en) 2009-05-07 2010-11-11 Max Streicher Gmbh & Co. Kg Aa Apparatus and method for handling rod-like components
BR112012027610B1 (en) * 2010-04-30 2019-06-25 Frank’S International, Llc METHOD AND APPARATUS FOR HOLDING AND TUBULAR GUIDE
US9068404B2 (en) 2011-05-01 2015-06-30 Frank's International, Llc Floating spider
AU2013204028C1 (en) * 2012-05-08 2017-06-29 Swick Mining Services Ltd Rod Handling Assembly
CN103089169B (en) * 2013-01-24 2015-04-22 江苏省无锡探矿机械总厂有限公司 Opening and closing type drilling tool centralizing device
US10544636B1 (en) * 2018-07-09 2020-01-28 Forum Us, Inc. Guide plate for tubular handling tools
CN111594077B (en) * 2020-05-22 2022-03-01 孙学巍 Drilling deviation prevention device for geotechnical engineering investigation and using method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US782043A (en) * 1903-11-09 1905-02-07 Charles H Mccready Pipe-wrench.
US4054332A (en) * 1976-05-03 1977-10-18 Gardner-Denver Company Actuation means for roller guide bushing for drill rig
GB9019416D0 (en) * 1990-09-06 1990-10-24 Frank S Int Ltd Device for applying torque to a tubular member
US5244046A (en) * 1992-08-28 1993-09-14 Otis Engineering Corporation Coiled tubing drilling and service unit and method for oil and gas wells
US6056060A (en) * 1996-08-23 2000-05-02 Weatherford/Lamb, Inc. Compensator system for wellbore tubulars
US6227587B1 (en) * 2000-02-07 2001-05-08 Emma Dee Gray Combined well casing spider and elevator
US6892835B2 (en) * 2002-07-29 2005-05-17 Weatherford/Lamb, Inc. Flush mounted spider
GB2415984B (en) * 2003-03-05 2007-10-03 Weatherford Lamb Adjustable rotating guides for spider or elevator

Also Published As

Publication number Publication date
NO20054341D0 (en) 2005-09-20
NO20140608A1 (en) 2005-12-05
CA2517987A1 (en) 2004-09-16
GB0520008D0 (en) 2005-11-09
WO2004079154A1 (en) 2004-09-16
GB2429994B (en) 2007-10-10
NO20054341L (en) 2005-12-05
GB2429994A (en) 2007-03-14
GB2415984B (en) 2007-10-03
GB2415984A (en) 2006-01-11
GB0617541D0 (en) 2006-10-18
NO335158B1 (en) 2014-10-06

Similar Documents

Publication Publication Date Title
US6994176B2 (en) Adjustable rotating guides for spider or elevator
US8281877B2 (en) Method and apparatus for drilling with casing
CA2507583C (en) Casing running head
CA2611111C (en) System for running oilfield tubulars into wellbores and methods for using same
CA2512570C (en) Casing feeder
US7770654B2 (en) Pipe handling device, method and system
US7509722B2 (en) Positioning and spinning device
US7055594B1 (en) Pipe gripper and top drive systems
CA2448841C (en) Pipe handling device, method and system
US20070251700A1 (en) Tubular running system
NO20140608A1 (en) Adjustable rotatable guide devices for spider or elevator
WO2016196808A1 (en) Drill pipe guide system and method
CA2588745C (en) Top drive unit, pipe gripping device and method of drilling a wellbore
CA2714327C (en) Method and apparatus for drilling with casing
US20230417112A1 (en) Deployment of umbilical with tubular string
CA2517993C (en) Method and apparatus for drilling with casing
US20240102348A1 (en) Tubular compensation system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20200305