CA2514317A1 - Process, composition and coating of laminate material - Google Patents
Process, composition and coating of laminate material Download PDFInfo
- Publication number
- CA2514317A1 CA2514317A1 CA002514317A CA2514317A CA2514317A1 CA 2514317 A1 CA2514317 A1 CA 2514317A1 CA 002514317 A CA002514317 A CA 002514317A CA 2514317 A CA2514317 A CA 2514317A CA 2514317 A1 CA2514317 A1 CA 2514317A1
- Authority
- CA
- Canada
- Prior art keywords
- fibrous
- panel
- weight percent
- binder
- fibrous material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title description 40
- 238000000034 method Methods 0.000 title description 37
- 230000008569 process Effects 0.000 title description 28
- 238000000576 coating method Methods 0.000 title description 9
- 239000011248 coating agent Substances 0.000 title description 7
- 239000002648 laminated material Substances 0.000 title description 3
- 239000002657 fibrous material Substances 0.000 claims abstract description 101
- 239000011230 binding agent Substances 0.000 claims abstract description 70
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims description 95
- 239000004743 Polypropylene Substances 0.000 claims description 78
- 229920001155 polypropylene Polymers 0.000 claims description 78
- -1 polypropylene Polymers 0.000 claims description 75
- 239000000835 fiber Substances 0.000 claims description 58
- 244000025254 Cannabis sativa Species 0.000 claims description 36
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 36
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 36
- 235000009120 camo Nutrition 0.000 claims description 36
- 235000005607 chanvre indien Nutrition 0.000 claims description 36
- 239000011487 hemp Substances 0.000 claims description 36
- 240000000797 Hibiscus cannabinus Species 0.000 claims description 34
- 238000007906 compression Methods 0.000 claims description 18
- 230000006835 compression Effects 0.000 claims description 18
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 10
- 240000000491 Corchorus aestuans Species 0.000 claims description 9
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 9
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 9
- 240000006240 Linum usitatissimum Species 0.000 claims 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims 2
- 239000010410 layer Substances 0.000 description 165
- 239000002131 composite material Substances 0.000 description 59
- 238000004519 manufacturing process Methods 0.000 description 42
- 239000003973 paint Substances 0.000 description 33
- 239000003570 air Substances 0.000 description 26
- 229920000728 polyester Polymers 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 15
- 238000003490 calendering Methods 0.000 description 12
- 230000013011 mating Effects 0.000 description 12
- 238000000465 moulding Methods 0.000 description 12
- 150000008064 anhydrides Chemical class 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000002184 metal Substances 0.000 description 9
- 241000208202 Linaceae Species 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000007689 inspection Methods 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 239000011152 fibreglass Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- 229920002554 vinyl polymer Polymers 0.000 description 6
- 210000003195 fascia Anatomy 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000002318 adhesion promoter Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004890 malting Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 1
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007688 edging Methods 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 239000005002 finish coating Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/003—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/021—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/22—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
- B29C43/222—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/08—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
- B29C70/081—Combinations of fibres of continuous or substantial length and short fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/504—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/02—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
- B32B17/04—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/146—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers whereby one or more of the layers is a honeycomb structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/10—Removing layers, or parts of layers, mechanically or chemically
- B32B38/105—Removing layers, or parts of layers, mechanically or chemically on edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B39/00—Layout of apparatus or plants, e.g. modular laminating systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/02—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/425—Cellulose series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/60—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in dry state, e.g. thermo-activatable agents in solid or molten state, and heat being applied subsequently
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/94—Protection against other undesired influences or dangers against fire
- E04B1/941—Building elements specially adapted therefor
- E04B1/942—Building elements specially adapted therefor slab-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/021—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
- B29C2043/022—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having locally depressed lines, e.g. hinges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/021—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
- B29C2043/023—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/44—Compression means for making articles of indefinite length
- B29C43/48—Endless belts
- B29C2043/483—Endless belts cooperating with a second endless belt, i.e. double band presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2311/00—Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
- B29K2311/10—Natural fibres, e.g. wool or cotton
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
- B32B2038/002—Sandblasting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
- B32B2038/0028—Stretching, elongating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/04—Punching, slitting or perforating
- B32B2038/042—Punching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/06—Vegetal fibres
- B32B2262/062—Cellulose fibres, e.g. cotton
- B32B2262/065—Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/022—Foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
- B32B2307/736—Shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2471/00—Floor coverings
- B32B2471/04—Mats
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/08—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
- B32B37/1027—Pressing using at least one press band
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0004—Cutting, tearing or severing, e.g. bursting; Cutter details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/69—Autogenously bonded nonwoven fabric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/69—Autogenously bonded nonwoven fabric
- Y10T442/692—Containing at least two chemically different strand or fiber materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/696—Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/697—Containing at least two chemically different strand or fiber materials
- Y10T442/698—Containing polymeric and natural strand or fiber materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/699—Including particulate material other than strand or fiber material
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Architecture (AREA)
- Composite Materials (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
- Paper (AREA)
- Reinforced Plastic Materials (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
Abstract
A fibrous moldable substrate is provided having a fibrous material and a binder. The fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material.
Description
PROCESS, COMPOSITION AND COATING OF LAMINATE MATERIAL
RELATED APPLICATIONS
The present application claims priority to United States Patent Application Serial No. 101366,973, filed February 14, 2003, which is a Continuation-In-Part of United States Patent Application Serial No. 10/287,250, filed on November 4, 2002, which is related to and claims priority to the following U.S.
Provisional Patent Applications: Serial No. 60/347,858, ftled on November 7, 2001, entitled Laminated Panels and Processes; Serial No. 60/349,541, filed on January 18, 2002, entitled Ti°uss Pafzel; Serial No. 60/358,857, filed on February 22, 2002, entitled Compressioza Molded Visor; Serial No. 60/359,017, filed on February 22, 2002, entitled Assemblies and Tooling for Worls Surfaces; Serial No. 60/359,602, filed on February 26, 2002, entitled Compression Molded Visor°, and Serial No.
60/400,173, filed on July 31, 2002, entitled Composite Material. To the extent not included below, the subject matter disclosed in these applications is hereby expressly incorporated into the present application.
TECHNICAL FIELD
The present disclosure relates to fiber boaxds panels, and more particularly fiber board laminated composites, uses and structures, and processes of making the same.
BACKGROUND AND SUMMARY
Industry is consistently moving away from wood and metal structural members and panels, particularly in the vehicle manufacturing industry. Such wood and metal structuxal members and panels have high weight to strength ratios.
In other words, the higher the strength of the wood and metal structural members and panels, the higher the weight. The resulting demand for alternative material structural members and panels has, thus, risen proportionately. Because of their low weight to strength xatios, as well as their corrosion resistance, such non-metallic panels have become particularly useful as structural members in the vehicle manufacturing industry as well as office structures industry, for example.
Often such non-metallic materials are in the form of composite structures or panels which are moldable into three-dimensional shapes for use in any variety of purposes. It would, thus, be beneficial to provide a composite material structure that has high strength using oriented and/or non-oriented fibers with bonding agents having compatible chemistries to provide a strong bond across the composite's layers. It would be further beneficial to provide a manufacturing and finish coating process fox such structures in some embodiments.
It will be appreciated that the prior art includes many types of laminated composite panels and manufacturing processes for the same. U.S.
Patent Number 4,539,253, fled on March 30, 1984, entitled High Impact Strertgtlt Fiber Resin Matrix Composites, U.S. Patent Number 5,141,804, filed on May 22, 1990, entitled IrtterleafLayer Fiber Reinfor°ced Resin Laminate Composites, U.S. Patent Number 6,180,206 B1, filed on September 14, 1998, entitled Corrzposite Horzeyconzb Sarzdwiclz Parcel for Fixed Leading Edges, U. S. Patent Number 5,708,925, filed on May 10, 1996, entitled Multi-Layered Parzel Having a Core Including Natural Fibers and Method ofProducing the Sanze, U.S. Patent Number 4,353,947, filed October 5, 1981, entitledLarninated Composite Str°ucture andMetlzod ofManufacture, U.S.
Patent Number 5,258,087, filed on March 13, 1992, entitled Method ofMalring a Composite Structure, U.S. Patent Number 5,503,903, filed on September 16, I993, entitled Automotive Headliner Parzel and Method of Malting Same, U.S. Patent Number 5,141,583, filed on November 14, 199I, entitled Met7tod of and Apparatus for Corttirzuously Fabricating Lantirtates, U.S. Patent Number 4,466,847, filed on May 6, 1983, entitled Method for the Continuous Production ofLarninates, and U.S.
Patent Number 5,486,256, fled on May 17, 1994, entitled Method ofMal~irag a Headliner and the Lilze, are all incorporated herein by reference to establish the nature and characteristics of such laminated composite panels and manufacturing processes herein.
Accordingly, the following disclosure provides a fibrous moldable substrate comprising a mat. The mat comprises a fibrous material and a binder.
The fibers of the fibrous material are randomly oriented. The fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material.
Illustrative embodiments may provide the fibrous material being hemp and/or lcenaf; the fibrous material being about 50 weight percent hemp and 50 weight percent kenaf; the mat being about 25 weight percent hemp, about 25 weight percent kenaf and about 50 weight percent the binder; the binder being a thermomelt binder;
the binder being polypropylene; the mat comprises about 24.75 weight percent hemp, about 24.75 weight percent kenaf, about 50 weight percent a polypropylene binder material and about 0.05 weight percent malefic anhydride; the mat being subjected to a compression force where its cross-section is reduced; the mat experiences insubstantial two-dimensional shrinkage while being subjected to the heat; and the fibrous material being selected from a group comprising hemp, kenaf, flax and jute.
Another embodiment of the disclosure provides a fibrous moldable substrate also comprising a mat. The mat too comprises a fibrous material and a binder. The fibers of the fibrous material are randomly oriented. The fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material and the binder become dimensionally stable when cooled.
Illustrative embodiments may provide the fibrous material being hemp and/or kenaf; the fibrous material being about 50 weight percent hemp and 50 weight percent kenaf; the mat being about 25 weight percent hemp, about 25 weight percent kenaf and about 50 weight percent the binder; the binder being a thermomelt binder;
the binder being polypropylene; the mat comprises about 24.75 weight percent hemp, about 24.75 weight percent kenaf, about 50 weight percent a polypropylene binder material and about 0.05 weight percent malefic anhydride; the mat being subjected to a compression force where its cross-section is reduced; the mat experiencing insubstantial two-dimensional shrinkage while being subjected to the heat; and the fibrous material is selected from a group comprising hemp, kenaf, flax and jute.
Another embodiment of the disclosure too provides a fibrous moldable substrate comprising a mat. The mat comprising a fibrous material and a binder, wherein fibers of the fibrous material are randomly oriented, and the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material;. In addition, the mat is semipermeable when cooled.
Additional features and advantages of this disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of illustrated embodiments exemplifying the best mode of carrying out such embodiments as presently perceived.
RELATED APPLICATIONS
The present application claims priority to United States Patent Application Serial No. 101366,973, filed February 14, 2003, which is a Continuation-In-Part of United States Patent Application Serial No. 10/287,250, filed on November 4, 2002, which is related to and claims priority to the following U.S.
Provisional Patent Applications: Serial No. 60/347,858, ftled on November 7, 2001, entitled Laminated Panels and Processes; Serial No. 60/349,541, filed on January 18, 2002, entitled Ti°uss Pafzel; Serial No. 60/358,857, filed on February 22, 2002, entitled Compressioza Molded Visor; Serial No. 60/359,017, filed on February 22, 2002, entitled Assemblies and Tooling for Worls Surfaces; Serial No. 60/359,602, filed on February 26, 2002, entitled Compression Molded Visor°, and Serial No.
60/400,173, filed on July 31, 2002, entitled Composite Material. To the extent not included below, the subject matter disclosed in these applications is hereby expressly incorporated into the present application.
TECHNICAL FIELD
The present disclosure relates to fiber boaxds panels, and more particularly fiber board laminated composites, uses and structures, and processes of making the same.
BACKGROUND AND SUMMARY
Industry is consistently moving away from wood and metal structural members and panels, particularly in the vehicle manufacturing industry. Such wood and metal structuxal members and panels have high weight to strength ratios.
In other words, the higher the strength of the wood and metal structural members and panels, the higher the weight. The resulting demand for alternative material structural members and panels has, thus, risen proportionately. Because of their low weight to strength xatios, as well as their corrosion resistance, such non-metallic panels have become particularly useful as structural members in the vehicle manufacturing industry as well as office structures industry, for example.
Often such non-metallic materials are in the form of composite structures or panels which are moldable into three-dimensional shapes for use in any variety of purposes. It would, thus, be beneficial to provide a composite material structure that has high strength using oriented and/or non-oriented fibers with bonding agents having compatible chemistries to provide a strong bond across the composite's layers. It would be further beneficial to provide a manufacturing and finish coating process fox such structures in some embodiments.
It will be appreciated that the prior art includes many types of laminated composite panels and manufacturing processes for the same. U.S.
Patent Number 4,539,253, fled on March 30, 1984, entitled High Impact Strertgtlt Fiber Resin Matrix Composites, U.S. Patent Number 5,141,804, filed on May 22, 1990, entitled IrtterleafLayer Fiber Reinfor°ced Resin Laminate Composites, U.S. Patent Number 6,180,206 B1, filed on September 14, 1998, entitled Corrzposite Horzeyconzb Sarzdwiclz Parcel for Fixed Leading Edges, U. S. Patent Number 5,708,925, filed on May 10, 1996, entitled Multi-Layered Parzel Having a Core Including Natural Fibers and Method ofProducing the Sanze, U.S. Patent Number 4,353,947, filed October 5, 1981, entitledLarninated Composite Str°ucture andMetlzod ofManufacture, U.S.
Patent Number 5,258,087, filed on March 13, 1992, entitled Method ofMalring a Composite Structure, U.S. Patent Number 5,503,903, filed on September 16, I993, entitled Automotive Headliner Parzel and Method of Malting Same, U.S. Patent Number 5,141,583, filed on November 14, 199I, entitled Met7tod of and Apparatus for Corttirzuously Fabricating Lantirtates, U.S. Patent Number 4,466,847, filed on May 6, 1983, entitled Method for the Continuous Production ofLarninates, and U.S.
Patent Number 5,486,256, fled on May 17, 1994, entitled Method ofMal~irag a Headliner and the Lilze, are all incorporated herein by reference to establish the nature and characteristics of such laminated composite panels and manufacturing processes herein.
Accordingly, the following disclosure provides a fibrous moldable substrate comprising a mat. The mat comprises a fibrous material and a binder.
The fibers of the fibrous material are randomly oriented. The fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material.
Illustrative embodiments may provide the fibrous material being hemp and/or lcenaf; the fibrous material being about 50 weight percent hemp and 50 weight percent kenaf; the mat being about 25 weight percent hemp, about 25 weight percent kenaf and about 50 weight percent the binder; the binder being a thermomelt binder;
the binder being polypropylene; the mat comprises about 24.75 weight percent hemp, about 24.75 weight percent kenaf, about 50 weight percent a polypropylene binder material and about 0.05 weight percent malefic anhydride; the mat being subjected to a compression force where its cross-section is reduced; the mat experiences insubstantial two-dimensional shrinkage while being subjected to the heat; and the fibrous material being selected from a group comprising hemp, kenaf, flax and jute.
Another embodiment of the disclosure provides a fibrous moldable substrate also comprising a mat. The mat too comprises a fibrous material and a binder. The fibers of the fibrous material are randomly oriented. The fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material and the binder become dimensionally stable when cooled.
Illustrative embodiments may provide the fibrous material being hemp and/or kenaf; the fibrous material being about 50 weight percent hemp and 50 weight percent kenaf; the mat being about 25 weight percent hemp, about 25 weight percent kenaf and about 50 weight percent the binder; the binder being a thermomelt binder;
the binder being polypropylene; the mat comprises about 24.75 weight percent hemp, about 24.75 weight percent kenaf, about 50 weight percent a polypropylene binder material and about 0.05 weight percent malefic anhydride; the mat being subjected to a compression force where its cross-section is reduced; the mat experiencing insubstantial two-dimensional shrinkage while being subjected to the heat; and the fibrous material is selected from a group comprising hemp, kenaf, flax and jute.
Another embodiment of the disclosure too provides a fibrous moldable substrate comprising a mat. The mat comprising a fibrous material and a binder, wherein fibers of the fibrous material are randomly oriented, and the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material;. In addition, the mat is semipermeable when cooled.
Additional features and advantages of this disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of illustrated embodiments exemplifying the best mode of carrying out such embodiments as presently perceived.
BRIEF DESCRIPTION OF DRAWINGS
The present disclosure will be described hereafter with reference to the attached drawings which are given as non-limiting examples only, in which:
Fig. 1 is an exploded side view of a laminated hardboard panel;
Fig. 2 is a side view of the laminated hardboard panel of Fig. 1 in an illustrative-shaped conftguration;
Fig. 3 is a perspective view of a portion of the laminated hardboard panel of Fig. 1 showing partially-pealed plies of woven and non-woven material layers;
Fig. 4 is another embodiment of a laminated hardboard panel;
Fig. 5 is another embodiment of a laminated hardboard panel;
Fig. 6 is another embodiment of a laminated hardboard panel;
Fig. 7 is a perspective view of a honeycomb core laminated panel;
Fig. 8 is a top, exploded view of the honeycomb section of the panel of Fig. 7;
Fig. 9 is a perspective view of a portion of the honeycomb section of the panel of Fig. 7;
Fig. 10 is a perspective view of a truss core laminated panel;
Fig. 11 a is a side view of an illustrative hinged visor body in the open position;
Fig. l 1b is a detail view of the hinge portion of the visor body of Fig.
11 a;
Fig. 12a is a side view of an illustrative hinged visor body in the folded position;
Fig. 12b is a detail view of the hinge portion of the visor body of Fig.
12a;
Fig. 13 is an end view of a die assembly to compression mold a fiber material body and hinge;
Fig. 14a is a top view of the visor body of Figs. 11 and 12 in the open position;
Fig. 14b is an illustrative visor attachment rod;
The present disclosure will be described hereafter with reference to the attached drawings which are given as non-limiting examples only, in which:
Fig. 1 is an exploded side view of a laminated hardboard panel;
Fig. 2 is a side view of the laminated hardboard panel of Fig. 1 in an illustrative-shaped conftguration;
Fig. 3 is a perspective view of a portion of the laminated hardboard panel of Fig. 1 showing partially-pealed plies of woven and non-woven material layers;
Fig. 4 is another embodiment of a laminated hardboard panel;
Fig. 5 is another embodiment of a laminated hardboard panel;
Fig. 6 is another embodiment of a laminated hardboard panel;
Fig. 7 is a perspective view of a honeycomb core laminated panel;
Fig. 8 is a top, exploded view of the honeycomb section of the panel of Fig. 7;
Fig. 9 is a perspective view of a portion of the honeycomb section of the panel of Fig. 7;
Fig. 10 is a perspective view of a truss core laminated panel;
Fig. 11 a is a side view of an illustrative hinged visor body in the open position;
Fig. l 1b is a detail view of the hinge portion of the visor body of Fig.
11 a;
Fig. 12a is a side view of an illustrative hinged visor body in the folded position;
Fig. 12b is a detail view of the hinge portion of the visor body of Fig.
