CA2470780A1 - Glass adhesion promoter - Google Patents

Glass adhesion promoter Download PDF

Info

Publication number
CA2470780A1
CA2470780A1 CA 2470780 CA2470780A CA2470780A1 CA 2470780 A1 CA2470780 A1 CA 2470780A1 CA 2470780 CA2470780 CA 2470780 CA 2470780 A CA2470780 A CA 2470780A CA 2470780 A1 CA2470780 A1 CA 2470780A1
Authority
CA
Canada
Prior art keywords
acid
copolymer
additives
hydrophobic
fiberglass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2470780
Other languages
French (fr)
Inventor
Klein A. Rogrigues
James C. Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel NV
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2470780A1 publication Critical patent/CA2470780A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

A glass adhesion composition containing a copolymer having an acid and a substituted amide, silanol, or amine oxide functionality. The substituted amide, silanol, or amine oxide functionality provide excellent adhesion of the copolymer to glass, silica, sand and other silicon-based substances. The copolymer is useful as a fiberglass binder, and also useful in providing protective coatings on glass sheets, A fiberglass sizing composition is also provided having a copolymer that includes at least one acid group derived from at least one acid monomer, a hydrophobic comonomer, and a crosslinker. Additives can be added to the compositions to provide other functionality such as corrosion inhibitors, hydrophobic additives, additives for reducing leaching of glass, release ages, acids for towering pH, anti-oxidants/reducing agents, emulsifiers, dyes, pigments, oils, fillers, colorants, curing agents, anti-migration aids, biocides, plasticizers, waxes, anti-foaming agents, coupling agents, thermal stabilizers, flame retardants, enzymes, wetting agents, and lubricants.

Description

G~IrASS ADHESION PRO1VIOTER
The present invention is directed towards a glass adhesion promoter or composition.
More specifically, the invention is directed towards a copolymer useful in a glass binding s composition, wherein the copolymer has a carboxyl-functional moiety and a substituted amide, silanol, or amine oxide functional moiety. The copolymer is useful both as a fiberglass binder and in providing protective coatings on glass sheets.
Fiberglass insulation products generally consist of glass fibers bound together by a polymeric binder. The fibers are bound by spraying an aqueous polymer binder onto matted io glass fibers soon after the fibers are formed and while they are still hot.
This polymeric binder accumulates at the junctions where the fibers cross each other, hvldin~g the fibers together at these points. The heat from the fibers vaporizes most of the water in the binder. The fiberglass binder should be flexible so that the fiberglass product can be compressed for packaging and shipping and later recover to its full vertical dimension when installed.
t5 In the past, fiberglass applications employed phenol-formaldehyde resins in their binder systems. These phenyl-formaldehyde compositions provided an excellent product with flexibility. However, due to environmemal and safety concerns formaldehyde-free polymeric binder systems were developed as a substitute for the phenol-formaldehyde compositions. These formaldehyde-free binder systems typically involve three parts. One part is a polymer such as a 20 polycarboxyl, polyacid, polyacrylie, or anhydride that can be eopolymerized with other ethylenically unsaturated monomers. A second part is a cross-linker that is an active hydrogen compound, such as trihydric alcohol, triethsnol a»aine, beta-hydroxy alkyl amides, or hydroxy alkyl urea. The system can also include a catalyst or accelerator, such as a phosphorous containing compound or a fluoroborate compound. Still, these carboxyl-containing polymers 2s and co-polymers show poor adhesion to glass fibers, resulting in insulation that sags over time.
Accordingly, there is a need for alternative fiberglass binder systems that provide the performance advantages of phenol-formaldehyde resins in a formaldehyde-free system. Further, there is a need for a fiberglass binder composition having good adhesion to glass fibers, it is known to use a phosphorus-based catalyst for fiberglass sizing fornnulations. While 3o the phosphorus-based catalysts lower the curing temperature, the addition of inorganic salts such as sodium hypophosphite adversely affect the water uptake of the finished product_ While not -1.

