CA2486504A1 - Vibration control apparatus - Google Patents

Vibration control apparatus Download PDF

Info

Publication number
CA2486504A1
CA2486504A1 CA002486504A CA2486504A CA2486504A1 CA 2486504 A1 CA2486504 A1 CA 2486504A1 CA 002486504 A CA002486504 A CA 002486504A CA 2486504 A CA2486504 A CA 2486504A CA 2486504 A1 CA2486504 A1 CA 2486504A1
Authority
CA
Canada
Prior art keywords
flotor
stator
fence
control apparatus
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002486504A
Other languages
French (fr)
Inventor
Bjarni V. Tryggvason
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canadian Space Agency
Original Assignee
Canadian Space Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canadian Space Agency filed Critical Canadian Space Agency
Publication of CA2486504A1 publication Critical patent/CA2486504A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B5/00Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus

Abstract

A vibration control apparatus designed specifically for use on space vehicles includes a stator (1) for mounting in the vehicle, a lower flotor (2), magnetically levitated on the stator, an upper flotor (3) nested in and magnetically levitated on the lower flotor, and position, orientation and motion sensors (22, 35) carried by the stator and flotors. When any changes in position, orientation or movement, i.e. vibration of apparatus is detected, magnetic force actuators are energized to compensate for such changes to keep a work platform on the upper flotor virtually vibration-free. Moreover, controlled and induced vibration of the work platform and an experiment carried thereby can be effected using the lower flotor as a reaction mass, i.e. without feedback to the vehicle.

Description

VIBRATION CONTROL APPARATUS
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
This invention relates to a vibration control apparatus, and in particular to a microgravity vibration control apparatus.
DISGUSSION OF THE PRIOR ART
At low frequencies (<0.01 Hertz) space platforms such as the shuttle and the International Space Station (ISS) provide a unique, near ideal free-fall environment, which can be used to conduct material science, fluid physics and crystal growth experiments. Departure from ideal free fall due to atmospheric drag, rotational effects and gravity gradient are of the order of a micro-g (10-6g). However, above 0.01 Hz spacecraft vibrations are such that acceleration levels typically exceed 10~3g. Experiments conducted on the space shuttle and on MIR have shown that these vibration levels can significantly affect results. Vibrations, which are sometimes referred to as g-fitter, are driven by on-board activities such as attitude control systems, thermal control systems, air conditioning systems, power generation systems, crew activity and the operation of the spacecraft resulting in vibration environments characterized by milli-g (10-3g) acceleration levels.
On the space shuttle, vibration levels in the frequency band 0.01 Hz to 100 Hz are in the range of 10-3g Root Mean Square (RMS), with peaks typically exceeding several milli-g. These are sufficient to cause significant disturbances to experiments that have fluid phases, which includes many material science experiments. The acceleration environment of the International Space Station will likewise not be as clean as originally hoped for, and the ISS will not meet the current vibratory SUBSTITUTE SHEET (RULE 26) requirements without the use of vibration isolation apparatuses of the type described herein.
In order to isolate fluid science experiments from spacecraft vibrations, the Canadian Space Agency (GSA) developed a so-called Microgravity Vibration Isolation Mount (MIM), which constitutes a first generation of the present invention.' The MIM was operational for more than 3000 hours on the Mir space station between May 1996 and January 1998. A second generation MIM was flown on space shuttle mission STS-85 in August 1997.
The MIM includes two major components, namely a stator which is fixed to the spacecraft and a flotor on which is mounted an experiment to be isolated.
Positions sensing devices track the position and orientation of the flotor with respect to' the stator, and accelerometers monitor stator and flotor accelerations.
The position sensing devices and accelerometers are used in an active control loop including magnetic actuators for moving the flotor relative to the stator to compensate for even extremely small vibrations of the stator.
There is a large volume of patent literature relating to vibration isolation and damping systems. Examples of such literature include U.S. Patents Nos.
2,788,457 (Griest); 3,088,062 (Hudimac); 4,088,042 (Desjardins); 4,314,623 (Kurokawa);
4,432,441 (Kurokawa); 4,585,282 (Bosley); 4,595,166 (Kurokawa); 4,874,998 (Hollis Jr.); 4,710;656 (Studer); 4,724,923 (Waterman); 4,848,525 (Jacot et al);
4,874,998 (Hollis Jr.); 4,929,874 (Mizuno); 4,947,067 (Habermann et al); 5,022,628 (Johnson et al); 5,168,183 (Whitehead); 5,236,186 (Weltin et al); 5,285,995 (Gonzalez et al);
5,368,271 (Kiunke et al);. 5,385,217 (Watanabe et al); 5,392,881 (Cho et al);