12a;
Fig. 13 is an end view of a die assembly to compression mold a fiber material body and hinge;
Fig. 14a is a top view of the visor body of Figs. 11 and 12 in the open position;
Fig. 14b is an illustrative visor attachment rod;
Fig. 15 is a perspective view of a wall panel comprising a laminated panel body;
Fig. 16 is a worlc body;
Fig. 17 is a sectional end view of a portion of the work body of Fig. 16 showing an illustrative connection between first and second portions;
Fig. 18 is a sectional end view of a portion of the work body of Fig. 16 showing another illustrative connection between first and second portions;
Fig. 19 is a sectional end view of a portion of the work body of Fig. 16 showing another illustrative connection between first and second portions;
Fig. 20 is a side view of a hardboard manufacturing line;
Fig. 21 a is a top view of the hardboard manufacturing line of Fig 20;
Fig. 22 is a side view of the uncoiling and mating stages of the hardboard manufacturing line of Fig. 20;
Fig. 23 is a side view of the pre-heating stage of the hardboard manufacturing line of Fig. 20;
Fig. 24 is a side view of the heat, press and cooling stages of the hardboard manufacturing line of Fig. 20;
Fig. 25 is a side view of a laminating station and shear and trim stages as well as a finishing stage of the hardboard manufacturing line of Fig. 20;
Fig. 26 is a top view of the laminating station and shear and trim stages as well as the finishing stage of the hardboard manufacturing line of Fig. 20;
Fig. 27 is a side view of a portion of the laminating station stage of the hardboard manufacturing line of Fig. 20;
Fig. 28 is another top view of the shear and trim stages as well as the finishing stage of the hardboard manufacturing line of Fig. 20;
Fig. 29 is a top view of another embodiment of a laminated hardboard manufacturing line;
Fig. 30 is a side view of the calendaring stage of the hardboard manufacturing line of Fig. 29;
Fig. 31 is a diagrammatic and side view of a portion of a materials recycling system;
Fig. 16 is a worlc body;
Fig. 17 is a sectional end view of a portion of the work body of Fig. 16 showing an illustrative connection between first and second portions;
Fig. 18 is a sectional end view of a portion of the work body of Fig. 16 showing another illustrative connection between first and second portions;
Fig. 19 is a sectional end view of a portion of the work body of Fig. 16 showing another illustrative connection between first and second portions;
Fig. 20 is a side view of a hardboard manufacturing line;
Fig. 21 a is a top view of the hardboard manufacturing line of Fig 20;
Fig. 22 is a side view of the uncoiling and mating stages of the hardboard manufacturing line of Fig. 20;
Fig. 23 is a side view of the pre-heating stage of the hardboard manufacturing line of Fig. 20;
Fig. 24 is a side view of the heat, press and cooling stages of the hardboard manufacturing line of Fig. 20;
Fig. 25 is a side view of a laminating station and shear and trim stages as well as a finishing stage of the hardboard manufacturing line of Fig. 20;
Fig. 26 is a top view of the laminating station and shear and trim stages as well as the finishing stage of the hardboard manufacturing line of Fig. 20;
Fig. 27 is a side view of a portion of the laminating station stage of the hardboard manufacturing line of Fig. 20;
Fig. 28 is another top view of the shear and trim stages as well as the finishing stage of the hardboard manufacturing line of Fig. 20;
Fig. 29 is a top view of another embodiment of a laminated hardboard manufacturing line;
Fig. 30 is a side view of the calendaring stage of the hardboard manufacturing line of Fig. 29;
Fig. 31 is a diagrammatic and side view of a portion of a materials recycling system;
Fig. 32 is a side view of a materials recycling system and laminated hardboard manufacturing line;
Fig. 33 is a top view of the materials recycling system and laminated hardboard manufacturing line of Figs. 31 and 32;
Fig. 34 is a mechanical properties chart comparing the tensile and flexural strength of an illustrative laminated hardboard panel with industry standards;
Fig. 35 is a mechanical properties chart comparing the flexural modulus of an illustrative laminated hardboard panel with industry standards;
and Figs. a through c 36 are sectional views of the fibrous material layer subjected to various amounts of heat and pressure.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates several embodiments, and such exemplification is not to be construed as limiting the scope of this disclosure in any manner.
DETAILED DESCRIPTION OF THE DRAWINGS
An exploded side view of a laminated composite hardboard panel 2 is shown in Fig. 1. Hardboard panel 2 illustratively comprises a fascia cover stock 4 positioned as the surface layer of panel 2. Fascia cover stock 4 may be comprised of fabric, vinyl, leathers, acrylic, epoxies, or polymers, etc. It is appreciated, however, that hardboard panel 2 may include, or not include, such a fascia cover.
The laminated composite hardboard panel 2 illustratively comprises a first sheet of fibrous material layer 6. Fibrous material layer 6 illustratively comprises a natural fiber, illustratively about 25 weight percent hemp and about 25 weight percent kenaf with the balance being illustratively polypropylene. The fibers are randomly oriented to provide a nonspecific orientation of strength. Variations of this fibrous material are contemplated including about 24.75 weight percent hemp and about 24.75 weight percent lcenaf combination with about 50 weight percent polypropylene and about 0.05 weight percent malefic anhydride. Other such fibrous materials can be used as well, such as flax and jute. It is also contemplated that other blend ratios of the fibrous material can be used to provide a nonspecific orientation of strength. It is further contemplated that other binders in place of polypropylene may _7_ also be used for the purpose discussed further herein. Furthermore, it is contemplated that other fibrous materials which have high process temperatures in excess of about 400 degrees F, for example, may be used as well.
A woven fiber layer 8 illustratively comprises a woven glass with a polypropylene binder, and is illustratively located between the fibrous material layers 6. It is appreciated that other such woven, non-metal fiber materials may be used in place of glass, including nylon, Kevlar, fleece and other natural or synthetic fibers.
Such woven fiber provides bi-directional strength. In contrast, the fibrous material layers 6 provide nonspecific-directional strength, thus giving the resulting composite enhanced mufti-directional strength.
Each surface 10 of fibrous material layers 6 that is adjacent to woven material layer 8 bonds to surfaces 12 of layer 8. A bond is created between fibrous material layer 6 and woven material layer 8 by a high temperature melt and pressure process as discussed further herein. Because the glass and fibrous layers have compatible binders (i.e., the polypropylene, or comparable binder), layers 6, 8 will melt and bind, forming an amalgamated bond between the same. Layers 6, 8 having polypropylene as a common chain in each of their respective chemistries makes the layers compatible and amenable to such three-dimensional molding, for example.
It is appreciated that panel 2 may comprise a plurality of fibrous material layers 6, with woven material layers 8 laminated between each pair of adjacent surfaces 10 and 12, respectively. A pealed view of hardboard panel 2, shown in Fig. 3, illustrates such combined use of woven and nonspecific-directional or randomly-oriented fibers. The random fibers 14 make up fibrous material layer 6, whereas the woven fibers 16 make up the fiber layer 8. Because bulk mass can increase the strength of the panel, it is contemplated that more alternating fibrous and woven fiber layers used in the laminated composite will increase the strength of the panel. The number of layers used, and which layers) will be the exterior layer(s), can be varied, and is often dictated by the requirements of the particular application.
Testing was conducted on illustrative hardboard panels to demonstrate tensile and flexural strength. The hardboard laminated material consisted of a first layer of 600 gram 80 percent polypropylene 20 percent polyester fleece, a second layer of 650 gram fiberglass mix (75 percent .75 K glass/25 percent polypropylene _g_ and 10 percent malefic anhydride), a third layer 1800 gram 25 percent hemp/25 percent kenaf with 5 percent malefic anhydride and the balance polypropylene, a fourth layer of the 650g fiberglass mix, and a fifth layer of the 600g 80 percent polypropylene 20 percent polyester fleece. This resulted in an approximate gram total weight hardboard panel.
The final panel was formed by subjecting it to a 392 degrees F oven with a 6 millimeter gap and heated for about 400 seconds. The material was then pressed using a 4.0 millimeter gap. The final composite panel resulted in an approximate final thickness of 4.30 millimeter.
To determine such panel's tensile and flexural properties, ASTM D
638 - 00 and ASTM D790 - 00 were used as guidelines. The panel samples' shape and size conformed to the specification outlined in the standards as closely as possible, but that the sample thickness varied slightly, as noted above. A
Tinius Olson Universal testing machine using industry specific fixtures was used to carry out the tests.
Two lauan boards were coated with a gelcoat finish and formed into final 2.7 millimeter and 3.5 millimeter thickness boards, respectively. These boards were used as a baseline for comparison with the hardboard panel of the present disclosure. Each of the samples were then cut to the shape and sizes pursuant the above standards. The tensile and flexural properties of the lauan boards were determined in the same manner as the hardboard panel above. Once the results were obtained they were then charted against the results of the hardboard panel for comparison, as shown below and in Figs. 34 and 35. The results herein represent the average over 10 tested samples of each board.
Panel Description Avg. TensileAvg. FlexuralAvg. Flexural Stren th Stren h - Modulus -- si psi psi Hardboard panel 8,585 14,228 524,500 Industry standard - FRPl2.7mm5,883 9,680 1,045,700 lauan Industry standard - FRP/3.Smm7,900 8,260 624,800 lauan As depicted by Fig. 2, laminated panel 2 can be formed into any desired shape by methods known to those skilled in the art. It is appreciated that the _g_ three-dimensional molding characteristics of several fibrous sheets in combination with the structural support and strength characteristics of glass/polypropylene weave materials located between pairs of the fibrous sheets will produce a laminated composite material that is highly three-dimensionally moldable while maintaining high tensile and flexural strengths. Such a laminated panel is useful for the molding of structural wall panel systems, structural automotive parts, highway trailer side wall panels (exterior and interior), recreational vehicle side wall panels (exterior and interior), automotive and building construction load floors, roof systems, modular constructed wall systems, and other such moldable parts. Such a panel may replace styrene-based chemical set polymers, metal, tree cut lumber, and other similar materials. It is believed that such a moldable laminated panel can reduce part cost, improve air quality with reduced use of styrene, and reduce part weight. Such a panel may also be recyclable, thereby giving the material a presence of sustainability.
Another embodiment of a hardboard panel 20 is shown in Fig. 4. This panel 20 comprises a fibrous material layer 6 serving as the core, and is bounded by fiberglass layers 22 and fleece layers 24, as shoran. For example, the fibrous material layer 6 may comprise the conventional non-oriented fiber/polypropylene mix as previously discussed, at illustratively 1800 or 2400g weights. The fiberglass layer comprises a 50 weight percent polypropylene/about 50 weight percent malefic anhydride (illustratively 400g/m2) mix. The fleece layer comprises an about 50 weight percent polypropylene/about 50 weight percent polyester (illustratively 300g/m2) mix. The fleece material provides good adhesion with the polypropylene and is water-proof at ambient conditions. Furthermore, the polyester is a compatible partner with the polypropylene because it has a higher melt temperature than the polypropylene. This means the polypropylene can melt and bond with the other layer without adversely affecting the polyester. In addition, the malefic anhydride is an effective stiffening agent having high tensile and flexural strength which increases overall strength of the panel.
It is contemplated that the scope of the invention herein is not limited only to the aforementioned quantities, weights and ratio mixes of material and binder.
For example, the fleece layer 24 may comprise an about 80 weight percent polypropylene/about 20 weight percent polyester (illustratively 600g/m~) mix.
The laminated composite panel 20 shown in Fig. 4 may include, for example, both fleece layers 24 comprising the 50/50 polypropylene/polyester mix, or one layer 24 comprising the 50/50 polypropylene/polyester mix, or the 80/20 polypropylene/polyester mix. In addition, same as panel 2, the binder used for panel 20 can be any suitable binder such as polypropylene, for example.
Another embodiment of a laminated hardboard panel 28 is shown in Fig. 5. This panel 28 comprises a fibrous material layer 6 serving as the core which is bounded by fleece layers 24, as shown. As with panel 20, the fibrous material layer 6 of panel 28 may comprise the conventional, non-oriented fiber/polypropylene mix as previously discussed, at illustratively 1800 or 2400g weights. Each fleece layer 24 may comprise an about 50 weight percent polypropylene/about 50 weight percent polyester (illustratively 300g/m2) mix, or may alternatively be an about 80 weight percent polypropylene/about 20 weight percent polyester (illustratively 600g/m2) mix.
Or, still alternatively, one fleece layer 24 may be the 50/50 mix and the other fleece layer 24 may be the 80/20 mix, for example.
Another embodiment of a laminated hardboard panel 30 is shown in Fig. 6. This panel 30, similar to panel 20 shown in Fig. 4, comprises a fibrous material layer 6 serving as the core which is bounded by fiberglass layers 22 and fleece layers 24. The formulations for and variations of the fleece layer 24, the fiberglass layers 22 and the fibrous material layer 6 may comprise the formulations described in the embodiment of panel 20 shown in Fig. 4. Laminated panel 30 further comprises a calendared surface 32, and illustratively, a prime painted or coated surface 34. The calendaring process assists in malting a Class A finish for automobile bodies. A Class A finish is a finish that can be exposed to weather elements and still maintain its aesthetics and quality. For example, an embodiment of the coated surface 34 contemplated herein is designed to satisfy the General Motors Engineering standard for exterior paint performance: GM4388M, rev. June 2001. The process for applying the painted or coated finish is described with reference to the calendaring process further herein below.
Further illustrative embodiment of the present disclosure provides a moldable panel material, for use as a headliner, for example, comprising the following constituents by weight percentage:
about 10 weight percent polypropylene fibers consisting of polypropylene (about 95 weight percent) coupled with malefic anhydride (about 5 weight percent), though it is contemplated that other couplers may work as well;
about 15 weight percent kenaf (or similar fibers such as hemp, flax, jute, etc.) fiber pre-treated with an anti-fungal/anti-microbial agent containing about 2 weight percent active ingredient; wherein the fibers may be pre-treated off line prior to blending;
about 45 weight percent bi-component (about 4 denier) polyester fiber; wherein the bi-component blend ratio is about 22.5 weight percent high melt (about 440 degrees F) polyester and about 22.5 weight percent low melt polyester (about 240 to about 300 degrees F which is slightly below full melt temperature of polypropylene to permit control of polypropylene movement during heat phase); wherein, alternatively, like fibers of similar chemistry may also be used; and about 30 weight percent single component polyester fiber (about 15 denier) high melt (about 440 degrees F);
wherein, alternatively, like fibers of similar chemistry may be used.
Again, such a material can be used as a headliner. This is because the formulation has a higher heat deflection created by stable fibers and high melt polypropylene, and by polyester and the cross-linked polymer to the polymer of the fibers. Furthermore, coupled polypropylene has cross-linked with non-compatible polyester low melt to form a common melt combined polymer demonstrating higher heat deflection ranges. The anti-fungal treated natural fiber protects any cellulous in the fiber from colonizing molds for the life of the product should the head liner be exposed to high moisture conditions.
It is appreciated that other formulations can work as well. For example, another illustrative embodiment may comprise about 40 percent bi-component fiber with 180 degree C melt temperature, about 25 percent single component PET-15 denier; about 15 percent 63015 polypropylene and about 20 percent fine grade natural fiber. Another illustrative embodiment may comprise about percent bi-component fiber semi-crystalline 170 degree C melt temperature, about 20 percent single component PET-15 denier, about 15 percent low melt flow (10-mfi) polypropylene and about 20 percent fine grade natural fiber. It is further contemplated that such compositions disclosed herein may define approximate boundaries of usable formulation ranges of each of the constituent materials.
A cutaway view of a honeycomb composite panel 40 is shown in Fig.
Fig. 33 is a top view of the materials recycling system and laminated hardboard manufacturing line of Figs. 31 and 32;
Fig. 34 is a mechanical properties chart comparing the tensile and flexural strength of an illustrative laminated hardboard panel with industry standards;
Fig. 35 is a mechanical properties chart comparing the flexural modulus of an illustrative laminated hardboard panel with industry standards;
and Figs. a through c 36 are sectional views of the fibrous material layer subjected to various amounts of heat and pressure.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates several embodiments, and such exemplification is not to be construed as limiting the scope of this disclosure in any manner.
DETAILED DESCRIPTION OF THE DRAWINGS
An exploded side view of a laminated composite hardboard panel 2 is shown in Fig. 1. Hardboard panel 2 illustratively comprises a fascia cover stock 4 positioned as the surface layer of panel 2. Fascia cover stock 4 may be comprised of fabric, vinyl, leathers, acrylic, epoxies, or polymers, etc. It is appreciated, however, that hardboard panel 2 may include, or not include, such a fascia cover.
The laminated composite hardboard panel 2 illustratively comprises a first sheet of fibrous material layer 6. Fibrous material layer 6 illustratively comprises a natural fiber, illustratively about 25 weight percent hemp and about 25 weight percent kenaf with the balance being illustratively polypropylene. The fibers are randomly oriented to provide a nonspecific orientation of strength. Variations of this fibrous material are contemplated including about 24.75 weight percent hemp and about 24.75 weight percent lcenaf combination with about 50 weight percent polypropylene and about 0.05 weight percent malefic anhydride. Other such fibrous materials can be used as well, such as flax and jute. It is also contemplated that other blend ratios of the fibrous material can be used to provide a nonspecific orientation of strength. It is further contemplated that other binders in place of polypropylene may _7_ also be used for the purpose discussed further herein. Furthermore, it is contemplated that other fibrous materials which have high process temperatures in excess of about 400 degrees F, for example, may be used as well.
A woven fiber layer 8 illustratively comprises a woven glass with a polypropylene binder, and is illustratively located between the fibrous material layers 6. It is appreciated that other such woven, non-metal fiber materials may be used in place of glass, including nylon, Kevlar, fleece and other natural or synthetic fibers.
Such woven fiber provides bi-directional strength. In contrast, the fibrous material layers 6 provide nonspecific-directional strength, thus giving the resulting composite enhanced mufti-directional strength.
Each surface 10 of fibrous material layers 6 that is adjacent to woven material layer 8 bonds to surfaces 12 of layer 8. A bond is created between fibrous material layer 6 and woven material layer 8 by a high temperature melt and pressure process as discussed further herein. Because the glass and fibrous layers have compatible binders (i.e., the polypropylene, or comparable binder), layers 6, 8 will melt and bind, forming an amalgamated bond between the same. Layers 6, 8 having polypropylene as a common chain in each of their respective chemistries makes the layers compatible and amenable to such three-dimensional molding, for example.
It is appreciated that panel 2 may comprise a plurality of fibrous material layers 6, with woven material layers 8 laminated between each pair of adjacent surfaces 10 and 12, respectively. A pealed view of hardboard panel 2, shown in Fig. 3, illustrates such combined use of woven and nonspecific-directional or randomly-oriented fibers. The random fibers 14 make up fibrous material layer 6, whereas the woven fibers 16 make up the fiber layer 8. Because bulk mass can increase the strength of the panel, it is contemplated that more alternating fibrous and woven fiber layers used in the laminated composite will increase the strength of the panel. The number of layers used, and which layers) will be the exterior layer(s), can be varied, and is often dictated by the requirements of the particular application.
Testing was conducted on illustrative hardboard panels to demonstrate tensile and flexural strength. The hardboard laminated material consisted of a first layer of 600 gram 80 percent polypropylene 20 percent polyester fleece, a second layer of 650 gram fiberglass mix (75 percent .75 K glass/25 percent polypropylene _g_ and 10 percent malefic anhydride), a third layer 1800 gram 25 percent hemp/25 percent kenaf with 5 percent malefic anhydride and the balance polypropylene, a fourth layer of the 650g fiberglass mix, and a fifth layer of the 600g 80 percent polypropylene 20 percent polyester fleece. This resulted in an approximate gram total weight hardboard panel.
The final panel was formed by subjecting it to a 392 degrees F oven with a 6 millimeter gap and heated for about 400 seconds. The material was then pressed using a 4.0 millimeter gap. The final composite panel resulted in an approximate final thickness of 4.30 millimeter.
To determine such panel's tensile and flexural properties, ASTM D
638 - 00 and ASTM D790 - 00 were used as guidelines. The panel samples' shape and size conformed to the specification outlined in the standards as closely as possible, but that the sample thickness varied slightly, as noted above. A
Tinius Olson Universal testing machine using industry specific fixtures was used to carry out the tests.
Two lauan boards were coated with a gelcoat finish and formed into final 2.7 millimeter and 3.5 millimeter thickness boards, respectively. These boards were used as a baseline for comparison with the hardboard panel of the present disclosure. Each of the samples were then cut to the shape and sizes pursuant the above standards. The tensile and flexural properties of the lauan boards were determined in the same manner as the hardboard panel above. Once the results were obtained they were then charted against the results of the hardboard panel for comparison, as shown below and in Figs. 34 and 35. The results herein represent the average over 10 tested samples of each board.
