CA2472516A1 - Breathable non-wettable melt-blown non-woven materials and products employing the same - Google Patents

Breathable non-wettable melt-blown non-woven materials and products employing the same Download PDF

Info

Publication number
CA2472516A1
CA2472516A1 CA002472516A CA2472516A CA2472516A1 CA 2472516 A1 CA2472516 A1 CA 2472516A1 CA 002472516 A CA002472516 A CA 002472516A CA 2472516 A CA2472516 A CA 2472516A CA 2472516 A1 CA2472516 A1 CA 2472516A1
Authority
CA
Canada
Prior art keywords
present
monomer
melt
amount
terpolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002472516A
Other languages
French (fr)
Inventor
Ahamad Y. A. Khan
James E. Rudolph, Jr.
Richard M. Mcdonogh
I-Fan Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pall Corp
Original Assignee
Pall Corporation
Ahamad Y. A. Khan
James E. Rudolph, Jr.
Richard M. Mcdonogh
I-Fan Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pall Corporation, Ahamad Y. A. Khan, James E. Rudolph, Jr., Richard M. Mcdonogh, I-Fan Wang filed Critical Pall Corporation
Publication of CA2472516A1 publication Critical patent/CA2472516A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/32Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising halogenated hydrocarbons as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/68Melt-blown nonwoven fabric

Abstract

Breathable non-wettable non-woven materials include a mass of melt-blown, non-woven fibers formed of a terpolymer of tetrafluroethylene, hexafluoropropylene and vinylidene fluoride monomers. Most preferably, the materials of the present invention are in the form of fabric structures which can be processed to form a variety of products for numerous end use applications, such as for garments, bandages, barrier vents, filter media and the like. In especially preferred form, the melt-blown non-woven fibers are comprised of a THV
terpolymer formed of between about 30 to about 70 wt.% of tetrafluoroethylene monomer, between about 10 to about 20 wt.% of hexafluoropropylene monomer, and between about 20 to about 65 wt.% vinylidene fluoride monomer.