5,400,196 (Moser et al); 5,427;347 (Swanson et al); 5,427,362 (Schilling et al);
5,445,249 (Aida et al); 5,446,519 (Makinouchi et al); 5,483,398 (Boutaghou);
5,542,506 (McMichael et al); 5,584,367' (Berdut); 5,609,230 (Swinbanks);
5,638,303 (Edberg et al); 5,645,260 (Falangas); 5,718,418 (Gugsch); 5,744,924 (Lee);
5,765,800 (Wafanabe et al); 5,844,664 (Van Kimmenade et al); 5,876,012 (Hags et al); 5,925,956 (Ohzeki); 6,031,812 (Liou), and WO 99117034 (Nusse et al) and WO
00/20775 (/vets et al).
GENERAL DESCRIPTION OF THE INVENTION
Some fluid phase experiments require controlled and induced vibration of the experiment, with no reaction back to the space vehicle. While a system of the type described above, including a stator and flotor, provides vibration damping, such a system cannot be used to effect such controlled and induced vibration.
The object of the present invention is to meet the need defined above by providing a vibration control apparatus which can effect controlled and induced vibration of an experiment with no disturbance to the space station.
Coincidentally, the apparatus of the present invention is inherently more efficient at damping vibration than a two-stage system.
Accordingly, the invention provides a vibration control apparatus comprising:
(a) stator means for mounting on a fixed surface;
(b) ~ lower flotor means normally spaced apart from said stator means in nesting relationship thereto;
(c) an upper.flotor means normally spaced apart from said lower flotor means in nesting relationship thereto;
3 (d) work platform means on said upper flotor means;
(e) position sensing means associated with said stator means, lower flotor means and upper flotor means for determining the position and orientation of said lower flotor means and said upper flotor means relative to said stator means;
(f) accelerometer means associated with said stator means, lower flotor means and upper flotor means for determining acceleration of said lower flotor means and upper flotor means with respect to inertial space; and (g) vertical and horizontal magnetic force actuator means associated with said stator means, lower flotor means and upper flotor means for imparting motion to said lower flotor means and to said upper flotor means to compensate for vibration of said stator means, whereby vibration of said work platform is minimized.
GENERAL DESCRIPTION OF THE DRAWINGS
The invention is described below in greater detail with reference to the accompanying drawings, which illustrate a preferred embodiment of the invention, and wherein:
Figure 1 is an isometric view of the apparatus of the present invention;
Figure 2 is an exploded, . isometric view of the apparatus of Fig. 1;
Figure 3 is an isometric view of a stator used in the apparatus of Figs. 1 and 2;
4 Figure 4 is an isometric view from above and the rear of a lower flotor used in the apparatus of Figs. 1 and 2;
Figure 5 is an isometric view. from below and the front of the lower flotor of Fig. 4;
Figure 6 is a schematic cross-section ~of one side of the apparatus of Fig. 1;
Figure 7 is a partly sectioned, isometric view of the lower flotor of Figs. 4 and
5;
Figure 8 is a cross section taken generally along line 8-8 ofi Fig. 7;
Figure 9 is a schematic, isometric view of the tower flotor of Figs. 4, 5 and showing accelerometers used in the flotor;
Figures 10 and 11 are isometric views of an upper flotor used in the apparatus of Figs. 1 and 2;
Figure 12 is a schematic cross section of the apparatus of Fig. 1; and Figure 13 is a schematic, isometric view of coils and magnets used in the apparatus of Figs. 1 and 2.
For the sake of simplicity, various elements have been omitted from most figures of the drawings.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to Figs. 1 and 2, the basic elements of the apparatus include a bottom assembly or stator indicated generally at 1, a first, lower flotor indicated generally at 2 on the stator 1, and a second, upper flotor indicafied, generally at 3, all of which are formed of aluminum. As shown in Fig. 1, the stator 1 and the flotors 2 and 3 are nested together to form a generally rectangular parallelepipedic body.