Panel Description Avg. TensileAvg. FlexuralAvg. Flexural Stren th Stren h - Modulus -- si psi psi Hardboard panel 8,585 14,228 524,500 Industry standard - FRPl2.7mm5,883 9,680 1,045,700 lauan Industry standard - FRP/3.Smm7,900 8,260 624,800 lauan As depicted by Fig. 2, laminated panel 2 can be formed into any desired shape by methods known to those skilled in the art. It is appreciated that the _g_ three-dimensional molding characteristics of several fibrous sheets in combination with the structural support and strength characteristics of glass/polypropylene weave materials located between pairs of the fibrous sheets will produce a laminated composite material that is highly three-dimensionally moldable while maintaining high tensile and flexural strengths. Such a laminated panel is useful for the molding of structural wall panel systems, structural automotive parts, highway trailer side wall panels (exterior and interior), recreational vehicle side wall panels (exterior and interior), automotive and building construction load floors, roof systems, modular constructed wall systems, and other such moldable parts. Such a panel may replace styrene-based chemical set polymers, metal, tree cut lumber, and other similar materials. It is believed that such a moldable laminated panel can reduce part cost, improve air quality with reduced use of styrene, and reduce part weight. Such a panel may also be recyclable, thereby giving the material a presence of sustainability.
Another embodiment of a hardboard panel 20 is shown in Fig. 4. This panel 20 comprises a fibrous material layer 6 serving as the core, and is bounded by fiberglass layers 22 and fleece layers 24, as shoran. For example, the fibrous material layer 6 may comprise the conventional non-oriented fiber/polypropylene mix as previously discussed, at illustratively 1800 or 2400g weights. The fiberglass layer comprises a 50 weight percent polypropylene/about 50 weight percent malefic anhydride (illustratively 400g/m2) mix. The fleece layer comprises an about 50 weight percent polypropylene/about 50 weight percent polyester (illustratively 300g/m2) mix. The fleece material provides good adhesion with the polypropylene and is water-proof at ambient conditions. Furthermore, the polyester is a compatible partner with the polypropylene because it has a higher melt temperature than the polypropylene. This means the polypropylene can melt and bond with the other layer without adversely affecting the polyester. In addition, the malefic anhydride is an effective stiffening agent having high tensile and flexural strength which increases overall strength of the panel.
It is contemplated that the scope of the invention herein is not limited only to the aforementioned quantities, weights and ratio mixes of material and binder.
For example, the fleece layer 24 may comprise an about 80 weight percent polypropylene/about 20 weight percent polyester (illustratively 600g/m~) mix.
The laminated composite panel 20 shown in Fig. 4 may include, for example, both fleece layers 24 comprising the 50/50 polypropylene/polyester mix, or one layer 24 comprising the 50/50 polypropylene/polyester mix, or the 80/20 polypropylene/polyester mix. In addition, same as panel 2, the binder used for panel 20 can be any suitable binder such as polypropylene, for example.
Another embodiment of a laminated hardboard panel 28 is shown in Fig. 5. This panel 28 comprises a fibrous material layer 6 serving as the core which is bounded by fleece layers 24, as shown. As with panel 20, the fibrous material layer 6 of panel 28 may comprise the conventional, non-oriented fiber/polypropylene mix as previously discussed, at illustratively 1800 or 2400g weights. Each fleece layer 24 may comprise an about 50 weight percent polypropylene/about 50 weight percent polyester (illustratively 300g/m2) mix, or may alternatively be an about 80 weight percent polypropylene/about 20 weight percent polyester (illustratively 600g/m2) mix.
Or, still alternatively, one fleece layer 24 may be the 50/50 mix and the other fleece layer 24 may be the 80/20 mix, for example.
Another embodiment of a laminated hardboard panel 30 is shown in Fig. 6. This panel 30, similar to panel 20 shown in Fig. 4, comprises a fibrous material layer 6 serving as the core which is bounded by fiberglass layers 22 and fleece layers 24. The formulations for and variations of the fleece layer 24, the fiberglass layers 22 and the fibrous material layer 6 may comprise the formulations described in the embodiment of panel 20 shown in Fig. 4. Laminated panel 30 further comprises a calendared surface 32, and illustratively, a prime painted or coated surface 34. The calendaring process assists in malting a Class A finish for automobile bodies. A Class A finish is a finish that can be exposed to weather elements and still maintain its aesthetics and quality. For example, an embodiment of the coated surface 34 contemplated herein is designed to satisfy the General Motors Engineering standard for exterior paint performance: GM4388M, rev. June 2001. The process for applying the painted or coated finish is described with reference to the calendaring process further herein below.
Further illustrative embodiment of the present disclosure provides a moldable panel material, for use as a headliner, for example, comprising the following constituents by weight percentage:
about 10 weight percent polypropylene fibers consisting of polypropylene (about 95 weight percent) coupled with malefic anhydride (about 5 weight percent), though it is contemplated that other couplers may work as well;
about 15 weight percent kenaf (or similar fibers such as hemp, flax, jute, etc.) fiber pre-treated with an anti-fungal/anti-microbial agent containing about 2 weight percent active ingredient; wherein the fibers may be pre-treated off line prior to blending;
about 45 weight percent bi-component (about 4 denier) polyester fiber; wherein the bi-component blend ratio is about 22.5 weight percent high melt (about 440 degrees F) polyester and about 22.5 weight percent low melt polyester (about 240 to about 300 degrees F which is slightly below full melt temperature of polypropylene to permit control of polypropylene movement during heat phase); wherein, alternatively, like fibers of similar chemistry may also be used; and about 30 weight percent single component polyester fiber (about 15 denier) high melt (about 440 degrees F);
wherein, alternatively, like fibers of similar chemistry may be used.
Again, such a material can be used as a headliner. This is because the formulation has a higher heat deflection created by stable fibers and high melt polypropylene, and by polyester and the cross-linked polymer to the polymer of the fibers. Furthermore, coupled polypropylene has cross-linked with non-compatible polyester low melt to form a common melt combined polymer demonstrating higher heat deflection ranges. The anti-fungal treated natural fiber protects any cellulous in the fiber from colonizing molds for the life of the product should the head liner be exposed to high moisture conditions.
It is appreciated that other formulations can work as well. For example, another illustrative embodiment may comprise about 40 percent bi-component fiber with 180 degree C melt temperature, about 25 percent single component PET-15 denier; about 15 percent 63015 polypropylene and about 20 percent fine grade natural fiber. Another illustrative embodiment may comprise about percent bi-component fiber semi-crystalline 170 degree C melt temperature, about 20 percent single component PET-15 denier, about 15 percent low melt flow (10-mfi) polypropylene and about 20 percent fine grade natural fiber. It is further contemplated that such compositions disclosed herein may define approximate boundaries of usable formulation ranges of each of the constituent materials.
A cutaway view of a honeycomb composite panel 40 is shown in Fig.
7. The illustrated embodiment comprises top and bottom panels, 42, 44, with a honeycomb core 46 located there between. One illustrative embodiment provides for a polypropylene honeycomb core sandwiched between two panels made from a randomly-oriented fibrous material. The fibrous material is illustratively about 30 weight percent fiber and about 70 weight percent polypropylene. The fiber material is illustratively comprised of about 50 weight percent kenaf and about 50 weight percent hemp. It is contemplated, however, that any hemp-like fiber, such as flax or other cellulose-based fiber, may be used in place of the hemp or the kenaf. In addition, such materials can be blended at any other suitable blend ratio to create such suitable panels.
In one illustrative embodiment, each panel 42, 44 is heat-compressed into the honeycomb core 46. The higher polypropylene content used in the panels provides for more thermal plastic available for creating a melt bond between the panels and the honeycomb core. During the manufacturing of such panels 40, the heat is applied to the inner surfaces 48, 50 of panels 42, 44, respectively. The heat melts the polypropylene on the surfaces which can then bond to the polypropylene material that makes up the honeycomb core. It is appreciated, however, that other ratios of fiber to polypropylene or other bonding materials can be used, so long as a bond can be created between the panels and the core. In addition, other bonding materials, such as an adhesive, can be used in place of polypropylene for either or both the panels and the core, so long as the chemistries between the bonding materials between the panels and the core are compatible to create a sufficient bond.
A top detail view of the one illustrative embodiment of honeycomb core 46 is shown in Fig. 8. This illustrative embodiment comprises individually formed bonded ribbons 52. Each ribbon 52 is formed in an illustrative battlement-lilce shape having alternating merlons 54 and crenellations 56. Each of the corners 58, 60 of each merlon 54 is illustratively thermally-bonded to each corresponding corner 62, 64, respectively, of each crenellation 56. Such bonds 66 which illustratively run the length of the corners are shown in Fig. 9. Successive rows of such formed and bonded ribbons 52 will produce the honeycomb structure, as shown.
Another embodiment of the honeycomb composite panel comprises a fibrous material honeycomb core in place of the polypropylene honeycomb core.
Illustratively, the fibrous material honeycomb core may comprise about 70 weight percent polypropylene with about 30 weight percent fiber, for example, similar to that used for top and bottom panels 42, 44, previously discussed, or even a 50/50 weight percent mix. Such formulations are illustrative only, and other formulations that produce a high strength board are also contemplated herein.
A perspective view of a truss composite 70 is shown in Fig. 10. Truss panel composite 70 is a light weight, high strength panel for use in either two- or three-dimensional body panel applications. The illustrated embodiment of truss composite 70 comprises upper and lower layers 72, 74, respectively, which sandwich truss member core 76. Each of the layers 72, 74, 76 is made from a combination fibrous/polypropylene material, similar to that described in foregoing embodiments.
Each layer 72, 74, 76 comprises a non-directional fibrous material, illustratively, about 25 weight percent hemp and about 25 weight percent kenaf with the balance being polypropylene. The fibers are randomly oriented to provide a non-specific orientation of strength. Illustrative variations of this fibrous material are contemplated, which may include, for example, an approximately 24.75 weight percent hemp and 24.75 weight percent kenaf combination with 50 weight percent polypropylene and 0.05 weight percent malefic anhydride. Other ratios of fibrous materials, however, are also contemplated to be within the scope of the invention. In addition, other fibrous materials themselves are contemplated to be within the scope of the invention. Such materials may be flax, jute, or other like fibers that can be blended in various ratios, for example. Additionally, it is appreciated that other binders in place of polypropylene may also be used to accomplish the utility contemplated herein.
The truss core 76 is illustratively formed with a plurality of angled support portions 78, 80 for beneficial load support and distribution. In the illustrated embodiment, support portion 78 is oriented at a shallower angle relative to upper and lower layers 72, 74, respectively, than support portion 80 which is oriented at a steeper angle. It is appreciated that such support portions can be formed by using a stamping die, continuous forming tool, or other like method. It is further appreciated that the thickness of any of the layers 72, 74, or even the truss core 76 can be adjusted to accommodate any variety of load requirements. In addition, the separation between layers 72, 74 can also be increased or decreased to affect its load strength.
Between each support portion is an alternating contact portion, either 82, 84. The exterior surface of each of the alternating contact portions 82, 84 is configured to bond to one of the inner surfaces 86, 88 of layers 72, 74, respectively.
To create the bond between layers 72, 74 and truss core 76, superficial surface heat, about 450 degrees F for polypropylene, is applied to the contact surfaces to melt the surface layer of polypropylene, similar to the process discussed further herein. At this temperature, the polypropylene or other binder material is melted sufficiently to bond same with the polypropylene of the core. hi this illustrative embodiment, contact portion 82 bonds to the surface 86 of upper layer 72, and contact portion 84 bonds to the surface 88 of layer 74. Once solidified, a complete bond will be formed without the need for an additional adhesive. It is appreciated, however, that an adhesive may be used in place of surface heat bonding.
The outer surfaces of layers 72, 74 may be configured to accommodate a fascia cover stock (not shown). Such fascia cover stock may be comprised of fabric, vinyl, acrylic, leathers, epoxies, or polymers, paint, etc. In addition, the surfaces of layer 72, 74 may be treated with a polyester to waterproof the panel.
An end view of a hinged visor body 90 is shown in Fig. 11 a. This disclosure illustrates a visor, similar to a sun visor used in an automobile.
It is appreciated, however, that such a visor body 90 is disclosed herein for illustrative purposes, and it is contemplated that the visor does not represent the only application of a formed hinged body. It is contemplated that such is applicable to any other application that requires an appropriate hinged body.
In the illustrated embodiment, body 90 comprises body portions 92, 94 and a hinge 96 positioned therebetween. (See Figs. l 1b and 12b.) Body 90 is illustratively made from a low density fibrous material, as further described herein below. In one embodiment, the fibrous material may comprise a randomly-oriented fiber, illustratively about 50 weight percent fiber-like hemp or kenaf with about 50 weight percent polypropylene. The material is subjected to hot air and to variable compression zones to produce the desired structure. (See further, Fig. 13.) Another illustrative embodiment comprises about 25 weight percent hemp and about 25 weight percent kenaf with the balance being polypropylene. Again, all of the fibers are randomly oriented to provide a non-specific orientation of strength. Other variations of this composition are contemplated including, but not limited to, about a 24.75 weight percent hemp and about a 24.75 weight percent kenaf combination with about 50 weight percent polypropylene and about 0.05 weight percent malefic anhydride.
Additionally, other fibrous materials are contemplated to be within the scope of this disclosure, such as flax and jute in various ratios, as well as the fibers in various other blend ratios. It is also appreciated that other binders in place of polypropylene may also be used for the utility discussed herein.
The illustrated embodiment of body 90 comprises hinge portion 96 allowing adjacent body portions 92, 94 to move relative to each other. The illustrative embodiment shov~m in Figs. 11 a and b depicts body 90 in the unfolded position. This embodiment comprises body portions 92, 94 having a thickness such that hinge portion 96 is provided adjacent depressions 98, 100 on the surface body portions 92, 94, respectively. Because body 90 is a unitary body, the flexibility of hinge portion 96 is derived from forming same into a relatively thin member, as herein discussed below. In such folding situations as shown in Fig. 12a, material adjacent the hinge may interfere with the body's ability to fold completely. These depressions 98, 100 allow body portions 92, 94 to fold as shown in Fig. 12a, without material from said body portions interfering therewith. As shown in Fig. 12b, a cavity 102 is formed when body portions 92, 94 are folded completely. It is contemplated, however, that such occasions may arise wherein it may not be desired to remove such material adjacent hinge portion 96, as depicted with depressions 98, 100. Such instances is contemplated to be within the scope of this disclosure.
In the illustrative embodiment shown in Fig. 1 1b, hinge portion 96 forms an arcuate path between body portions 92, 94. The radii assists in removing a dimple that may occur at the hinge when the hinge is at about 180 degrees of bend.
As shown in Fig. 12b, hinge portion 96 loses some of its arcuate shape when the body portions 92, 94 are in the folded position. It is appreciated, however, that such a hinge 96 is not limited to the arcuate shape shown in Fig. 11 a. Rather, hinge portion 96 may be any shape so long as it facilitates relative movement between two connecting body portions. For example, hinge portion 96 may be linear shaped. The shape of the hinge portion may also be influenced by the size and shape of the body portions, as well as the desired amount of movement between said body portions.
Illustratively, in addition to, or in lieu of, the fibrous material forming the visor hinge via high pressure alone, the hinge may also be formed by having a band of material removed at the hinge area. In one illustrative embodiment, a hinge having a band width about 1/8 inch wide and a removal depth of about 70 weight percent of thickness mass allows the hinge full compression thickness after molding of about 0.03125 inch, for example. The convex molding of the hinge may straighten during final folding assembly, providing a straight mid line edge between the two final radiuses. It is contemplated that the mold for the mirror depressions, etc., plus additional surface molding details can be achieved using this process. It is further anticipated that the cover stock may be applied during the molding process where the cover is bonded to the visor by the polypropylene contained in the fibrous material formulation.
The illustrative embodiment of body 90 includes longitudinally-extending depressions 93, 95 which form a cavity 97. (See Figs. l la, 12a and 14a.), Cavity 97 is configured to receive bar 99, as discussed further herein. (See Fig. 14b.) It is appreciated that such depressions and cavities described herein with respect to body 90 are for illustrative purposes. It is contemplated that any design requiring such a moldable body and hinge can be accomplished pursuant the present disclosure herein.
As previously discussed, body 90 may be comprised of low density material to allow variable forming geometry in the visor structure, i.e., high and low compression zones for allowing pattern forming. For example, the panels portion may be a low compression zone, whereas the hinge portion is a high compression zone. In addition, the high compression zone may have material removed illustratively by a saw cut during production, if required, as also previously discussed.
This allows for a thinner high compression zone which facilitates the ability for the material to be flexed back and forth without fatiguing, useful for such a hinge portion.
An end view of a die assembly 110 for compression molding a fiber material body and hinge is shown in Fig. 13. The form of the die assembly 110 shown is of an illustrative shape. It is contemplated that such a body 90 can be formed into any desired shape. In the illustrated embodiment, assembly 110 comprises illustrative press plates 112, 114. Illustratively, dies 116, 118 are attached to plates 112, 114, respectively. Die 116 is formed to mirror corresponding portion of body 90. It is appreciated that because the view of Fig. 13 is an end view, the dies can be longitudinally-extending to any desired length. This illustrative embodiment of die 116 includes surfaces 120, 122 and includes compression zones 124, 126, 128, 130.
Zones 124, 126 are illustratively protrusions that help form the depressions 93, 95, respectively, of body 90, as shown. (See also Fig. 1 la.) Zones 128, 130 are illustratively protl-usions that help form the depressions 98, 100, respectively, of body 90, as shown. (See also Fig. l la.) And zone 132 is illustratively a form that, in cooperation with zone 134 of die 118, form hinge portion 96.
This illustrative embodiment of die 118 includes surfaces 136, 138 and includes compression zones 140, 142, 134. Zones 140, 142 are illustratively sloped walls that help form zone 134. (See also Fig. 11 a.) Zone 134 is illustratively a peak that, in cooperation with zone 132 creates a high compression zone to form hinge portion 96, and, illustratively, depressions 98, 100, if desired. Again, it is appreciated that the present pattern of such zones shown is not the only such pattern contemplated by this disclosure.
In the illustrated embodiment, body 90, in the illustrative form of a hinged visor, is folded as that shown in Fig. 12a. It is further contemplated that during forming the body may be heated by hot air to bring it up to forming temperatures. The heating cycle time may be about 32 seconds, and the toll time after clamp for cool down will be around 45 to 50 seconds, depending on tool temperature.
Furthermore, skins, like a fabric skin can be bonded to the visor during this step.
Another embodiment of the hardboard panel is a low density panel, illustratively, an approximately 2600 gram panel with about 50 weight percent fiber-like hemp, kenaf, or other fiber material with about 50 weight percent polypropylene.
Such materials are subjected to hot air to produce a light-weight, low density panel.
The panel material may be needle-punched or have a stretched skin surface applied thereon for use as a tackable panel, wall board, ceiling tile, or interior panel-lilce structure.
A portion of a dry-erase board 150 is shown in Fig. 15. Such a board 150 may comprise a hardboard panel 152 (similar to panel 2) pursuant the foregoing description along with a surface coating 154. The surface coating, as that described further herein, provides an optimum work surface as a dry-erase board. Surface coating 154, for example, can be a Class A finish previously described. This illustrative embodiment includes a frame portion 156 to enhance the aesthetics of board 150. One embodiment may comprise a dual-sided board with a low density tack board on one side and a dry-erase hardboard on the other side.
An illustrative embodiment of a work body in the form of a table top 180, is shown in Fig. 16. The view illustrated therein is a partial cut-away view showing the mating of a top 182 to an underside 184. An illustrative pedestal supports table top 180 in a conventional manner. It is appreciated, however, that the table top 180 is shown in an exaggerated view relative to pedestal 186 so as to better illustrate the relevant detail of the table top 180.
In the illustrated embodiment, the periphery 188 of top 182 is arcuately formed to create a work surface edging. The top 182 is attached to the underside 184 via a portion of the periphery 190 of the same mating with the top 182.
Periphery 190 illustratively comprises an arcuate edge portion 192 which is complimentarily shaped to the interior surface 194 of periphery 188 of top 182. Adjacent the arcuate edge portion 192 is an illustrative stepped portion 196. Stepped portion 196 provides a notch 198 by extending the underside panel 202 of the underside 184 downward with respect to top 182. Notch 198 provides spacing for edge 200 of periphery 188.
Such an arrangement provides an appearance of a generally flush transition between top 182 and underside 184. Interior surface 194 of periphery 188 and outer surface 204 of periphery 190 can be mated and attached via any conventional method. For example, the surfaces can be ionize-charged to relax the polypropylene so that an adhesive can bond the structures. In addition, a moisture-activated adhesive can be used to bond the top 182 with the underside 184.
Detailed views of the mating of top 182 and underside 184 is shown in Figs. 17 and 18. The conformity between peripheries 188 and 190 are evident from these views. Such allows sufficient bonding between top 182 and underside 184.
The generally flush appearance between the transition of top 182 and underside 184 is evident as well through these views. The variations between illustrative embodiments are depicted in Figs. 17 and 18. For example, top surface 206 is substantially coaxial with level plane 208 in Fig. 17, whereas top surface 206 is angled with respect to level plane 208. It is appreciated, as well, that the disclosure is not intended to be limited to the shapes depicted in the drawings. Rather, other complimentarily-shaped mating surfaces that produce such a transition between such top and bottom panels are contemplated to be within the scope of the invention herein.
Such mating of top 182 and underside 184 may produce a cavity 210, as shown in Figs. 16 through 19. Depending on the application, cavity 210 may remain empty, or may contain a structure. For example, Fig. 19 shows an end view of table top 180 with a truss member core support 76 illustratively located therein. Truss member core 76 can be of the type previously described and be attached to the interior surfaces 194, 212 via conventional means, such as an adhesive, for example.
Such a core structure can provide increased strength to table top 180. In fact, such strength can expand the uses of the world body to other applications in addition to a table top.
For example, such can be used as a flooring, or side paneling for a structure or a vehicle. It is contemplated that other such cores can be used in place of the truss member. For example, a foam core or honeycomb core can be used in place of the truss.
An illustrative hardboard manufacturing line 300 is shown in Figs. 20 through 28. Line 300 is for manufacturing laminated hardboard panels of the type shown in Figs. 1 through 3, and indicated by reference numeral 2, for example.
The manufacturing process comprises the mating of the several layers of materials, illustratively layers 6 and 8 (see Fig. 1), heating and pressing said layers into a single laminated composite panel, cooling the panel, and then trimming same. In the illustrative embodiment, line 300 comprises the following primary stages:
uncoiling and mating 302 (Fig. 22), pre-heating 304 (Fig. 23), heat and press 306 (Fig.
24), cooling 308 (also Fig. 24), laminating station (Figs. 25 through 28), and shear and trim 310 (also Figs. 25 through 28.) A top view of line 300 is shown in Fig.
21. It is appreciated that the line 300 may be of a width that corresponds to a desired width of the composite material. Fig. 21 also illustrates the tandem arrangement of each of the stages 302, 304, 306, 308, 310.
The uncoiling and mating stage 302 is shown in Fig. 22. In the illustrative embodiment, the materials used for forming the composite are provided in rolls. It is appreciated that the materials may be supplied in another manner, but for purposes of the illustrated embodiment, the material will be depicted as rolls.
Illustratively, stage 302 holds rolls of each illustrative layer 6 and 8 in preparation for mating. As illustrated, stage 302 comprises a plurality of troughs 312 through 320, each of which being illustratively capable of holding two rolls, a primary roll and a back-up roll, for example. In one embodiment, it is contemplated that any number of troughs can be used, and such number may be dependent on the number of layers used in the laminated body.
For this illustrative embodiment, line 300 is configured to manufacture a laminated composite panel 2 similar to that shov~m in Figs. 1 through 3. It is appreciated, however, that the utility of line 302 is not limited to making only that panel. Rather, such a line is also capable of manufacturing any laminated panel that requires at least one of the stages as described further herein. Troughs 312, 316, and 320 each comprise a primary roll 6' and a back-up roll 6" of layer 6. In this example, layer 6 is illustratively a non-oriented fibrous material. Similarly, troughs 314 and 318 each comprise a primary roll 8' and a back-up roll 8" of layer 8 which is illustratively the woven fiber layer. Each roll rests on a platform system 322 which comprises a sensor 324 and a stitching device 326. Sensor 324 detects the end of one roll to initiate the feed of the back-up roll. This allows the rolls to create one large continuous sheet. For example, once fibrous material primary roll 6' is completely consumed by line 302, and sensor 324 detects the end of that primary roll 6' and causes the beginning of back-up roll 6" to join the end of primary roll 6'.
This same process worlcs with primary roll 8' and back-up roll 8" as well.
To secure each roll of a particular material together, stitching device 326 stitches, for example, the end of primary rolls 6' or 8' with the beginning of the back-up rolls 6" or 8", respectively. The stitched rolls produce a secure bond between primary rolls 6', 8' and back-up rolls 6" and 8", respectively, thereby forming the single continuous roll. Illustratively, stitching device 326 trims and loop stitches the ends of the materials to form the continuous sheet. Also, illustratively, the thread used to stitch the rolls together is made from polypropylene or other similar material that can partially melt during the heating stages, thereby creating a high joint bond in the final panel. It is contemplated, however, any suitable threads can be used which may or may not be of a polymer.
Each trough of stage 302 is configured such that, as the material is drawn from the rolls, each will form one of the layers of the laminated composite which ultimately becomes the hardboard panel. Fibrous material layer 6 of primary roll 6' from trough 312 illustratively forms the top layer with the material from each successive trough 314 through 320, providing alternating layers of layers 6 and 8 layering underneath, as shown exiting at 321 in Fig. 22. Each roll of material is illustratively drawn underneath the troughs exiting in direction 327. The resulting layered materials exit stage 302 at 321, pass over bridge 328, and enter the pre-heating stage 304.
Pre-heat stage 304, as shown in Fig. 23, comprises an oven 323 which forces hot air at approximately 240 degrees F into the composite layers. Oven comprises a heater-blower 330 which directs heated air into composite chamber which receives the material layers. This hot air removes moisture from layers 6, 8, as well as heats the center-most layers of the same. Because often such materials are hydrophobic, the removal of the moisture causes the center of the materials to cool.
The forced heat causes the center to be warmed, even while the moisture is being removed. This pre-heat allows the process to become more efficient during the heat and press stage 306. Stage 308 illustratively comprise a roller/belt system which includes rollers 333 that move belts 335, as shown in Fig. 23. Illustratively, these belts are located above and below the panel 2, defining at least a portion of chamber 332. Belts 335 assist in urging panel 2 through stage 304 and on to stage 306.
The preheated composite layers exit through opening 334 of stage 304 and enter the heat and press stage 306, as shown in Fig. 24. The pre-heated composite panel 2 enters stage 306 through opening 336 and into chamber 337. The heat and press stage 306, uses a progression of increasingly narrowly-spaced rollers located between heat zones, thereby reducing the vertical spacing in chamber 337. The combination of the heat and the narrowing rollers reduces the thickness of panel 2 transforming same into a laminated composite panel 2 of desired thickness. For example, stage 306 comprises pairs of spaced rollers 338, 340, 342, 344, 346, through which the composite layers pass. The rollers are linearly spaced apart as shown in Fig. 24. In one illustrative embodiment, to make a 4 millimeter panel, rollers 338 will initially be spaced apart about 15 millimeters. Successively, rollers 340 will be spaced apart about 12 millimeters, rollers 342 will be spaced apart about 9 millimeters, rollers 344 will be space apart about 6 millimeters, and finally, rollers 346 and 348 will be each spaced apart about 4 millimetexs. This gradual progression of pxessure reduces stress on the rollers, as well as the belts 350, 352 driving the rollers. Such belts 350, 352 generally define the top and bottom of chamber through which panel 2 travels. Because of the less stress that is applied to belts 350 and 352 which drive rollers 338, 340, 342, 344, 346, 348, such belts 350, 352 can be made from such materials as Teflon glass, rather than conventional materials such as a metal. The Teflon belts absorb less heat than metal belts do, so more of the heat generated will be transferred to the to the lamination of panel 2, in contrast to production lines using conventional metal belts. In one illustrative embodiment, stages 306 and 308 are approximately 10 meters long and approximately 4 meters wide.
W one illustrative embodiment, located between every two pairs of rollers axe a pair of surfaces or platens 354, 356 between which the panel 2 moves during the lamination process. Illustratively, platens 354, 356 receive hot oil or similar fluid. It is appreciated, however, that other methods of heating the platens can be used. In the present embodiment, however, the hot oil causes the platens 354, 356 to raise the core temperature of the panel 2 to about 340 degrees F. The combination of the compxession force generated by the rollers 338, 340, 342, 344, 346, 348 and the heat generated by the platens 354, 356 causes the polypropylene in the material layexs 6, 8 to melt, causing same to begin fusing and compacting into the panel 2 of desired thickness.
After the layers 6, 8 of the composite panel 2 is heated, fused, and reduced to a desired thickness, the resulting composite panel 2 is cooled at cooling stage 308. In the illustrated embodiment, cooling stage 308 is an extension of the heat and press stage 306 to the extent that stage 308 also includes pairs of rollers 358, 360, 362, 364, 366 which are similarly situated to, and arranged liliearly with, rollers 338, 340, 342, 344, 346, 348. The space between each of the rollers is about the same as the space between the last pair of rollers of the heat and press stage 306, in this case rollers 348. In the forgoing example, the rollers 348 were illustratively spaced apart about 4 millimeters. Accordingly, the spacing between the rollers of each pair of rollers 358, 360, 362, 364, 366 of stage 308, through which the panel passes, is also spaced apart about 4 millimeters. Cooling stage 308 treats platens 372 through that are cooled with cold water, illustratively at approximately 52 degrees F, rather than being treated with hot oil, as is the case with heat arid press stage 306. This cooling stage rapidly solidifies the melted polypropylene, thereby producing a rigid laminated hardboard panel 2.
Hardboard panel 2 exits the cooling stage 308 at exit 408, as shown in Fig. 24, and enters the shear and trim stage 310, as shown in Figs. 25 through 28. In one illustrative embodiment, composite panel 2 passes through an interior wall laminating stage 410 and into the trim and cutting stage 412. When panel 2 passes through stage 412, its edges can be trimnned to a desired width and the panel cut to any desired length with the panel exiting to platform 414.
A top view of line 300 is shown in Fig. 21 which includes the various aforementioned stages 302, 304, 306, 308, 310 as well as finishing a stage 416. This stage 416 is illustratively for applying an acrylic or other like resin finish to the surface of the composite panel. Specifically, once such a composite panel 2 exits the shear and trim stage 310, it is supported on a plurality of rollers 418 and placed along the length of platform 414 to move panel 2 in direction 420. In one illustrative embodiment, panel 2 may be rotated into position, as shown in Fig. 28, to finishing stage 416. To rotate panel 2, movable catches 422, 424, one at the proximal end of platform 414 and the other at the distal end of platform 414, as shown in Figs. 21 and 28, both move concurrently to move panel 2. Catch 422 moves a corner of panel 2 in direction 420 while catch 424 moves the other corner of panel 2 in direction 426, ultimately positioning panel 2 on platform 415 at stage 416. It is appreciated, however, that it is not required to locate such a finishing stage at an angle relative to line 300. Alternatively, stage 416 may be located linearly with the remainder of line 300.
Illustratively, before applying the acrylic finish to panel 2 at stage 416, its surface is first prepared. The illustrative process for preparing the surface of panel 2 is fixst sanding the surface to accept the finish coat. After sanding the surface of panel 2, a wet coating of the resin is applied. Illustratively, the resin is polyurethane.
The acrylic resin can then be UV cured, if necessary. Such curing is contemplated to take as much as 24 hours, if necessary. Initial cooling, however, can take only tluee seconds. Such an acrylic coating has several uses, one is the dry-erase board surface, previously discussed, as well as exterior side wall panels for recreational vehicles and pull type trailers. It is further contemplated herein that other surface coatings can be applied at stage 416 as known by those skilled in the art.
In another illustrative embodiment, interior wall laminating stage 410, though part of line 300, can be used to create wall panel composites from panel 2.
When making such panel, rather than panel 2 passing through stage 410, as previously discussed panel 2 is laminated at stage 410. In this illustrative embodiment, as shown in Figs. 25 and 26, for example, stage 412 comprises an uncoiling hopper 430, a hot air blower 432, and a roller stage 434. Hopper 430 is configured to support illustratively two rolls of material. For this illustrative embodiment, a base substrate layer 436, and a finish surface material layer 438 is located in hopper 430.
It is appreciated that the base substrate layer 436 can be any suitable material, including the fibrous material layer 6 as previously discussed or a priming surface material.
The finish surface material layer 438 can be of any finishing or surface material such as vinyl, paper, acrylic, or fabric, Uncoiling hopper 430 operates similar to that of stage 302 to the extent that they both uncoil rolls of material. Hopper 430 operates differently from stage 302, however, to the extent that both layers 436 and 438 uncoil concurrently, rather than in tandem, like rolls 6' and 6", for example. In other words, both layers 436, 438 will form the layers of the composite top coat, rather than form a single continuous layer for a board, as is the case with roll 6' and 6".
In the illustrative embodiment, base substrate layer 436 uncoils below the finish surface material layer 438, as shown in Figs. 26 and 27. In addition, both layer 436 and layex 438 form a composite as they enter roller stage 434. The hot air blower 432 blows hot air 448 at approximately 450 degrees F in direction 448 between layer 436 and layer 438. This causes the surfaces, particularly the base material layer 436 surface, to melt. For example, if the base substrate layer 436 is fibrous material layer 6, the polypropylene on the surface of this material melts. As layer 436 and layer 438 pass between a pair of rollers 450 at the roller stage 434, the melted polypropylene of layer 436 bonds with the layer 438, forming a composite of fibrous material having the finish surface material 438. After the materials have formed a laminated composite, they can then proceed to the shear and trim stage 310.
It is contemplated that finish surface material layer 438 may comprise several ftnish materials applied to base material layer 436 either concurrently or in tandem. For example, a roll of material layer 438 may comprise a roll that includes a section of vinyl, attached to a section of paper, and then fabric, and then vinyl again.
Uncoiling this roll and bonding it to layer 436 produces a single composite board having several tandemly positioned finish surfaces that can be sheared and cut at stage 310 as desired.
Another illustrative hardboard manufacturing line 500 is shown in Figs. 29 and 30. Line 500 is another embodiment for manufacturing laminated hardboard panels of the type illustratively shown in Figs. 4 through 6. This manufacturing line 500 is similar to manufacturing line 300 previously discussed, wherein process 500 comprises the mating of several layers of materials, illustratively layers 22, 24, as well as the calendaring surface 32 and coated surface 34, as shown illustratively in panel 30 of Fig. 6. Manufacturing line 500 comprises the following panel manufacturing stages: the uncoiling and mating stages 502, the pre-heating stage 504, the heat and press stage 506, the cooling stage 508, the calendaring stage 510, and the shear and trim stage 512.
One illustrative embodiment of line 500 comprises a calendaring stage 510. This stage is located in the same location as the laminating stage 410 of line 300, as shown in Fig. 25. The purpose of the calendaring stage is to smooth the top surface of the illustrative panel 30 to prepare it for the paint application of line 514.
Conventionally, using belts 350, 352 in conjunction with the heated platens may cause the texture of those belts, similar to a cloth pattern, to be embedded in the surfaces of the panel 30. (See, also, Fig. 24.) The calendaring process removes this pattern to provide a smoother surface in anticipation of the paint application. In the illustrated embodiment shown in Fig. 30, calendaring stage 510 comprises a conveying line and spaced apart rollers 572, as well as a heat source 574. As panel 30 exits the cooling stage 508, it is transferred to the calendaring stage 510 where the heat source, illustratively infrared heat or heated air, or a combination of both, is applied to the surface of the panel 30. Panel 30 is then directed between the two spaced apart rollers 572 which will then smooth the surface that has been heated by heater 574. In one embodiment, it is contemplated that at least one of the rollers is temperature controlled, illustratively with water, to maintain the rollers up to an approximate 120 degrees F. It is further contemplated that the heated air or IR heater is controlled to only heat the surface of panel 30 and not the center of the board itself.
Furthermore, it is contemplated that the roller can subject up to an approximate 270 pounds per linear inch force on the surface of the panel 30 in order to smooth out any pattern in the surface and/or related defects thereon to produce a calendared surface 32 as previously discussed with respect to Fig. 6. It will be appreciated that this calendaring process will prepare the surface 32 of panel 30 so that it may receive a Class A auto finish. Once the panel 30 exits the calendaring stage 510, it then is transferred to the shear and trim stage 512 where the panel will take its final shape prior to the paint stage.
In contrast to manufacturing line 300, however, line 500 further comprises paint application line 514. Paint line 514 comprises a transfer conveyer 516 which moves panels, in this illustrative case panel 30, from the shear and trim stage 512 to the paint line 514. This is accomplished illustratively by rollers on conveyer 518 moving panel 30 perpendicularly from shear and trim stage 512 to paint line 514 which is illustratively positioned parallel to line 500. If, for example, panel or the other panels 20 and 28 do not receive a paint application, they can be 25 removed from the line at an off load point 520. If panel 30, for example, will be receiving a paint application, it is loaded onto paint line 514 via a staging section 522 as shown in Fig. 29. The first stage of the paint process of paint line 514 is to flame treat the top surface of panel 30 at 524. The flame treatment process is a means to relax the surface tension and ionize-charge the board for chemical bonding.
This will 30 decrease the surface tension of the plastic or the bonding material. Such decrease in surface tension allows the plastic to have a similar surface tension to that of the paint that will create better adhesion of the paint to the board. In the illustrative embodiment, the flame treatment uses a blue flame approximately 1/4 inch in height, and the board is passed below the flame of about 3/8 of an inch at a rate of about 26 feet per minute. It is appreciated, however, that other means of heating the surface of panel 30 is contemplated and, in regards to the flame size, temperature, and the distance of the board from the flame, is illustrative and not considered to be the sole embodiment of this disclosure.
It is contemplated that much of the paint line will be enclosed and, because of such, after the flame treatment stage 524, an air input section is added to create positive pressure within the line. In the illustrative embodiment, a fan is added to this section to input air which will blow dust and debris away from the panel to keep it clean. The next stage of paint line 514 is the adhesion promoter spray booth 528. Booth 528 applies a plastic primer to the surface of panel 30 that integrates with the plastic in the board to assist in better adhesion of subsequent paint layers. In this illustrative embodiment, a down-draft spray of the primer is applied to the surface of panel 30. Exiting booth 528, another air input section 530 is illustratively located to further create positive pressure to continue preventing dust or other contaminates from resting on the surface of the panel.
After panel 30 exits the adhesion promoter booth 528, it enters the UV
primer seal spray booth 532. Booth 532 applies a UV filler paint to further level the surface of the panel 30, as well as serve as an additional primer for the final UV care paint. It is appreciated, however, that depending on the application of the panel, the UV filler can be replaced with a UV paint or other paint as a topcoat. In this illustrative embodiment, however, the booth 532 uses a down-draft spray to apply the primer seal onto panel 30.
Exiting booth 528, panel 30 then enters an ambient flash stage 534 wherein the panel 30 rests to allow solvents from the paint to evaporate.
Though not shown, the solvents are drawn from the ambient flash stage 534 where the solvents are burned so as to not enter the atmosphere. In addition, stage 534 may include an input fan 536, similar to air inputs 526 and 530, to maintain positive pressure in this section.
After allowing the solvents to dissipate from the surface of the panel 30, it is transported under a UV cure lamp 538 to further cure the paint. The UV cure 538 is illustratively a high-intensity, ultra-violet light to which the paint is sensitive, and which will further cure the paint.
After passing through UV cure 538, the panel 30 is passed through an infrared oven 540. The panel 30 is moved through oven 540 at an illustrative rate of 2.5 meters per minute and the IR oven is set at about 165 degrees F. This step further assists to drive out any remaining solvents that might not have been driven out prior to the UV cure. In addition, those solvents axe also then sent off and burned before reaching the atmosphere.