being bound by theory, the inorganic salts introduced in to the insulation system tend to absorb moisture by a capillary mechanism. Accordingly, there is a need to minimize or even eliminate the inorganic salts (electrolytes) in this system. Additionally, there is a need for a fiberglass binder system and its associated resins) having improved water and humidity resistance, and that are not subject to the water absorption problems described above.
It has now been found that excellent adhesion to glass can be obtained by the copolynnerization of a substituted amide, silanol, or amine oxide functional-monomer with a carboxyl-functional monomer. This copolymer also provides good adhesion to silicon-based materials such as glass sheets, thereby providing a protective coating to the glass.
to In one aspect the present invention is directed towards a copolymer composition having one or more acid functional monomer units in an amount of about 30 to about 99.99 percent by weight; monomer units selected from the group consisting of substituted amide monomers, silanol monomers, or amine oxide monomers in an amount of about 0.01 to about 30 percent by weight; and one or more other ethylenically unsaturated monomer units in an amount of about 0 1s to about 50 percent by weight, with the sum of all monomer weight percentages that make up the copolymer binder composition adding up to 100 percent.
The invention is also directed to a silicon-based substrate having directly deposited thereon this copolymer binder composition.
In another aspect, the present invention is directed towards a fiberglass binding or sizing z0 composition or formulation. This fiberglass binding composition includes a polymer or copolymer having at least one acid group, at least one carboxylic comonomer and at least one crosslinker.
In another aspect, the fiberglass binding composition includes a copolymer having at least one acid group derived from at least one acid monomer having the general formula ()]
Ri R~
(1) 25 Ra R' wherein R~ to R4 are independently hydrogen, methyl, carboxylic acid group or CI-~COOH, alkyl or aryl sulfonic acid and wherein the acid groups can be neutralized.
This fiberglass binding composition fiuther includes a hydrophobic comonomer having the general formula (II) -R~
X
wherein RS is hydrogen, C,-C6 alkyl or Ci-C6 hydroxyalkyl, and X is either mono or polycyclic aromatic group or a substituted aromatic group (with RS being hydrogen or methyl when X is aromatic) or X is of the general formula (III) -Wheheln R6 15 (independently of Rs) hydrogen, C,-Ca,, allryI, Cl-C~ alkoxy, C~-C~, aminoalkyl, G-Gi4 allcyl sulfonate, -0 alkyl, -OCO alkyl, NCO alkyl, carbocyclic, heterocyclic, or C,-Cap hydroxyalkyl; Y is O or N; and t is either 0 or 1. The fiberglass binding composition also includes a crosslinker.
t o It has now been found that addition of small amounts of hydrophobic functionality can overcome water absorption problems of fiberglass sizing formulations containing inorganic salts.
In this respect, the invention is directed towards a resin containing hydrophobically functional comonomer. This hydrophobic fu:actionality can be introduced into the copolymer by the addition of hydrophobic comonomers. Alternatively, the hydrophobic functionality can be is introduced by adding hydrophobic emulsions as an additive. In another aspect, surfactants are beneficial to these fornnulations either as the hydrophobic additive or as a stabilizer for the hydrophobic emulsion additives. Alternatively, these hydrophobic emulsion additives can be stabilized by colloid stabilizers.
The present invention is further dirxtod towards an aqueous process for producing 20 hydrophobic solution copolymers. This process includes adding an acid functional monomer and a hydrophobic monomer to an aqueous solution. An initiating aged is added to the solution to effect polymerization of the monomers. The monomers are then polymerized, thereby forming hydrophobic solution copolymers in the aqueous solution.
The present invention relates to a glass adhesion copolymer usefitl i,n a fiberglass binder 2s composition arid having excellent adhesion to glass end other silicon-based substrates. The glass adhesion copolymer is formed by copolymerkation of one or more acid ftanetlonal monomers with one or more ethylenically unsaturated monomers. These unsaturated monomers include substituted amide, silanol, or amine oxide functional-monomer. In one aspect, the glass adhesion copolymer includes di-substituted amide monomer units.
In one aspect, the one or mote acid monomers is at least a carboxylic acid monomer used in synthesizing the binder make up from about 30 to about 99.99 mole percent of the copolymer.
s In another aspect, the ane or more acid monomers make up from about 50 to about 99 mole percent. In anther aspect, the one or more acid monomers make up from about 60 to about 95 mole percent of the copolymer, The carboxylic acid monomer includes anhydrides that can form cuboxyl groups in situ.
Examples of carboxylic acid monomers useful in forming the copolymer of the invention include 1o acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, fumaric acid, malefic acid, cinnanic acid, 2-methylmaleic acid, itaconic acid, 2-methylitaconic acid, sorbic acid, a ~-methylene glutaric acid, malefic anhydride, itaconic anhydride, acrylic anhydride, methacrylic anhydride. In one embodiment the monomers are malefic acid, acrylic acid and/or methacrylic acid. The carboxyl groups can also be formed in s#u, such as in the case of isopropyl esters of acrylates ~ 5 and methacrylates that forth acids by hydrolysis of the esters when the isopropyl group leaves, The acid monomer can include a sulfonic acid group such as 2-acrylamidomethyl propane sulfonic acid, styrene sulfonic acid, (meth)allyl sulfonic acid and tmeth~llyloxybenzene sulfonic acid. Mixtures of carboxylic acids and sulfonic acids can also be used.
The glass adhesion copolymer is synthesized from one or more substituted amide, silanol, 2o or amine oxide- functional monomers. These functional monomers arc used at a level of from 0,01 to 30 percent by weight, based on the total monomer. In another aspect they are used at a level of from 0.1 to 5 percent by weight. Substituted amide monomers include those having the formula (I1~:
R' R9 C ' C -N (I~
Ra 2s wherein R' and Ra arc independently H, OhI, Ct.3~, alkyl, aryl, alkyl aryl or hydroxyalkyl; and RQ
is Ii or CH3.
Examples of substituted amide monomers Include N-methylol acrylamidc, N-ethanol acrytamlde, N propanol acrylamide, N-methylol methacrylamide, N,N-dimethylacrylamide, N,N-diethyl acrylamide, N-isopropyl acrylamide, N-hydroxyethyl acrylamide, N-hydroxypropylacrylamide, N-octylacrylamide, N-laurylacrylamide, dimethyl aminopropyl (meth)acrylamide, and 1-vinyl-2-pyrrolidinone. 1n one aspect the substituted amide is a di-substituted amide such as N,N-dimethylacrylamide, and N,N-.diethylaerylamide.
The substituted s amide monomer useful in the invention can also be a ring opening monomer with the substituted amide in the backbone of the monomer, wherein the monomer will copolymerize by condensation or ring opening polymerization.
Examples of silanol monomers include vinyl trisisopropoxy silane, vinyl trisethoxy sifane, vinyl trismethoxy silane, vinyl tri(2-methoxyethoxy) silane, vinyl methyl dimethoxy io silane, y-methacryl oxypropyl trimethoxy silane, and vinyl triacetoxy silane. These monomers ate typically copolymerized with acrylic acid in water. They hydrolyze in sftu forming silanol linkages and liberating the eocresponding alcohol, which can then be distilled off In one embodiment, the amine oxide monomers are incorporated by copolymerizing a amine-containing monomer such as 2-vinylpyridine, 4-vinyl pyridine, or dimethyl aminoethyl ~s methacrylate and subsequently oxidizing the amine functionality to the amine oxide. In another embodiment, the amine is oxidized to amine oxide prior to polymerization, and the monomer is then incorporated into the polymer.
The substituted amide and siianol functionallties can be introduced to the polymer by other means. For example, the silanol functionality can be incorporated by using a chain transfer zo agent such as y-mercaptopropyl trimethoxysilanc, Also, a polymer containing acryl amide groups can be funetionalized with dimethyl amine or another amine to give a substituted amide derivative. Copolymers of amino acids such as a copolymer of aspartic acid and sodium aspartate as disclosed in U.S. Patent Number 5,981,491 are useful. These polymers contain amide functionality in the backbone (available as Reactin AS 11 from Folia, lnc., Birmingham, 25 AL). These copolymers also have irnide functionality. This imide ftmctionality can be reacted with an amine reagent such as diethanol amine to form a polymer with amide side chains.
Copolymers from condensation and ring opening polymerization can also be used.
An example of this is poly(2-ethyl-2-oxazolIne), wherein the substituted amide is in the backbone of the polymer.
3o Other ethylenically unsaturated monomers added at levels of up to about 50 weight percent based on total monomers can also be optionally used to form the glass adhesion copolymer. These monomers can be used to obtain desirable properties of the copolymer in ways known fn the art. Monomers can also be use to adjust the glass transition temperature {'T,~') of the copolymer to meet end-use application requicemcnts. Examples of useful monomers include (meth)acrylates, maleates, (meth)acrylamides, vinyl caters, itaconates, styrenics, acrylonitrile, nitrogen fimctionsl monomers, vinyl Caters, alcohol functional monomers, and unsaturated hydrocarbons.
Low levels of up to a few percent of crosslinking monomers can optionally be used to form the glass adhesion copolymer. The extra crosslinking improves the strength of the bonding;
however, higher levels can be detrimental to the flexibility of the resultant material. The ~o crosslinking moieties can be latent crosslinking where the crosslinking reaction takes place not during polyraerization but during curing of the binder. Chain-transfer agents known in the art can also be used to regulate chain length sad molecular weight. The chain transfer agtnts can be multifbnctlonal xo that star type polymers can be produced. The crosslinker can be a polyol andlor a polyamine.
~s The copolymer is synthesized by known polymerization methods. These include solution, emulsion, suspension and inverse emulsion polymerization methods. 1n one aspect, the polymer is formed by solution polymerization in an aqueous medium. The aqueous medium can be water or a mixed water/water-miscible solvent system such as a waterlalcohol solution. The polymeriration can be batch, semi-batch, or continuous. The polymers are typically prepared by 2o free radical polymerization; however, condensation polymerization can also be used to produce a polymer containing the desired moieties. The monomers can be added to the initial charge, added on a delayed basis, or a combination of the two. Accordingly, the present invention includes an aqueous solution having the copolymer therein. In another aspect, this aquoous solution fi~rther includes a silanol moiety.
2s The architecture of the glass adhesion copolymer can be random, block, star, or other known polymer architcdure. Random polymers are preferred due to the economic advantages;
however, other architectures could be useful in certain end uses. In one aspoct, the copolymers typically have weight-averaged molecular weights in the range of about 1,000 to about 300,000.
In another aspect, the copolymers have weight-averaged molecular weights in the range of about 30 2,000 to about 15,000. In one aspect, the molecular weight of the copolymer is in the range of about 2,500 to about 10,000. In another aspect, the molecular weight of the copolymer is in the range of about 3,000 to about 6,000.
As previously noted, the copolymer binder exhibits very good adhesion to silicon-based substrates, As used herein, silicon-based substrates refer to any substrate containing silicon s atoms. Silicon-based substrates include glass in the form of sheets, fibers, beads, and formed objects; silicas, silicates, sand, clays and silicon microchip materials. If SiOH or silanol groups are present on the substrate, the copolymers of the invention adhere to the substrate, Accordingly, the present invention includes a silicon-based substrate having deposited thereon the copolymer binder composition. When the substrate is glass fibers, the copolymer binder o composition is provided at a level effective in binding the fibers together, thereby forming a self sustaining web.
In addition to its use as a fiberglass binder, particularly useful end uses of the copolymer include forming glass-protective coatings. Other uses include binders in cements and other building materials where sand is used as filler. The composition's bonding with the sand leads to ~ s improved composite strength. The composition can also be used in adhering materials to silicon microchips or in adhering silicon microchips to other substrates. The copolymer can partially or completely cover one or more sides of the silicon-based substrate, or it can contact the substrate in one or more discrete points of contact.
Another end use of the glass adhesion copolymer is in fiberglass reinforced composites.
2o Fiberglass is used as a reinforcement material in plastics, wall boards end other such material.
However, the fiberglass often is not compatible in the plastic or gypsum that it is added to. The glass adhesion copolymer of this invention aids in making the fiberglass compatible for use in the plastic or other substrates. In this manner, at least part of the copolymer adheres to the f berglass while at least another part of the copolymer anchors in the plastic or gypsum substrate.
2s Accordingly, fiberglass that has been treated with the glass adhesion copolymer of the present invention enhances the physical properties of composite materials such as plastic, gypsum concrete, wood andlor cloth when they are formed using this fiberglass.
In addition to the glass adhesion copolymer, the fiberglass binder composition can include a crosslinker. The sizing composition can be formulated with a crosslinker typically 3o used in fiberglass binder compositions, such as hydroxyl, polyol, or polyamine components.
Examples of useful hydroxyl compounds include trihydric alcohol; ~-hydroxy alkyl amides;