Description

BREATHABLE NON-WETTABLE MELT-BLOWN NON-WOVEN
MATERIALS AND PRODUCTS EMPLOYING THE SAME
FIELD OF THE INVENTION
The present invention relates generally to non-woven materials (e.g., fabric structures). In particularly preferred embodiments, the present invention relates to breathable non-woven melt-blown materials having oleophobic and/or hydrophobic properties.
BACKGROUND AND SUMMARY OF THE INVENTION
There are numerous fields of use whereby breathable fabric o structures having oleophobic and/or hydrophobic properties are desired.
For example, such fabric structures are highly desirable to form surgical drapes and gowns, ground dressings/bandages, outer garments, and barrier vents.
Currently, there are several products on the market that provide ~5 breathable protective garments for use during surgery. This breathability is typically expressed as a material's moisture vapor transmission rate (MVTR). Typical MVTR ranges for such protective garments are between about 1,000 to about 10,000 grams of water per square meter per 24 hours (g/m2/24hrs). However, a person's body heat tends to increase 2o beneath the garments to a point whereby they become uncomfortable to wear. A surgical drape or gown having the ability to repel low surface tension fluids (for example, fluids having a surface tension of less than about 42 dynes/cm) and having an MVTR in excess of 100,000 g/m2/24hrs would be quite desirable to those wearing the garments but 25 which to date has not been made available.
It is also known that one common problem with conventional wound dressings is that, to provide for an adequate barrier against airborne pathogens, barrier films with little or no MVTR are employed., This minimal MVTR creates a situation where sufficient amounts of moisture produced by the human body underneath a bandage cannot be removed and, as a result, maceration of the skin surrounding the wound occurs. This maceration can lead to prolonged healing times. It would therefore be quite desirable for.a bandage material to have a MVTR in excess of about 100,000 g/m224 hrs so as to prevent such maceration 1o from occurring as well as to provide the irvearer with a more comfortable bandage. To date, however, bandage materials which satisfy these requirements have not been offered.
Conventional water-proof and breathable outerwear garments provide significant improvements in wearer comfort over non-permeable materials that may be used (e.g., polyvinylchloride (PVC) films).
However, any moderate to strenuous activity causes a rapid increase in temperature beneath these garments thereby causing great discomfort. A
garment that was made from fabric materials that are non-wettable by fluids having surface tensions of less than about 42 dynes/cm and having 2o MVTR's of greater than 100,000 g/m2/24hrs would be a significant improvement in wearer comfort. Again, however, such garment fabrics have not been provided to date.
Finally, there are many applications where fluids of various surface tensions need to be contained or prevented from entering designated areas while at the same time permit airflow to occur. Traditional barriers are made from polymeric materials that have either hydrophobic and/or oleophobic properties. Often, these properties are rendered onto a polymeric material by a secondary process which can add cost and typically results in non-uniform coatings that result in an unacceptable rate of failures. A barrier vent with inherent surface energies of less than about 30 dynes/cm and having the ability to allow for bulk airflow (e.g., Gurley densiometer readings of less than 600 seconds for a one square inch orifice, 100 cc of air and 5 ounce cylinder) would be quite desirable, but to date has not been provided. Expressed in other units an air permeability in excess of 0.045 ft3/ft2/min at a differential pressure of 2163 Pascals would be desirable.
As can be appreciated from the preceding discussion, what has 1o been needed are fabric structures which exhibit oleophobicity and/or hydrophobicity characteristics while, at the same time, are capable of allowing bulk air flow. It is towards fulfilling such needs that the present invention is directed.
Broadly, the present invention is embodied in materials comprised of a mass of melt-blown non-woven fibers comprised of a terpolymer of tetrafluroethylene, hexafluoropropylene and vinylidene fluoride monomers.
Most preferably, such materials are in the form of fabric structures which can be processed to form a variety of products for numerous end-use applications, such as for garments, bandages, barrier vents, filter media 2o and the like. In especially preferred form, the melt-blown non-woven fibers are comprised of a THV terpolymer formed of between about 30 to about 70 wt.% of tetrafluoroethylene monomer, between about 10 to about 20 wt.% of hexafluoroethylene monomer, and between about 20 to about 65 wt.% vinylidene fluoride monomer.
These and other aspects and advantages will become more apparent after careful consideration is given to the following detailed description of the preferred exemplary embodiments thereof. ' DETAILED DESCRIPTION OF THE INVENTION
1. Definitions As used herein and in the accompanying claims, the following terms are intended to have the definitions which follow:
"Breathable" or "breathability" mean that a fabric structure is capable of exhibiting a moisture vapor transmission rate (MVTR) of greater than about 100,000 g/m2/24hrs.
"Non-Wettable" or "non-wettability" means that a fabric structure is not wetted by a fluid having a surface tension of less than about 42 1o dyne/cm. Thus, for example, "non-wettable" fabric structures in accordance with the present invention will have an oil rating according to AATCC Test Method 118-1997 of at least 1.
"Bulk airflow" means that a fabric structure exhibits a porosity of less than about 600 Gurley-seconds, when employing a Gurley ~5 densiometer having a one square inch orifice, 100 cc of air and 5 ounce cylinder. Alternatively, the term "bulk airflow" means that a fabric structure exhibits an air permeability in excess of 0.045 ft31ft2/min at a differential pressure of 2163 Pascals.
II. Detailed Description of Preferred Exemplary Embodiments 2o The non-woven materials (e.g., fabric structures) of the preferred embodiments according to the present invention may be prepared from a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (hereinafter referred to as "THV polymer"). Preferably, the terpolymer includes from about 20 or less to about 65 wt. % or more 25 vinylidene fluoride, more preferably from about 25, 30, or 35 to about 40, 45, 50, 55, or 60 wt. % vinylidene fluoride, and most preferably about 36.5 wt. % vinylidene fluoride. Preferably, the terpolymer includes from about 30 or less to about 70 wt. % or more tetrafluoroethylene, more preferably from about 35 or 40 to about 45, 50, 55, 60, or 65 wt.
tetrafluoroethylene, and most preferably about 44.6 wt.
tetrafluoroethylene. Preferably, the terpolymer includes from about ~ 0 or less to about 20 wt. % or more hexafluoropropylene, more preferably from about 11, 12, 13, 14, 15, 16, 17, or 18 to about 19 wt.
hexafluoropropylene, and most preferably about 18.9 wt.
o hexafluoropropylene.
Suitable THV polymers that may be employed in the practice of the present invention include DyneonT"" Fluorothermoplastics available from Dyneon LLC of Oakdale MN. Particularly preferred is Dyneon THV Grade E-15125 "O". This grade has a melting point of 164 C, a melt flow rate of 15. >200 (265 C/5Kg), a specific gravity of 2.004 g/cm3, a tensile at break of 9.9 Mpa, and an elongation at break of 273 %. Other DyneonT""
fluorothermoplastic terpolymers include DyneonT"' THV 220, DyneonT""
THV 410, DyneonT"" THV 500, and DyneonT"~ THV X 610. The DyneonT"~
fluorothermoplastic terpolymers with higher melt flow rates are preferred 2o due to the ease with which satisfactory melt blown webs may be , _ prepared. The DyneonT"" fluorothermoplastic terpolymers with higher numbers, e.g., THV 410, THV 500, and THV X 610, have progressively higher percentages of tetrafluoroethylene. The higher the percentage of tetrafluoroethylene, the tougher it is to melt the polymer hence making it 25 more difficult to melt blow.
The melt-blown fibers may include a single THV polymer or combinations or blends of a THV polymer and one or more additional polymers. Alternatively (or additionally) discrete fibers formed of such other polymers may be melt-blown concurrently with or subsequently to the THV polymer so as to form a non-woven fibrous blend of THV and such other polymers or fibrous layers formed predominantly of the THV
~ and such other polymers, respectively.
The additional polymers that may be employed in the practice of the present invention include another fluorothermoplastic terpolymer, or any other suitable polymer. Suitable polymers may include any suitable homopolymer, copolymer, or terpolymer, including but not limited to o polysulfone, polyethersulfone (PES), polyarylsulfone, fluorinated polymers such as polyvinylidene fluoride (PVDF), polyolefins including polyethylene and polypropylene, polytetrafluoroethylene (PTFE or TefIonT~~), poly(tetrafluoroethylene-co-ethylene) (ECTFE or Halarr~~), acrylic copolymers, polyamides or nylons, polyesters, polyurethanes, polycarbonates, polystyrenes, polyethylene-polyvinyl chloride, polyacrylonitrile, cellulose, and mixtures or combinations thereof.
The fluorothermoplastic terpolymer may be subjected to a pretreatment, for example grafting or crosslinking, prior to melt blowing, or may be subjected to a post-treatment, for example grafting or crosslinking, after a melt blown web is made. There is no particular molecular weight range limitation for the THV polymer. Likewise, there is no particular limitation on the weight ratio of the tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride monomers in the THV
polymer. Various molecular weights and/or different monomer ratios may be preferred for melt blown webs to be used for certain applications.
The materials of the present invention are melt-blown non-woven structures. In this regard, the preferred THV polymers may be melt-blown using virtually any conventional melt-blowing technique to make sheets, tubes, cylinders and like structural forms for a variety of end use applications. Thus, for example, the materials of the present invention are most preferably a mass of melt-blown non-woven fibers, which fibers as noted above are most preferably formed of a THV polymer. Non-woven materials of the present invention may be made using conventional melt-blowing techniques described more fully in U.S. Patents Nos. 3,776,796;
3,825,379; 3,904,798; 4,021,281; and 5,591,335.(the entire content of each such cited patent being incorporated expressly hereinto by o reference).
The diameters of the melt-blown THV fibers forming the non-woven materials of the present invention are not critical. Thus, average fiber diameters of less than 500 Nm, and preferably less than 100 pm, and typically less than 50 Nm may be melt-blown if desired. Most preferably, the fibers have an average diameter which is greater than about 1 pm, and more preferably greater than about 5 pm.
Following production, the non-woven fabrics may be fashioned into a variety of products, for example, garments (e.g., surgical or other similar medical gowns, drapes and the like), bandages, and bulk airflow barrier vents. Thus, the fabrics of this invention may be mated (e.g., by sewing, gluing and the like) to one or more other woven, non-woven or knit fabric structures to suit virtually any end use application where the non-wettable and breathable properties of the fabric structures of this invention are needed.
The present invention will be further understood from a review of the following non-limiting Examples.

_g-III. Examples A THV polymer (Grade E-15125 "O") obtained commercially from Dyneon, LLC and having the following properties was employed in the Examples:
THV Polymer Properties:
Form: Pellets Melting range: 164°C - ASTM D4591 ) Melt Flow Index: >200 (265°Cl5 kg) - ASTM D1238 Specific Gravity: 2.004 g/cc - ASTM D792 Tensile _~ break: 9.9 Mpa (1,435 psi) - ASTM D638 (film) Elongation C break: 273% - ASTM D638 Seven melt-blown fabric samples, identified below by Sample Nos.
1.1 through 1.7, were made using the process conditions in Table 1 A
using a melt-blowing die having a width of 152 mm and a die temperature of 249°C.
Table 1 A
Sample Polymer Line Die to Air Air Temp,Die No. Throughput, Speed, Coll. Pressure, C Pressure, kg/hr m/min Distance,Kpa (1.52 Kpa m mm air gap, 60) 1.1 3.46 6.1 0.254 41.4 248 1159 1.2 3.90 6.1 0.356 13.8 256 1063 1.3 3.90 6.1 0.356 13.8 247 1132 1.4 3.90 3.96 0.356 13.8 248 1159 1.5 3.90 3.96 0.203 13.8 247 1311 1.6 5.40 3.35 0.203 13.8 239 2677 ~1.7 ~ 5.40 3.35 0.203 27.6 243 2415 Samples 1.1, 1.5, 1.6 and 1.7 were subjected to physical property measurements. The results appear in Table 1 B below.
Table 1 B
Sample Na: Air Permeability,Basis Wt., Thickness, Avg, Fii m31m2/min g/m mm a Diameter, ~m 1.1 60.43 76.9 0.3556 8.05 1.5 98.35 93.1 0.4064 --1.6 74.15 ~ 165.1 _ --__~.- 0.6756 1.7 40.49 174.2 0.7620 __ ******.~.k***
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various.
1o modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (16)

WHAT IS CLAIMED IS:
1. A material comprised of a mass of melt-blown non-woven fibers comprised of a terpolymer of tetrafluroethylene, hexafluoropropylene and vinylidene fluoride monomers.
2. The material of claim 1, wherein the vinylidene fluoride monomer is present in the terpolymer in an amount from about 20 to about 65%.
3. The material of claim 1, wherein the vinylidene fluoride monomer is present in the terpolymer in an amount of about 36.5 wt.%.
4. The material of claim 1, wherein the tetrafluoroethylene monomer is present in an amount from about 30 to about 70 wt.%.
5. The material of claim 1, wherein the tetrafluoroethylene monomer is present in an amount of about 44.6 wt.%.
6. The material of claim 3, wherein the tetrafluoroethylene monomer is present in an amount of about 44.6 wt.%.
7. The material of claim 1, wherein the hexafluoropropylene monomer is present in an amount from about 30 to about 70 wt.%.
8. The material of claim 1, wherein the hexafluoropropylene monomer is present in an amount of about 18.9 wt.%.
9. The material of claim 5, wherein the hexafluoropropylene monomer is present in an amount of about 18.9 wt.%.
10. The material of claim 6, wherein the hexafluoropropylene monomer is present in an amount of about 18.9 wt.%.
11. The material of claim 1, wherein the fibers are comprised of a blend of the THV terpolymer and at least one other polymer selected from fluorothermoplastic terpolymers different from the THV terpolymer and homopolymers, copolymers, or terpolymers of polysulfones, polyethersulfones, polyarylsulfones, fluorinated polymers, and polyolefins.
12. The material of claim 1, which includes other fibers formed of at least one other polymer selected from fluorothermoplastic terpolymers different from the THV terpolymer and homopolymers, copolymers, or terpolymers of polysulfones, polyethersulfones, polyarylsulfones, fluorinated polymers, and polyolefins.
13. A garment which includes a fabric comprised of the material of any one of claims 1-12.
14. A bandage which includes a fabric comprised of the material of any one of claims 1-12.
15. A bulk air flow vent which includes a fabric comprised of the material of any one of claims 1-12.
16. A filtration medium which includes a fabric comprised of the material of any one of claims 1-12.
CA002472516A 2002-01-03 2003-01-02 Breathable non-wettable melt-blown non-woven materials and products employing the same Abandoned CA2472516A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34404202P 2002-01-03 2002-01-03
US60/344,042 2002-01-03
PCT/US2003/000101 WO2003057961A2 (en) 2002-01-03 2003-01-02 Breathable non-wettable melt-blown non-woven materials and products employing the same

Publications (1)

Publication Number Publication Date
CA2472516A1 true CA2472516A1 (en) 2003-07-17

Family

ID=23348789

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002472516A Abandoned CA2472516A1 (en) 2002-01-03 2003-01-02 Breathable non-wettable melt-blown non-woven materials and products employing the same

Country Status (6)

Country Link
US (1) US20050118917A1 (en)
EP (1) EP1483024A2 (en)
JP (1) JP2005514494A (en)
AU (1) AU2003200840A1 (en)
CA (1) CA2472516A1 (en)
WO (1) WO2003057961A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811696B2 (en) 2002-04-12 2004-11-02 Pall Corporation Hydrophobic membrane materials for filter venting applications
US8216600B2 (en) 2007-11-14 2012-07-10 Cordis Corporation Polymeric materials for medical devices
KR20120089782A (en) 2010-12-15 2012-08-13 삼성전자주식회사 An Interface Method For Managing Messages Of A Mobile Device
KR102031142B1 (en) 2013-07-12 2019-10-11 삼성전자주식회사 Electronic device and method for controlling image display
JP6722593B2 (en) * 2014-05-19 2020-07-15 アーケマ・インコーポレイテッド High melt flow fluoropolymer composition
WO2021205340A1 (en) * 2020-04-08 2021-10-14 3M Innovative Properties Company Partially fluorinated thermoplastic polymers and fibers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776796A (en) * 1971-09-28 1973-12-04 Allied Chem Process and apparatus for production of a nonwoven web
US3904798A (en) * 1972-03-24 1975-09-09 Celanese Corp Varying density cartridge filters
US3825379A (en) * 1972-04-10 1974-07-23 Exxon Research Engineering Co Melt-blowing die using capillary tubes
US4021281A (en) * 1973-08-31 1977-05-03 Pall Corporation Continuous production of nonwoven tubular webs from thermoplastic fibers and products
US5591335A (en) * 1995-05-02 1997-01-07 Memtec America Corporation Filter cartridges having nonwoven melt blown filtration media with integral co-located support and filtration
US6802315B2 (en) * 2001-03-21 2004-10-12 Hollingsorth & Vose Company Vapor deposition treated electret filter media
US6770577B2 (en) * 2001-10-29 2004-08-03 Gore Enterprise Holdings, Inc. Architectural fabric
US6630087B1 (en) * 2001-11-16 2003-10-07 Solutia Inc. Process of making low surface energy fibers

Also Published As

Publication number Publication date
WO2003057961A2 (en) 2003-07-17
EP1483024A2 (en) 2004-12-08
AU2003200840A8 (en) 2003-07-24
JP2005514494A (en) 2005-05-19
US20050118917A1 (en) 2005-06-02
AU2003200840A1 (en) 2003-07-24
WO2003057961A3 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
EP2231391B1 (en) Liquid water resistant and water vapor permeable garments comprising hydrophobic treated nonwoven made from nanofibers
EP2131689B1 (en) Liquid water resistant and water vapor permeable garments comprising hydrophobic treated nonwoven made from nanofibers
AU592811B2 (en) Nonwoven medical fabric
US5738111A (en) Method for preventing transmission of viral pathogens
KR100500075B1 (en) Stretch-Thinned Breathable Films Resistant to Blood and Virus Penetration
US4518650A (en) Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
JPH09503459A (en) Calendered spin bond / melt blown laminate with controlled porosity
NO310571B1 (en) Fibers of polyolefin polymers, process for making the fibers, fabrics made of the same, and use of the dissecting substances
CN102471992A (en) Coated microfibrous web and method for producing same
DE19882895B3 (en) Improved barrier film and laminate and method of making the same
CA2472516A1 (en) Breathable non-wettable melt-blown non-woven materials and products employing the same
US20230144786A1 (en) Novel filter material, face mask comprising the same and method of making the same
CN112549717A (en) Composite cloth and preparation method and application thereof
CA2121371C (en) A method for preventing transmission of viral pathogens
KR101448287B1 (en) Manufacturing method of sheet for medical having excellent permeability and antibacterial activity
EP2456330A1 (en) Blood resistant and viral resistant composite fabrics
KR102280101B1 (en) Protective clothing with improved durability
KR102280102B1 (en) Protective clothing
CA2444496A1 (en) Nonwoven fabric laminate having enhanced barrier properties
WO2024085211A1 (en) Filtration material and filter
CN114179448A (en) Manufacturing process of light, high-moisture-permeability and water-seepage-resistant composite fabric
Costa et al. DEVELOPMENT OF MULTILAYER TEXTILE STRUCTURES FOR FILTERING APPLICATIONS–A NEW SURGICAL MASK APPROACH
JPH01139840A (en) Humidity pervious and waterproof cloth

Legal Events

Date Code Title Description
FZDE Dead