CA2509953C - Process for making glyphosate by oxidizing n-substituted glyphosates - Google Patents

Process for making glyphosate by oxidizing n-substituted glyphosates Download PDF

Info

Publication number
CA2509953C
CA2509953C CA002509953A CA2509953A CA2509953C CA 2509953 C CA2509953 C CA 2509953C CA 002509953 A CA002509953 A CA 002509953A CA 2509953 A CA2509953 A CA 2509953A CA 2509953 C CA2509953 C CA 2509953C
Authority
CA
Canada
Prior art keywords
glyphosate
oxidation catalyst
noble metal
substituted
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002509953A
Other languages
French (fr)
Other versions
CA2509953A1 (en
Inventor
David A. Morgenstern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Technology LLC
Original Assignee
Monsanto Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Technology LLC filed Critical Monsanto Technology LLC
Priority claimed from CA002275866A external-priority patent/CA2275866C/en
Publication of CA2509953A1 publication Critical patent/CA2509953A1/en
Application granted granted Critical
Publication of CA2509953C publication Critical patent/CA2509953C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0231Halogen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0247Imides, amides or imidates (R-C=NR(OR))
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • C07F9/3813N-Phosphonomethylglycine; Salts or complexes thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Abstract

Thin invention is directed to process for making a composition having the formula (I):

(see formula I) wherein R3, R4, and R5 are independently hydrogen, substituted or unsubstituted hydrocarbyl, or an agronomically acceptable cation. The process comprises contacting a solution with a noble metal catalyst and introducing oxygen into the solution. The solution contains an N-substituted glyphosate having the formula (II):

(see formula II) wherein R1 and R2 are independently hydrogen, halogen, -PO2H2=, -SO3H, -NO2, or substituted or unsubstituted hydrocarbyl other than -CO2H, R3, R4, and R3 are as defined for formula (I).

This invention also relates to an oxidation catalyst comprising a noble metal having a hydrophobic electroactive molecular species adsorbed thereon.

Description

PROCESS FOR MAKING
GLYPHOSATE BY OXIDIZING N-SUBSTITUTED GLYPHOSATES
This application is a divisional of Canadian Patent Application S.N. 2,275,866, filed February 12, 1998.
BACKGROUND OF THE INVENTION

This invention generally relates to a process for converting N-substituted N-(phosphonomethyl)glycines (sometimes referred to as "N-substituted glyphosate"), as well as esters and salts thereof, to N-(phosphonomethyl)glycine (sometimes referred to as "glyphosate"), as well as esters and salts thereof, via a noble-metal catalyzed oxidation.reaction. This invention is particularly directed to converting N-substituted glyphosates, as well as esters and salts thereof, having a single N-carboxymethyl functionality.
Glyphosate is described by Franz in U.S. Patent No. 3,799,758 and has the following formula:

1= 0~~~ N P O H
~

Glyphosate and its salts conveniently are applied as a post-emergent herbicide in an aqueous formulation. It is a highly effective and commercially important broad-spectrum herbicide useful in controlling the growth of germinating seeds, emerging seedlings, maturing and established woody and herbaceous vegetation, and aquatic plants.
Various methods for making glyphosate from N-substituted glyphosates are known in the art. For example, in U.S. Patent No. 3,956,370, Parry et al. teach that N-benzylglycine may be phosphonomethylated to N-benzyl glyphosate, and then reacted with hydrobromic or hydroiodic acid to cleave the benzyl group and thereby produce glyphosate. In U.S. Patent No. 3,927,080, Gaertner teaches that N-t-butylglycine may be phosphonomethylated to form N-t-butyl glyphosate, and then converted to glyphosate via acid hydrolysis. Glyphosate also may be produced from N-benzyl glyphosate via hydrogenolysis, as described, for example, in European Patent Application No. 55,695 and Maier, L. Phosphorus, Sulfur and Silicon, 61, 65-7 (1991). These processes are problematic in that they produce undesirable byproducts such as isobutylene and toluene which create difficulties due to their potential toxicities. Moreover, acid hydrolysis and hydrogenation of N-substituted glyphosates has been demonstrated only for alkyl groups such as tertiary butyl and benzyl groups which are known to be susceptible to such reactions. Dealkylation of N-methyl, N-isopropyl, and other N-substituted glyphosates which are not readily susceptible to acid hydrolysis or catalytic hydrogenation has not been demonstrated.
Other methods for making glyphosate are directed to oxidatively cleaving N-(phosphonomethyl)iminodiacetic acid (sometimes referred to as "PMIDA"):

HOzC03H2 COZH

PMIDA may be synthesized from phosphorus trichloride, formaldehyde, and an aqueous solution of the disodium salt of iminodiacetic acid, as described by Gentilcore in U.S.
Patent No. 4,77S,498:

N0 C HpC
NH . PC I 3 - 3H2 0 NH( ~) + H3P03 - 2NcC (+ ) + r= I
~.dOz: HUZ(,.. /

CH.O HO2C~ P0Hz -' N~

It is well-known in the art that PMIDA may be converted into glyphosate by heterogeneous oxidation over carbon catalysts as described, for example, in U.S. Patent No.
3,950,402 to Franz and U.S. Patent No. 4,654,429 to Balthazor et al.; by homogenous catalytic oxidatiori as described, for example, in Riley et al. J. Amer. Chem.
Soc. 113, 3371-78 (1991) and Riley et al. Inorg. Chem. 30, 4191-97 (1991); and by electrochemical oxidation using carbon electrodes as described, for example, in U.S.
Patent No. 3,835,000 to Frazier et al. These oxidation methods, however, have been reported to be useful only for preparing glyphosate from PMIDA, an N-substituted glyphosate having two N-carboxymethyl functionalities.
None of these prior art oxidation methods have been reported to be useful for preparing glyphosate from N-substituted glyphosate compounds having only one N-carboxymethyl functionality, i.e., where R' in the following formula is other than -CHZCOzH:

II Il~u+
HJ-_-~rl -fti-CH.' I ~UH
F

To the contrary, many prior art references suggest that if R' is a functionality other than a-CHZCOzH group, the prior art methods will cleave the -CH2CO2H group rather than R', and will therefore fail to produce glyphosate.
This is particularly true for the prior art which is directed to heterogenous catalytic oxidations over carbon and electrochemical oxidations using carbon electrodes.
The mechanisms for these oxidations are well known in the art, particularly for electrochemical oxidations where it is known as the Kolbe reaction, described in various organic electrochemistry books, e.g., S. Torii and H.
Tanaka, Organic Electrochemistry 535-80 (H. Lund and M.M.
Baizer eds., Marcel Dekker, 3rd ed. 1991). Both mechanisms involve the oxidative degradation of carboxylic acid to a carbon radical and carbon dioxide:
HOZC--~ PO3HZ
~N-/ \N____/03HZ
C02C -e HO2C
PMIDA + COZ + H+
carbon catalyst or carbon electrode -e +HZO

H
I
HOZCN~ /PO3H2 + CH2O + H+

glyphosate .v There is no suggestion that these mechanisms could be used to cleave any other functionality besides -CHzCO2H.
Thus, a more general method for oxidizing N-substituted glyphosates to glyphosates is therefore desirable. Such a method would allow a wider range of N-substituted glycines to be used as raw materials for the production of glyphosate. Such a method also could be used to make glyphosate from N-methylglyphosate (sometimes referred to as " NMG "), an undesirable byproduct from the carbon-catalyzed oxidation of PMIDA.