Once exiting the IR oven 540, panel 30 is transferred to a side transfer section 542 which allows either removal of panel 30 if the paint applied at booth 532 was the final application of paint, or through conveyors 544 as shown in Fig.
29, if panel 30 is to be transferred to a secondary paint line 546.
If panel 30 is transferred to secondary paint line 546, it is passed through another spray booth 548. Booth 548 uses a down-draft spray to apply a UV
topcoat over top the UV filler and adhesion promoter coats previously discussed. The UV topcoat will be the finished coat that provides the Class A auto finish as previously discussed, for example. Once the topcoat has been applied onto the surface of panel 30, the following process is similar to that as described with respect to paint line 514 which is that the panel 30 is again subjected to an ambient flash at section 550, similar to ambient flash stage 534 previously discussed, wherein the solvents are allowed to evaporate, and are driven off and burned. Furthermore, the panel is transferred through a UV cure 552 section, similar to that of 538 and as previously discussed, the UV cure 552 serves also as UV high-intensity light to further cure the topcoat applied at 548. After passing through the UV section 552, panel 30 then enters infrared oven 554, which is similar to IR oven 540 previously discussed, wherein the panel is subjected to a temperature of about 165 degrees F fox about 2.5 minutes.
When panel 30 exits the IR oven, it enters an inspection booth 556 where the surface is inspected for defects in the paint or in the board. The inspection can be either manually accomplished by visual inspection of the surface and identifying such defects, or can be accomplished through an automated inspection process comprising sensors to locate defects, etc. In addition, the inspection booth _29_ 556 also serves as a cool-down process for the process. The inspection booth maintains a temperature of about 78 degrees F with about 50 weight percent relative humidity to cool down at least the surface of the board from the approximate degrees F from the IR oven to about 80 degrees F. If a board does not pass inspection, it will be removed for repair or recycling. If the board does pass inspection, it will pass through a pinch roller 558 that will apply a slip sheet which is illustratively a thin 4 millimeter polypropylene sheet that protects the painted surface of panel 30 and allow the same to be stacked at the off load section 560.
Composite materials, like those used to manufacture automobile bodies and interiors, have the potential to be recycled into new materials. An impediment to such recycling, however, is incompatible particle sizes of otherwise potentially recyclable constituents. For example, a variety of combinations of polypropylene, vinyl, polyester, ABS, and fibrous materials may be used to produce a panel or core product for a panel.
In the recycle system 600, shown in Figs. 31 through 33, several materials are collected and segregated based on a desired composition at 602.
Each material is granulated to reduce its particle size. The degree to which each material is granulated can be varied depending on the chemistry desired in the resulting panel.
After each material is granulated, the loss and weight is determined at 604.
This is done so that the cross-section and weight can be controlled before the resultant material is laminated into a panel. The materials are blended into a composition at 606 and transferred to collector 608. The composition is then transferred from collector 608 through a metal detector 612 which is configured to remove metal particles. The remaining composition is then deposited into a scatter box 614.
Scatter box 614 allows particles of a particular maximum size to deposit onto granulate belt 616. The Ioss and weight of the resulting composition is then determined again to maintain the density of the final panel. The composition is then transferred to the recycle composition storage 626 in anticipation for deposit with the other laminate constituents.
The recycled composition manufacturing panel line 618, shown in Figs. 32 and 33, is similar to line 300 shown in Fig. 20. Line 618 comprises the following primary stages: uncoiling 620, pre-heater 622, heat and pressure 624, recycled material storage 626, cooling 628, shear and trim 630. Tn the illustrated embodiment of Fig. 32, rolls 632, 634 of material, such as a fibrous or woven glass material, for example, are located at stage 620. Rolls 632, 634 are uncoiled to form composite layers. These layers are then pre-warmed using pre-heater stage 622, similar to stage 304 used in manufacturing line 300. The recycled composition material from stage 626 exists in the form of chips having an irregular shape with a maximum dimension in any one direction of, illustratively, 0.125 inches, and is then deposited between the composite layers. The new composite layers are then subjected to the same heat, pressure, and cooling at stages 624 and 628, respectively, as to the heat and press stage 306 and the cooling stage 308 of manufacturing line 300.
The heat and pressure stage 624 receives the preheated composite layers, and through a progression of increasingly narrowly-spaced rollers, compresses the composite layers to a desired thickness similar to that previously discussed.
Again, this gradual progression of pressure reduces stress on the rollers and the belts driving the rollers, as discussed with stage 306 of line 300. In addition, the belts that drive the rollers can, too, be made of Teflon glass material, rather than a metal, also previously discussed. Also similar to stage 308, stage 628 includes a pair of surfaces or platens between every two pairs of rollers to allow the composite layer to move there between. Illustratively, the platens receive hot oil. It is appreciated that other methods of heating the platens are contemplated, similar to stage 306. After the composite layers are heated, fused, and reduced to a desired thickness, the resulting panel is cooled. Cooling stage 628 is comparable to stage 308. The final stage is shear and trim 630, which is also similar to the shear and trim stage 310 of line 300.
As shown in Figs. 32 and 33, line 618 further includes a dual side lamination stage 636. Stage 636 is similar to stage 410, shown in Fig. 25, except for the additional uncoiling stage 638 located beneath a primary uncoiling stage 637. It is contemplated that applying a surface on both sides of a composite panel is the same as applying a single surface, as shown in Fig. 20, with the exception that warm air will be directed to both sides of the composite panel. The process as shown in Fig.
does apply to the lower surface as well.
A sectional view of fibrous substitute material layer 6 is shown in Figs.
36a through c. The distinction between the views of Figs. 36a through c is the amount of heat and pressure applied to fibrous material layer 6. As previously discussed above, fibrous material layer 6 illustratively comprises a mat of illustratively about 25 weight percent hemp and about 25 weight percent kenaf with the balance being illustratively polypropylene. The fibers are randomly oriented to provide a nonspecific orientation of strength. Variations of this fibrous material are contemplated, including an about 24.75 weight percent hemp and about 24.75 weight percent kenaf combination with about 50 weight percent polypropylene and about 0.05 weight percent malefic anhydride. Other such fibrous materials can be used as well, such as flax and jute, for example. It is also contemplated that other blend ratios of the fibrous material can be used. It is further contemplated that other binders in place of polypropylene may also be used for the purpose discussed further herein.
Still further, it is contemplated that other fibrous materials which have high process temperatures in excess of about 400 degrees F, for example, may be used as well.
The fibrous material layer 6 shown in Fig. 36a is considered a virgin version of the layer, similar to that shown in Fig. 1, or on rolls 6' and 6"
shown in Fig.
22. This version of layer 6 is considered virgin, because it has not been subjected to a heat treatment or was compressed. The fibers and the binder that compose the layer exist as essentially separate constituents simply mixed together. In this state, the virgin version is highly permeable and pliable. The relative thickness 700 of the layer 6 is relatively greater than the thicknesses 702 or 704 of layers 6 shown in either Figs.
7b and 7c, respectively. Furthermore, because the binder, polypropylene, for example, is not bound to the fiber, heating layer 6 may cause it to consolidate or shrink, particularly in its length and width.
In contrast, layer 6 shown in Fig. 36c, though comprising the same constituents as layer 6 in Fig. 36a, has been subjected considerably to heat and pressure. This embodiment of layer 6 is considered a high density version. In this case, the binder has been fully wetted-out. Fully wetted-out, for the purposes of this discussion means that the binder has, for practical purposes, all liquefied and bonded to the fibrous material of layer 6. Such produces an essentially non-permeable, dense and rigid body. The binder, typically a thermal melt polymer, like polypropylene, is melted into a liquid state, causing the polymers to adhere to and/or wet-out the fibrous materials. This can produce a consolidation of the composite when cooled which shrinks the layer. This results, however, in a rigid and dimensionally stable flat sheet.
If such a layer is then reheated, because the binder is already bonded with the fibrous material, the layer will not shrink, unlike the layer 6 described in Fig. 36a.
Such high density layers are used to produce the layers 72, 74 of truss composite 70, previously discussed with respect to Fig. 10, for example.
The version of layer 6 shown in Fig. 36b, in contrast to both the virgin and high density versions from Figs. 36a and c, respectively, is considered a low density version. This low density version has been subjected to heat and pressure, so that a portion of the binder in the layer has been wetted-out, unlike the virgin version of Fig. 36a which has not been subjected to such a process. Furthermore, unlike the high density layer shown in Fig. 36c, the binder of the low density layer has not been fully wetted-out. In other words, not all of the binder in the low density layer has liquefied and bonded to the natural fibers, only a portion of the binder has.
The remaining binder is still maintained separate from the fibrous material. This makes the low density version rigid, similar to the high density version, yet, also semi-permeable, more akin to the virgin version. In one illustrative embodiment, the binder has melted and soaked into about 50 percent of the fibers that are in the layer. In this case, it is not believed that the fibers per se have grown, nor changed in a specific value. Rather, the fibers have just absorbed the binder.
2p The low density version can provide accelerated processing for three-dimensional molding, particularly in molding, like that shown in Figs. 11 and 12, where various compression zones are used to form the material. Furthermore, utilizing such a composite provides lower production costs. In addition, because the layer is rigid, yet has some permeability, it can be used as a tack board alone or in conjunction with the dry erase board 150 of Fig. 15, for example. The properties also malce it conducive to acoustical insulation or ceiling tiles.
Conventional heat sources such as infra red ovens are not used to heat a high density layer 6 material, because it may cause changes to its physical dimensions or cause overheating of the surface area of the high density layer 6 in order to bring the core up to proper processing temperatures. In contrast, contact heating ovens, which use upper and lower heated platens to hold a virgin layer under pressure during heating to prevent significant shrinkage, are not readily available in the general molding industry that may use such materials.
Furthermore, the target cycle times required to heat these layers to molding temperatures require extra energy and equipment.
Using the low density version of layer 6 can, on balance, be a more cost effective way to mold such fibrous material layers. For example, an 1800 gram per meter square sample of fibrous material, as described with respect to Figs. 26a through c, may require about 83 seconds of heat time in a contact oven to get the virgin version up to molding temperature. The high density version may require seconds of heat time in an IR oven. The low density board, however, may require only about 28 seconds of heat time in an air circulated hot air oven. This is to reach a core temperature of about 340 to 350 degrees F.
When heating the low density version in a simple air circulated hot air oven, the energy required to heat low density board is 50 percent less than the required energy to heat the layer through a contact oven and 70 percent less than the required energy to heat a consolidated hard board utilizing infra red oven.
The high density layer is typically only heated by an infrared oven. This is because the high density version does not have the permeability for hot air, and contact ovens may overheat and damage the layer.
Some benefits of the high density version over the virgin version are also found in the low density version. First of all, similar to how the high density version requires less packaging space than the virgin because of its reduced thickness, the low density version too requires less packaging space since its thickness is also less than that of the virgin version. Such translates into reduced shipping costs.
Secondly, because the low density version is rigid, like the high density version, the low density version can be handled much easier with mechanical devices, such as grippers and clamps. This can be more difficult with the virgin version which is more pliable. Also, the low density material does not always have to be pre-heated.
Some applications of the virgin version may require the layer to be preheated so as to dimensionally stabilize the material. This is not necessary with the low density version. In contrast, for those production lines that use a needle system to handle materials, particularly, for materials like the virgin version of layer 6, the high density version would not receive such needles, because of the solidified binder. The low density version, however, still being semi-permeable, may receive such needles, allowing it to be transported easily, similar to that of the virgin version.
Manufacture of the low density version like that shown in Fig. 36c comprises subjecting the virgin version to both heat and pressure. The heat and pressure is illustratively provided by an oven which comprises compressed rolls that pinch the material to reduce its ability to shrink while it is being heated.
The rolls have belts with holes disposed therethrough, through which the hot air passes.
The layer is being held as structurally rigid as possible so it does not suck-in and become narrow and thick in the middle. The heat and pressure causes the binder to liquefy, and under the rollers, causes the melted binder to be absorbed into and surround the natural fiber. The layer may slmink to some minor extent, but that can be compensated for during this manufacturing process. When the layer is removed from the oven, cold air is blown on it to solidify the layer.
Typically, thermal melt polymers are heat sensitive, and at temperatures above 240 degrees F will attempt to shrink (deform). Therefore, the opposing air permeable belts having opposing pressures limits the amount of heat sink shrinkage that will occur during this process. Once the initial heating has occurred (polymers changed from a solid to liquid state), and consolidation of thermal melt and non-thermal melt fibers are achieved, the consolidated layer 6 becomes thermal dimensionally stable. After heating, and while the consolidated mat is under compression between the opposing air permeable belts, the layer is chilled by ambient air being applied equally on opposite sides of the consolidated mat to, again, bring the thermal melt polymers back to a solid state.
Although the present disclosure has been described with reference to particular means, materials and embodiments, from the foregoing description, one skilled in the art can easily ascertain the essential characteristics of the present disclosure and various changes and modifications may be made to adapt the various uses and characteristics without departing from the spirit and scope of the present invention as set forth in the following claims.
In one illustrative embodiment, each panel 42, 44 is heat-compressed into the honeycomb core 46. The higher polypropylene content used in the panels provides for more thermal plastic available for creating a melt bond between the panels and the honeycomb core. During the manufacturing of such panels 40, the heat is applied to the inner surfaces 48, 50 of panels 42, 44, respectively. The heat melts the polypropylene on the surfaces which can then bond to the polypropylene material that makes up the honeycomb core. It is appreciated, however, that other ratios of fiber to polypropylene or other bonding materials can be used, so long as a bond can be created between the panels and the core. In addition, other bonding materials, such as an adhesive, can be used in place of polypropylene for either or both the panels and the core, so long as the chemistries between the bonding materials between the panels and the core are compatible to create a sufficient bond.
A top detail view of the one illustrative embodiment of honeycomb core 46 is shown in Fig. 8. This illustrative embodiment comprises individually formed bonded ribbons 52. Each ribbon 52 is formed in an illustrative battlement-lilce shape having alternating merlons 54 and crenellations 56. Each of the corners 58, 60 of each merlon 54 is illustratively thermally-bonded to each corresponding corner 62, 64, respectively, of each crenellation 56. Such bonds 66 which illustratively run the length of the corners are shown in Fig. 9. Successive rows of such formed and bonded ribbons 52 will produce the honeycomb structure, as shown.
Another embodiment of the honeycomb composite panel comprises a fibrous material honeycomb core in place of the polypropylene honeycomb core.
Illustratively, the fibrous material honeycomb core may comprise about 70 weight percent polypropylene with about 30 weight percent fiber, for example, similar to that used for top and bottom panels 42, 44, previously discussed, or even a 50/50 weight percent mix. Such formulations are illustrative only, and other formulations that produce a high strength board are also contemplated herein.
A perspective view of a truss composite 70 is shown in Fig. 10. Truss panel composite 70 is a light weight, high strength panel for use in either two- or three-dimensional body panel applications. The illustrated embodiment of truss composite 70 comprises upper and lower layers 72, 74, respectively, which sandwich truss member core 76. Each of the layers 72, 74, 76 is made from a combination fibrous/polypropylene material, similar to that described in foregoing embodiments.
Each layer 72, 74, 76 comprises a non-directional fibrous material, illustratively, about 25 weight percent hemp and about 25 weight percent kenaf with the balance being polypropylene. The fibers are randomly oriented to provide a non-specific orientation of strength. Illustrative variations of this fibrous material are contemplated, which may include, for example, an approximately 24.75 weight percent hemp and 24.75 weight percent kenaf combination with 50 weight percent polypropylene and 0.05 weight percent malefic anhydride. Other ratios of fibrous materials, however, are also contemplated to be within the scope of the invention. In addition, other fibrous materials themselves are contemplated to be within the scope of the invention. Such materials may be flax, jute, or other like fibers that can be blended in various ratios, for example. Additionally, it is appreciated that other binders in place of polypropylene may also be used to accomplish the utility contemplated herein.
The truss core 76 is illustratively formed with a plurality of angled support portions 78, 80 for beneficial load support and distribution. In the illustrated embodiment, support portion 78 is oriented at a shallower angle relative to upper and lower layers 72, 74, respectively, than support portion 80 which is oriented at a steeper angle. It is appreciated that such support portions can be formed by using a stamping die, continuous forming tool, or other like method. It is further appreciated that the thickness of any of the layers 72, 74, or even the truss core 76 can be adjusted to accommodate any variety of load requirements. In addition, the separation between layers 72, 74 can also be increased or decreased to affect its load strength.
Between each support portion is an alternating contact portion, either 82, 84. The exterior surface of each of the alternating contact portions 82, 84 is configured to bond to one of the inner surfaces 86, 88 of layers 72, 74, respectively.
To create the bond between layers 72, 74 and truss core 76, superficial surface heat, about 450 degrees F for polypropylene, is applied to the contact surfaces to melt the surface layer of polypropylene, similar to the process discussed further herein. At this temperature, the polypropylene or other binder material is melted sufficiently to bond same with the polypropylene of the core. hi this illustrative embodiment, contact portion 82 bonds to the surface 86 of upper layer 72, and contact portion 84 bonds to the surface 88 of layer 74. Once solidified, a complete bond will be formed without the need for an additional adhesive. It is appreciated, however, that an adhesive may be used in place of surface heat bonding.
The outer surfaces of layers 72, 74 may be configured to accommodate a fascia cover stock (not shown). Such fascia cover stock may be comprised of fabric, vinyl, acrylic, leathers, epoxies, or polymers, paint, etc. In addition, the surfaces of layer 72, 74 may be treated with a polyester to waterproof the panel.
An end view of a hinged visor body 90 is shown in Fig. 11 a. This disclosure illustrates a visor, similar to a sun visor used in an automobile.
It is appreciated, however, that such a visor body 90 is disclosed herein for illustrative purposes, and it is contemplated that the visor does not represent the only application of a formed hinged body. It is contemplated that such is applicable to any other application that requires an appropriate hinged body.
In the illustrated embodiment, body 90 comprises body portions 92, 94 and a hinge 96 positioned therebetween. (See Figs. l 1b and 12b.) Body 90 is illustratively made from a low density fibrous material, as further described herein below. In one embodiment, the fibrous material may comprise a randomly-oriented fiber, illustratively about 50 weight percent fiber-like hemp or kenaf with about 50 weight percent polypropylene. The material is subjected to hot air and to variable compression zones to produce the desired structure. (See further, Fig. 13.) Another illustrative embodiment comprises about 25 weight percent hemp and about 25 weight percent kenaf with the balance being polypropylene. Again, all of the fibers are randomly oriented to provide a non-specific orientation of strength. Other variations of this composition are contemplated including, but not limited to, about a 24.75 weight percent hemp and about a 24.75 weight percent kenaf combination with about 50 weight percent polypropylene and about 0.05 weight percent malefic anhydride.
Additionally, other fibrous materials are contemplated to be within the scope of this disclosure, such as flax and jute in various ratios, as well as the fibers in various other blend ratios. It is also appreciated that other binders in place of polypropylene may also be used for the utility discussed herein.
The illustrated embodiment of body 90 comprises hinge portion 96 allowing adjacent body portions 92, 94 to move relative to each other. The illustrative embodiment shov~m in Figs. 11 a and b depicts body 90 in the unfolded position. This embodiment comprises body portions 92, 94 having a thickness such that hinge portion 96 is provided adjacent depressions 98, 100 on the surface body portions 92, 94, respectively. Because body 90 is a unitary body, the flexibility of hinge portion 96 is derived from forming same into a relatively thin member, as herein discussed below. In such folding situations as shown in Fig. 12a, material adjacent the hinge may interfere with the body's ability to fold completely. These depressions 98, 100 allow body portions 92, 94 to fold as shown in Fig. 12a, without material from said body portions interfering therewith. As shown in Fig. 12b, a cavity 102 is formed when body portions 92, 94 are folded completely. It is contemplated, however, that such occasions may arise wherein it may not be desired to remove such material adjacent hinge portion 96, as depicted with depressions 98, 100. Such instances is contemplated to be within the scope of this disclosure.
In the illustrative embodiment shown in Fig. 1 1b, hinge portion 96 forms an arcuate path between body portions 92, 94. The radii assists in removing a dimple that may occur at the hinge when the hinge is at about 180 degrees of bend.