As best shown in Figs. 2 and 3, the stator 1 includes a housing 5 defined by a top wall 6 on contiguous front wall 7, side walls 8 and a rear wall 10, and a removable baseplate 11 closing .the bottom of the housing. The housing 5 carries a variety of elements including electronic control components. Connectors 14 and other elements (only a few shown) for coupling the apparatus to a source of power and a control system, neither of which are shown, are mounted in the front wall 7 and in a front cover plate 15 removably mounted on the top wall 6 of the housing 5.
A square fence 17 extends upwardly from the top wall 6 of the housing 5.
Circular holes 18 in the centers of side walls 19 and rear end wall 20 of the fence receive position sensing detectors 22 (Fig. 3). Shallow, generally rectangular recesses 23 and 24 in the interior of the front wall 25, the side walls 19 and the rear wall 20 contain coils 26 and 27 (Fig. 3), which interact with opposed sets of vertical force magnets 29 and 30 (Figs. 1, 2, 4, 6, 12 and 13); and with horizontal force magnets 31 and 32 in the lower flotor 2 (Figs. 2 and 4 to 6). The coils 26 and 27, and the magnets 29 to 32 are described hereinafter in greater detail.
Rectangular notches 34 are provided at the corners of the fence 17 for accommodating accelerometers 35 (Fig. 7) mounted in the lower flotor 2.
As best shown in Figs. 4 to 7, the lower flotor 2 includes three parallel fences 37, 38 and 39 which are square when viewed from above and concentric with the stator fence 17. The side walls 40 and the rear wall 41 of the outer fence 37 are vertically aligned with the sides and rear end of the stator top wall 6. A gap between the front wall 43 of the flotor outer fence 37 and the stator cover plate 15 receives umbilical cords (not shown) extending between the flotors 2 and 3, and the stator 1.
6 The umbilical cords carry electrical power and data and control signals.
between the stator 1 and the flotors 2 and 3. They can also include video lines for servicing hardware on the upper flotor 3. The top ends of the outer and intermediate fences 37 and 38 are interconnected by a top wall 44, and the bottom ends of the intermediate and inner fences 38 and 39 are interconnected ~by a bottom wall 45.
Thus, as best shown in Fig. 6, the four sides of the lower flotor are crenellated in cross section, defining a pair of square pockets for receiving the stator 1 and the upper flotor 3.
A plurality of rectangular openings are provided in the side walls 40 and end walls 41 and 43 of the flotor outer fence 37. A central hole 49 in the front wall 43 of the outer fence 37 receives a voltage reference module 50 (Fig. 5). Two rectangular holes 52 and 53 in each wall of the outer fence 37 receive the vertical force magnets 29 and horizontal force magnets 31, respectively, which are mentioned above.
Two pairs of holes 55 in each wall of the intermediate fence 38 (Fig. 8) receive the magnets 30 and 32. As will be appreciated from Figs. 6 and 8, the magnets 29 to 32 in combination with the coils 26 and 27 define Lorentz force actuators for magnetically levitating the lower flotor 2 with respect to the stator 1 which is fixed to a space platform. The eight actuator coils in the stator fence 17 react with the eight magnet asserriblies in the outer fence 37 of the lower flotor 2. It will be noted that the horizontal and vertical force actuators are the same except that the two magnet and coil combinations in each fence are at 90° to each other, i.e.
one magnet and coif combination generates a vertical force, and the other
7
8 PCT/CA02/00846 combination generates a horizontal force vector. Differential actuator forces can be used to generafie torque for controlling rotation about all axes.
A set of holes 57 near the corners of the fence 37 receive signal conditioning modules 58 (Figs. 1 and 4) which are connected to the accelerometers 35. The modules 58 condition data signals from the accelerometers 35 to the control system (not shown) for the apparatus.
Suitable accelerometers 35 are sold by Honeywell Inc., Minneapolis, Minnesota, U.S.A. under the firade-mark Q-Flex, specifically Q-Flex QA=3000 accelerometers, which develop an acceleration-proportional output current providing , bofih static and dynamic acceleration measurement. As besfi shown in Figs. 7 and 9 there are two. accelerometers 35 in each of the corners 59 and 60, and one in each of the corners 61 and 62 of the lower flotor 2. Three additional accelerometers in the stator housing 5 act as references for the accelerometers 35 and to three accelerometers 64 ( Fig. 11) on the upper flotor 3.
Referring to Fig. 9, the accelerometers 35 detect translation and rotation of the flotor 2 about the X,Y and Z axis or vertically, longitudinally and transversely with respect to the stator 1 as indicated by arrows X, Y and Z. Similarly, the accelerometers 64 detect translation and rotation of the flotor 3 about the X, Y and Z
axes with respect to the stator 1. Thus, the accelerometers determine acceleration of the flofiors 2 and 3 with respect to inertial space.
The position sensing detectors (PSDs) 22 mounted in the centers of the side and rear walls 19 and 20, respectively of the stator fence 17 receive light,from collimated light emitting diodes (LEDs) 66 mounted in square, central holes 67 (one shown - Fig. 8) in the side walls and the rear end wall of the intermediate fence 38 of the lower flotor 2. The PSDs 22 are duo-lateral diodes manufactured by VDT
Sensors, Inc., Hawthorne, California, U.S.A. which determine the position of the lower flotor 2 with respect to the stator 1 in six degrees of freedom.
Suitable LEDs bearing Model No. L2791-02 are available from Hamamatsu Systems Ganada Inc., Montreal, Quebec, Canada. These LEDs have a narrow emission angle of +
2° to minimize the size of the light spot on the PSD.
All four sides of the lower flotor inner fence 39 contain rectangular openings 72 and 73 (Figs. 2 and.7) for receiving vertical force magnets 74 and horizontal force magnets 75 (Figs. 4 to 6). The magnets 74 ar?d 75 are aligned with coils 77 and 78 mounted in recesses 79 and 80 in a fence 82 defining part of the upper flotor 3. The magnets 74 and 30, and the coils 77 also define vertical Lorentz force actuators for magnetically levitating the upper flotor 3 in the lower flotor 2, and the magnets 75 and 32, and the coils 78 define horizontal force actuators. , Referring to Figs. 1,10 and 11, the upper flotor 3 includes a top plate 83 which defines a work platform, and the fence 82 formed by contiguous front wall 84, rear wall 85 and side walls 86. An opening 88 in the top plate 83, providing access to the interior of the flotor 3 and the top of the stator 1 is norr>ially closed by a cover plate 89 (Figs. 1, 2 and 6). The cover plate 89 carries the three accelerometers 64 LEDs 90 (Figs. 11 and 12) are mounfied in square central openings 91 (Figs.
2 and 10) in the rear and side walls 85 and 86, respectively of the upper flotor fence 82. Light from the LEDs is directed inwardly through central holes 93 in the inner
9 fence 39 of the lower flotor 2 to PSDs 94 (Fig. 3) mounted on the top wall 6 of the stator housing 5.
Referring to Figs. 12 and 13, in operation the LEDs 66 and 90 in combination with the PSDs 22 and 94, and the accelerometers 35 and 64 (Figs. 9 and 11 ) provide data signals indicative of the positions, orientation and movement of the flotors 2 and 3 relative to the stator 1. The signals are processed using an on-board computer (not shown) which generates control signals which are fed to the appropriate force actuators defined by the combinations of magnets and coils in the stator 1, and the lower and upper flotors 2 and 3. Vertical force is imparted to the lower flotor 2 using coils 26 in combination with magnets 29 and 30, and horizontal force is imparted to the flotor 2 using coils 27 in combination with magnets 31 and 32. By feeding current to the coils 77, magnetic fines of force are generated in magnets 74 and 30 to move the flotor 3 relative to the flotor 1. Horizontal movement of the flotor 3 is effected using coils 78 in combination with the magnets 75 and 32.
Thus, various combination of coils and magnets can be used to magnetically levitate the flotor 2 with respect to the stator 1 and fihe upper flotor 3 in the lower flotor 2 compensating for even very minute vibrations in the vehicle carrying the apparatus. The work platform defined by the top plate 83 and the cover plate 89 of the flofior 3 is maintained virtually vibration-free, the apparatus correcting for horizontal and vertical movement of stator 1, and any roll, pitch or yaw.
Moreover, the coil and magnet combinations can be used to induce controlled vibration of the upper flotor 3, the work platform and an experiment thereon, using the lower flotor as a reaction mass. The controlled vibration is isolated from the vehicle, i.e.
there is no vibration of the vehicle as a result of vibration of the experiment

Claims (7)

I CLAIM:
1. A vibration control apparatus comprising:
(a) stator means for mounting on a fixed surface;
(b) lower flotor means normally spaced apart from said stator means in nesting relationship thereto;
(c) an upper flotor means normally spaced apart from said lower flotor means in nesting relationship thereto;
(d) work platform means on said upper flotor means;
(e) position sensing means associated with said stator means, lower flotor means and upper flotor means for determining the position and orientation of said lower flotor means and said upper flotor means relative to said stator means;
(f) accelerometer means associated with said stator means, lower flotor means and upper flotor means for determining acceleration of said lower flotor means and upper flotor means with respect to inertial space; and (g) vertical and horizontal magnetic force actuator means associated with said stator means, lower flotor means and upper flotor means for imparting motion to said lower flotor means and to said upper flotor means to compensate for vibration of said stator means, whereby vibration of said work platform is minimized.
2. The vibration control apparatus of claim 1, wherein said magnetic force actuator means include:
(i) coil means on said stator means and on said upper flotor means; and (ii) magnet means on said lower stator means for interacting with said coil means to magnetically levitate the lower and upper flotors with respect to said stator means.
3. The vibration control apparatus of claim 2, wherein said position sensing means includes light emitting diodes on said lower and upper stator means for emitting collimated horizontal beams of light longitudinally and transversely of the apparatus; and position sensing detectors on said stator means for receiving light from said light emitting diodes to provide an indication of the position and orientation of the lower and upper flotor means relative to said stator means.
4. The vibration control apparatus of claim 3, wherein said accelerometer means includes:
(i) first accelerometers on said lower flotor means for detecting vertical and horizontal movement and rotational acceleration of said lower flotor means relative to inertial space; and (ii) second accelerometer means on said upper flotor means for detecting vertical and horizontal movement of said upper flotor means relative to inertial space.
5. The vibration control apparatus of claim 2 including:
(h) overlapping fence means on said stator means and on said lower and upper flotor means carrying said coil means and said magnet means, whereby the coil means are horizontally aligned with said magnet means.
6. The vibration control apparatus of claim 5, wherein said fence means includes:
(i) a first square fence extending upwardly from said stator means;
(ii) a second square fence on said lower flotor means overlapping said first fence; and (iii) a third square fence nested in said second fence on said lower flotor means.
7. The vibration control apparatus of claim 6, wherein said second fence defines a hollow square, the sides of the square having a crenellated cross section defining pockets for receiving said first and third square fences.
CA002486504A 2002-06-10 2002-06-10 Vibration control apparatus Abandoned CA2486504A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2002/000846 WO2003104678A1 (en) 2002-06-10 2002-06-10 Vibration control apparatus

Publications (1)

Publication Number Publication Date
CA2486504A1 true CA2486504A1 (en) 2003-12-18

Family

ID=29721227

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002486504A Abandoned CA2486504A1 (en) 2002-06-10 2002-06-10 Vibration control apparatus

Country Status (3)

Country Link
AU (1) AU2002311128A1 (en)
CA (1) CA2486504A1 (en)
WO (1) WO2003104678A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143409A1 (en) * 2008-07-10 2010-01-13 Leao Wang Electromagnetic vibrating mechanism
DE102015104696B3 (en) * 2015-03-27 2016-09-01 Sartorius Lab Instruments Gmbh & Co. Kg Electrodynamic levitation device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788457A (en) 1953-02-11 1957-04-09 Hughes Aircraft Co Network for damping vibrations of mechanical structures
US3088062A (en) 1956-02-10 1963-04-30 Albert A Hudimac Electromechanical vibratory force suppressor and indicator
US4088042A (en) 1976-09-07 1978-05-09 The Boeing Company Vibration isolation system
JPS5918182Y2 (en) 1979-02-02 1984-05-26 「国」華工業株式会社 Magnetic spring that uses the repulsive force of magnets
JPS57169212A (en) 1981-04-13 1982-10-18 Kokka Kogyo Kk Vibration suppressing device
US4585282A (en) 1983-07-19 1986-04-29 Bosley Robert W Magnetic levitation system
JPS61215826A (en) 1985-03-19 1986-09-25 Sanai Kogyo Kk Horizontal retaining device for vibro-preventive table
GB2192041B (en) 1986-06-24 1990-10-10 Fokker Bv Vibration absorber with controllable resonance frequency
US4710656A (en) 1986-12-03 1987-12-01 Studer Philip A Spring neutralized magnetic vibration isolator
US4874998A (en) 1987-06-11 1989-10-17 International Business Machines Corporation Magnetically levitated fine motion robot wrist with programmable compliance
JP3004671B2 (en) * 1990-01-18 2000-01-31 昭和電線電纜株式会社 Precision anti-vibration table
US5157296A (en) * 1990-12-20 1992-10-20 Massachusetts Institute Of Technology Bearing for use in high resolution precision control device
US5528118A (en) * 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5693990A (en) * 1994-09-06 1997-12-02 Bridgestone Corporation Vibration isolating apparatus and vibration isolating table
US5638303A (en) * 1995-06-28 1997-06-10 Mcdonnell Douglas Corporation Non-contacting isolated stabilized microgravity platform system
JP3560053B2 (en) * 1997-11-25 2004-09-02 株式会社荏原製作所 Magnetic levitation stage
JP4421130B2 (en) * 2000-06-30 2010-02-24 独立行政法人科学技術振興機構 Vibration isolation method and apparatus
WO2002044757A2 (en) * 2000-11-28 2002-06-06 Business Arts Inc. Gravity gradiometry

Also Published As

Publication number Publication date
AU2002311128A1 (en) 2003-12-22
WO2003104678A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
US6501203B2 (en) Vibration control apparatus
CA2429828C (en) Gravity gradiometry
Anderson et al. Satellite ultraquiet isolation technology experiment (SUITE)
US9522610B2 (en) Magnetically lifted vehicles using hover engines
US5638303A (en) Non-contacting isolated stabilized microgravity platform system
AU2002221398A1 (en) Gravity gradiometry
KR101441628B1 (en) Gyrodyne and device for assembly thereof
US7597002B2 (en) Diamagnetic levitation system
US20130200248A1 (en) Pneumatic vibration damping apparatus
US10173549B2 (en) Magnetically lifted vehicles using hover engines
AU2011206865A1 (en) Stabilization system for sensors on moving platforms
KR20010075573A (en) lsolation system for lsolation tables
US20170210243A1 (en) Control of translating hover engines to obtain zero drag
AU2009295359A1 (en) A detector for detecting a gravity gradient
CA2486504A1 (en) Vibration control apparatus
Mizuno et al. Development of a three-axis active vibration isolation system using zero-power magnetic suspension
US5701113A (en) Passive non-contacting centering system
US9891341B2 (en) Gravity gradiometer system with spherical air bearing based platform
Edberg et al. Performance assessment of the STABLE microgravity vibration isolation flight demonstration
Anderson et al. Satellite ultraquiet isolation technology experiment (SUITE): electromechanical subsystems
US6412360B1 (en) Spacecraft test system
WO1999012056A1 (en) Apparatus for reducing rotation of an article
Frisch et al. Vibration Stabilization of a mechanical model of a X-band linear collider final focus magnet
US11835333B2 (en) Rotational oscillation sensor with a multiple dipole line trap system
VanGoethem et al. Vibrafuge: re-entry and launch test simulation in a combined linear acceleration and vibration environment

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued