CA2516283C - System for setting the span load distribution of a wing - Google Patents

System for setting the span load distribution of a wing Download PDF

Info

Publication number
CA2516283C
CA2516283C CA2516283A CA2516283A CA2516283C CA 2516283 C CA2516283 C CA 2516283C CA 2516283 A CA2516283 A CA 2516283A CA 2516283 A CA2516283 A CA 2516283A CA 2516283 C CA2516283 C CA 2516283C
Authority
CA
Canada
Prior art keywords
wing
flap
outer flap
aircraft
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2516283A
Other languages
French (fr)
Other versions
CA2516283A1 (en
Inventor
Daniel Reckzeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004040313A external-priority patent/DE102004040313B4/en
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Publication of CA2516283A1 publication Critical patent/CA2516283A1/en
Application granted granted Critical
Publication of CA2516283C publication Critical patent/CA2516283C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Transmission Devices (AREA)

Abstract

Known wing systems are directed at optimizing aircraft cruising performance.
The present base flap system may be used for setting a span load distribution of an aircraft wing during takeoff and landing. The base flap system comprises at least one inner flap element and one outer flap element. The inner and outer flap elements are arranged on a trailing edge of the wing, along the direction of the wing span. The inner and outer flap elements are not mechanically coupled with each other and are controlled independently of each other for the purpose of setting the span load distribution. The system also comprises a flap control that controls the angle of the outboard flap element, independent of the inboard flap element, for optimizing a lift to drag ratio during aircraft takeoff and landing.

Description

System for Setting the Span Load Distribution of a Wine Field of the Invention The present invention relates to a system for setting the span load distribution of a wing, in particular high-lift systems on the wings of large commercial aircraft.
Technological Back,-r~ ound Almost without exception, in already-known systems (Rudolph P.K.C., High-Lift Systems on Commercial Subsonic Airliners, NASA CR 4746) the trailing edge of wings of large commercial aircraft has landing flap elements that are divided in the direction of the span. The reasons for this are the geometry of the wing, the dimensions of the components, and the control of the flap elements by the system. In a conventional design of the high-lift system, the landing flap elements are coupled to each other, i.e. they are extended at the same angle.
In this way, the actuators for all flap elements can be driven by a central drive system. The aerodynamic design of the high-lib wing is governed by the side constraint of synchronous extension of all flap elements.
Such a high-lift system is believed to not make it possible to adapt in any way the span load distribution to increase the start lift/drag ratio and the maximum lift.
Another already-known high-lift system (Dargel G., et al, "Entwicklung eines Flugels mit multifunktionalen Steuerflachen" [Development of a wing with multifunctional control surfaces] in ProHMS, DGLR annual conference 2002), which system attempts to overcome the above-mentioned disadvantages, requires a very considerable system effort because the base flap system is operated without any changes and an additional secondary system is installed on the trailing edge of the base flap system.
Summary of the Invention According to an exemplary embodiment, a system for setting a wing span load distribution of a wing is provided, comprising a base flap system with an inner flap element and an outer flap element. The inner flap element and the outer flap element are arranged in a direction of the wing span at a trailing edge of the wing. The inner flap element and the outer flap element are displaceable relative to the wing span direction of the wing. The inner flap element and the outer flap element are not mechanically coupled with each other.
In the system according to this exemplary embodiment, the flap elements ( e.g.
the landing flaps) of the otherwise unchanged geometric layout of the flap system are positioned and/or displaced independently of each other.
It is believed that this exemplary embodiment provides a system which makes it possible to set the span load distribution for increasing the start lift/drag ratio and the maximum lift in a simple way.
It may be advantageous to use drive systems which can position the inboard and outboard flap elements independently of each other. Only the common drive of the respective corresponding elements on the right and the left wing remains, so as to exclude asymmetrical positioning.
According to an exemplary embodiment, there is no mechanical coupling between the landing flap elements. The landing flap elements of a wing can thus be positioned independently of each other along their entire extension path. This can be carried out manually by the pilot or automatically by an electronic control system.
It is believed that by the independent positioning of inboard and outboard landing flap elements of a wing, the span load distribution can be adjusted accordingly to increase the start liftldrag ratio and the maximum lift.
According to another exemplary embodiment, for optimising the span lift distribution on the wing, a conventional geometric layout of a high-lift wing can be used.
The optimisation potential in relation to the start lift/drag ratio is primarily provided by way of the induced resistance. By adjusting the excursion of the flap elements, the induced resistance can be reduced. The outboard flap element may be positioned at a larger angle than the inboard flap element. In this way the load distribution of the wing is displaced towards the outside; as a result of this displacement, lift distribution can be approximated more closely to an "ideal elliptic" distribution.
The optimisation potential in relation to maximum lift is provided by the option of taking some of the load off the wing in the region where airflow separation occurs and limits maximum lift. By a targeted reduction of the flap excursion in this region, the local load can be reduced and airflow separation can be shifted to higher angles of attack.
A further advantage may occur in the option of modifying the wake disturbance effect of the wing. The downwash in the inboard region can be simply reduced by reducing the excursion of the inboard landing flap, which has a positive influence on the effectiveness of the horizontal tail.
In addition, in the case of a transport aircraft which is for example used for air drops, the dropping for example of parachutists or freight suspended from parachutes through side doors can be facilitated by a reduction in the downwash. The potential danger of destabilising the flight path as a result of dropping a load with a parachute is reduced.
Short description of the drawings Below, an exemplary embodiment of the invention is described with reference to the attached figures.
Fig. 1 shows a diagrammatic view of a system according to the invention, with flap elements in a first position according to an exemplary embodiment embodiment.
Fig. 2 shows a diagrammatic view of a system according to the invention, with flap elements in a second position according to an exemplary embodiment.
Detailed descriution of exemplary embodiments Below, identical or corresponding components have the same reference characters in the figures.
Fig. 1 shows a system 1 for setting a span load distribution of a wing 2. Fig.
1 shows the right-hand wing 2 of an aircraft (not shown), which wing extends outwards from the fuselage 3.
The wing 2 comprises a conventional base flap system 4. The conventional base flap system 4 comprises an inboard landing flap 5, an outboard landing flap 6 and an aileron 7.
According to an exemplary embodiment, the inboard landing flap 5 and the outboard landing flap 6 can be positioned independently of each other. To this effect a drive system (not shown) can be used which is able to position the inboard landing flap 5 and the outboard landing flap 6 independently of each other.
According to an exemplary embodiment of the invention, for example the inboard landing flap 5 of the wing 2 is mechanically coupled with an inboard landing flap of the other wing (not shown). Likewise, for example the outboard landing flap 6 is mechanically coupled with an outboard landing flap of the other wing (in each case not shown). The inboard landing flap and the outboard landing flap 6 shown in Fig. 1 are not mechanically coupled with each -$-other. Along their entire extension paths the inboard landing flap 5 and the outboard landing flap 6 can be positioned independently of each other, for example manually by the pilot or automatically by an electronic control system.
In Fig. 1 the inboard landing flap 5 is positioned at a larger angle than the outboard landing flap 6. In this way the load distribution of the wing 2 is displaced towards the inside so that in the region of the outboard landing flap 6 the local load on the wing 2 is reduced. By targeted reduction of the excursion of the outboard landing flap 6, in this region the airflow separation can be shifted to higher angles of attack. Fig. 1 shows an excursion of the landing flaps for optimising maximum lift, so that the region which is critical to airflow separation is relieved.
Fig. 2 is a diagrammatic view of a system with landing flap elements in a second position according to an exemplary embodiment.
In Fig. 2 the inboard landing flap 5 and the outboard landing flap 6 are in a position in which the start lift/drag ratio is optimised.
As shown in Fig. 2, in this case the outboard landing flap 6 is positioned at a larger angle than the inboard landing flap 5. In this way the load distribution of the wing 2 is displaced towards the outside so that the distribution of lift can be approximated more closely to an "ideal elliptic" distribution.
Furthermore, by the reduced excursion of the inboard landing flap 5 the downwash in the inner region (a region near the fuselage 3) is reduced, which has a positive influence on the effectiveness of a horizontal tail 8.
Although, above, the invention was described with reference to an exemplary embodiment, it is understood that changes or modifications can be made without leaving the scope of the invention, provided the individual landing flap elements of a wing 2 can be positioned independently of each other at different angles.
For example, it is possible to use more than just one inboard landing flap and one outboard landing flap as shown in the exemplary embodiment of the invention. In this case a respective drive system is required which is able to position independently of each other the individual flap elements of an airfoil that are not mechanically coupled with each other.

Claims (8)

1. A system for setting a wing span load distribution of a wing, comprising:
a base flap system with an inner flap element and an outer flap element; and a flap control;
wherein the inner flap element and the outer flap element are arranged in a direction of the wing span at a trailing edge of the wing;
wherein the inner flap element and the outer flap element are displaceable relative to the wing span direction of the wing;
wherein the inner flap element and the outer flap element are mechanically decoupled from each other such as to be displaceable independent from each other; and wherein the flap control is adapted to control the outer flap element to be arranged at a larger downward angle, the angle being downward with respect to the wing, than the inner flap element, which is also at a downward angle with respect to the wing, during takeoff or landing for optimising a takeoff or landing lift/drag ratio.
2. An aircraft high lift system employed during takeoff or landing operations, said system comprising:
an inner flap associated with a wing of an aircraft, the wing having a tip;
an outer flap associated with the wing of the aircraft, the outer flap positioned nearer the tip of the wing than the inner flap;
an aileron associated with the wing and positioned between the outer flap and the tip of the wing; and a control system;
wherein, during takeoff or landing operations, the control system arranges the outer flap at a downward angle with respect to the wing at an angle greater than that of the inner flap, which is also arranged at a downward angle with respect to the wing.
3. The aircraft high lift system of claim 2, wherein the inner flap and the outer flap are mechanically decoupled.
4. A high lift system employed during takeoff or landing operations for an aircraft having a right wing and a left wing, each wing having a tip, said system comprising:
a right inner flap associated with the right wing of the aircraft;
a right outer flap associated with the right wing of the aircraft, the right outer flap positioned nearer the tip of the right wing than the right inner flap;
a left inner flap associated with the left wing of the aircraft;
a left outer flap associated with the left wing of the aircraft, the left outer flap positioned nearer the tip of the left wing than the left inner flap; and a control system;
wherein, during takeoff or landing operations, the control system angles the right outer flap downward with respect to the right wing at an angle greater than that of the right inner flap, which is angled downward with respect to the right wing, and the control system angles the left outer flap downward with respect to the left wing at an angle greater than that of the left inner flap, which is angled downward with respect to the left wing.
5. The high lift system of claim 4, wherein the right inner flap is coupled with the left inner flap.
6. The high lift system of claim 4, wherein the right outer flap is coupled with the left outer flap.
7. The high lift system of claim 4, wherein the right inner flap is coupled with the left inner flap and the right outer flap is coupled with the left outer flap.
8. The high lift system of claim 4, wherein, during takeoff or landing operations, the right outer flap is angled downward with respect to the right wing at the same angle as the left outer flap is angled with respect to the left wing.
CA2516283A 2004-08-19 2005-08-18 System for setting the span load distribution of a wing Expired - Fee Related CA2516283C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60311004P 2004-08-19 2004-08-19
US60/603,110 2004-08-19
DE102004040313A DE102004040313B4 (en) 2004-08-19 2004-08-19 System for adjusting the spanwise load distribution of a wing
DE102004040313.9 2004-08-19

Publications (2)

Publication Number Publication Date
CA2516283A1 CA2516283A1 (en) 2006-02-19
CA2516283C true CA2516283C (en) 2014-07-15

Family

ID=35874834

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2516283A Expired - Fee Related CA2516283C (en) 2004-08-19 2005-08-18 System for setting the span load distribution of a wing

Country Status (1)

Country Link
CA (1) CA2516283C (en)

Also Published As

Publication number Publication date
CA2516283A1 (en) 2006-02-19

Similar Documents

Publication Publication Date Title
US8579237B2 (en) System for setting the span load distribution of a wing
US20230227149A1 (en) Adjustable lift modification wingtip
EP1951568B2 (en) Lift augmentation system and associated method
US6554229B1 (en) Aileron for fixed wing aircraft
US7900868B2 (en) Noise-shielding wing configuration
EP3034393B1 (en) Trailing edge device with bell crank mechanism
US8579230B2 (en) Attachment pylon for aircraft turboshaft engine, comprising rear flaps with mobile incidence
EP0899190A2 (en) Reconfiguration control system for an aircraft wing
US8622350B1 (en) Compound leading edge device for aircraft
US7992827B2 (en) Wings for aircraft
US20040245394A1 (en) Derivative aircraft and methods for their manufacture
IL101069A (en) System for increasing airplane fuel mileage and airplane wing modification kit
US8109473B2 (en) Slotted high lift aerofoils
EP2952429B1 (en) Slideable divergent trailing edge device
US9145199B2 (en) High lift system for an aircraft with a high lift flap and method for adjusting the high lift flap
US7004428B2 (en) Lift and twist control using trailing edge control surfaces on supersonic laminar flow wings
US8136757B2 (en) Wing and method for reducing effects of propeller airflow on lift distribution
Renken Mission-adaptive wing camber control systems for transport aircraft
CA2516283C (en) System for setting the span load distribution of a wing
WO2020136460A1 (en) Convertiplane and related control method
Pfeiffer Slotted airfoil with control surface
US10981645B2 (en) Drag reduction systems for aircraft
US8651429B2 (en) Blended cutout flap for reduction of jet-flap interaction noise
US20220073185A1 (en) Aircraft wing
EP3551533B1 (en) Aircraft slat

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831