As shown in Fig. 12b, hinge portion 96 loses some of its arcuate shape when the body portions 92, 94 are in the folded position. It is appreciated, however, that such a hinge 96 is not limited to the arcuate shape shown in Fig. 11 a. Rather, hinge portion 96 may be any shape so long as it facilitates relative movement between two connecting body portions. For example, hinge portion 96 may be linear shaped. The shape of the hinge portion may also be influenced by the size and shape of the body portions, as well as the desired amount of movement between said body portions.
Illustratively, in addition to, or in lieu of, the fibrous material forming the visor hinge via high pressure alone, the hinge may also be formed by having a band of material removed at the hinge area. In one illustrative embodiment, a hinge having a band width about 1/8 inch wide and a removal depth of about 70 weight percent of thickness mass allows the hinge full compression thickness after molding of about 0.03125 inch, for example. The convex molding of the hinge may straighten during final folding assembly, providing a straight mid line edge between the two final radiuses. It is contemplated that the mold for the mirror depressions, etc., plus additional surface molding details can be achieved using this process. It is further anticipated that the cover stock may be applied during the molding process where the cover is bonded to the visor by the polypropylene contained in the fibrous material formulation.
The illustrative embodiment of body 90 includes longitudinally-extending depressions 93, 95 which form a cavity 97. (See Figs. l la, 12a and 14a.), Cavity 97 is configured to receive bar 99, as discussed further herein. (See Fig. 14b.) It is appreciated that such depressions and cavities described herein with respect to body 90 are for illustrative purposes. It is contemplated that any design requiring such a moldable body and hinge can be accomplished pursuant the present disclosure herein.
As previously discussed, body 90 may be comprised of low density material to allow variable forming geometry in the visor structure, i.e., high and low compression zones for allowing pattern forming. For example, the panels portion may be a low compression zone, whereas the hinge portion is a high compression zone. In addition, the high compression zone may have material removed illustratively by a saw cut during production, if required, as also previously discussed.
This allows for a thinner high compression zone which facilitates the ability for the material to be flexed back and forth without fatiguing, useful for such a hinge portion.
An end view of a die assembly 110 for compression molding a fiber material body and hinge is shown in Fig. 13. The form of the die assembly 110 shown is of an illustrative shape. It is contemplated that such a body 90 can be formed into any desired shape. In the illustrated embodiment, assembly 110 comprises illustrative press plates 112, 114. Illustratively, dies 116, 118 are attached to plates 112, 114, respectively. Die 116 is formed to mirror corresponding portion of body 90. It is appreciated that because the view of Fig. 13 is an end view, the dies can be longitudinally-extending to any desired length. This illustrative embodiment of die 116 includes surfaces 120, 122 and includes compression zones 124, 126, 128, 130.
Zones 124, 126 are illustratively protrusions that help form the depressions 93, 95, respectively, of body 90, as shown. (See also Fig. 1 la.) Zones 128, 130 are illustratively protl-usions that help form the depressions 98, 100, respectively, of body 90, as shown. (See also Fig. l la.) And zone 132 is illustratively a form that, in cooperation with zone 134 of die 118, form hinge portion 96.
This illustrative embodiment of die 118 includes surfaces 136, 138 and includes compression zones 140, 142, 134. Zones 140, 142 are illustratively sloped walls that help form zone 134. (See also Fig. 11 a.) Zone 134 is illustratively a peak that, in cooperation with zone 132 creates a high compression zone to form hinge portion 96, and, illustratively, depressions 98, 100, if desired. Again, it is appreciated that the present pattern of such zones shown is not the only such pattern contemplated by this disclosure.
In the illustrated embodiment, body 90, in the illustrative form of a hinged visor, is folded as that shown in Fig. 12a. It is further contemplated that during forming the body may be heated by hot air to bring it up to forming temperatures. The heating cycle time may be about 32 seconds, and the toll time after clamp for cool down will be around 45 to 50 seconds, depending on tool temperature.
Furthermore, skins, like a fabric skin can be bonded to the visor during this step.
Another embodiment of the hardboard panel is a low density panel, illustratively, an approximately 2600 gram panel with about 50 weight percent fiber-like hemp, kenaf, or other fiber material with about 50 weight percent polypropylene.
Such materials are subjected to hot air to produce a light-weight, low density panel.
The panel material may be needle-punched or have a stretched skin surface applied thereon for use as a tackable panel, wall board, ceiling tile, or interior panel-lilce structure.
A portion of a dry-erase board 150 is shown in Fig. 15. Such a board 150 may comprise a hardboard panel 152 (similar to panel 2) pursuant the foregoing description along with a surface coating 154. The surface coating, as that described further herein, provides an optimum work surface as a dry-erase board. Surface coating 154, for example, can be a Class A finish previously described. This illustrative embodiment includes a frame portion 156 to enhance the aesthetics of board 150. One embodiment may comprise a dual-sided board with a low density tack board on one side and a dry-erase hardboard on the other side.
An illustrative embodiment of a work body in the form of a table top 180, is shown in Fig. 16. The view illustrated therein is a partial cut-away view showing the mating of a top 182 to an underside 184. An illustrative pedestal supports table top 180 in a conventional manner. It is appreciated, however, that the table top 180 is shown in an exaggerated view relative to pedestal 186 so as to better illustrate the relevant detail of the table top 180.
In the illustrated embodiment, the periphery 188 of top 182 is arcuately formed to create a work surface edging. The top 182 is attached to the underside 184 via a portion of the periphery 190 of the same mating with the top 182.
Periphery 190 illustratively comprises an arcuate edge portion 192 which is complimentarily shaped to the interior surface 194 of periphery 188 of top 182. Adjacent the arcuate edge portion 192 is an illustrative stepped portion 196. Stepped portion 196 provides a notch 198 by extending the underside panel 202 of the underside 184 downward with respect to top 182. Notch 198 provides spacing for edge 200 of periphery 188.
Such an arrangement provides an appearance of a generally flush transition between top 182 and underside 184. Interior surface 194 of periphery 188 and outer surface 204 of periphery 190 can be mated and attached via any conventional method. For example, the surfaces can be ionize-charged to relax the polypropylene so that an adhesive can bond the structures. In addition, a moisture-activated adhesive can be used to bond the top 182 with the underside 184.
Detailed views of the mating of top 182 and underside 184 is shown in Figs. 17 and 18. The conformity between peripheries 188 and 190 are evident from these views. Such allows sufficient bonding between top 182 and underside 184.
The generally flush appearance between the transition of top 182 and underside 184 is evident as well through these views. The variations between illustrative embodiments are depicted in Figs. 17 and 18. For example, top surface 206 is substantially coaxial with level plane 208 in Fig. 17, whereas top surface 206 is angled with respect to level plane 208. It is appreciated, as well, that the disclosure is not intended to be limited to the shapes depicted in the drawings. Rather, other complimentarily-shaped mating surfaces that produce such a transition between such top and bottom panels are contemplated to be within the scope of the invention herein.
Such mating of top 182 and underside 184 may produce a cavity 210, as shown in Figs. 16 through 19. Depending on the application, cavity 210 may remain empty, or may contain a structure. For example, Fig. 19 shows an end view of table top 180 with a truss member core support 76 illustratively located therein. Truss member core 76 can be of the type previously described and be attached to the interior surfaces 194, 212 via conventional means, such as an adhesive, for example.
Such a core structure can provide increased strength to table top 180. In fact, such strength can expand the uses of the world body to other applications in addition to a table top.
For example, such can be used as a flooring, or side paneling for a structure or a vehicle. It is contemplated that other such cores can be used in place of the truss member. For example, a foam core or honeycomb core can be used in place of the truss.
An illustrative hardboard manufacturing line 300 is shown in Figs. 20 through 28. Line 300 is for manufacturing laminated hardboard panels of the type shown in Figs. 1 through 3, and indicated by reference numeral 2, for example.
The manufacturing process comprises the mating of the several layers of materials, illustratively layers 6 and 8 (see Fig. 1), heating and pressing said layers into a single laminated composite panel, cooling the panel, and then trimming same. In the illustrative embodiment, line 300 comprises the following primary stages:
uncoiling and mating 302 (Fig. 22), pre-heating 304 (Fig. 23), heat and press 306 (Fig.
24), cooling 308 (also Fig. 24), laminating station (Figs. 25 through 28), and shear and trim 310 (also Figs. 25 through 28.) A top view of line 300 is shown in Fig.
21. It is appreciated that the line 300 may be of a width that corresponds to a desired width of the composite material. Fig. 21 also illustrates the tandem arrangement of each of the stages 302, 304, 306, 308, 310.
The uncoiling and mating stage 302 is shown in Fig. 22. In the illustrative embodiment, the materials used for forming the composite are provided in rolls. It is appreciated that the materials may be supplied in another manner, but for purposes of the illustrated embodiment, the material will be depicted as rolls.
Illustratively, stage 302 holds rolls of each illustrative layer 6 and 8 in preparation for mating. As illustrated, stage 302 comprises a plurality of troughs 312 through 320, each of which being illustratively capable of holding two rolls, a primary roll and a back-up roll, for example. In one embodiment, it is contemplated that any number of troughs can be used, and such number may be dependent on the number of layers used in the laminated body.
For this illustrative embodiment, line 300 is configured to manufacture a laminated composite panel 2 similar to that shov~m in Figs. 1 through 3. It is appreciated, however, that the utility of line 302 is not limited to making only that panel. Rather, such a line is also capable of manufacturing any laminated panel that requires at least one of the stages as described further herein. Troughs 312, 316, and 320 each comprise a primary roll 6' and a back-up roll 6" of layer 6. In this example, layer 6 is illustratively a non-oriented fibrous material. Similarly, troughs 314 and 318 each comprise a primary roll 8' and a back-up roll 8" of layer 8 which is illustratively the woven fiber layer. Each roll rests on a platform system 322 which comprises a sensor 324 and a stitching device 326. Sensor 324 detects the end of one roll to initiate the feed of the back-up roll. This allows the rolls to create one large continuous sheet. For example, once fibrous material primary roll 6' is completely consumed by line 302, and sensor 324 detects the end of that primary roll 6' and causes the beginning of back-up roll 6" to join the end of primary roll 6'.
This same process worlcs with primary roll 8' and back-up roll 8" as well.
To secure each roll of a particular material together, stitching device 326 stitches, for example, the end of primary rolls 6' or 8' with the beginning of the back-up rolls 6" or 8", respectively. The stitched rolls produce a secure bond between primary rolls 6', 8' and back-up rolls 6" and 8", respectively, thereby forming the single continuous roll. Illustratively, stitching device 326 trims and loop stitches the ends of the materials to form the continuous sheet. Also, illustratively, the thread used to stitch the rolls together is made from polypropylene or other similar material that can partially melt during the heating stages, thereby creating a high joint bond in the final panel. It is contemplated, however, any suitable threads can be used which may or may not be of a polymer.
Each trough of stage 302 is configured such that, as the material is drawn from the rolls, each will form one of the layers of the laminated composite which ultimately becomes the hardboard panel. Fibrous material layer 6 of primary roll 6' from trough 312 illustratively forms the top layer with the material from each successive trough 314 through 320, providing alternating layers of layers 6 and 8 layering underneath, as shown exiting at 321 in Fig. 22. Each roll of material is illustratively drawn underneath the troughs exiting in direction 327. The resulting layered materials exit stage 302 at 321, pass over bridge 328, and enter the pre-heating stage 304.
Pre-heat stage 304, as shown in Fig. 23, comprises an oven 323 which forces hot air at approximately 240 degrees F into the composite layers. Oven comprises a heater-blower 330 which directs heated air into composite chamber which receives the material layers. This hot air removes moisture from layers 6, 8, as well as heats the center-most layers of the same. Because often such materials are hydrophobic, the removal of the moisture causes the center of the materials to cool.
The forced heat causes the center to be warmed, even while the moisture is being removed. This pre-heat allows the process to become more efficient during the heat and press stage 306. Stage 308 illustratively comprise a roller/belt system which includes rollers 333 that move belts 335, as shown in Fig. 23. Illustratively, these belts are located above and below the panel 2, defining at least a portion of chamber 332. Belts 335 assist in urging panel 2 through stage 304 and on to stage 306.
The preheated composite layers exit through opening 334 of stage 304 and enter the heat and press stage 306, as shown in Fig. 24. The pre-heated composite panel 2 enters stage 306 through opening 336 and into chamber 337. The heat and press stage 306, uses a progression of increasingly narrowly-spaced rollers located between heat zones, thereby reducing the vertical spacing in chamber 337. The combination of the heat and the narrowing rollers reduces the thickness of panel 2 transforming same into a laminated composite panel 2 of desired thickness. For example, stage 306 comprises pairs of spaced rollers 338, 340, 342, 344, 346, through which the composite layers pass. The rollers are linearly spaced apart as shown in Fig. 24. In one illustrative embodiment, to make a 4 millimeter panel, rollers 338 will initially be spaced apart about 15 millimeters. Successively, rollers 340 will be spaced apart about 12 millimeters, rollers 342 will be spaced apart about 9 millimeters, rollers 344 will be space apart about 6 millimeters, and finally, rollers 346 and 348 will be each spaced apart about 4 millimetexs. This gradual progression of pxessure reduces stress on the rollers, as well as the belts 350, 352 driving the rollers. Such belts 350, 352 generally define the top and bottom of chamber through which panel 2 travels. Because of the less stress that is applied to belts 350 and 352 which drive rollers 338, 340, 342, 344, 346, 348, such belts 350, 352 can be made from such materials as Teflon glass, rather than conventional materials such as a metal. The Teflon belts absorb less heat than metal belts do, so more of the heat generated will be transferred to the to the lamination of panel 2, in contrast to production lines using conventional metal belts. In one illustrative embodiment, stages 306 and 308 are approximately 10 meters long and approximately 4 meters wide.
W one illustrative embodiment, located between every two pairs of rollers axe a pair of surfaces or platens 354, 356 between which the panel 2 moves during the lamination process. Illustratively, platens 354, 356 receive hot oil or similar fluid. It is appreciated, however, that other methods of heating the platens can be used. In the present embodiment, however, the hot oil causes the platens 354, 356 to raise the core temperature of the panel 2 to about 340 degrees F. The combination of the compxession force generated by the rollers 338, 340, 342, 344, 346, 348 and the heat generated by the platens 354, 356 causes the polypropylene in the material layexs 6, 8 to melt, causing same to begin fusing and compacting into the panel 2 of desired thickness.
After the layers 6, 8 of the composite panel 2 is heated, fused, and reduced to a desired thickness, the resulting composite panel 2 is cooled at cooling stage 308. In the illustrated embodiment, cooling stage 308 is an extension of the heat and press stage 306 to the extent that stage 308 also includes pairs of rollers 358, 360, 362, 364, 366 which are similarly situated to, and arranged liliearly with, rollers 338, 340, 342, 344, 346, 348. The space between each of the rollers is about the same as the space between the last pair of rollers of the heat and press stage 306, in this case rollers 348. In the forgoing example, the rollers 348 were illustratively spaced apart about 4 millimeters. Accordingly, the spacing between the rollers of each pair of rollers 358, 360, 362, 364, 366 of stage 308, through which the panel passes, is also spaced apart about 4 millimeters. Cooling stage 308 treats platens 372 through that are cooled with cold water, illustratively at approximately 52 degrees F, rather than being treated with hot oil, as is the case with heat arid press stage 306. This cooling stage rapidly solidifies the melted polypropylene, thereby producing a rigid laminated hardboard panel 2.
Hardboard panel 2 exits the cooling stage 308 at exit 408, as shown in Fig. 24, and enters the shear and trim stage 310, as shown in Figs. 25 through 28. In one illustrative embodiment, composite panel 2 passes through an interior wall laminating stage 410 and into the trim and cutting stage 412. When panel 2 passes through stage 412, its edges can be trimnned to a desired width and the panel cut to any desired length with the panel exiting to platform 414.
A top view of line 300 is shown in Fig. 21 which includes the various aforementioned stages 302, 304, 306, 308, 310 as well as finishing a stage 416. This stage 416 is illustratively for applying an acrylic or other like resin finish to the surface of the composite panel. Specifically, once such a composite panel 2 exits the shear and trim stage 310, it is supported on a plurality of rollers 418 and placed along the length of platform 414 to move panel 2 in direction 420. In one illustrative embodiment, panel 2 may be rotated into position, as shown in Fig. 28, to finishing stage 416. To rotate panel 2, movable catches 422, 424, one at the proximal end of platform 414 and the other at the distal end of platform 414, as shown in Figs. 21 and 28, both move concurrently to move panel 2. Catch 422 moves a corner of panel 2 in direction 420 while catch 424 moves the other corner of panel 2 in direction 426, ultimately positioning panel 2 on platform 415 at stage 416. It is appreciated, however, that it is not required to locate such a finishing stage at an angle relative to line 300. Alternatively, stage 416 may be located linearly with the remainder of line 300.
Illustratively, before applying the acrylic finish to panel 2 at stage 416, its surface is first prepared. The illustrative process for preparing the surface of panel 2 is fixst sanding the surface to accept the finish coat. After sanding the surface of panel 2, a wet coating of the resin is applied. Illustratively, the resin is polyurethane.
The acrylic resin can then be UV cured, if necessary. Such curing is contemplated to take as much as 24 hours, if necessary. Initial cooling, however, can take only tluee seconds. Such an acrylic coating has several uses, one is the dry-erase board surface, previously discussed, as well as exterior side wall panels for recreational vehicles and pull type trailers. It is further contemplated herein that other surface coatings can be applied at stage 416 as known by those skilled in the art.
In another illustrative embodiment, interior wall laminating stage 410, though part of line 300, can be used to create wall panel composites from panel 2.
When making such panel, rather than panel 2 passing through stage 410, as previously discussed panel 2 is laminated at stage 410. In this illustrative embodiment, as shown in Figs. 25 and 26, for example, stage 412 comprises an uncoiling hopper 430, a hot air blower 432, and a roller stage 434. Hopper 430 is configured to support illustratively two rolls of material. For this illustrative embodiment, a base substrate layer 436, and a finish surface material layer 438 is located in hopper 430.
It is appreciated that the base substrate layer 436 can be any suitable material, including the fibrous material layer 6 as previously discussed or a priming surface material.
The finish surface material layer 438 can be of any finishing or surface material such as vinyl, paper, acrylic, or fabric, Uncoiling hopper 430 operates similar to that of stage 302 to the extent that they both uncoil rolls of material. Hopper 430 operates differently from stage 302, however, to the extent that both layers 436 and 438 uncoil concurrently, rather than in tandem, like rolls 6' and 6", for example. In other words, both layers 436, 438 will form the layers of the composite top coat, rather than form a single continuous layer for a board, as is the case with roll 6' and 6".
In the illustrative embodiment, base substrate layer 436 uncoils below the finish surface material layer 438, as shown in Figs. 26 and 27. In addition, both layer 436 and layex 438 form a composite as they enter roller stage 434. The hot air blower 432 blows hot air 448 at approximately 450 degrees F in direction 448 between layer 436 and layer 438. This causes the surfaces, particularly the base material layer 436 surface, to melt. For example, if the base substrate layer 436 is fibrous material layer 6, the polypropylene on the surface of this material melts. As layer 436 and layer 438 pass between a pair of rollers 450 at the roller stage 434, the melted polypropylene of layer 436 bonds with the layer 438, forming a composite of fibrous material having the finish surface material 438. After the materials have formed a laminated composite, they can then proceed to the shear and trim stage 310.
It is contemplated that finish surface material layer 438 may comprise several ftnish materials applied to base material layer 436 either concurrently or in tandem. For example, a roll of material layer 438 may comprise a roll that includes a section of vinyl, attached to a section of paper, and then fabric, and then vinyl again.
Uncoiling this roll and bonding it to layer 436 produces a single composite board having several tandemly positioned finish surfaces that can be sheared and cut at stage 310 as desired.