polyols, especially those having molecular weights of less than 10,000;
ethanol amines, such as triethanol amine; hydroxy alkyl urea; and oxazolidone. In one aspect, the polyol is a material containing two or more hydroxyl groups. Examples of polyols include but are not limited to glycerol, triethanolamine, pentaerythritol, hydroxy alkyl urea; oxazolidone, poly vinyl alcohol, polysaccharides like starches, guars and their derivatives, and combinations thereof. In another aspect the polyamine contains two or more amine groups. Examples of useful amines Include triethanol amine, diethylene triamine, tetratethylene pentamane, polyethylene amine and combinations thereof.
According to the present invention, compounds capable of forming hydrogen-bonding ~o complexes with copolymer polycarboxyl-functional binders allow for crosslinkang at lower temperatures. These cmsslinking compounds can be used in conjunction with the functional copolymers of the present invention. They also can be used with polymer and copolymers currently used as fiberglass binders. They can further also be used in combination with conventional crosslinking compounds, Examples of hydrogen-bonding complexing agents ~5 include polyalkylene glycol, polyvinyl pyrroladone, polyethylene amine, or mixtures thereof 1n one aspect, the polyalkylene glycol is polyethylone glycol.
The glass adhesion copolymer forms strong bonds without the need for a catalyst or accelerator. One advantage of not using a catalyst in the binder composition is that catalysts tend to produce films that can discolor andlor release phosphorous-containing vapors. Still, an 2o accelerator or catalyst can be combined with the copolymer binder to decrease cure time, increase crosslinking density andlor decrease the water sensitivity of the cured bindex. Useful catalysts include those known in the art, such as alkali metal salts of a phosphorous-containing organic acid, e_g., sodium hypophosphate, sodium phosphate, potassium phosphate, disodium pyrophosphate, tetra-sodium pyrophosphate, sodium tripolyphosphate, sodium 2s hexametaphosphatc, potassium polyphosphate, potassium tripoIyphosphate, sodium trimetaphosphate, sodium tetrametaphosphate; fluouroborates; and mixtures thereof. Useful catalysts also include Lewis acids such as magnesium citrate or magnesium chloride, Lewis bases, or free radical generators such as peroxide. In one embodiment, the catalyst is present in the binder formulation in an amount of from about 0 tv about 2S percent by weight based on the 3o copolymer binder. In another embodiment, the catalyst is present in an amount of from about 1 to about 10 percent by weight based on the copolymer binder.
.g.