SUMMARY OF THE INVENTION
Among the aspects of the invention, therefore, is to provide a process for making glyphosate (as well as its salts and esters) by oxidizing N-substituted glyphosates (as well as salts and esters thereof). More particularly, it is an aspect of this invention to provide a process for making glyphosate (as well as its salts and esters) by oxidizing N-substituted glyphosates (as well as salts and esters thereof) having a single N-carboxymethy'l functionality. For example, it is an aspect of this invention to provide a process for making glyphosate by oxidizing NMG.
Briefly, therefore, the present invention is directed to a novel process for making a composition having the formula (I):

o II ~
OFf l I
R~P~C-CNj-i''GM2-p~, oR~
(I~

In this formula, R', R', and R' are i.ndependently hydregen, substituted or unsubstituted hydrocarbyl, or an S agronor;i-cally acceptable catiorn. This invention coa:prises contActir.g a solution with a noble metal catalyst and introducing oxygen into the solutior.. The solutien contains an N-substituted glyphosate havir.g the formula ('_'I) I _ RC,CH~ i CFi, ~p"
ORs R

(II) In formula (II) , RI and R' are independently hydrogen, halogen, -PO3H2, -SO3H, -Noõ or subatituted or unsubstituted hydrocarbyl other than -CO2F:. R', R', and R' are as defined above for formula (1) above.
In another embodiment of this invention, the composition (i.e., formula (I)) to be prepared +s glyphosate or a salt therecE, and the N-substituted glyphosate (i.e., formula (II)) is NM57 or a salt thereof.
During the process, a solution having a temperature of from about 125 to about 150 C and containing NMG or a salt thoreoE is contacted with a noble metal catalyst comprising platinum. Also during the process, 2,2,6,6-tetramethyl piperidine N-oxide is added to tae eolutior..
Further, oxygen is introduced into the solution at a rate which imparts a finite dissrolved oxygen concentration in the solution that is no greater than 2.0 ppm.
In accordance with a preferred aspect of the present:
invention, there is provided an oxidation catalyst comprising a noble metal having an electroactive molecular species with an oxidation potential of at least about 0.3 volts vs. saturated calomel electrode (SCE) adsorbed thereon.

5a In accordance with the above, the preferred noble metal is selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, gold and combinations thereof. Preferably the noble metal is selected from the group consisting of platinum and palladium.

In a further preferred embodiment of the present invention, there is provided an oxidation catalyst where the concentration of noble metal on the surface of the support is from about 3 to about 7.5 wt.% based on the total mass of the catalyst.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows the chemical steps that may be taken to produce glyphosate in accordance with this invention using various N-substituted glycine precursors.
Figure 2 summarizes various compounds that may be produced during the oxidation of NMG.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention provides a novel and useful method for manufacturing glyphosate, its salts, and its esters, in an aqueous medium wherein an N-substituted glyphosate or a salt or ester thereof (collectively referred to as "N-substituted glyphosate reactant") is oxidatively cleaved with oxygen over a noble metal catalyst. Advantages of preparing glyphosate from N-substituted glyphosates using this method include the simplicity of the procedure, the low cost of the oxidant (e.g., air or molecular oxygen), and the durability of the catalyst (i.e., little or no deactivation of the catalyst over several cycles).
Unlike the prior art methods for oxidatively cleaving N-substituted glyphosates to make glyphosate, this method is not limited to the oxidation of PMIDA
(which has two N-carboxymethyl functionalities). Instead, this method also may be used to make glyphosate by oxidatively cleaving N-substituted glyphosates having only one N-carboxymethyl functionality. This invention, therefore, significantly widens the range of N-substituted glyphosates that may be oxidized to make glyphosate.
This, in turn, significantly widens the range of N-substituted glycines (a precursor to many N-substituted glyphosates) which may serve as the raw material to prepare glyphosate. This invention also is valuable because it provides a method to prepare glyphosate from NMG, an undesirable byproduct from the carbon-catalyzed oxidation of PMIDA.

T'ne N-substiituted glyphcsate reactants of the present invention have the following for:nula r .
RsO--c-CFi= i-OHa 'P~oR' Rt-C~'H
t2 R

wherein preferably Ri and 8I are independently hydrogen, halogen, -P01H=, -SO3H, -Na3, or a subst;.tuted. or unsubstituted hydrocarbyl other than -CO,H; and R', R', and Rs aze independently hydrogen, a subatituted or unaubstituted hydrocarbyl, or ar, agronomically acceptable cation.
As ueed herein, the term hydrocarbyln is defined as a radical consisting exclusively of carbon and hydrogen. The hydrecarbyl may be branched or urtbranched, may be saturated or uneaturated, and may contain one or more rings. Suitable hydrocarbyl moieties include alkyl, alkenyl, alkyny?, and aryl moieties. They also include alkyl, alkenyl, alkynyl, and aryl moieties substituted with other aliphatic or cyclic hydrocarbyl groups, guch as alkaryl, alkena.ryl and alkynaryl.
The term Bsubstituted hydrocarbyl" is defined as a hydrocarbyl wherein at leaat one hydrogen atom has been substituted with an atom other than hydrogen. For example, the hydrogen atom may be replaced by a halogen atom, such as a chlorine or fluorine atom. The hydrogen atom alternatively may be substituted by an oxygen atom to form, for example, a hydroxy gxoup, an eeher, an ester, an anhydride, an aldehlyde, a ketone, or a carboxylic acid ~except that neither Rt nor R' may be a carboxy group, i.e., -COHj . The hydrogen atom also may be replaced by a nitrogen atom to form an amide or a nitro functionality, although substitution by nitrogen to form an amine or a nitrile functionality preferably shoul8 be avoided. :n addition, the hydrogen atom may be replaced with a sulfur B

atont to form, for example, -SO,H, although substitution by sulfur to form a thiol should be avoided.
It should be recognized that R1 and R' may together form a ring. This ring may be either a hydrocarbon ring or a hetarocycle, and at least one hydrogen on the ring may be substituted as described above for substituted hydrocarbyl functionalitiea.
Xn a preferred embodiment, Rl, R', R', and Rs are each hydrogen, and R1 is a linear, branched, or cyclic hydrocarbyl containing up to about 19 carbon atoms. In a more preferred embodiment, R', lt', and R are each hydxogen, and -CHR1R' is methyl ( i. e., Rl and R= are hydrogen), i9opropyl (i.e., R1 and Z2 are -CH,), benzyl (i.e., R' is hydrogen and R2 is phenyl), or n-pentyl (i.e., R= ia hydrogen and R' is a 4-carbon, straight-chain hydrocarbyl).
Many N-substituted glyphosate reactants may be prepared by phosphonomethy7.ating the corresponding iJ-substituted glycines, their salts, or their amides, for example, by the following reaction:
/NH . CMiQ + HIPO3 R' R' Phoaphonomethylation of secondary amines is well-knowri in the art, and discussed at length in Redmore, D. Tooics in DhosBho ous Chemistry, Vol. 8, 515-95 (E.G. Griffith & M.
Grayson eds., Johr. Wiley & Sona 1976); and in a chapter entitled "a-substituted Phosphonates" in Mastalerz, P.
Handbook of OrganQnhosphorus Chg=tstKy 277-375 (Robert F=ngel ed., Marcel Dekker 1992).
Several methods may be used to prapare Ny-substituted glycinca and their salts and amidQe. In one embodiment of this invention, the N-substituted glycine is prepared by the condensation of hydrogen cyanide, formaldehyde, and N-substituted amines, followed by hydrolysis to N-substituted glycine or a salt thereof:
H O

, N H C H C = H C N N
2 2 H2(~ q~ '~H

This reaction is known as the Strecker synthesis. The Strecker synthesis is well-known in the art and is described in Dyker, G. Angewandte Chimie Int'l Ed. in English, Vol. 36, No. 16, 1700-2 (1997). The resulting N-substituted glycine may be converted to an N-substituted glyphosate by reacting it with formaldehyde and phosphorous acid (H3P03) in the presence of a strong acid.
In a different embodiment of this invention, the N-substituted glycine is prepared by dehydrogenation of N-substituted ethanolamine in the presence of a base (preferably sodium hydroxide) to form salts of N-substituted glycines:

Cu CaC31v~t H 0 71 Ff . NdCH zH z Ori H

This reaction is described by Franczyk in U.S. Patent Nos.
5,292,936 and 5,367,112, and by Ebner et al. in U.S.
Patent No. 5,627,125. The N-substituted ethanolamine precursor may be prepared in at least two ways. First, ketones may be condensed with monoethanolamine in the presence of hydrogen, a solvent, and a noble metal catalyst. This reaction is described in Cope, A.C. and Hancock, E.M. J. Am. Chem. Soc., 64, 1503-6 (1942). N-substituted ethanolamines also may be prepared by reacting a mono-substituted amine (such as methylamine) with ethylene oxide to form the mono-substituted ethanolamine.
This reaction is described by Y. Yoshida in Japanese Patent Application No. 95-141575. The resulting N-substituted glycine salt may be converted to N-substituted glyphosate by reacting it with phosphorus trichloride (PC13) in water, and then filtering out the salt and adding formaldehyde.
In an alternative embodiment of this invention, 5 N-substituted glycine is prepared by condensation of N-substituted amides, formaldehyde, and carbon monoxide in the presence of a catalyst:

q 0 H 0 p Co ca;aiys: ~ ~
c H G ~~ N
A 2 -'-~
N
OH F1~0 i G/ =i~
H ~}

This reaction (i.e., carboxymethylation) is described by 10 Beller et al. in European Patent Application No. 0680948;
and Knifton, J.F. Applied Homogeneous Catalysis 159-68 (B.
Cornils et al. eds., VCH, Weinheim, Germany 1996). The product of this reaction is the N-acetyl of the N-substituted glycine which may be hydrolyzed to the N-substituted glycine. The N-substituted glycine then may be converted into the corresponding N-substituted glyphosate by reacting it with phosphorous acid and formaldehyde in the presence of a strong acid, and then removing the carboxylic acid by methods generally known in the art, such as distillation or membrane separation.
In a further embodiment of this invention, the N-substituted glycine is prepared by the reductive alkylation of glycine achieved by reacting carbonyl compounds with glycine and hydrogen in the presence of a catalyst:

o Hz ~
HzN~ . -i R~N
Gcatalyst H H 20 ~~
R

This reaction is described by Sartori et al. in U.S.
Patent No. 4,525,294. The N-substituted glycine may be converted to N-substituted glyphosate by reacting it with formaldehyde and phosphorous acid in the presence of a strong acid.
This inveintion also provides a new and useful method for conversion of N-substituted glyphosates which are not derived from the phosphonomethylation of N-substituted glycines. For example, this method is particularly useful for making glyphosate from NMG, an undesirable byproduct from the carbon-catalyzed oxidation of PMIDA.
Figure 1 summarizes the methods for preparing glyphosate from the materials discussed above. The symbols used in Figure 1 have the usual meanings familiar to those skilled in the art.
To oxidize the N-substituted glyphosate reactant, it preferably is first mixed with water and then fed into a reactor along with an oxygen-containing gas or a liquid containing dissolved oxygen. In the presence of a noble metal catalyst, the N-substituted glyphosate reactant is oxidatively converted into glyphosate and various byproducts:

II II~'pa O. Hzo II Il~oa' F3G-C-C1z-N-P~ brPr:,:ljcts 1 I -~ Noble metdi oN '~ Cat isc ~
I v P' wherein R1, R2, R3, R', and RS are defined as above. In a preferred embodiment, the catalyst subsequently is separated by filtration and the glyphosate then is isolated by precipitation, for example, by evaporation of a portion of the water and cooling.
The amount of N-substituted glyphosate reactant in the aqueous medium is typically from about 1 to about 80 wtA ([mass of N-substituted glyphosate reactant =
total reaction mass] x 100%). More preferably, the amount of N-substituted glyphosate reactant is from about 5 to about 50 wt.%, and most preferably from about 20 to about 40 wt.%.
Preferably, the reaction is conducted at'a temperature of from about 50 to about 200 C. More preferably, the reaction is conducted at a temperature of from about 70 to about 150 C, and most preferably from about 125 to about 150 C.
The pressure in the reactor during the oxidation generally depends on the temperature used. Preferably, the pressure is sufficient to prevent the reaction mixture from boiling. If an oxygen-containing gas is used as the oxygen source, the pressure also preferably is adequate to cause the oxygen to dissolve into the reaction mixture at a rate sufficient to sustain the desired rate of reaction.
The pressure preferably is at least equal to atmospheric pressure. Preferably, the pressure is from about 30 to 200 psig. More preferably, when the temperature is in the most preferred range of from about 125 to about 150 C, the pressure is from about 40 to about 100 psig.
The oxygen source for the oxidation reaction may be any oxygen-containing gas or a liquid containing dissolved oxygen. Preferably, the oxygen source is an oxygen-containing gas. As used herein, an "oxygen-containing gas" is any gaseous mixture containing molecular oxygen which optionally may contain one or more diluents which are non-reactive with the oxygen or the reactant or product under the reaction conditions.
Examples of such gases are air, pure molecular oxygen, or molecular oxygen diluted with helium, argon, neon, nitrogen, or other non-molecular oxygen-containing gases.
Preferably, at least about 20% by volume of the oxygen-containing gas is molecular oxygen, and more preferably, at least about 50% of the oxygen-containing gas is molecular oxygen.
The oxygen may be introduced by any conventional means into the reaction medium in a manner which maintains the dissolved oxygen concentration in the reaction mixture at the desired level. If an oxygen-containing gas is used, it preferably is introduced into the reactiori medium in a manner which maximizes the gas' contact with the reaction solution. Such contact may be obtained, for example, by dispersing the gas through a diffuser such as a porous glass frit or by sintering, shaking, or otrier methods known to those skilled in the art.
The oxygen preferably is fed to the reaction mixture at a rate which is sufficient to maintain the dissolved oxygen concentration at a finite level. More preferably, the oxygen is fed at a rate sufficient to maintain the dissolved oxygen concentration at no greater than about 2.0 ppm, but at a high enough concentration to sustain the desired reaction rate. It should be noted that the partial pressure of the oxygen in the reactor affects the rate at which oxygen is delivered to the reaction mixture and preferably is from about 0.5 to about 10 atm.
The catalyst used in this invention comprises a noble metal, preferably platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), osmium (Os), or gold (Au). In general, platinum and palladium are more preferred, and platinum is most preferred. Because platinum is presently most preferred, much of the following discussion will be directed to use of platinum. It should be understood, however, that the same discussion is generally applicable to the other noble metals and combinations thereof.
The noble metal catalyst may be unsupported, e.g., platinum black, commercially available from various sources such as Aldrich Chemical Co., Inc., Milwaukee, WI;
Engelhard Corp., Iselin, NJ; and Degussa Corp., Ridgefield Park, NJ. Alternatively, the noble metal catalyst may be deposited onto the surface of a support, such as carbon, alumina (A1Z03) , silica (SiO2) , titania (TiO2) , zirconia (ZrOZ), siloxane, or barium sulfate (BaSO4), preferably silica, titania, or barium sulfate. Supported metals are common in the art and may be commercially obtained from various sources, e.g., 5% platinum on activated carbon, Aldrich Catalogue No. 20,593-1; platinum on alumina powder, Aldrich Catalogue No. 31,132-4; palladium on barium sulfate (reduced), Aldrich Catalogue No. 27,799-1;
and 5% Palladium on activated carbon, Aldrich Catalogue No. 20,568-0. As to carbon supports, graphitic supports generally are preferred because such supports tend to have greater glyphosate selectivity.
The concentration of the noble metal catalyst on a support's surface may vary within wide limits.
Preferably it is in the range of from about 0.5 to about wt.% ([mass of noble metal = total mass of catalyst] x 15 100%), more preferably from about 2.5 to about 10 wt.%, and most preferably from about 3 to about 7.5 wt.%. At concentrations greater than about 20 wt.%, layers and clumps of noble metal tend to form. Thus, there are fewer surface noble metal atoms per total amount of noble metal 20 used. This tends to reduce the catalyst's activity and is an uneconomical use of the costly noble metal.
The weight ratio of the noble metal to the N-substituted glyphosate reactant in the reaction mixture preferably is from about 1:500 to about 1:5. More preferably, the ratio is from about 1:200 to about 1:10, and most preferably from about 1:50 to about 1:10.
In a preferred embodiment, a molecular electroactive species (i.e., a molecular species that may be reversibly oxidized or reduced by electron transfer) is adsorbed to the noble metal catalyst. It has been discovered in accordance with this invention that selectivity and/or conversion of the noble metal catalyst may be improved by the presence of the electroactive molecular species, particularly where the catalyst is being used to effect the oxidation of NMG to form glyphosate. In this instance, the electroactive molecular species preferably is hydrophobic and has an oxidation potential (E,) of at least about 0.3 volts vs. SCE
(saturated calomel electrode). Many such oxidatiori potentials may be found in the literature. A compilation 5 showing the oxidation potential and reversibility for a large number of electroactive molecular species may be found in Encyclopedia of Electrochemistry of the Elements (A. Bard and H. Lund eds., Marcel Dekker, New York, publication dates vary between volumes). Specific 10 references showing the oxidation potentials for electroactive molecular species are: for triphenylmethane, Perichon, J., Herlem, M., Bobilliart, F., and Thiebault, A. Encyclopedia of Electrochemistry of the Elements vol. 11, p. 163 (A. Bard and H. Lund eds., 15 Marcel Dekker, New York, NY 1978); for N-hydroxyphthalimide, Masui, M., Ueshima, T. Ozaki, S.
J.Chem. Soc. Chem. Commun. 479-80 (1983); for tris(4-bromophenyl)amine, Dapperheld, S., Steckhan, E., Brinkhaus, K. Chem. Ber., 124, 2557-67 (1991); for 2,2,6,6-tetramethyl piperidine N-oxide, Semmelhack, M., Chou, C., and Cortes, D. J. Am. Chem. Soc., 105, 4492-4 (1983); for 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphine iron (III) chloride, Dolphin, D., Traylor, T., and Xie, L. Acc. Chem. Res., 30, 251-9 (1997); and for various porphyrins, Fuhrhop, J.H.
Porphyrins and Metalloporphyrins 593 (K. Smith, ed., Elsevier, New York, 1975).
Electroactive molecular species also are useful in the context of the oxidation of N-isopropyl glyphosate to form glyphosate. In that context, an electroactive molecular species preferably is adsorbed to a noble metal catalyst on a graphitic carbon support. In the presence of the graphitic carbon support, the electroactive molecular species has been found to increase the noble metal catalyst's glyphosate selectivity.