Another illustrative hardboard manufacturing line 500 is shown in Figs. 29 and 30. Line 500 is another embodiment for manufacturing laminated hardboard panels of the type illustratively shown in Figs. 4 through 6. This manufacturing line 500 is similar to manufacturing line 300 previously discussed, wherein process 500 comprises the mating of several layers of materials, illustratively layers 22, 24, as well as the calendaring surface 32 and coated surface 34, as shown illustratively in panel 30 of Fig. 6. Manufacturing line 500 comprises the following panel manufacturing stages: the uncoiling and mating stages 502, the pre-heating stage 504, the heat and press stage 506, the cooling stage 508, the calendaring stage 510, and the shear and trim stage 512.
One illustrative embodiment of line 500 comprises a calendaring stage 510. This stage is located in the same location as the laminating stage 410 of line 300, as shown in Fig. 25. The purpose of the calendaring stage is to smooth the top surface of the illustrative panel 30 to prepare it for the paint application of line 514.
Conventionally, using belts 350, 352 in conjunction with the heated platens may cause the texture of those belts, similar to a cloth pattern, to be embedded in the surfaces of the panel 30. (See, also, Fig. 24.) The calendaring process removes this pattern to provide a smoother surface in anticipation of the paint application. In the illustrated embodiment shown in Fig. 30, calendaring stage 510 comprises a conveying line and spaced apart rollers 572, as well as a heat source 574. As panel 30 exits the cooling stage 508, it is transferred to the calendaring stage 510 where the heat source, illustratively infrared heat or heated air, or a combination of both, is applied to the surface of the panel 30. Panel 30 is then directed between the two spaced apart rollers 572 which will then smooth the surface that has been heated by heater 574. In one embodiment, it is contemplated that at least one of the rollers is temperature controlled, illustratively with water, to maintain the rollers up to an approximate 120 degrees F. It is further contemplated that the heated air or IR heater is controlled to only heat the surface of panel 30 and not the center of the board itself.
Furthermore, it is contemplated that the roller can subject up to an approximate 270 pounds per linear inch force on the surface of the panel 30 in order to smooth out any pattern in the surface and/or related defects thereon to produce a calendared surface 32 as previously discussed with respect to Fig. 6. It will be appreciated that this calendaring process will prepare the surface 32 of panel 30 so that it may receive a Class A auto finish. Once the panel 30 exits the calendaring stage 510, it then is transferred to the shear and trim stage 512 where the panel will take its final shape prior to the paint stage.
In contrast to manufacturing line 300, however, line 500 further comprises paint application line 514. Paint line 514 comprises a transfer conveyer 516 which moves panels, in this illustrative case panel 30, from the shear and trim stage 512 to the paint line 514. This is accomplished illustratively by rollers on conveyer 518 moving panel 30 perpendicularly from shear and trim stage 512 to paint line 514 which is illustratively positioned parallel to line 500. If, for example, panel or the other panels 20 and 28 do not receive a paint application, they can be 25 removed from the line at an off load point 520. If panel 30, for example, will be receiving a paint application, it is loaded onto paint line 514 via a staging section 522 as shown in Fig. 29. The first stage of the paint process of paint line 514 is to flame treat the top surface of panel 30 at 524. The flame treatment process is a means to relax the surface tension and ionize-charge the board for chemical bonding.
This will 30 decrease the surface tension of the plastic or the bonding material. Such decrease in surface tension allows the plastic to have a similar surface tension to that of the paint that will create better adhesion of the paint to the board. In the illustrative embodiment, the flame treatment uses a blue flame approximately 1/4 inch in height, and the board is passed below the flame of about 3/8 of an inch at a rate of about 26 feet per minute. It is appreciated, however, that other means of heating the surface of panel 30 is contemplated and, in regards to the flame size, temperature, and the distance of the board from the flame, is illustrative and not considered to be the sole embodiment of this disclosure.
It is contemplated that much of the paint line will be enclosed and, because of such, after the flame treatment stage 524, an air input section is added to create positive pressure within the line. In the illustrative embodiment, a fan is added to this section to input air which will blow dust and debris away from the panel to keep it clean. The next stage of paint line 514 is the adhesion promoter spray booth 528. Booth 528 applies a plastic primer to the surface of panel 30 that integrates with the plastic in the board to assist in better adhesion of subsequent paint layers. In this illustrative embodiment, a down-draft spray of the primer is applied to the surface of panel 30. Exiting booth 528, another air input section 530 is illustratively located to further create positive pressure to continue preventing dust or other contaminates from resting on the surface of the panel.
After panel 30 exits the adhesion promoter booth 528, it enters the UV
primer seal spray booth 532. Booth 532 applies a UV filler paint to further level the surface of the panel 30, as well as serve as an additional primer for the final UV care paint. It is appreciated, however, that depending on the application of the panel, the UV filler can be replaced with a UV paint or other paint as a topcoat. In this illustrative embodiment, however, the booth 532 uses a down-draft spray to apply the primer seal onto panel 30.
Exiting booth 528, panel 30 then enters an ambient flash stage 534 wherein the panel 30 rests to allow solvents from the paint to evaporate.
Though not shown, the solvents are drawn from the ambient flash stage 534 where the solvents are burned so as to not enter the atmosphere. In addition, stage 534 may include an input fan 536, similar to air inputs 526 and 530, to maintain positive pressure in this section.
After allowing the solvents to dissipate from the surface of the panel 30, it is transported under a UV cure lamp 538 to further cure the paint. The UV cure 538 is illustratively a high-intensity, ultra-violet light to which the paint is sensitive, and which will further cure the paint.
After passing through UV cure 538, the panel 30 is passed through an infrared oven 540. The panel 30 is moved through oven 540 at an illustrative rate of 2.5 meters per minute and the IR oven is set at about 165 degrees F. This step further assists to drive out any remaining solvents that might not have been driven out prior to the UV cure. In addition, those solvents axe also then sent off and burned before reaching the atmosphere.
Once exiting the IR oven 540, panel 30 is transferred to a side transfer section 542 which allows either removal of panel 30 if the paint applied at booth 532 was the final application of paint, or through conveyors 544 as shown in Fig.
29, if panel 30 is to be transferred to a secondary paint line 546.
If panel 30 is transferred to secondary paint line 546, it is passed through another spray booth 548. Booth 548 uses a down-draft spray to apply a UV
topcoat over top the UV filler and adhesion promoter coats previously discussed. The UV topcoat will be the finished coat that provides the Class A auto finish as previously discussed, for example. Once the topcoat has been applied onto the surface of panel 30, the following process is similar to that as described with respect to paint line 514 which is that the panel 30 is again subjected to an ambient flash at section 550, similar to ambient flash stage 534 previously discussed, wherein the solvents are allowed to evaporate, and are driven off and burned. Furthermore, the panel is transferred through a UV cure 552 section, similar to that of 538 and as previously discussed, the UV cure 552 serves also as UV high-intensity light to further cure the topcoat applied at 548. After passing through the UV section 552, panel 30 then enters infrared oven 554, which is similar to IR oven 540 previously discussed, wherein the panel is subjected to a temperature of about 165 degrees F fox about 2.5 minutes.
When panel 30 exits the IR oven, it enters an inspection booth 556 where the surface is inspected for defects in the paint or in the board. The inspection can be either manually accomplished by visual inspection of the surface and identifying such defects, or can be accomplished through an automated inspection process comprising sensors to locate defects, etc. In addition, the inspection booth _29_ 556 also serves as a cool-down process for the process. The inspection booth maintains a temperature of about 78 degrees F with about 50 weight percent relative humidity to cool down at least the surface of the board from the approximate degrees F from the IR oven to about 80 degrees F. If a board does not pass inspection, it will be removed for repair or recycling. If the board does pass inspection, it will pass through a pinch roller 558 that will apply a slip sheet which is illustratively a thin 4 millimeter polypropylene sheet that protects the painted surface of panel 30 and allow the same to be stacked at the off load section 560.
Composite materials, like those used to manufacture automobile bodies and interiors, have the potential to be recycled into new materials. An impediment to such recycling, however, is incompatible particle sizes of otherwise potentially recyclable constituents. For example, a variety of combinations of polypropylene, vinyl, polyester, ABS, and fibrous materials may be used to produce a panel or core product for a panel.
In the recycle system 600, shown in Figs. 31 through 33, several materials are collected and segregated based on a desired composition at 602.
Each material is granulated to reduce its particle size. The degree to which each material is granulated can be varied depending on the chemistry desired in the resulting panel.
After each material is granulated, the loss and weight is determined at 604.
This is done so that the cross-section and weight can be controlled before the resultant material is laminated into a panel. The materials are blended into a composition at 606 and transferred to collector 608. The composition is then transferred from collector 608 through a metal detector 612 which is configured to remove metal particles. The remaining composition is then deposited into a scatter box 614.
Scatter box 614 allows particles of a particular maximum size to deposit onto granulate belt 616. The Ioss and weight of the resulting composition is then determined again to maintain the density of the final panel. The composition is then transferred to the recycle composition storage 626 in anticipation for deposit with the other laminate constituents.
The recycled composition manufacturing panel line 618, shown in Figs. 32 and 33, is similar to line 300 shown in Fig. 20. Line 618 comprises the following primary stages: uncoiling 620, pre-heater 622, heat and pressure 624, recycled material storage 626, cooling 628, shear and trim 630. Tn the illustrated embodiment of Fig. 32, rolls 632, 634 of material, such as a fibrous or woven glass material, for example, are located at stage 620. Rolls 632, 634 are uncoiled to form composite layers. These layers are then pre-warmed using pre-heater stage 622, similar to stage 304 used in manufacturing line 300. The recycled composition material from stage 626 exists in the form of chips having an irregular shape with a maximum dimension in any one direction of, illustratively, 0.125 inches, and is then deposited between the composite layers. The new composite layers are then subjected to the same heat, pressure, and cooling at stages 624 and 628, respectively, as to the heat and press stage 306 and the cooling stage 308 of manufacturing line 300.
The heat and pressure stage 624 receives the preheated composite layers, and through a progression of increasingly narrowly-spaced rollers, compresses the composite layers to a desired thickness similar to that previously discussed.
Again, this gradual progression of pressure reduces stress on the rollers and the belts driving the rollers, as discussed with stage 306 of line 300. In addition, the belts that drive the rollers can, too, be made of Teflon glass material, rather than a metal, also previously discussed. Also similar to stage 308, stage 628 includes a pair of surfaces or platens between every two pairs of rollers to allow the composite layer to move there between. Illustratively, the platens receive hot oil. It is appreciated that other methods of heating the platens are contemplated, similar to stage 306. After the composite layers are heated, fused, and reduced to a desired thickness, the resulting panel is cooled. Cooling stage 628 is comparable to stage 308. The final stage is shear and trim 630, which is also similar to the shear and trim stage 310 of line 300.
As shown in Figs. 32 and 33, line 618 further includes a dual side lamination stage 636. Stage 636 is similar to stage 410, shown in Fig. 25, except for the additional uncoiling stage 638 located beneath a primary uncoiling stage 637. It is contemplated that applying a surface on both sides of a composite panel is the same as applying a single surface, as shown in Fig. 20, with the exception that warm air will be directed to both sides of the composite panel. The process as shown in Fig.
does apply to the lower surface as well.
A sectional view of fibrous substitute material layer 6 is shown in Figs.
36a through c. The distinction between the views of Figs. 36a through c is the amount of heat and pressure applied to fibrous material layer 6. As previously discussed above, fibrous material layer 6 illustratively comprises a mat of illustratively about 25 weight percent hemp and about 25 weight percent kenaf with the balance being illustratively polypropylene. The fibers are randomly oriented to provide a nonspecific orientation of strength. Variations of this fibrous material are contemplated, including an about 24.75 weight percent hemp and about 24.75 weight percent kenaf combination with about 50 weight percent polypropylene and about 0.05 weight percent malefic anhydride. Other such fibrous materials can be used as well, such as flax and jute, for example. It is also contemplated that other blend ratios of the fibrous material can be used. It is further contemplated that other binders in place of polypropylene may also be used for the purpose discussed further herein.
Still further, it is contemplated that other fibrous materials which have high process temperatures in excess of about 400 degrees F, for example, may be used as well.
The fibrous material layer 6 shown in Fig. 36a is considered a virgin version of the layer, similar to that shown in Fig. 1, or on rolls 6' and 6"
shown in Fig.
22. This version of layer 6 is considered virgin, because it has not been subjected to a heat treatment or was compressed. The fibers and the binder that compose the layer exist as essentially separate constituents simply mixed together. In this state, the virgin version is highly permeable and pliable. The relative thickness 700 of the layer 6 is relatively greater than the thicknesses 702 or 704 of layers 6 shown in either Figs.
7b and 7c, respectively. Furthermore, because the binder, polypropylene, for example, is not bound to the fiber, heating layer 6 may cause it to consolidate or shrink, particularly in its length and width.
In contrast, layer 6 shown in Fig. 36c, though comprising the same constituents as layer 6 in Fig. 36a, has been subjected considerably to heat and pressure. This embodiment of layer 6 is considered a high density version. In this case, the binder has been fully wetted-out. Fully wetted-out, for the purposes of this discussion means that the binder has, for practical purposes, all liquefied and bonded to the fibrous material of layer 6. Such produces an essentially non-permeable, dense and rigid body. The binder, typically a thermal melt polymer, like polypropylene, is melted into a liquid state, causing the polymers to adhere to and/or wet-out the fibrous materials. This can produce a consolidation of the composite when cooled which shrinks the layer. This results, however, in a rigid and dimensionally stable flat sheet.
If such a layer is then reheated, because the binder is already bonded with the fibrous material, the layer will not shrink, unlike the layer 6 described in Fig. 36a.
Such high density layers are used to produce the layers 72, 74 of truss composite 70, previously discussed with respect to Fig. 10, for example.
The version of layer 6 shown in Fig. 36b, in contrast to both the virgin and high density versions from Figs. 36a and c, respectively, is considered a low density version. This low density version has been subjected to heat and pressure, so that a portion of the binder in the layer has been wetted-out, unlike the virgin version of Fig. 36a which has not been subjected to such a process. Furthermore, unlike the high density layer shown in Fig. 36c, the binder of the low density layer has not been fully wetted-out. In other words, not all of the binder in the low density layer has liquefied and bonded to the natural fibers, only a portion of the binder has.
The remaining binder is still maintained separate from the fibrous material. This makes the low density version rigid, similar to the high density version, yet, also semi-permeable, more akin to the virgin version. In one illustrative embodiment, the binder has melted and soaked into about 50 percent of the fibers that are in the layer. In this case, it is not believed that the fibers per se have grown, nor changed in a specific value. Rather, the fibers have just absorbed the binder.
2p The low density version can provide accelerated processing for three-dimensional molding, particularly in molding, like that shown in Figs. 11 and 12, where various compression zones are used to form the material. Furthermore, utilizing such a composite provides lower production costs. In addition, because the layer is rigid, yet has some permeability, it can be used as a tack board alone or in conjunction with the dry erase board 150 of Fig. 15, for example. The properties also malce it conducive to acoustical insulation or ceiling tiles.
Conventional heat sources such as infra red ovens are not used to heat a high density layer 6 material, because it may cause changes to its physical dimensions or cause overheating of the surface area of the high density layer 6 in order to bring the core up to proper processing temperatures. In contrast, contact heating ovens, which use upper and lower heated platens to hold a virgin layer under pressure during heating to prevent significant shrinkage, are not readily available in the general molding industry that may use such materials.
Furthermore, the target cycle times required to heat these layers to molding temperatures require extra energy and equipment.
Using the low density version of layer 6 can, on balance, be a more cost effective way to mold such fibrous material layers. For example, an 1800 gram per meter square sample of fibrous material, as described with respect to Figs. 26a through c, may require about 83 seconds of heat time in a contact oven to get the virgin version up to molding temperature. The high density version may require seconds of heat time in an IR oven. The low density board, however, may require only about 28 seconds of heat time in an air circulated hot air oven. This is to reach a core temperature of about 340 to 350 degrees F.
When heating the low density version in a simple air circulated hot air oven, the energy required to heat low density board is 50 percent less than the required energy to heat the layer through a contact oven and 70 percent less than the required energy to heat a consolidated hard board utilizing infra red oven.
The high density layer is typically only heated by an infrared oven. This is because the high density version does not have the permeability for hot air, and contact ovens may overheat and damage the layer.
Some benefits of the high density version over the virgin version are also found in the low density version. First of all, similar to how the high density version requires less packaging space than the virgin because of its reduced thickness, the low density version too requires less packaging space since its thickness is also less than that of the virgin version. Such translates into reduced shipping costs.
Secondly, because the low density version is rigid, like the high density version, the low density version can be handled much easier with mechanical devices, such as grippers and clamps. This can be more difficult with the virgin version which is more pliable. Also, the low density material does not always have to be pre-heated.
Some applications of the virgin version may require the layer to be preheated so as to dimensionally stabilize the material. This is not necessary with the low density version. In contrast, for those production lines that use a needle system to handle materials, particularly, for materials like the virgin version of layer 6, the high density version would not receive such needles, because of the solidified binder. The low density version, however, still being semi-permeable, may receive such needles, allowing it to be transported easily, similar to that of the virgin version.
Manufacture of the low density version like that shown in Fig. 36c comprises subjecting the virgin version to both heat and pressure. The heat and pressure is illustratively provided by an oven which comprises compressed rolls that pinch the material to reduce its ability to shrink while it is being heated.
The rolls have belts with holes disposed therethrough, through which the hot air passes.
The layer is being held as structurally rigid as possible so it does not suck-in and become narrow and thick in the middle. The heat and pressure causes the binder to liquefy, and under the rollers, causes the melted binder to be absorbed into and surround the natural fiber. The layer may slmink to some minor extent, but that can be compensated for during this manufacturing process. When the layer is removed from the oven, cold air is blown on it to solidify the layer.
Typically, thermal melt polymers are heat sensitive, and at temperatures above 240 degrees F will attempt to shrink (deform). Therefore, the opposing air permeable belts having opposing pressures limits the amount of heat sink shrinkage that will occur during this process. Once the initial heating has occurred (polymers changed from a solid to liquid state), and consolidation of thermal melt and non-thermal melt fibers are achieved, the consolidated layer 6 becomes thermal dimensionally stable. After heating, and while the consolidated mat is under compression between the opposing air permeable belts, the layer is chilled by ambient air being applied equally on opposite sides of the consolidated mat to, again, bring the thermal melt polymers back to a solid state.
Although the present disclosure has been described with reference to particular means, materials and embodiments, from the foregoing description, one skilled in the art can easily ascertain the essential characteristics of the present disclosure and various changes and modifications may be made to adapt the various uses and characteristics without departing from the spirit and scope of the present invention as set forth in the following claims.
Claims (26)
1. A fibrous moldable substrate comprising:
a mat comprising a fibrous material and a binder;
wherein fibers of the fibrous material are randomly oriented;
and wherein the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material.
a mat comprising a fibrous material and a binder;
wherein fibers of the fibrous material are randomly oriented;
and wherein the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material.
2. The fibrous moldable substrate of Claim 1, wherein the fibrous material is hemp.
3. The fibrous moldable substrate of Claim 1, wherein the fibrous material is kenaf.
4. The fibrous moldable substrate of Claim 1, wherein the fibrous material comprises hemp and kenaf.
5. The fibrous moldable substrate of Claim 4, wherein the fibrous material comprises about 50 weight percent hemp and 50 weight percent kenaf.
6. The fibrous moldable substrate of Claim 1, wherein the mat comprises about 25 weight percent hemp, about 25 weight percent kenaf and about 50 weight percent the binder.
7. The fibrous moldable substrate of Claim 1, wherein the binder is a thermomelt binder.
8. The fibrous moldable substrate of Claim 7, wherein the binder is polypropylene.
9. The fibrous moldable substrate of Claim 1, wherein the mat comprises about 24.75 weight percent hemp, about 24.75 weight percent kenaf, about 50 weight percent a polypropylene binder material and about 0.05 weight percent maleic anhydride.
10. The fibrous moldable substrate of Claim 1, wherein the mat is subjected to a compression force where its cross-section is reduced.
11. The fibrous moldable substrate of Claim 1, wherein the mat experiences insubstantial two-dimensional shrinkage while being subjected to the heat.