The present invention further relates to fiberglass binder or siziwg compositions or formulations containing the copolymer binder described above. These fiberglass sizing compositions have excellent adhesion to the glass fibers. This good adhesion between fibers prevents the fibers from moving past each other and sagging over time.
s One of the major problems encountered wish current non-formaldehyde-based resin systems (herein referred to as conventional non-formaldehyde binder systems) is their lack of resistance to water and humidity. This lack of resistance results in sagging of the insulation in end use, which is detrimental to its insulating properties. While not being bound by theory, it is believed that the lack of water and humidity resistance is due, at least in part, to the presence of ~o high amounts of inorganic salts in the system. Further, conventional polycarboxylates used in the binder system are extremely hydrophilic and tend to absorb large amounts of water and moisture.
The present invention overcomes this problem by use of a hydrophobic copolymer in a fiberglass sizing composition. This hydrophobic copolymer has at least one acid group and a is hydrophobic comonomer. The polymer portion having at least one acid group is derived $om at least one carboxylic monomer having the general formula (1) -R' R=
R' R~
wherein R' to R' arc independently hydrogen, methyl, carboxylic acid group, CH2COOH, or alkyl or aryl sulfonic acids, and wherein the acid groups can be neutralized. This acid monomer 20 includes acrylic acid, malefic acid, itaconic acid, 2~acrylamidomethyl propane sulfonie acid, styrene sulfonic acid, (meth)allyl sulfonic acid, (meth)allyloxybenzene sulfonic acid and combinations thereof.
The hydrophobic comonomer portion of the copolymer has the general formula (iI) -Rs H X
25 wherein R3 is hydrogen, C,-C6 alkyl or C~-C6 hydroxyalkyl, and X is either raono or polycyclic aromatic group or a substituted aromatic group (with R~ being hydrogen or methyl when X is aromatic) or X is of the g~oral formula (Itn -~~-f -C~-.Y-~Rs (III) wherein R8 is (indepertdcntly of R~ hydrogen, C~-C~ alkyl, C~-Cu alkoxy, C~-Cu aminoalkyl, G,-Cy~ alkyl sulfonate, -O alkyl, -OCO alkyl, -NCO alkyl, carboeyclic, heterocyclic, or Cl-C2a hydroxyalkyl; Y is 0 or N; snd t is either 0 or 1. This hydrophobic comonomer constituent includes, for example, methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, methyl (meth) acrylamide, ethyl (meth) acrylamide, t butyl (meth) acrylamide, vinyl acetate, vinyl pyrolidone, vinylpyridine, dimethylaminoethyl {meth~crylate, diethylaminoethyl(meth)aerylate, t-butylaminoethyl(meth)acrylate, dimethyl amirropropyl (meth)acrylate, dimethyl aminoethyl (meth)acrylamide, diethyl aminoethyl(meth)acryiamide, t-to butyl aminoethyl(meth)acrylamide, dimethyl atrtinopmpyl (meth)acrylanude, polyethylene glycol) tnethacrylate, C,x.~s adeohol ethoxylated methacrylate, Ci=-is a-olefin, C~~.~s a-olefin sulfonate, styrene sulfonate, vinyl formamide, vinyl methylether, styrene, or a-methyl styrene.
Combinations of these monomers are also included. The hydrophobic group caa also be incorporated in to the polymer using a chain transfer agent. The chain transfer agent can be long is chain alcohol or long chain thiol or mercaptan. The latter can incorporate hydrophobic thin Rlky1 groups in to the polymer.
In addition to the hydrophobic copolymer, the fiberglass siring composition can include a erasslinker. The sizing composition can be formulated with a crosslinker typically used in fiberglass binder compositions, such as hydroxyl, polyol, or polyarnine components. >~,xamplcs 20 of useful hydroxyl compounds include trihydric alcohol; ~-hydroxy alkyl amides; polyols, especially those having molecular weights of less than 10,000; ethanol amines such as trietharwl amine; hydroxy alkyl urea; and oxawlidone. In one aspect, the polyol is a material containing two or more hydroxyl groups. Examples of polyols include but are not limited to glycerol, triethanolamine, pentaerythritol, hydmxy alkyl urea; oxazolidone, poly vinyl alcohol, 2s polysaccharides like starches, guars and their derivatives, attd combinations thereof. In another aspect the polyamine contains two or more amine groups. Examples of useful amines include triethanol amine, diethylene triamine, tetratethylcne pentamine, polyethylene imine and combinations thereof. The sizing formulation can optionally further include a catalyst or accelerator.

Alten,,stively, the Lack of water and humidity resistance in conventional nvn-formaldehyde-based fiberglass binder systems can be overcome by adding a hydrophobic additive to the fiberglass binder composition. The hydrophobic additive can include any water repellent material. 1t can bo a hydrophobic emulsion polymer such as styrene-aorylates, ethylene-vinyl acetate, poly siloxanes, fluorinated polymers and polyesters.
The hydrophobic additive can also be a surfactant. The surfactant itself can provide hydrophobicity, or it can be used to deliver a hydrophobic water insoluble material. The surfactant can be non-ionic, anionic, cationic or amphoteric, In one aspect, the surfactants are nonionic and/or anionic. Nonionic surfactants include, for example, alcohol ethoxylates, ethoxylated polyamines and eth~oxylated to polysiloxanos. Anionic surfactant9 include alkyl carboxylates and alkylaryl sulfonates, a-olefin sulfonates and alkyl ether sulfvnates.
The glass adhesion or hydrophobic copolymer, crosslinker and optiotaal catalyst are blended together to form the fiberglass binder composition. This binder composition can optionally be further formulated with one or more adjuvants, for example, anti~xidsnts/
1s reducing agents, coupling agents, dyes, pigments, oils, fillers, thermal stabilizers, emulsifiers, coring agetrts, anti-nnigration aids, wetting agents, biocides, plasticizars, anti-foaming agents, waxes, flame-retarding agents, enzymes and lubricants. The adjuvants are generally added at levels of less than 20 percent based on the weight of the copolymer binder.
The binder composition can also optionally include corrosion inhibitors. These corrosion inhibitors include 2o tin compounds, for example, tin oxalate, thio areas and acetylinic alcohols.
The fiberglass sizing composition can also be optionally formulated to include one or more additives for reducing leaching of glass. These additives include Zn compounds such as Zn carbonate and/or Zn sulfate. The additives can also include sodium silicate.
In one aspect, these additives can reduce corrosion in metallic components.
2s The fiberglass sizing composition can further be optionally formulated to include one or more release additives. These release additives include silicone crud fluorocarbon. Tho release additives can function in reducing static. They can also function in reducing resin buildup on equipnnent. In one aspect, the release additives are added to the fiberglass sizing composition.
In another aspect, the release additives are applied onto a substrate either before or after 3o applications of the fiberglass sizing composition onto the substrate.

CA 02470780 2004-06-11 j~
As the pH of the fiberglass sizing composition is increased, the amount of neutralized carboxylate groups generated in the polymer is increased. Grosslinking is achieved if the acid group in the polymer is protonated. Crosslinking cannot be attained through any of the neutralized carboxylic groups, especially if the ration is monovalent. 'This increasing pH leads to s lower crosslink density and degradation in physical properties. A lower pH
can be achieved by using an organic acid such as malic, citric, salicylic, oxalic or tartaric acid, or an inorganic acid such as boric, sulfamic or sulfonic acid. Salts of boric acid can also be used. In one aspect, the pH of the fiberglass sizing composition is about 3.5 or less.
The present invention provides for an aqueous process for producing hydrophobic to solution copolymers. According to this process, one or more acid functional monomers and one or more hydrophobic monomers are added to an aqueous solution. An initiating agent is added to the solution to effect polymerization of the monomers. Polymerization can occur at a temperature of about 90°C or greater. With the polymerization of the monomers a hydrophobic solution copolymer is formed in the aqueous solution. The aqueous process can also include ~s adding one or more chain transfer agents to the aqueous solution. In another aspect, the aqueous pmcess can also include adding one or more allylic or disubstituted acid monomers to the aqueous solution. The aIlylic or disubstituted acid monomer can be malefic acid, sodium methallyl sulfonate, or combinations thereof. In one aspect, the aqueous process can also include adding one or more neutralizing agents to the aqueous solution.
2o The fiberglass binder composition is useful for bonding fibmus substrates to form a formaldehyde-free non-woven material. The fiberglass binder composition is especially useful as a binder for heat-resistant non-wovens such as aramid fibers, ceramic fibers, metal fibers, polyrayon fibers, polyester fibers, carbon fibers, polyimide :fibers and mineral fibers such as glass fibers.
2s The copolymer binder composition is generally applied with a suitable spray applicator to a fiber glass mat as it is being formed so that the binder is distributed nearly evenly throughout the formed fiberglass mat. Typical solids are present in the aqueous solutions in amounts of about 5 to about 12 percent. The binder may also be applied by other means known in the art, including, but not limited to, airless spray, air spray, padding, saturating, and roll coating: The so residual heat from the fibers causes water to be volatilized from the binder, and the high-solids binder-coated fiberglass mat is allowed to expand vertically due to the resiliency of the glass fibers.
The fiberglass mat is then heated to cure the binder. Typically, the curing oven operates at a temperature of from about 130°C to about 325°C. When compounds that form hydrogcn-bonding complexes with the copolymer binder are used, lower cure temperatures of about 110°C
to about 150°C can be used. 1n one embodiment, the lower cure temperature is about 120°C.
The fiberglass mat is typically cured in about 5 seconds to about 15 minutes.
In another aspect, the mat is cured in about 30 seconds to about 3 minutes. Cure time depends on both the temperature and level of catalyst used.
to After curing, the fiberglass mat can be compressed for shipping. An important property of the fiberglass mat is that it returns to its full vertical height once the compression is removed.
The copolymer binder produces a flexible film that allows the fiberglass insulation to bounce back after the roll is unwrapped and placed in walls and/or ceilings.
Fiberglass and other non-woven materials treated with the copolymer binder composition i s are useful as heat and/or sound insulation in the form of rolls or hafts;
as a reinforcing mat for roofing and flooring products, ceiling tiles and flooring tiles; as a microglass-based substrate for printed circuit boards and battery separators; for filter stock and tape stock and for reinforcements in both non-cementatious and cementatious masonry coatings.
The present invention also provides for a fiberglass sizing composition having a polymer 2o having at least one acid group derived from at least one carboxylic acid monomer, one or more crosslinkers, and one or more additives. The acid-group containing polymer includes acxylic acid. In another aspect, the acid-group containing polymer is the glass adhesion copolymer described supra. In one aspect, the acid-group containing polymer is the copolymer described in formula ()] supra. In another aspect, the acid-group containing polymer is tire copolymer zs described in formula (In supra. The crosslinkers can include one or more polyols andlor polyamines. In one aspect, the polyol contains 2 or more hydroxyl grnups.
Exemplary polyols include glycerol, tniethanolamine, pentaerythritol, hydroxy alkyl urea, oxazolidone, polyvinyl alcohol, polysaccharide-like starches, guars and their derivatives, or combinations thereof. In another aspect the polyamine contains 2 or more amine groups. Exemplary polyamines Include 3o triethanol amine, diethylene triamine, tetratcthylene pentarnlne, and polyethylene imine or combinations thereof f .

The one or more additives of this three constituent fiberglass sizing composition includes corrosion inhibitors, hydrophobic additives, additives for reducing leaching of glass, release agents, acids for lowering pH or combinations thereof. In one aspect the one or more additives is at least one or more corrosion inhibitors. These corrosion inhibitors include tin compounds such as tin oxalate, thin areas, acetylinic alcohols and combinations thereof.
In another aspect the one or more additives is at least one or more hydrophobic additives.
These hydrophobic additives can include a water repellent material. In another aspect, the hydrophobic additives can include a hydrophobic emulsion polymer. The hydrophobic emulsion polymer can be, for example, styrene-acrylates, ethylene-vinyl acetate, poly siloxancs, to fluorinated polymers, polyesters or combinations thereof. In another aspect the ocsr or more hydrophobic additives can include one or more surfactants. These surfactants can provide hydrophobicity to the composition. A,t least one of the surfactants can deliver a hydrophobic water insoluble material. In one aspect the surfactant is nonionic, anionic, cationic or amphoteric. In another aspect the surfactant is nonionic or anionic. Examples of the nonionic ~ 5 surfactant include alcohol ethoxylates, ethoxylated polyamines, ethoxylated polysiloxanes or combinations thereof. Examples of the anionic surfactant include alkyl carboxylates and allcylaryl sulfonates, a-olefin sulfonates, allrylether sulfonates or combinations thereof.
In one embodiment, the one or more additives of the three constituent fiberglass sizing composition include at least one or more additives for reducing leaching of glass. These 20 leaching reduction additives can include Zn compounds. Examples of such Zn Compounds include Zn carbonate andlor Zn sulfate. These one or more leaching reduction additives can also include sodium silicate. In one aspect, these leaching reduction additirres can reduce corrosion in metallic components.
In another embodiment, the one or more additives of the three constituent fiberglass 25 sizing composition include at least one or more release additives. These release additives can function in reducing static. The release additives can also function in reducing buildup of the resin on equipment. l:,xamples of release additives include silicone or fluorocarbon.
The following examples are presented to further illustrate and explain the present invention and should not be taken as limiting in any regard.

COPOLYMER COMPOSITIONS
A reactor containing 200 grams of water sad 244 gins of isopropanol (C3Ha0) was heated to 85°C. A monomer solution containing 295 grams of acxylic acid (C31-LO~ and 4.1 grams of N,N-dimethyl acrylamlde was added to the reactor over a period of 3,0 hovers. An initiator solution containing 15 grams of sodium gersulfate (NaZS20a) in 100 grains of deionized water was simultaneously added tv the reactor over a period of 3.5 hours. The reaction product wss bald at 85°C for an additional hour. The isopmpanol was then distilled using a Dean-Stark 1o trap.
A reactor containing 200 grams of water and 244 grams of isopropanol was heated to 85°C. A monomer solution containing 295 grams of acrylic acid and S
grams of vinyl tri-~s isoprogoxy silane (available as Coat 0 SiI~ 1706 from CrE Silicones, Wilton, Connecticut, US) was added to the reactor over a period of 3.0 hours. An initiator solution comprising of 15 grams of sodium persulfate in 100 grams of deioniz~ed water was simultaneously added to the reactor over a period of 3.5 lmurs. 'The reaction product was held at 85°C for an additional hour. The isopropanol was then distilled using a Dean-Stark trap. The isopropoxy silane attaches to the 2o copolymer via the vinyl linkage. However, it hydrolyzes during the reaction to form silanol groups and isopropanol. The isopropanol formed is distilled with the rest of the isopropanol added to the initial charge. Additional water is added to the reaction to dilute it to 50 % solids.
25 A reactor containing 200 grams of water and 2~4 grams of isopropanol was heated to 85°C. A monomer solution containing 29S grains of acrylic avid and S
gams of vinyl triethoxy silane (available as Siiquestm A-151 Shane from GE Silicones, Wilton, Connecticut, US) was added to the reactor over a period of 3.0 hours. An initiator solution comprising of 15 grams of sodium pe~sulfate in 100 grams of deionized water was simultaneously added to the reactor over 3o a period of 3.5 hours. The reaction product was held at 85°C for an additional hour. The isopropanol was then distilled using a Dean-Stark trap. The vinyl triethoxy silane attaches to the copolymer via the vinyl linkage. However, it hydrolyzes during this reaction to form silanol Groups and ethanol. The ethanol formed is distilled with the rest of the isopropanol added to the initial charge, Additional water is added to the inaction to dilute it to 50 percent solids.
s ~XAMP~E 4 A reactor containing 200 grams of water and 244 grams of isopropanol was heated to 85°C. A monomer solution containing 295 grams of acrylic acid and 5 grams of 4-vinylpyridine was added to the reactor over a period of 3.0 hours. An initiator solution comprising of 1 S grams of sodium persulfate in I00 grams of deionized water was simultaneously added to the reactor io over a period of 3.5 hours. The reaction product was held at 85°C
for an additional hour. The isopropanot was distilled using a Dean-Stark trap. The vinyl pyridine moiety was then oxidized to amine oxide by treating the polymer with hydrogen peroxide in the presence of sodium molybdate (NazMoO4 ~ 2Hi0).
is E~' 1',E5 The test procedure for adhesion to glass is as follows. A 10 percent polymer solution is sprayed onto glass microscope slides. A polyr~ner film forms on each slide with evaporation of the water from the solution. The glass slides are weighed lxfore and aftex the films are developed. The slides are then soaked in a 1,0% NaOH solution for 10 minutes and then dried.
zo The effectiveness of the adhesion to glass can be measured either by the amount of polymer still on the glass slides, ar by analyzing the amount of polymer redissolved in the 1.0% NaOH
solution.
TAB l,E 1 Exam Pal mer le Pol mer description Adhesion le sam to leas 5a AlcosperseA Homopoiymer of acrylicnone 802 said from Alco ica Cherri 5b Example Copolym~r of acrylic good 1 acid wrld N,N

dimeth la amide 5c Example Copolymer of acrylic Excellent 2 aGd and vin I tri8 silenol 5d Example Copolyrrrdr of acryNcF~ccellant 3 acid and vin I tris si>anol Se Fxsrnple Copolymer of acrylic 4 acid 4-vin I ridine-N-oxide A reactor containing 300 grams of water and 244 grams of isopropanol was heated to 85°C. A monomer solution containing 295 gams of acrylic acid and 40 grams of methyl methacrylate and 4 gams of vinyl methoxy silane was added to the reactor over a period of 3.0 hours. An Initiator solution comprising of 15 grains of sodium persulfate in 100 gams of deionized water was simultaneously added to the reactor over a period of 3.5 hours. The reaction product was held at 85°~ fox an additional hour, The isopropanol was then distilled using a Dean~Stark trap, The vinyl methoxy silane is attached to the copolymer via the viny) linkage.
However, it hydrolyzes during the reaction to form silanol groups and methanol. The methanol io formed is distilled with the isopropanol added to the initial charge.
Additional water is added to the reaction to diluto it to 50% solids.

A reactor containing 300 grams of water and 244 grams of isopropanol was heated to i5 85°C. A monomer solution containing 295 grates of acrylic acid and 60 grams of methyl methacrylate was added to the r~eaetor over a period of 3.0 hours. An initiator solution comprising of 15 grams of sodium persulfate in 100 grams of deionized water was simultaneously added to the reactor over a period of 3.5 hours. The reaction product was held at 85°C for an additional hour. The isopropanol was then distilled using a Dean-Stark trap.
20 Additional water is added to the reaction to dilute it to 50% solids.

A reactor containing 300 grams of water and 244 grams of isopropanol was heated to 2s 85°C. A monomer solution containing 295 grams of acrylic acid and 20 grates of styrene and 4 grates of vinyl ethoxy silane was added to the reactor over a period of 3.0 hours. An initiator solution comprising of 15 grams of sodium persulfate in 100 grams of deionized water was simultaneously added to the reactor over a period of 3.5 hours. The reaction product was held at 85°C for an additional hour. The isopropanol was then distilled using a Dean-Stark trap. The 3o vinyl ethoxy silane is attached to the copolymer via the vinyl linkage.
However, it hydrolyzes during the reaction to form silanol groups and ethanol. The ethanol formed is distilled with the isopropanol added to the initial charge. Additional water is added to the reaction to dilute it to 50% solids.

s A reactor containing 300 grams of water and 244 grams of isopropanol was heated to $5°C. A monomer solution containing 295 grams of acrylic acid and 30 granns of styrene was added to the reactor over a period of 3.0 hours. An initiator solution comprisung of 15 grams of sodium persulfate in 100 grams of deionized water was simultaneously added to the n,.actor over a period of 3.5 hours. The reaction product was held at 85°C for an additional hour. The 1o isopropanol was then distilled using a Dean-Stark trap. Additional water is added to the reaction to dilute it to 50% solids.
~X~LE 10 Aqueous process for producing a hydrophobically modified copolymer -is 300 g of water, 42 grams of malefic anhydride and 0.025 grams of ferrous ammonium sulfate hexahydrate was heated in a reactor to 95°C. A mixture of 280 g of acrylic acid and 23.7 g of styrene were added to the reactor over a period of four hours. At the same time, a solution of 12.0 g of sodium persulfate, 75 grams of 35% hydrogen peroxide solution in 100 g of water was added to the reactor over a period of 4.5 hours. The temperature of the reactor was 20 maintained at 95°C for two hours, after which a clear light yellow solution of the polymer was obtained.
FIBERGLASS SIZING FORMULATION EXAMPLES
z5 SAMPLE 11 Fiberglass sizing composition having hydrophobic copolymer -' nts Wt Polymer of Example 7 20 Triethanol amino 5 38 Water 75 Fiberglass sizing composition having hydrophobic copolymer with a glass adhcsion moiety -In 'ents Wt Polymer of Example 6 20 Glycerol 4 Water 76 Fiberglass sizing composition having a surfactant as a hydrophobic additive -ie Wt Polymer of Example 9 20 Triethanolamine 5 C~Z_,5 alcohol with 7 moles ofethoxylation (su~rf'actant) 10 i 5 Water 65 Fiberglass sizing composition having hydrophobic copolymer with a glass adhesion moiety and a corrosion inhibitor 2o In ' Wt Polymer of Example 6 20 Glycerol 4 Tin oxalate (corrosion inhibitor) 1 Water 76 L1r I S
Fiberglass sizing composition having hydrophobic copolynner -In ' is ° o Polymer of Example 7 20 3o Triethanol amine 5 Tartaric acid (to lower pH) 10 Water 65 EXAMP
Fiberglass sizing composition having acrylic acid homopolymer and hydrophobic copolymer as an additive -lQg~,edients Wt %°~a s Polymer of Example 7 2 Starch 5 Homopolymer of acrylic acid (available as Alcosperse~ 602A
from Alco Chemical, Chattanooga, Tennessee, US) 20 Water 73 Fiberglass sizing composition having acrylic acid homopolymer and hydrophobic emulsion copolymer as an additive -jn~redient t Ethylene vinyl acetate copolymer (available as Resyn~ 1971 from Vinamul Polymers, Enoree, South Carolina, US) 2 Glycerol 5 Homopolymer of acrylic acid (available as Alcosperse~ 602A
from Alto Chemical, Chattanoo~s, Tennessee, US) 20 2o Water 73 EXAMPLE :~~
Fiberglass sizing composition having acrylic acid homopolymer and hydrophobic emulsion copolymer as an additive -IIl r~ Wt °/a Organosilicone (available as Dow Coming~ 2-9034 from Dow Corning, Midland, Michigan, US) 2 Glycerol 5 Homopolymer of acrylic acid (available as Aquatreat~ 900A
from Alco Chemical, Cha#anooga, Tennessee, US) 20 Water 73 Fiberglass sizing composition having acrylic acid homopolymet and hydrophobic copolymer as an additive -TI1 1811t o 0 s Sodium methyl sileonate (available as Dow Corning 772 from Dow Corning, Midland, Michigan, US) 1 Triethanol amine 8 Homopolymer of acrylic acid (available as Alcosperse~ 602A
from Alco Chemical, Chattanooga, Tennessee, US) 20 t 0 Water 71 ~~Q
Fiberglass sizing composition having acrylic acid homopolymer and hydrophobic emulsion copolymer as an additive 15 1n Wt Styrene-acrylate emulsion (available as ltAp 810NA from The Dow Chemical Company, Midlsnd, Michigan, US) 5 Glycerol 8 Homopolymcr of acrylic acid (available as Aquatreat~ 900A
2o from Alco Chemical, Chattanooga, Tennessee, US) 18 Water 68 Fiberglass sizing composition having an anionic surfactant as a hydrophobic additive -2s In lent Polymer of Example 9 20 Triethanol amine 5 C,ms alcohol with 3 moles of ethoxylation sulfate (surfactant) 10 water 6s Fiberglass sizing coraposition having hydrophobic emulsion copolymer -insredient t %
Styrene-acrylate emulsion (available as Joncryl~ 90 from Johnson s Polymer, Stwtevant, Wisconsin, US) 20 Glycerol 8 Watcr 72 io Fiberglass sizing composition having acrylic acid homopolymer and, hydrophobic emulsion copolymer as an additive -ei t Methacrylic acid-ethylacrylate copolymer (available as Alcogum~ L15 from Alto Chemical, Chattanooga, Tennessee, US) 5 a 5 Glycerol 8 Homopolymer of acrylic acid (available as Aquatreat~ 900A
flbm Alto Chemical, Chattanooga, Tennessee, US) 18 Water 68 zo E3~AMPL,~24 Molecular modeling was used to calculate solubility parameters of a copolynner of acrylic acid and co-styrene (7.5 mole %), The solubility parameter provides! in Table 2 below gives an estimate of the water solubility of the copolymer, 2s ~'ASr~z Material pH Mole% Na acrylateSolubility parameter Joules/cc ~n Acrylic acid - 3 5 27.63 co-styrene ?.5 mole Acrylic acid - 4 33 43.13 co-styrene (7.3 mole Pol lie acid 4 0 46.2 Pol st rene ~ ~ - 20, ~

Water ~ - 47.96 The data indicates that golyacrylic acid is very water soluble since its solubility parameter is close to that of water. The data indicate that the styrene copolymer with acrylic acid _22.

is less water soluble. In fact, at ply 3 it is extremely hydrophobic since its solubility parameter is close to that of polystyrene which is insoluble in water. Therefore, fiberglass sized using an acrylic acid-styrene copolymer will be very water repellent. .
s E7~AMPLE 25 Molecular modeling was used to calculate solubility parameters of various copolymers of acrylic acid at pH 3. The copolymers modeled and their associated solubility parameters arc provided below in Table 3 -TA~LE 3 Copolymer Mole % Solubility parameter comonomer Jouleslcc tn Water - 48 Ac lie acid - lie acid 30 35 Ac lie acid -meth 1 10 30 laic Ac lie acid - st ne 7.5 28 Pol st a 20 to The data indicates that acrylic acid copolymers with styrene, methyl methaerylate and methacrylic acid arc very hydrophobic.
i5 Hydrophobic proptrties of acrylic acid - methyl methaerylate copolymer compared to homopolymer of acrylic acid -Solution A Solution B
ams ams Polymer of 1~aCample 20 -b (Copolymer of acrylic acid and methyl methaa late Homo 1 er of ac llc - 20 acid Sodium h ho 'te - 3 Triethanol amine 7 7 Water 73 73 zo The solutions detailed in Table 4 above were prepared. Solutions A and 13 were sprayed on to fiber glass mats. The mats were curod in an oven at 200°C for 2 minutes. These mats were then put in to humidity chamber at 40°C and 90°Yo humidity for 1 hour. The moisture uptako aver an hour was measured as the percent weight gain of the mat, provided in Table 5 below, Solution Pol mer % moisture a a A Polymer of Example 6 (Copolymer40 of lic acid and meth 1 mcthac late H Homopolymer of acrylic acid60 catalyzed with sodium h o hoe bite s The data indicate that hydrophobic copolymers of this invention absorb far less moisture than a homopolymer of acrylic acid catalyzed using sodium hypophosphite. This can be attributed to the fact that the inorganic material gent from sodiwn hypophosphite will absorb moisture and have a negative impact on the fiber glass mat properties.
~o FX.~LE 27 Fiberglass sizing composition having a surfactant as a release agent Polymer of Example 9 20 t 5 Triethanolamine S
Dioctylester of sodium sulfosuccinic acid {available as Aerosolm OT 100 from Cytec Industries, West Pat~son, NJ) 1 Water 74 zo EXAMPLE 28 Fiberglass sizing composition having a silicone as a release agent -In ' t ~~° o, Polymer of Example 9 20 Triethanolamine 5 25 Silicone emulsion of a 350 cs dimethyl polysiloxa~ fluid (available as SWS-231 from Wacker Chemical Corp., Adrian,1VQ) 1 Water 74 ~xAMPLE z9 Fiberglass sizing corinposition having an addiGvc to minimize glass leaching -In ~t Polymer of Example 9 24 TriethanoIamine 5 ZnC03 2 Water 73 1;XAMPLE 30 o Fiberglass sizing composition having an acid for pH control -Wt~/u Polymer of Example 9 20 Tricthanolamine 5 Boric acid 2 i5 Water 73 Fiberglass sizing composition having an acid corrosion inhibitor -2o Polymer of Example 8 20 Triethsnolamine 5 Borate ester corrosion inhibitor (available as Monacor BE
from Uniqema, Peterson, NJ) Z
Water 74 2s ~XAM~E 32 Fiberglass sizing composition having an acid corrosion inlubitor/prevention of glass leaching agent -3o Polymer of Example 7 20 Triethanolarnine 5 Sodium Silicate (SiOs/NazO) (available as IVY Sodiwn Silicate from the PQ Corporation, Borwyn, PA) I
Water 74

Claims (12)

1. A copolymer useful in glass adhesion comprising:
30 to 99.99 percent by weight of at least one acid functional monomer unit;
0.01 to 30 percent by weight of at least one comonomer unit selected from the group consisting of substituted amide monomers, silanol monomers, or amine oxide monomers, and mixtures thereof; and 0 to 50 percent by weight of at least one ethylenically unsaturated monomer unit.
2. The copolymer of claim 1 wherein the at least one acid functional monomer unit further comprises acrylic acid, methacrylic acid, maleic acid, 2-acrylamidomethyl propane sulfonic acid, styrene sulfonic acid, (meth)allyl sulfonic acid, (meth)allyloxybenzene sulfonic acid or mixtures thereof.
3. A fiberglass sizing composition comprising the copolymer of claims 1-2 and a crosslinker.
4. A silicon based substrate having directly deposited thereon a copolymer binder composition comprising:
30 to 99.99 percent by weight of at least one acid functional monomer unit;
0.01 to 30 percent by weight of at least one monomer unit selected from the group consisting of substituted amide monomers, silanol monomers, amine oxide monomers and mixtures thereof; and 0 to 50 percent by weight of at least one ethylenically unsaturated monomer unit.
5. The silicon based substrate of claim 6 further comprising fiberglass for use as reinforcement in plastics, gypsum, concrete, wood and/or cloth.
6. Fiberglass sizing composition comprising:
a copolymer having at least one acid group derived from at least one acid monomer having the general formula (I) - wherein R1 to R4 are independently hydrogen, methyl, carboxylic acid group or CH2COOH, alkyl or aryl sulfonic acid and wherein the acid groups can be neutralized;
and a hydrophobic comonomer having the general formula (II) - wherein R5 is hydrogen, C1-C6 alkyl or C1-C6 hydroxyalkyl, and X is either mono or polycyclic aromatic group or a substituted aromatic group (with R5 being hydrogen or methyl when X is aromatic) or X is of the general formula (III) - wherein R6 is (independently of R5) hydrogen, C1-C24 alkyl, C1-C24 alkoxy, C1-aminoalkyl, C1-C24 alkyl sulfonate, -O alkyl, -OCO alkyl, -NCO alkyl, carbocyclic, heterocyclic, thio alkyl, or C1-C24 hydroxyalkyl; Y is O or N; and t is either 0 or 1; and a crosslinker.
7. The fiberglass sizing composition of claim 8 further comprising one or more additives selected from the group consisting of anti-oxidants/reducing agents, emulsifiers, dyes, pigments, oils, fillers, colorants, curing agents, anti-migration aids, biocides, plasticizers, waxes, anti-foaming agents, coupling agents, thermal stabilizers, flame retardants, enzymes, wetting agents, lubricants and combinations thereof.
8. The fiberglass sizing composition of claims 8-9 further comprising one or more additives selected from the group consisting of corrosion inhibitors, hydrophobic additives, additives for reducing leaching of glass, release agents, acids for lowering pH and combinations thereof.
9. An aqueous process for producing hydrophobic solution copolymers comprising the steps of:
adding an acid functional monomer and a hydrophobic monomer to an aqueous solution;
adding an initiating agent to effect polymerization of the monomers; and polymerizing the monomers thereby forming hydrophobic solution copolymers in the aqueous solution.
10. A fiberglass sizing composition comprising:
a polymer having at least one acid group derived from at least one carboxylic acid monomer;
one or more crosslinkers; and one or more additives.
11. The one or more additives of claim 10 wherein the one or more additives further comprises corrosion inhibitors, hydrophobic additives, additives for reducing leaching of glass, release agents, acids for lowering pH or combinations thereof.
12. The one or more additives of claims 10-11 wherein the one or more additives is at least one or more hydrophobic additives.
CA 2470780 2003-06-12 2004-06-11 Glass adhesion promoter Abandoned CA2470780A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US47797903P 2003-06-12 2003-06-12
US60/477,979 2003-06-12
US10/860,305 2004-06-03

Publications (1)

Publication Number Publication Date
CA2470780A1 true CA2470780A1 (en) 2004-12-12

Family

ID=33563768

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2470780 Abandoned CA2470780A1 (en) 2003-06-12 2004-06-11 Glass adhesion promoter

Country Status (1)

Country Link
CA (1) CA2470780A1 (en)

Similar Documents

Publication Publication Date Title
AU2004202590B2 (en) Glass adhesion promoter
JP3768539B2 (en) Formaldehyde-free coating for moldings
JP3850446B2 (en) Formaldehyde-free aqueous binder
TWI412555B (en) Curable aqueous compositions
JP3215233B2 (en) Curable aqueous composition and curing method thereof
US20060121810A1 (en) Nonwoven mats
JP4386571B2 (en) Aqueous composition
US8604122B2 (en) Curable aqueous compositions
KR100691730B1 (en) Curable Composition And Use Thereof
KR20150005991A (en) Curable aqueous composition
EP1486547A2 (en) Fiberglass nonwoven binder
US20080175997A1 (en) Emulsion polymer binder with azirdine crosslinking agent for glass fiber webs
JP2008515761A (en) Water repellent glass fiber binder containing a fluorinated polymer
JP5997827B1 (en) Aqueous binder for heat insulating sound absorbing material for inorganic fiber and heat insulating sound absorbing material for inorganic fiber
US20060111002A1 (en) Fiberglass nonwoven binder
CA2470780A1 (en) Glass adhesion promoter
JP2007009211A (en) Curable composition
US9963385B1 (en) Aqueous binder for inorganic-fiber heat-insulating sound-absorbing member, and inorganic-fiber heat-insulating sound-absorbing member
US9963384B1 (en) Aqueous binder for inorganic-fiber heat-insulating sound-absorbing member, and inorganic-fiber heat-insulating sound-absorbing member

Legal Events

Date Code Title Description
FZDE Dead