Examples of generally suitable electroactive molecular species include triphenylmethane; N-hydroxyphthalimide; 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphine iron (III) chloride (abbreviated "Fe(III)TPFPP chloride"); 2,4,7-trichlorofluorene; tris(4-bromophenyl)amine; 2,2,6,6-tetramethyl piperidine N-oxide (sometimes referred to as "TEMPO"); 5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride (sometimes referred to as "Fe(III)TPP
chloride"); 4,4'-difluorobenzophenone; 5,10,15,20-tetraphenyl-21H,23H porphine nickel(II) (sometimes referred to as (Ni(II) TPP"); and phenothiazine. When the noble metal catalyst is being used to catalyze the oxidation of NMG to glyphosate, the most preferred electroactive molecular species include N-hydroxyphthalimide; tris(4-bromophenyl)amine; TEMPO;
Fe(III)TPP chloride; and Ni(II) TPP.
Electroactive molecular species may be adsorbed to the noble metal catalyst using various methods generally known in the art. The electroactive molecular species may be added directly to the oxidation reaction mixture separately from the noble metal catalyst. For example, 2,2,6,6-tetramethyl piperidine N-oxide ("TEMPO") may be added to the reaction mixture without first being adsorbed to the noble metal catalyst, as illustrated in Example 13. Using this method, the electroactive molecular species adsorbs to the noble metal catalyst while in the reaction mixture. Alternatively, the electroactive molecular species is adsorbed to the noble metal catalyst before being added to the oxidation reaction mixture. Generally, the electroactive molecular species may be adsorbed to the catalyst using, for example, liquid phase deposition or gas phase deposition.
Example 8 illustrates using liquid phase deposition to adsorb the electroactive molecular species.

The oxidation reaction preferably is carried out in a batch reactor so that the reaction may be contained until the conversion to glyphosate is complete. However, other types of reactors (e.g., continuous stirred tank reactors) also may be used, although preferably: (1) there should be sufficient contact between the oxygen, N-, substituted glyphosate reactant, and the catalyst; and (2) there should be adequate retention time for substantial conversion of the N-substituted glyphosate reactant to glyphosate.
It should be noted that this invention has the ability to oxidize N-substituted glyphosates in the presence of other chemical species which may arise in the course of previously known methods for preparing glyphosate. For example, this invention has the ability to oxidize NMG in the presence of phosphoric acid or phosphonomethylated species which are byproducts of the carbon-catalyzed oxidation of PMIDA, such as aminomethylphosphonic acid ("AMPA"), N-methyl-aminomethylphosphonic acid ("MAMPA"), and glyphosate.
It should be further recognized that this reaction process may be conducted where a sub-stoichiometric amount (i.e., less than one equivalent) of base is present in the reaction mixture. The presence of the base, however, may be deleterious to selectivity under some reaction conditions.

EXAMPLES

General Most of the examples below describe the oxidation of NMG to form glyphosate. In addition to glyphosate, MAMPA and phosphoric acid (H3PO4) also may form. Further, the glyphosate product may further oxidize to form AMPA. This is summarized in Figure 2.

High pressure liquid chromatography ("HPLC ) was used to analyze the products formed during the reactions digcussed in the following examples. An fon exchange separation was used, and the analytes were detected using W/visible detection following post-column reaction to for<a a phoaphomolybdate complex. This method can distinguieh between, A'MG, glyphosate, and phosphoric acid, but AMPA and MAMPA coelute. 8ecause AMPA and tr1AIMPA have the same response factor, on a molar basis, the aum of the AMPA and MAMPA concentrations can be reliably determined.
This value is reported as (M)AMPA in the examples below.
SxAMPLE 1.
This example illustrates a typical synthesis of NMG. Approximately 69.9 g sarcosine (1.00 mole), 82,0 g phosphorous acid (1.0 mole), and iio g concantXatied hydxachloric acid weza mixed and refluxed in a 130 C oil bath. Next, 89.3 g of 37!k forrnalin (1.1 mole) was added dropwise over 20 minutes and the reaction was continued for an additional 85 minutes. Rt tnis point, NMR revealed the fvllowing product distribution (on a molar basis):
89.94 lrYG, 2.1% phosphorous acid, 1.9ir phosphoric acid, 0.4-t hydroxymethyl phosphorous acid, and 5.71 of an unknown product (1v7M: triplet, 8.59 ppm). After cooling to room temperature, 40 g sodium hydroxide was added, followed by 250 g water. This led to the formation of a white precipitate which subsequently was recovered by filtration and assayed by HPLC. The total recovered yield of N'MG was 70,54 based on the ameunt of sarcosine and phosphorous acid used.
Other N-a;kyl glyphosates also may be ir.ade in a similar manne_.

E7LAMPLE 2.
Thia exa:mple illustrates the conversion of RMG
to glyphoeate using a Pt catalyst and oxygen.

Approximately 10.0 g NMG, 140 g water, and 1 g platinum black (Aldrich Chemical Co., Inc., Milwaukee, WI) were combined in a round bottom flask equipped with a water-cooled reflux condenser immersed in a 150 C oil bath. Oxygen was bubbled through for four hours as the solution was stirred. At the end of this period, HPLC
analysis revealed the following product distributions (on a molar basis): 86.4% glyphosate, 8.7% NMG, 2.2% (M)AMPA, and 2.7% phosphoric acid. Glyphosate precipitated from the solution after cooling to room temperature.
In a second experiment, a mixture of 10.0 g NMG, 2.0 g platinum black, and sufficient water to bring the total volume of the mixture to 200 ml, was stirred for 2 hours and 40 minutes at a temperature of 80 C while oxygen at a pressure of one atmosphere was bubbled through.
Analysis of the reaction mixture indicated the following product distribution in molar terms: 85.4% glyphosate, 8.1% phosphoric acid, and 6.5% unknown components. No NMG
was detected.

EXAMPLE 3.
This example illustrates the conversion of N-isopropyl glyphosate to glyphosate using a Pt catalyst and oxygen. Approximately 1.0 g N-isopropyl glyphosate, 10 g water, and 0.3 g platinum black (Aldrich Chemical Co., Inc., Milwaukee, WI) were combined in a round bottom flask (equipped with a water-cooled reflux condenser) and immersed in a 80 C oil bath. A stream of oxygen was introduced at the reaction surface for 18 hours as the solution was stirred. At the end of this period, 31P NMR
revealed the following product distributions (on a molar basis): 91% glyphosate, 1% amino phosphonic acid, 6%
phosphoric acid, and 2% unknown product (15.0 ppm), Glyphosate precipitated from solution after cooling to room temperature.

EXAMPLE 4.
Various N-alkyl glyphosates were used under the same conditions as described in Example 3 to produde glyphosate. In other words, the only parameter which was 5 varied was R' in the following formula:

-io- I C I - C C H 2- I p I oH
r 2 ri-~
'OH

Table 1 shows the alkyl group (i.e., R') used, as well as the conversion and glyphosate selectivity.

10 Use of Various N-Alkyl Glyphosates to Prepare Glyphosate Alkyl Group Conversion Glyphosate (~) Selectivity (~) methyl 91 95 isopropyl 79 98 isopropyl 100 91 15 n-pentyl 62 82 benzyl 81 89 cyclohexyl 66 11 EXAMPLE 5.
This example illustrates the conversion of NMG
20 to glyphosate using unsupported platinum and a variety of catalysts in which platinum is dispersed on a non-carbonaceous support.
Approximately 1.0 g NMG, 10 g water, and 2.0 g of 5% platinum on barium sulfate were combined in a round bottom flask (equipped with a water-cooled reflux condenser) and immersed in a 95 C oil bath. Oxygen was bubbled through the reaction for 23 hours as the solution was stirred. At the end of this period, HPLC analysis revealed the following product distributions (on a molar basis): 78.2% glyphosate, 2.4% NMG, 9.4% (M)AMPA, and 10.0% phosphoric acid. Glyphosate precipitated from solution after cooling to room temperature.
In a separate experiment, the data in Table 2 was obtained by heating to reflux a mixture containing 1 g of NMG, 20 ml water, and sufficient catalyst to contain 5 mg of platinum metal in a magnetically-stirred, round-bottom flask equipped with a reflux condenser. Oxygen was bubbled through for 5 hours using a needle. The catalyst was then removed by filtration and the filtrate analyzed by HPLC.
As Table 2 indicates, two platinum black catalysts were tested. The Engelhard V2001 (Engelhard Corp., Iselin, NJ) catalyst has a much smaller surface area than the Aldrich platinum black catalyst (Aldrich Chemical Co., Inc., Milwaukee, WI). As Table 2 shows, the Engelhard V2001 catalyst, with its lower surface area, had lower selectivity and conversion, even though 30 times more of the Engelhard catalyst (i.e., 150 mg) was used compared to the Aldrich catalyst (i.e., 5 mg).

~

=,4 =,-~
SS .==i O O> -- r N c- w m -r-t oto ' ' . . r~
ao M ~ oo 1~ ao z a~
~
a, ~4 ~
~
>
-,1 -~ O kD r1 ao 00 l- m s4 Quo~ .
p m ~ N I~ N N r-I N

O ~.
ri ~ O~ M O [~ l!1 N ~O O~ 01 -r-1 Ic: 1i 0%0 lf1 0 CO Q1 N o0 r-I a0 N~ a0 I~ O~ OD 6~ QO Ol 00 N a f~ 0 U]
N ~

O O
aJ Ul N O -T L~
11 S4 = = = = = = =
0 ,y v cr N ~ (') [- M
rl r-1 H cn m N
~

~
tJ
a ~
ro 41 2 a U (1d =rl .~ rl ro '~ 41 CT1 ~

~4 Q W O a U
0 'o O 0 41 N N
U v r-+ 0 0 U) C!] .~'. 0 0 r~ N (d M a) -4 -A
~ U U u~ N W W~A E-+ CIl a) ~D ~ ,~ ~ 4J ~ 4-1 .u w ~ 1-3 A A o a a a a w a a ,,.4 0 =,-a 0 1J l.) N oW oW oW o'P =o cN ow a a,7 Ln Lo Ln u, - ln lfl v m Ln 0 ~

A third experiment was conducted which illustrztes that aluminum oxide and ailoxanes (Deloxan;
Degussa Corp., Ridgefield Park, NJ) may be used as supports for the metal catalyst. The following experiments were conducted overnight at 95 C and 1 atnt uring sufficient catalyst to be equivalent to 0.1 g platinum metal, 1 g NMO, and 10 ml of water. Oxygen wns introduced through a needle at 50 sccm (i.e., standard cm' per min.). The resulting solution wae filtered and analyzed by BPLC and the dissolved platinum concentration was analyzed by inductively-coupled plasmafmaes spectrometry. The data is shown"in Table 3.

*Trade-mark O
.~
~ >1 ro 'CS 'i -,~
X Q-r-1 .--~ (V r-4 QO al N N 0 kD 01 OD O
0 W 11 o10 . . . . ' . . . .
U~ 00 %0 M lf1 a0 N CO lf1 lw ri =
z a, ~
-H
~4 ::I
a~., ,-~ in .- ~ N N ln V~ ri lD
m ~1 ~ V p ko '-I rl O N Ol ~0 ~ O ri ~4 H H H rri N v in in 0 ~- i v ul m v >' O m [- M H 10 c-1 Il) OJ 01 l- O% 1w t ~ 0 .~ w u N 61 f=1 o c+1 N o lD L~
.'~ V v 4) OD 00 l- CU CO a0 l11 l, v ['M eM

N t"I U c) Ul r~ 'b y ~
s4 0 0 -r-I
U] l!1 I~ r ~D M v r oo t!1 N
74 " =
N ~ a0 [, N 10 l~ rl N l~ M a0 Ln CI~ > 0) CO 01 41 10 Ln Ul M V' Lf1 a u b b 41 41 41 4-3 s~ m w m a >4 >1 ro ro ai N ~4 ro ~~ ro ro ro ro ro 4 >1 0 X X ~ =~~! U .~+ U
tC V N ~ 0 N O O G G+J E.0 4j 0 0 F: U) 0 ,-i r+ ~% :j s:'. ~s F-:
~ U -.-i =ri Q) 0 =ri =.i -r-I ri rl 4) ri N
U u C/) Cn 3-4 fQ H M U2 ct N S a M 3 i ~D r+ -i Ln a.-> Q w .u 4.) iJ i~ ~ -LJ 44 .tJ w .Q A O a a w a a, a a a a u-+ a 4-4 44 0 =.Ai -li -ri 0 J-) 4.3 ri ar w 10 aP OP aP ar ar+ w 't7 ow ro a a Cl] tf) U1 - tf) Ul M tf) L11 U7 - tn -a~
m Ln 0 Ln ~ ~

a1cAMPLg 6.
This example illustrates the use of palladium instead of platinum as a catalyst for the oxidation of NMt3 to glltphosate. A solution consisting of 3.0 g of NMG, 0.3 5 g of palladium black, and 57 g of water was refluxed in air over a weekend under a water-cooled reflux condenser.
NMR ana+ysis indicated the following product distributiona 97.2* NMG, 2.6% glyphosate, and 0.05t phosphoric acid.
N]CAMPLB 7.
10 This example demonstrates that catalysta consisting of graphitic carbon supports impregnated with platinum have greater glyphasate selectivity relative to catalysts consisting of non-graphitic carbon supporta impregnated with platinum. Also, this exasrple i5 der.tornstraLes that less b.AMPA ar_d A14PA are formed when catalysts consisting of graphitic carbon supports impregnated with platinum are used.
The following example describes the results of oxidizing NMa using catalysts consisting of platinum 20 dispersed on a commercially available carbon support.
F106 carbon and the platinumJFio6 carbon catalyst are available from pegussa Corp. (Ridgefield Park, N3).
Sibunit carbon is ananufactured as described in by Surovikin at al. in U.S. Patent 4,978,649, and may be :25 purchased from the Boreskov Ynstitute of Catalysis in Novosibirsk, Russia as can platinum catalystg supported on Sibunit carbon. However, the catalyst uaed ir. this example was prepared from the carbon itself by impregnation with,platinum salts followed by reduction 3.0 with sodium borohydride which is a standard for the preparation of supported platinum catalysts, The general preparatioa of platinum or, a carbon support is well-known in the art and is deacribed, for example, in stilea, A.B.
talyst SvmiRcrts snd SupmojtgdCata3=ygts, Theoreticalard AbcliCd Concents (Butterworths, Boston, MA 1987) ; and in a chapter by R.L. Moss in Exnerimental Methods in Catalytic Research, Vol. 2, Ch. 2, pp. 43-94 (R.B.Anderson & P.T. Dawson, eds., Academic Press, New York, NY 1976).
The 20% Pt/Vulcan XC-72R*carbon catalyst is manufactured by Johnson-Matthey and may be purchased through Alfa/Aesar (Ward Hill, MA). These three carbons are respectively not graphitic, somewhat graphitic, and almost completely graphitic.
Approximately 100 mg of the catalyst (except as noted), 10 ml of water, and 1 g of NMG were refluxed for five hours while oxygen was bubbled through via a needle.
The reaction was then filtered and analyzed by HPLC.
Table 4 shows the results.
*Trade-mark >1 4-) =,~
L: a'~ ow ~ -- ao co ~o O .
rt U O
x X a >
z r-i o 0\' a~ co 0 (; U v N r-i rl A 4-) Sa cd =.a ffS UI >
rI
U ,~ ow N m U p, U v lD r o0 ~r =,~ ?~
i' -1 N
Ei ~-+ ~

.ri ~ y4 r1 a) CO M M
(n > O) lf) l!l =r-I G~

E

U

~+
O O N
0 Q t-Ln N i ~ 1' Q
v m U >C
~ ro S
w U
O U o 3 A ?
v) O r, .u r~ ,1 a o a ~s a ~
oW ~-1 oW .1-) oW O tI3 Ul (1) ch N U
lf) EXAMPLE 8.
This example illustrates the improved selectivities which may be achieved when an electrdactive molecular species is adsorbed to a noble metal catalyst.
All of the electroactive molecular species adsorbed to platinum black in this example undergo oxidation and reduction by electron transfer. Thus, the treatment of platinum-containing catalysts by both electroactive molecular species and their oxidative precursors is exemplified herein.
This experiment was conducted by heating to reflux a mixture containing 1 g of NMG, 20 ml water, and 50 mg of platinum metal in a magnetically-stirred, round-bottom flask equipped with a reflux condenser. Oxygen was bubbled through for 5 hours using a needle. The catalyst was then removed by filtration and the filtrate analyzed by HPLC.
To prepare the organic-treated catalysts, 0.5 g of platinum black (Aldrich Chemical Co., Inc., Milwaukee, WI) was added to a solution of 25 mg of the poison (i.e., the electroactive molecular species) in 50 ml of anhydrous acetonitrile. The mixture sat capped in an Erlenmeyer flask for four days, except that the 4,4'-difluorobenzophenone catalyst only was exposed to solution for one day. The catalyst subsequently was recovered by filtration, rinsed with acetonitrile and diethyl ether, and air-dried overnight.
The 2,4,7-trichlorofluorene catalyst was prepared using 0.3 g of Pt black and 30 ml of a solution consisting of 834.5 ppm 2,4,7-trichlorofluorene in acetonitrile/1% CH2C12 solution (used to facilitate dissolution of the electroactive molecular species) which was allowed to evaporate at room temperature. The catalyst subsequently was washed with ethanol and air-dried.

The inorganic-treated catalysts were prepared by combining 0.50 g of Pt black, 50 tnl of tetrahydrofuran, and either 25 or 1o0 mg of the inorganic electroactive molecular speciea, and stirring overnight at room temperature in a sealed 125 ml Erlenmeyer flask. The catalyst was recovered by filtration, washed with diethyl ether, and air-dried overnight.
The inorganic species used, all of whicY, are available from Aldrich Chemical (Milwaukee, WI), wereo 1. 5,10.15,20-tatrakis(pentafluorophenyi)-21H,23H-porphine iron (III) chloride (abbreviated "Fe(IIi)TPFPP chloride in Table 5). Approximately 25 mg was usad to prepare the catalyst.

2. 5,10,15,20-tetraphenyl-21H,23H-porphine iron (III) chloride (abbreviated Fe(IiY) TPP chlorwde" in Table 5), Approximately 25 mg was uaed to prepare the catalyst.

3. 5,10,15,20-tetraphenyl-21H,23H-porphine nickel (II) (abbreviated as "Ni(II) TPP" in Table 5).
Approximately 25 mg was used to prepare the catalyst.
4. Ruthenium-tris(2,21-bipyridine) dichloride (abbreviated as " [Ru(bpy),) C13N in Table 5) .
Approximately 100 mg was used to prepare the catalyst.

S. Ferrocesne, Approximately 100 mg was used to prepare the catalyst.

Where available, literature data on the oxidation potential (E:j,) of the electroactive molecular species is reported in Table S. This example ill-astrates that electroactive mclecular species being relatively soluble in water (e.g., fQrrocane and (Iiu4Ib&y),JC1,) are lgss effective at enhancing glyphosate selectivity. This example also demonstrates that hydrophobic electroactive molecular species increase the catalyst's selectivity.
5 FlectroacLive tr.olecular species having oxidation potentials more negative than about +0.3 V vg SCE
generally decrease conversion. Thus, the preferred electroactive molecular species for enhancing=the selectivity and conversion of MG oxidation may be either 10 organic or inorganic, but should be hydrophobic and have oxidation potentials more positive than about 0.3 volts vs. SCE.

ow ~ o ~ 0 ~ W N cn rn co '! w aI

a 0 m .r m 'IV o 0 0 ~o o) o O ~ ~j . . . .
U T N N N N t0 t~ N
RJ r-~
'b U
r I CJ) X

~ J ) oW
z [!1 rl u) N t11 01 d~ ~ l~ ri M Ol ~D
O ~
ri Q1 . 1 O c0 N
O i () M M M M N m ~ N OD Ol 01 Q1 Q1 O~ 0~ W Ol Q1 O a0 r-1 (n r-i Q) Q) C7 cl) U
4) w O~ r~ QO Ql 00 Ln Cf) Q1 m M N H
~4 \o Lf1 N l0 L(1 -1 N N Ql M [~ O
H ~ R1 v ~I' lf) ltl M h N N w U1 m [-M W ~ U
U
QJ
,--i O
U [r Ul r1 Lfl N ~
QJ ul 1 ~ O N O H r-I M ~
n ~ ~ . . O . . . .
' ~ n.
.,-{ W> I ri rl + O O ~-i rl ri O
41 + + + + + + + +
U , (a ~4 tJ
U
N ~

44 -rl C:
O S i N rt3 'U
Q) o b -- a -~+ v rn N O ~
-~ S-a rtf c~ A U r-+
~ rv O 0 4 Cl+ .~ 0 E N 0 Oa. U
0 :j rs. a ri ~-1 ,-, .-, LL 04 a 4) ~ x ~ H E-+ a 0 - 7. N
[
~4 '31 0 d i~-+ A O
~ 04 -a ~
~, W~ - aU a) =,-4 a a) z N z4-1 H41 -,zv w w Z w Ln o Ln r I H

EXAMPLE 9.
This example illustrates the effect of electroactive molecular species on the platinum-catalyzed oxidation of N-isopropyl glyphosate using the commercially available catalyst 20% Pt on Vulcan XC-72R carbon (manufactured by Johnson-Matthey and is available from Alfa/Aesar (Ward Hill, MA)). The commercial catalyst was tested along with a catalyst which had been impregnated with two electroactive molecular species: N-hydroxyphthalimide and triphenylmethane.
These catalysts were used to oxidize N-isopropyl glyphosate by the method described in the previous example. Approximately 1 g of N-isopropyl glyphosate was substituted for the NMG. The results shown in Table 6 demonstrate that electroactive molecular species improve the selectivity of platinum on carbon catalysts for this reaction. Modifiers with less positive oxidation potentials such as triphenylmethane appear to be more effective than those with more positive oxidation potentials, such as N-hydroxyphthalimide. This example also demonstrates that the use of graphitic supports for platinum is less effective in suppressing undesired side reactions in N-isopropyl glyphosate oxidations than is the case for NMG.

O v M d N Ln (0 a U) ~
O [ ~D N
x N
N
~

r-+
O
N L!~ N
f4 hcx;
O m r+
H N
~
z ro~
~ m ao un kO
Ci arn o r+ o -~ =~ ~
4-1 a a, r, N ff, ~n ro ~r--l ~+ c7 ua x "o 0 (1) N N
rn ~4 \ l- r-I r-i O
M ~ Q U r- ao ko H w O
.r{
U
~ U
~ ~ r-m \ O v N
}4 W; O rl O
~ + + +
>
U
N ~

.~ .C

~ ~ b~ ~ t71 ~ U 3 E 3 ~ ~
> zj w 'b b N(1) N N ro!!1 i' (N 41iJ 0~l U
ro r~ ai ai r' rn ~ ~4 N E
11 ri fi1 1-) .
U ~
,~ RS ro~ Rf 1J M (lS 41 N
W U ~ U'd U.~ U (1) rn A 1 - + Q1 r-+ f . 1 tn ri E-0 > \ 0 0) \ Q, ~
E
a E
m Q ~.~2s ~ ~, rt3 aa in okO.~ (d N aa -.i in r-I 0 N 0 ~ 0 Ul 0 f-1 O
a N'-' N Z r-I ::J N J-1 M
Ln 0 r--i EXAMPLE 10.
This example demonstrates that both selectivity and conversion may be improved by minimizing the dissolved oxygen concentration.
In a 300 mg 316 stainless steel autoclave reactor, 4.4 gram NMG were combined with 1 gram platinum black in 145 g deionized water. The reaction mixture was heated to 70 C at 60 psig, and a nitrogen/oxygen mixture was bubbled through with vigorous mixing for 4 hours. The dissolved oxygen concentration was measured using an Orbisphere dissolved oxygen probe, calibrated to read 26.4 ppm O2 at 70 C/60psig air saturation, and controlled by varying the Nz/OZ blend. Two runs were conducted with the dissolved O, concentration being maintained at 2-3 ppm and 10 ppm. HPLC analysis of the reaction mixture at 2 hrs and 4 hrs gave the results shown in Table 7.

Minimizing Dissolved Oxygen Concentration During NMG Oxidation Dissolved Time Conv. Glyphosate MAMPA H3PO4 Oxygen (hr) (%) Select (%) Select Select Concentration (%) (%) (ppm) 2.75 2 66% 75.96 5.48 18.56 2.75 4 82% 76.16 5.95 17.89 10.4 2 60% 70.70 14.97 14.33 10.2 4 76% 69.83 16.21 13.97 11 EXAMPLE 11.

This example illustrates the platinum-catalyzed oxidation of N-substituted glyphosates in which the substituent on the nitrogen atom contains atoms other than carbon or hydrogen. In particular, it describes the oxidation of glyphosine (-HOZCCHZN(CH2PO,H2)2) and N-hydroxyethyl glyphosate, which are prepared by the phosphonomethylation of glycine and N-hydroxyethyl glycine respectively by reacting with formaldehyde and phosphorous acid in the presence of heat and a strong acid, as generally illustrated in Redmore, D. Topics in Phosphorous 5 Chemistry Vol. 8, 515-85 (E.G. Griffith & M. Grayson eds., John Wiley & Sons 1976); and in a chapter entitled "-a-substituted Phosphonates" in Mastalerz, P. Handbook of Organophosphorus Chemistry 277-375 (Robert Engel ed., Marcel Dekker 1992). Approximately 1 g of the substrate, 10 20 ml of water, and 50 mg of platinum black were combined in a round-bottom flask. The oxidation was conducted by the same procedure used for the oxidation of NMG in Example 8. The product distribution was analyzed via 31P
NMR. 74.9% of the glyphosine was oxidized with a 15 glyphosate selectivity of 50.2%. The other major product was bis (phosphonomethyl) amine (-HN(CH2P03H,) 2) which accounted for 39.1% of the oxidized glyphosine. Small quantities of AMPA and of unidentified products also were detected. The use of the platinum black catalyst treated 20 with tris(4-bromophenyl) amine described in Example 8 led to an increase in conversion to 86.8%, but no change in selectivity.
Oxidation of N-hydroxyethyl glyphosate resulted in 46.7% oxidation of the substrate and a product 25 distribution of 61.2% glyphosate, 22.4% N-hydroxyethyl-aminomethylphosphonic acid, and 16.3% phosphoric acid.
EXAMPLE 12.
This example illustrates the rates and selectivities achievable by conducting the oxidation of 30 NMG over platinum black at elevated temperature and the fact that no deactivation of the catalyst is detectable over seven cycles.
A 300 ml glass pressure bottle was equipped with a thermocouple and two fritted filters. One of the 35 filters was located about half an inch above the center of the bottom of the bottle was used for gas dispersion. The second filter, located about an inch from the bottom and not centered, was used for the withdrawal of liquids. A
gas exit line leading to a back pressure regulator was set to maintain the pressure at 50 psig also was provided.
Approximately 60 g of NMG was loaded into the vessel along with 3 g of platinum black from Aldrich Chemical (Milwaukee, WI) and 180 ml of water, along with a stir bar. The bottle was immersed in an oil bath, magnetically stirred and heated under a slow nitrogen flow until the internal temperature reached 125 C, giving a homogeneous solution. Oxygen and nitrogen were then bubbled through the reaction mixture at rates of 1.5 and 0.5 slpm (i.e., standard liters per min.), respectively for 30 minutes followed by a further 30 minutes of reaction at a flow rate of 1 slpm each for oxygen and nitrogen, followed by a final 30 minutes with a nitrogen flow rate of 1.5 slpm and an oxygen flow rate of 0.5 slpm. Stirring was continued and the mixture remained homogeneous throughout the entire 90 minute period. A slow nitrogen flow was then established to maintain the pressure. The contents of the bottle were withdrawn through the liquid withdrawal frit, leaving the catalyst in the bottle. About 100 ml of water was injected through the frit and them withdrawn to remove residues from the reaction. The bottle was then allowed to cool. Again, 60 g of NMG and 180 ml of water was added and the cycle repeated. Seven such cycles were conducted with the results shown in Table 8.
Platinum concentrations in solution at the end of the run varied from 0.3 to 1.1 ppm after the first cycle as determined by inductively-coupled plasma mass spectrometry. Although a higher amount of platinum leached into solution during the first cycle (i.e., the concentration of dissolved platinum was 4.2 ppm), it is believed that most of the lost platinum was primarily unreduced platinum on the platinum black's surface.

Repeated Oxidation of NMG over Pt Black at 125 C
Run Conversion Glyphosate (M)AMPA H3POI
no. (%) Selectivity Selectivity Selectivity 1 89.8 82.4 5.6 12.0 2 80.9 87.1 3.6 9.2 3 84.7 79.0 8.5 12.5 4 66.7 83.4 5.6 11.0 5 79.1 81.8 7.6 10.6 6 75.6 79.5 7.3 13.2 7 78.1 79.4 9.0 11.6 EXAMPLE 13.
This example demonstrates the selectivities that may be achieved when N-alkyl glyphosates are oxidized at low rates of oxygen delivery and moderate conversion if an electroactive molecular species such as TEMPO (i.e., 2,2,6,6-tetramethyl piperidine N-oxide) is added to the reaction mixture. No pretreatment of the catalyst is required. This example further demonstrates that the conversion improves over the first few cycles when the electroactive molecular species is added to the mixture.
Finally, this example demonstrates that the electroactive molecular species reduces the amount of noble metal loss.
Approximately 60 g of NMG, 180 ml of water, 3 g of platinum black (Aldrich Chemical, Milwaukee, WI), and 40 mg of TEMPO dissolved in 1 ml of acetonitrile were combined in the pressure reactor described in Example 12.
The mixture was heated to 125 C while stirring under a 50 psig nitrogen atmosphere, forming a homogeneous mixture.
A nitrogen/oxygen mixture (75% nitrogen, 25% oxygen by volume) was bubbled through for 90 minutes at a flow rate of 1 slpm while the pressure was maintained at 50 psig.
The reaction mixture then was withdrawn through a fritted filter, leaving the catalyst behind. Another 60 g of NMG, 180 ml of water, and 40 mg of TEMPO in 1 ml of acetonitrile subsequently was added to the flask and the cycle repeated. Four cycles in all were performed. In all cases, (M)AMPA concentrations were below the quantifiable limits, although traces were detected. The only quantifiable byproduct detected was phosphoric acid.
The conversions and selectivities at the end of each of the four cycles are shown in Table 9.
As in Example 12, the concentration of dissolved platinum was determined at the end of each run by inductively-coupled plasma mass spectrometry. This dissolved platinum concentration was less than 0.1 ppm in cycles 2, 3, and 4. This is lower than the leaching observed in Example 12. As with Example 12, a higher amount of platinum leached into solution during the first cycle (i.e., the concentration of dissolved platinum was 8.3 ppm); however, it is believed that most of the lost platinum was primarily unreduced platinum on the platinum black's surface.

Oxidation of NMG
in the Presence of TEMPO at 125 C for 90 Min.
Cycle Conversion Glyphosate H3PO4 Number (%) Selectivity (%) Selectivity (~) 1 32.6 98.3 1.7 2 38.0 98.1 1.9 3 43.3 98.1 1.9 4 46.2 97.3 2.7 EXAMPLE 14.
These examples illustrate the selectivity achievable if NMG is prepared via the direct phosphonomethylation of sarcosine amides, such as N-acetyl and N-propionyl sarcosine or sarcosine anhydride rather than sarcosine itself.
Approximately 20.0 g N-acetyl sarcosine (152.5 mmole), 12.5 g phosphorous acid (152.4 mmole), and 37.6 g concentrated hydrochloric acid were mixed and refluxed in a 120 C oil bath. Approximately 13.6 g of 37% formalin (167.6 mmol) was added dropwise over 20 minutes. The reaction was continued for an additional 19 hours. HPLC
analysis revealed a 99% yield of NMG based on moles of charges.
Under the same conditions, 20.0 g N-propionylsarcosine (137.8 mmole) was converted into NMG
using 11.3 g phosphorous acid (137.8 mmole), 10.0 g concentrated hydrochloric acid, and 12.3 g of 37% formalin (152.1 mmole). HPLC analysis revealed a 96.6% yield of NMG based on moles of N-propionylsarcosine charged.
Also under the same conditions, 2.06 g sarcosine anhydride (14.50 mmole) was converted into NMG using 2.38 g phosphorous acid (29.02 mmole), 5.7 g concentrated hydrochloric acid, and 2.6 g of 37% formalin (32.02 mmole). HPLC analysis revealed a 97.2% yield of NMG based on moles of sarcosine anhydride charged.
In an additional experiment, 2.0 g N-acetyl sarcosine (15.3 mmole) and 1.25 g phosphorous acid (15.3 mmole) were mixed with 3.1 g concentrated sulfuric acid and 1.7 g water and then refluxed in a 120 C oil bath.
Approximately 1.4 g of 37% formalin (16.7 mmol) was added dropwise over 20 minutes. The reaction was continued for an additional 18 hours. 31P NMR analysis revealed a 98%
yield of NMG based on moles of N-acetyl sarcosine charged.
EXAMPLE 15.
This example demonstrates oxidizing NMG under conditions very similar to those of Example 12, except that a sub-stoichiometric base is present in the reaction mixture.

Approximately 60 g NMG, 9.6 g of 28-30% ammonium hydroxide (0.25 equivalents), and 170 ml water were combined in the apparatus described in Example 12 and stirred for one hour at an internal temperature of 125 C
5 while 0.75 slpm of pure oxygen was bubbled through at a pressure of 50 psig. HPLC analysis of the reaction-mixture indicated that 23.5% of the NMG had been oxidized with a selectivity to glyphosate of 65.7%. The selectivities of (M)AMPA and H3PO4 were 21.1% and 13.2%, 10 respectively.
As the results indicate, the NNIG oxidation proceeds, although conversion and selectivity were lower compared to a reaction conducted in the absence of base.
EXAMPLE 16.
15 This example demonstrates that NMG may be oxidized selectively to glyphosate in the presence of glyphosate and similar compounds. One gram of platinum black was combined with 300 g of a solution containing about 6% NMG and lesser quantities of glyphosate, AMPA, 20 MAMPA, formaldehyde, formic acid, and sodium chloride.
The mixture was heated to 150 C for 4 hours while oxygen was passed through the reactor at a pressure of 70 psig.
At the conclusion of the reaction, NMR and HPLC analysis indicated that most of the NMG had been converted to 25 glyphosate.

* * * * * * * * *
The above description of the preferred embodiment is intended only to acquaint others skilled in the art with the invention, its principles, and its 30 practical application, so that others skilled in the art may adapt and apply the invention in its numerous forms, as may be best suited to the requirements of a particular use. The present invention, therefore, is not limited to the above embodiments and may be variously modified.

Claims (17)

WHAT IS CLAIMED IS:
1. An oxidation catalyst comprising a noble metal and an electroactive molecular species absorbed thereon, the electroactive molecular species comprising a compound selected from the group consisting of triphenylmethane; N-hydroxyphthalimide; 2,4,7-trichlorofluorene; tris(4-bromophenyl)amine; 2,2,6,6-tetramethyl piperidine N-oxide; 4,4'-difluorobenzophenone; 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphine iron (III) chloride; and phenothiazine.
2. The oxidation catalyst of claim 1, wherein the noble metal is selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, gold and combinations thereof.
3. The oxidation catalyst of claim 2, wherein the noble metal is selected from the group consisting of platinum and palladium.
4. The oxidation catalyst of claim 1, wherein the electroactive molecular species comprises a compound selected from the group consisting of N-hydroxyphthalimide; tris(4-bromophenyl)amine;
and 2,2,6,6-tetramethyl piperidine N-oxide.
5. The oxidation catalyst of claim 1, wherein the electroactive molecular species comprises triphenylmethane or N-hydroxyphthalimide.
6. The oxidation catalyst of claim 1, wherein the electroactive molecular species comprises 2,2,6,6-tetramethyl piperidine N-oxide.
7. The oxidation catalyst of any one of claims 1 to 6, comprising a support comprising a material selected from the group consisting of carbon, alumina, silica, titania, zirconia, siloxane, and barium sulfate and wherein the noble metal is deposited onto the surface of the support.
8. The oxidation catalyst of claim 7, wherein the support comprises a material selected from the group consisting of silica, titania, and barium sulfate.
9. The oxidation catalyst of claim 7, wherein the support comprises graphitic carbon.
10. The oxidation catalyst of any one of claims 7 to 9, wherein the concentration of noble metal on the surface of the support is from about 3 to about 7.5 wt.% based on the total mass of the catalyst.
11. An oxidation catalyst comprising a noble metal, an electroactive molecular species absorbed thereon comprising a compound selected from the group consisting of triphenylmethane;
N-hydroxyphthalimide; 2,4,7-trichlorofluorene; tris(4-bromophenyl)amine; 2,2,6,6-tetramethyl piperidine N-oxide;
5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride;
5,10,15,20-tetraphenyl-21H,23H porphine nickel(II); 4,4'-difluorobenzophenone; 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphine iron (III) chloride; and phenothiazine, and a support comprising a material selected from the group consisting of alumina, silica, titania, zirconia, siloxane, and barium sulfate and wherein the noble metal is on the support.
12. The oxidation catalyst of claim 11, wherein the noble metal is selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, gold and combinations thereof.
13. The oxidation catalyst of claim 12, wherein the noble metal is selected from the group consisting of platinum and palladium.
14. The oxidation catalyst of claim 11, wherein the electroactive molecular species comprises a compound selected from the group consisting of N-hydroxyphthalimide; tris(4-bromophenyl)amine; 2,2,6,6-tetramethyl piperidine N-oxide;
5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride; and 5,10,15,20-tetraphenyl-21H,23H porphine nickel(II).
15. The oxidation catalyst of claim 11, wherein the electroactive molecular species comprises triphenylmethane or N-hydroxyphthalimide.
16. The oxidation catalyst of claim 11, wherein the electroactive molecular species comprises 2,2,6,6-tetramethyl piperidine N-oxide.
17. The oxidation catalyst of any one of claims 11 to 16, wherein the concentration of noble metal on the surface of the support is from about 3 to about 7.5 wt.% based on the total mass of the catalyst.
CA002509953A 1998-02-12 1998-02-12 Process for making glyphosate by oxidizing n-substituted glyphosates Expired - Fee Related CA2509953C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002275866A CA2275866C (en) 1998-02-12 1998-02-12 Process for making glyphosate by oxidizing n-substituted glyphosates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002275866A Division CA2275866C (en) 1998-02-12 1998-02-12 Process for making glyphosate by oxidizing n-substituted glyphosates

Publications (2)

Publication Number Publication Date
CA2509953A1 CA2509953A1 (en) 1999-08-12
CA2509953C true CA2509953C (en) 2008-06-17

Family

ID=35253770

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002509953A Expired - Fee Related CA2509953C (en) 1998-02-12 1998-02-12 Process for making glyphosate by oxidizing n-substituted glyphosates

Country Status (1)

Country Link
CA (1) CA2509953C (en)

Also Published As

Publication number Publication date
CA2509953A1 (en) 1999-08-12

Similar Documents

Publication Publication Date Title
US6005140A (en) Process for making glyphosate by oxidizing N-substituted glyphosates
EP1104427B1 (en) Process for the preparation of n-(phosphonomethyl)glycine by oxidizing n-substituted n-(phosphonomethyl)glycine
US6759549B2 (en) Method of preparing amino carboxylic acids
CA2509953C (en) Process for making glyphosate by oxidizing n-substituted glyphosates
US6218570B1 (en) Method for preparing formylphosphonic acid
AU728830B2 (en) An oxidation catalyst
RU2184118C2 (en) Method of synthesis of glyfosate and oxidation catalyst
NZ335654A (en) Process for making glyphosate by oxidizing n-substituted glyphosates in the presence of a noble metal catalyst
MXPA99004311A (en) Process for making glyphosate by oxidizing n-substituted glyphosates
KR20000068930A (en) Process for making glyphosate by oxidizing n-substituted glyphosates
AU2003200725B2 (en) Preparation of N-substituted N-(phosphonomethyl)glycine or a salt thereof
EP1520857A1 (en) Process for the preparation of N-(phosphonomethyl) glycine by oxidizing N-substituted N-(phosphonomethyl) glycine
TW464537B (en) Process for making glyphosate by oxidizing N-substituted glyphosates
CZ164599A3 (en) Process for preparing aminocarboxylic acids

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20120213