12. The fibrous moldable substrate of Claim 1, wherein the fibrous material is selected from a group comprising hemp, kenaf, flax and jute.
13. A fibrous moldable substrate comprising:
a mat comprising a fibrous material and a binder;
wherein fibers of the fibrous material are randomly oriented;
wherein the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material; and wherein the binder become dimensionally stable when cooled.
a mat comprising a fibrous material and a binder;
wherein fibers of the fibrous material are randomly oriented;
wherein the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material; and wherein the binder become dimensionally stable when cooled.
14. The fibrous moldable substrate of Claim 13, wherein the fibrous material is at least semi-rigid.
15. The fibrous moldable substrate of Claim 12, wherein the fibrous material is hemp.
16. The fibrous moldable substrate of Claim 13, wherein the fibrous material is kenaf.
17. The fibrous moldable substrate of Claim 13, wherein the fibrous material comprises hemp and kenaf.
18. The fibrous moldable substrate of Claim 17, wherein the fibrous material comprises about 50 weight percent hemp and 50 about weight percent kenaf.
19. The fibrous moldable substrate of Claim 13, wherein the mat comprises about 25 weight percent hemp, about 25 weight percent kenaf and about 50 weight percent the binder.
20. The fibrous moldable substrate of Claim 13, wherein the binder is a thermomelt binder.
21. The fibrous moldable substrate of Claim 20, wherein the binder is polypropylene.
22. The fibrous moldable substrate of Claim 13, wherein the mat comprises about 24.75 weight percent hemp, about 24.75 weight percent kenaf, about 50 weight percent a polypropylene binder material and about 0.05 weight percent maleic anhydride.
23. The fibrous moldable substrate of Claim 13, wherein the mat is subjected to a compression force where its cross-section is reduced.
24. The fibrous moldable substrate of Claim 13, wherein the mat experiences insubstantial two-dimensional shrinkage while being subjected to the heat.
25. The fibrous moldable substrate of Claim 13, wherein the fibrous material is selected from a group comprising hemp, kenaf, flax and jute.
26. A fibrous moldable substrate comprising:
a mat comprising a fibrous material and a binder;
wherein fibers of the fibrous material are randomly oriented;
wherein the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material; and wherein the mat is semipermeable when cooled.
a mat comprising a fibrous material and a binder;
wherein fibers of the fibrous material are randomly oriented;
wherein the fibrous material and binder is subjected to heat such that only a portion of the binder is wetted to the fibrous material; and wherein the mat is semipermeable when cooled.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/366,973 US20030162461A1 (en) | 2002-02-22 | 2003-02-14 | Process, composition and coating of laminate material |
US10/366,973 | 2003-02-14 | ||
PCT/US2004/004427 WO2004073968A2 (en) | 2003-02-14 | 2004-02-13 | Process, composition and coating of laminate material |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2514317A1 true CA2514317A1 (en) | 2004-09-02 |
Family
ID=32907615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002514317A Abandoned CA2514317A1 (en) | 2003-02-14 | 2004-02-13 | Process, composition and coating of laminate material |
Country Status (4)
Country | Link |
---|---|
US (1) | US20030162461A1 (en) |
CA (1) | CA2514317A1 (en) |
MX (1) | MXPA05008673A (en) |
WO (1) | WO2004073968A2 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8012889B2 (en) * | 2001-11-07 | 2011-09-06 | Flexform Technologies, Llc | Fire retardant panel composition and methods of making the same |
US7521386B2 (en) * | 2004-02-07 | 2009-04-21 | Milliken & Company | Moldable heat shield |
US7987614B2 (en) * | 2004-04-12 | 2011-08-02 | Erickson Robert W | Restraining device for reducing warp in lumber during drying |
AT414312B (en) * | 2004-08-25 | 2007-01-15 | Angleitner Helmut Dipl Ing | DEVICE FOR THERMALLY TREATING A FLEECE OR A FILM PREPRODUCTURE |
US20060086379A1 (en) * | 2004-10-26 | 2006-04-27 | Maytag Corporation | Flame treatment of washing machine parts |
US7906176B2 (en) * | 2004-12-17 | 2011-03-15 | Flexform Technologies, Llc | Methods of manufacturing a fire retardant structural board |
US20060182940A1 (en) * | 2005-02-14 | 2006-08-17 | Hni Technologies Inc. | Fire-resistant fiber-containing article and method of manufacture |
US7696112B2 (en) | 2005-05-17 | 2010-04-13 | Milliken & Company | Non-woven material with barrier skin |
US7428803B2 (en) | 2005-05-17 | 2008-09-30 | Milliken & Company | Ceiling panel system with non-woven panels having barrier skins |
US7651964B2 (en) * | 2005-08-17 | 2010-01-26 | Milliken & Company | Fiber-containing composite and method for making the same |
US7605097B2 (en) * | 2006-05-26 | 2009-10-20 | Milliken & Company | Fiber-containing composite and method for making the same |
US20070275228A1 (en) * | 2006-04-11 | 2007-11-29 | Castor Bruce S | Tackable furniture panels having foam substrates |
US7825050B2 (en) * | 2006-12-22 | 2010-11-02 | Milliken & Company | VOC-absorbing nonwoven composites |
US20090263620A1 (en) * | 2008-04-16 | 2009-10-22 | Balthes Garry E | Composite board with open honeycomb structure |
US20100112881A1 (en) * | 2008-11-03 | 2010-05-06 | Pradip Bahukudumbi | Composite material and method for manufacturing composite material |
GB2485165A (en) * | 2010-11-03 | 2012-05-09 | Timothy John Sweatman | A laminated panel for acoustic insulation |
DE102012207365A1 (en) * | 2012-05-03 | 2013-11-07 | Röchling Automotive AG & Co. KG | Multilayer component and method for producing the same |
CA2859114A1 (en) * | 2013-08-29 | 2015-02-28 | International Automotive Components Group North America, Inc. | Formed articles comprising carbon and natural fibers, methods of manufacture and use thereof |
DE102014223542A1 (en) * | 2014-11-18 | 2016-05-19 | Faurecia Innenraum Systeme Gmbh | Method with which a vehicle interior trim part is produced with a decorative layer comprising paper layers |
US20160257103A1 (en) * | 2015-03-05 | 2016-09-08 | Lifetime Brands, Inc. | Layered textile |
ES2608845B1 (en) * | 2016-11-22 | 2017-12-26 | Aurelio Dieguez Garcia | PROCEDURE FOR THE PREPARATION OF A COATING TO COVER PARTS OF THE INSIDE OF VEHICLES AND COATING AS WELL PREPARED |
US11225942B2 (en) * | 2017-07-05 | 2022-01-18 | General Electric Company | Enhanced through-thickness resin infusion for a wind turbine composite laminate |
JP2019072973A (en) * | 2017-10-18 | 2019-05-16 | トヨタ紡織株式会社 | Vegetable fiber-containing board and its production method |
EP3789174B1 (en) * | 2019-09-05 | 2024-09-04 | Motherson Innovations Company Limited | Internal trim component with a three-dimensional shape for a motor vehicle and device and method for producing said type of internal trim component |
CN111070531B (en) * | 2019-12-13 | 2021-07-30 | 衡橡科技股份有限公司 | Preparation method of building shock insulation rubber support and product thereof |
US20220136236A1 (en) * | 2020-11-04 | 2022-05-05 | ROM Development Corp. | Fire-resistant composite structural building panels |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2543101A (en) * | 1944-07-20 | 1951-02-27 | American Viscose Corp | Composite fibrous products and method of making them |
US3472730A (en) * | 1967-12-28 | 1969-10-14 | Minnesota Mining & Mfg | Heat-curable filament-reinforced resinous sheeting and laminating process using same |
US3600262A (en) * | 1969-03-12 | 1971-08-17 | Disposables Inc | Disposable laminar fabric comprising paper bonded to a polyolefin reinforcing netting |
US4263247A (en) * | 1975-01-28 | 1981-04-21 | Standard Oil Company (Indiana) | Resin-foam laminate |
DE2722262B2 (en) * | 1977-05-17 | 1979-07-19 | Kurt 7218 Trossingen Held | Method and device for the continuous production of laminates |
US4469543A (en) * | 1978-11-29 | 1984-09-04 | Allied Corporation | Lamination of highly reinforced thermoplastic composites |
US4199635A (en) * | 1979-04-20 | 1980-04-22 | Albany International Corp. | Fabric faced laminate panel and method of manufacture |
JPS5698136A (en) * | 1980-01-08 | 1981-08-07 | Kanegafuchi Chem Ind Co Ltd | Continuous manufacture of laminated substance |
US4353947A (en) * | 1981-10-05 | 1982-10-12 | International Harvester Co. | Laminated composite structure and method of manufacture |
US4557970A (en) * | 1983-11-21 | 1985-12-10 | Monsanto Company | Laminate structure with improved acoustical absorption |
US4539253A (en) * | 1984-03-30 | 1985-09-03 | American Cyanamid Co. | High impact strength fiber resin matrix composites |
US4731276A (en) * | 1984-07-03 | 1988-03-15 | The James River Corporation | Scrim reinforced, quilted cloth-like composite laminate and a method of making |
DE3519485A1 (en) * | 1985-05-31 | 1986-12-04 | Maschinenfabrik Alfred Schmermund Gmbh & Co, 5820 Gevelsberg | PACKAGE WITH HINGED LID, CUT FOR THIS AND METHOD FOR THEIR PRODUCTION |
ES2030881T3 (en) * | 1987-06-19 | 1992-11-16 | Giat Industries | LIGHTWEIGHT AGGLOMERATED PANEL INTENDED FOR THE CONSTRUCTION OF MULTILAYER STRUCTURES RESISTANT TO HITS AND THERMAL AGGRESSIONS. |
DE3811467A1 (en) * | 1988-04-06 | 1989-10-19 | Siempelkamp Gmbh & Co | METHOD AND SYSTEM FOR THE CONTINUOUS PRODUCTION OF RAIL-BASED BASE MATERIAL FOR CIRCUIT BOARDS |
US5151583A (en) * | 1988-05-16 | 1992-09-29 | Canon Kabushiki Kaisha | Focus adjustment device having restricting means for restricting a selecting action according to the degree of nearness of a distance measurement |
US5141804A (en) * | 1988-11-01 | 1992-08-25 | American Cyanamid Company | Interleaf layer in fiber reinforced resin laminate composites |
US4879152A (en) * | 1989-02-15 | 1989-11-07 | Green Patrick H | Composite panel structure |
US5258087A (en) * | 1989-03-28 | 1993-11-02 | Plascon Technologies (Proprietary) Limited | Method of making a composite structure |
US5085928A (en) * | 1989-04-06 | 1992-02-04 | E. I. Dupont De Nemours And Company | Fiber reinforced composites comprising uni-directional fiber layers and aramid spunlaced fabric layers |
CH680994A5 (en) * | 1989-07-31 | 1992-12-31 | Tesch G H | |
US5098778A (en) * | 1990-04-24 | 1992-03-24 | General Electric Company | Plastic based laminates comprising outer fiber-reinforced thermoset sheets, lofted fiber-reinforced thermoplastic sheets and a foam core layer |
US5393599A (en) * | 1992-01-24 | 1995-02-28 | Fiberweb North America, Inc. | Composite nonwoven fabrics |
CA2112863A1 (en) * | 1993-01-05 | 1994-07-06 | Louis J. Ii Lamarca | Resiliently padded laminate construction and injection molded thermoplastic articles faced therewith |
DE4314861A1 (en) * | 1993-05-05 | 1994-11-10 | Tubus Bauer Gmbh | Process for producing a honeycomb body and honeycomb body |
US5503903A (en) * | 1993-09-16 | 1996-04-02 | Indiana Acoustical Components | Automotive headliner panel and method of making same |
EP0857473B1 (en) * | 1994-01-21 | 2003-03-26 | Minnesota Mining And Manufacturing Company | Orthopedic casting material |
JP2851244B2 (en) * | 1994-02-09 | 1999-01-27 | 児玉化学工業株式会社 | Multilayer laminate and method of manufacturing multilayer laminate panel |
US5589016A (en) * | 1994-04-29 | 1996-12-31 | The Boeing Company | Prescored foam for panel fabrication |
US5486256A (en) * | 1994-05-17 | 1996-01-23 | Process Bonding, Inc. | Method of making a headliner and the like |
US5982182A (en) * | 1994-09-01 | 1999-11-09 | Chiu; Michael A. | Interface apparatus for automatic test equipment with positioning modules incorporating kinematic surfaces |
US5569508A (en) * | 1995-01-03 | 1996-10-29 | The Boeing Company | Resin transfer molding with honeycomb core and core filler |
US5609942A (en) * | 1995-03-13 | 1997-03-11 | The United States Of America As Represented By The Secretary Of The Navy | Panel having cross-corrugated sandwich construction |
US5733824A (en) * | 1995-06-07 | 1998-03-31 | Bay Mills Ltd | Hand-tearable moisture barrier laminate |
US6183824B1 (en) * | 1995-06-07 | 2001-02-06 | Havco Wood Products, Inc. | Composite wood flooring |
FR2735166B1 (en) * | 1995-06-08 | 1997-08-29 | Aerospatiale | METHOD FOR MANUFACTURING A PANEL OR THE LIKE WITH STRUCTURAL AND ACOUSTIC PROPERTIES AND PANEL SO OBTAINED |
US5823611A (en) * | 1995-09-18 | 1998-10-20 | Prince Corporation | Headliner with integral impact absorption panels |
US5853843A (en) * | 1996-03-08 | 1998-12-29 | Ut Automotive Dearborn, Inc. | Recyclable headliner material |
US5804262A (en) * | 1996-08-16 | 1998-09-08 | United Technologies Automotive Inc. | Vehicle trim panel with natural fiber layers |
US5794402A (en) * | 1996-09-30 | 1998-08-18 | Martin Marietta Materials, Inc. | Modular polymer matrix composite support structure and methods of constructing same |
DE19705280C1 (en) * | 1997-02-12 | 1998-03-05 | Daimler Benz Ag | Fibre-reinforced plastics moulding used in commercial, passenger and rail vehicles and aircraft |
WO1998036943A1 (en) * | 1997-02-21 | 1998-08-27 | Lear Corporation | Structural headliner |
US6117519A (en) * | 1997-03-19 | 2000-09-12 | Burns; Mark L. | Composite core material, composite material and method of assembly |
US6150005A (en) * | 1997-04-15 | 2000-11-21 | International Paper Company | Synthetic paper |
US5883028A (en) * | 1997-05-30 | 1999-03-16 | Kimberly-Clark Worldwide, Inc. | Breathable elastic film/nonwoven laminate |
US6177180B1 (en) * | 1997-06-02 | 2001-01-23 | Armstrong World Industries, Inc. | Composite construction board with load bearing properties |
US6309732B1 (en) * | 1997-06-02 | 2001-10-30 | Roberto A. Lopez-Anido | Modular fiber reinforced polymer composite structural panel system |
US6048809A (en) * | 1997-06-03 | 2000-04-11 | Lear Automotive Dearborn, Inc. | Vehicle headliner formed of polyester fibers |
US6180206B1 (en) * | 1997-09-19 | 2001-01-30 | The Boeing Company | Composite honeycomb sandwich panel for fixed leading edges |
US5942321A (en) * | 1997-09-29 | 1999-08-24 | Findlay Industries, Inc. | Headliner |
DE19744407C1 (en) * | 1997-10-08 | 1999-02-11 | Luratech Ges Fuer Luft Und Rau | Multi-dimensional discrete wavelet transformation method for digital or digitised data |
US6322658B1 (en) * | 1998-02-23 | 2001-11-27 | Lear Corporation | Method for making a composite headliner |
US6479117B1 (en) * | 1998-07-16 | 2002-11-12 | Aaron R. Phillips | Combined waterproofing sheet and protection course membrane |
US6287678B1 (en) * | 1998-10-16 | 2001-09-11 | R + S Technik Gmbh | Composite structural panel with thermoplastic foam core and natural fibers, and method and apparatus for producing the same |
US6257616B1 (en) * | 1998-12-23 | 2001-07-10 | Prince Technology Corporation | Headliner assembly |
DE19902244A1 (en) * | 1999-01-21 | 2000-08-03 | Daimler Chrysler Ag | Headlining with a transparent roof element |
US6368702B1 (en) * | 1999-01-29 | 2002-04-09 | Johnson Controls Technology Company | Rigid thermoformable foam for headliner application |
FR2791309B1 (en) * | 1999-03-22 | 2001-05-25 | Sylea | MOTOR VEHICLE PADDLE TRIM |
DE19939227B4 (en) * | 1999-08-18 | 2004-07-29 | Möller Plast GmbH | Composite material |
CA2386067A1 (en) * | 1999-10-14 | 2001-04-19 | Alan D. Picken | Method of making a headliner having an integrated energy absorbing foam |
US6383320B1 (en) * | 1999-12-03 | 2002-05-07 | Lear Corporation | Method of forming a headliner |
US6286145B1 (en) * | 1999-12-22 | 2001-09-11 | Kimberly-Clark Worldwide, Inc. | Breathable composite barrier fabric and protective garments made thereof |
US6713413B2 (en) * | 2000-01-03 | 2004-03-30 | Freudenberg Nonwovens Limited Partnership | Nonwoven buffing or polishing material having increased strength and dimensional stability |
US6475937B1 (en) * | 2000-03-17 | 2002-11-05 | Patent Holding Company | Lightweight, thermoplastic, vehicle headliner having at least one integrally-formed, energy-absorbing, head-impact mechanism and injection molding method for making same |
AUPQ883000A0 (en) * | 2000-07-19 | 2000-08-10 | I.N.C. Corporation Pty Ltd | A thermoformable acoustic sheet |
US6582639B2 (en) * | 2001-01-04 | 2003-06-24 | Johnson Controls Technology Company | Process for making vehicle headliner |
US7000729B2 (en) * | 2002-07-08 | 2006-02-21 | Acoustek Nonwovens | Five-layer sound absorbing pad: improved acoustical absorber |
US6871898B2 (en) * | 2003-03-27 | 2005-03-29 | Omnova Solutions Inc. | Soft cover for vehicles and process for making |
-
2003
- 2003-02-14 US US10/366,973 patent/US20030162461A1/en not_active Abandoned
-
2004
- 2004-02-13 MX MXPA05008673A patent/MXPA05008673A/en unknown
- 2004-02-13 CA CA002514317A patent/CA2514317A1/en not_active Abandoned
- 2004-02-13 WO PCT/US2004/004427 patent/WO2004073968A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20030162461A1 (en) | 2003-08-28 |
WO2004073968A2 (en) | 2004-09-02 |
MXPA05008673A (en) | 2005-10-18 |
WO2004073968A3 (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8158539B2 (en) | Heat deflection/high strength panel compositions | |
US8071491B2 (en) | Process, composition and coating of laminate material | |
US20030162461A1 (en) | Process, composition and coating of laminate material | |
US8012889B2 (en) | Fire retardant panel composition and methods of making the same | |
US8697586B2 (en) | Fire retardant panel compositions | |
US8227037B2 (en) | Methods of making fire retardant panel compositions | |
US20070141318A1 (en) | Composition and method of manufacture for a fiber panel having a finishable surface | |
EP0593716B1 (en) | Nonwoven moldable composite and method of manufacture | |
JP6571004B2 (en) | Articles containing untwisted fibers and methods of use thereof | |
CS206391A3 (en) | Fibrous structure and shaped products made of it. | |
AU2003296797A1 (en) | Method and device for making a composite plate | |
US20040234744A1 (en) | Vehicle interior trim component of basalt fibers and thermoplastic binder and method of manufacturing the same | |
US20040235378A1 (en) | Vehicle interior trim component of basalt fibers and thermosetting resin and method of manufacturing the same | |
EP3890950A1 (en) | Composite laminate resin and fiberglass structure | |
WO2006065993A2 (en) | Heat deflection/high strength panel compositions | |
CA2590946C (en) | Fire retardant panel composition and methods of making the same | |
GB2560704A (en) | Moulded part | |
WO2020264492A1 (en) | Composite laminate resin and fiberglass structure | |
CN110588090A (en) | Composite panel and corresponding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |