CA2460282C - Method and apparatus for joining ends of wires and the like - Google Patents
Method and apparatus for joining ends of wires and the like Download PDFInfo
- Publication number
- CA2460282C CA2460282C CA2460282A CA2460282A CA2460282C CA 2460282 C CA2460282 C CA 2460282C CA 2460282 A CA2460282 A CA 2460282A CA 2460282 A CA2460282 A CA 2460282A CA 2460282 C CA2460282 C CA 2460282C
- Authority
- CA
- Canada
- Prior art keywords
- conductor strands
- connecting tube
- cable
- cables
- explosive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000004020 conductor Substances 0.000 claims abstract description 62
- 239000002360 explosive Substances 0.000 claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 16
- 239000010959 steel Substances 0.000 claims description 16
- 238000005474 detonation Methods 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000005056 compaction Methods 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 241001417935 Platycephalidae Species 0.000 claims 9
- 230000006378 damage Effects 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 238000007429 general method Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/08—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected by an explosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/58—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
- H01R4/62—Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R43/00—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
- H01R43/04—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
- H01R43/042—Hand tools for crimping
- H01R43/0422—Hand tools for crimping operated by an explosive force
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
A method of joining the interfacing ends of cables, one to another, wherein each comprises a plurality of conductor strands, comprising (i) providing each of the ends with an enlarged terminal portion of greater diameter than the cable adjacent the end, (ii) inserting the ends into a connecting tube having an outer layer of an explosive charge, and (iii) detonating the explosive layer so as to compress the connecting tube around the conductor strands. The method offers a cheaper, faster and simpler method of joining a bundle of wires and the like than prior art methods.
Description
METHOD AND APPARATUS FOR JOINING
ENDS OF WIRES AND THE LIKE
FIELD OF THE INVENTION
The present invention relates to a method for joining wires, rods, cables, high tension lines and the like and for attaching an end fastener thereto, by means of an explosive charge;
to said fastener for use in said method, and to a joined wire fastener combination when made by said process.
BACKGROUND OF THE INVENTION
In connection with heavy gauge wires, which may be disposed in positions which are difficult to reach, commensurately high powered tools are required to make pressure connections between said wires. In view of the weight and bulk of the tools it may be inconvenient or impossible to carry such tools to the sites at which the joining is to be made.
It has previously been proposed to connect ends of wires and the like by inserting the ends into a corresponding bore of a connecting member provided with an external layer of explosive, which during detonation, compresses the connecting member around the ends.
The layer of explosive used had, however, an even cross-section along the whole length thereof in order to produce an even radial compression of the connecting member.
In connection with high tension lines, supporting cables and the like, which are subjected to heavy stresses, it is of great importance to obtain a permanent, tight clamping effect of the connecting member to ensure that no relative sliding movement may occur between the member and the ends connected thereby.
Thus, such connectors, herein termed implosive connectors, have been used in high energy metalworking to replace conventional hydraulic compression fittings for high voltage transmission lines. A small charge, engineered for each connector, supplies the energy to complete the installation in 1/10,000 of a second, replacing the work of a 60 to 100 ton press.
Such implosive connectors are completely metallic fitting and result in a void free, uniformly smooth and straight connector.
In more detail, generally, implosive connectors comprise a conductor splice consisting of an outer aluminum sleeve equipped with a pre-mounted implosive charge, and filler, preferably, optionally, an inner steel sleeve having an aluminum tube on the outside.
However, there remains a need for a method of joining ends of wires and the like which is cheaper, quicker and easier to install while providing at least an acceptable efficacious permanent join of the wires.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of joining ends of wires and the like which is cheaper, faster and easier to effect than prior art methods and apparatus.
It is a further object to provide a connector for joining ends of wires and the like of use in the aforesaid method.
It is a further object of the invention to provide a joined cable assembly comprising a I S connecting tube and a joined cable when produced by a method as hereinabove defined.
Accordingly, the invention provides in one aspect, a method of joining the interfacing ends of a plurality of wire cables, each cable comprising a first plurality of conductor strands, said method comprising (a) providing each of said ends with an enlarged terminal portion of greater diameter than said cable adjacent said end, (b) inserting said ends into a connecting tube;
(c) providing said tube with an outer layer of an explosive charge, and (d) detonating the explosive layer so as to compress the connecting tube around the conductor strands.
ZS Preferably, the method as hereinabove defined comprises providing each of the ends with a terminal enlarging member longitudinally of the cable through the terminal portion to effect the enlargement.
The enlarging member is most preferably formed of a metal or alloy thereof, e.g. a steel rod insert or an inner sleeve, and, most preferably, having a head such as to constitute a stud, cap or the like.
The terminal portions so abut each other within the connector as to provide a resultant effective joint after the detonation. It can be appreciated that use of a pair of aforesaid flat-headed inserts or caps can enhance the stability and conductivity of such a resultant joint.
ENDS OF WIRES AND THE LIKE
FIELD OF THE INVENTION
The present invention relates to a method for joining wires, rods, cables, high tension lines and the like and for attaching an end fastener thereto, by means of an explosive charge;
to said fastener for use in said method, and to a joined wire fastener combination when made by said process.
BACKGROUND OF THE INVENTION
In connection with heavy gauge wires, which may be disposed in positions which are difficult to reach, commensurately high powered tools are required to make pressure connections between said wires. In view of the weight and bulk of the tools it may be inconvenient or impossible to carry such tools to the sites at which the joining is to be made.
It has previously been proposed to connect ends of wires and the like by inserting the ends into a corresponding bore of a connecting member provided with an external layer of explosive, which during detonation, compresses the connecting member around the ends.
The layer of explosive used had, however, an even cross-section along the whole length thereof in order to produce an even radial compression of the connecting member.
In connection with high tension lines, supporting cables and the like, which are subjected to heavy stresses, it is of great importance to obtain a permanent, tight clamping effect of the connecting member to ensure that no relative sliding movement may occur between the member and the ends connected thereby.
Thus, such connectors, herein termed implosive connectors, have been used in high energy metalworking to replace conventional hydraulic compression fittings for high voltage transmission lines. A small charge, engineered for each connector, supplies the energy to complete the installation in 1/10,000 of a second, replacing the work of a 60 to 100 ton press.
Such implosive connectors are completely metallic fitting and result in a void free, uniformly smooth and straight connector.
In more detail, generally, implosive connectors comprise a conductor splice consisting of an outer aluminum sleeve equipped with a pre-mounted implosive charge, and filler, preferably, optionally, an inner steel sleeve having an aluminum tube on the outside.
However, there remains a need for a method of joining ends of wires and the like which is cheaper, quicker and easier to install while providing at least an acceptable efficacious permanent join of the wires.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of joining ends of wires and the like which is cheaper, faster and easier to effect than prior art methods and apparatus.
It is a further object to provide a connector for joining ends of wires and the like of use in the aforesaid method.
It is a further object of the invention to provide a joined cable assembly comprising a I S connecting tube and a joined cable when produced by a method as hereinabove defined.
Accordingly, the invention provides in one aspect, a method of joining the interfacing ends of a plurality of wire cables, each cable comprising a first plurality of conductor strands, said method comprising (a) providing each of said ends with an enlarged terminal portion of greater diameter than said cable adjacent said end, (b) inserting said ends into a connecting tube;
(c) providing said tube with an outer layer of an explosive charge, and (d) detonating the explosive layer so as to compress the connecting tube around the conductor strands.
ZS Preferably, the method as hereinabove defined comprises providing each of the ends with a terminal enlarging member longitudinally of the cable through the terminal portion to effect the enlargement.
The enlarging member is most preferably formed of a metal or alloy thereof, e.g. a steel rod insert or an inner sleeve, and, most preferably, having a head such as to constitute a stud, cap or the like.
The terminal portions so abut each other within the connector as to provide a resultant effective joint after the detonation. It can be appreciated that use of a pair of aforesaid flat-headed inserts or caps can enhance the stability and conductivity of such a resultant joint.
2 Accordingly, the invention provides in preferred embodiments a method as hereinabove defined wherein the terminal enlarging member is a metal inner sleeve, which inner sleeve embraces at least one of the conductor strands at an inner location within the plurality of the conductor strands.
Preferably, the metal sleeve embraces a second plurality of the conductor strands at an inner location within the first plurality of said conductor strands, wherein the second plurality is a portion of the first plurality of conductor strands.
As hereinabove defined, preferably, the metal inner sleeve has a flat head which abuts another flat head, one to another in interface relationship within the connecting tube prior and subsequent to the detonation.
The second plurality of conductor strands at an inner location within said first plurality of conductor strands are, preferably, formed of steel, while the remainder of the first plurality are formed of aluminum or alloy thereof.
Thus, the inner sleeve or cap can embrace a single, but, preferably, a major portion of, 1 S and more preferably, all of the second plurality of the conductor strands.
Clearly, the sleeve or cap could also further embrace some of the remaining conductor strands which surround the second plurality of strands, if desired. Thus, some or all of the outer strands are splayed upon insertion of the sleeve or cap.
The terminal enlarging member, constituted as a rod or sleeve preferably has a flat head to prevent the member being pushed too far into the bundle of conductor strands to result in poor abutment of the interfacing bundle of strands.
The choice between using a flat headed pin, nail or the like, in preference to a cap, or vice versa, generally depends on the size of the diameter and strength of the conductor bundle. If a relatively small diameter cable, say, for example, of less than 2.5 cm diameter the flat headed pin is preferred. For a larger diameter and stronger cable bundle, the embracing sleeve or cap is used to account for the larger surface area between the sleeve's cylindrical outer surface and the surface of the inner core strands, which are generally formed of steel, and to account for the strength of the whole conductor to force out and splay the outer strands and prevent the inner wire strands from slipping away.
It can be readily seen that by increasing the terminal extremity diameter of the cable relative to the cable adjacent the terminal portions, according to the invention, by means of the inserts, results in the cables having a larger diameter than the rest of the conductor inside the sleeve of the connector. Thus, the conductor is so anchored within the sleeve that it cannot disadvantageously slip or be displaced.
Preferably, the metal sleeve embraces a second plurality of the conductor strands at an inner location within the first plurality of said conductor strands, wherein the second plurality is a portion of the first plurality of conductor strands.
As hereinabove defined, preferably, the metal inner sleeve has a flat head which abuts another flat head, one to another in interface relationship within the connecting tube prior and subsequent to the detonation.
The second plurality of conductor strands at an inner location within said first plurality of conductor strands are, preferably, formed of steel, while the remainder of the first plurality are formed of aluminum or alloy thereof.
Thus, the inner sleeve or cap can embrace a single, but, preferably, a major portion of, 1 S and more preferably, all of the second plurality of the conductor strands.
Clearly, the sleeve or cap could also further embrace some of the remaining conductor strands which surround the second plurality of strands, if desired. Thus, some or all of the outer strands are splayed upon insertion of the sleeve or cap.
The terminal enlarging member, constituted as a rod or sleeve preferably has a flat head to prevent the member being pushed too far into the bundle of conductor strands to result in poor abutment of the interfacing bundle of strands.
The choice between using a flat headed pin, nail or the like, in preference to a cap, or vice versa, generally depends on the size of the diameter and strength of the conductor bundle. If a relatively small diameter cable, say, for example, of less than 2.5 cm diameter the flat headed pin is preferred. For a larger diameter and stronger cable bundle, the embracing sleeve or cap is used to account for the larger surface area between the sleeve's cylindrical outer surface and the surface of the inner core strands, which are generally formed of steel, and to account for the strength of the whole conductor to force out and splay the outer strands and prevent the inner wire strands from slipping away.
It can be readily seen that by increasing the terminal extremity diameter of the cable relative to the cable adjacent the terminal portions, according to the invention, by means of the inserts, results in the cables having a larger diameter than the rest of the conductor inside the sleeve of the connector. Thus, the conductor is so anchored within the sleeve that it cannot disadvantageously slip or be displaced.
3 In a most preferred method, the invention provides use of a connector wherein the explosive layer comprises a first portion of explosive and a second portion of explosive, separated therefrom by an intervening interportion distance, wherein each of the first and second portions is of greater thickness than at interportion distance, and wherein the first and second portions are disposed on the outside surface of the connecting tube such that the interportion surrounds each of the enlarged terminal portions of the ends of the cables; and the first and second portions surround the respective cables adjacent the ends, prior to detonation, as to effect a greater explosive compaction force onto the cables adjacent the ends relative to the forces exerted on the terminal portions.
Thus, in a further feature, the invention provides a connector as hereinabove defined of use in the methods as hereinabove defined.
In a still further aspect, the invention provides a joined cable assembly comprising a connecting tube and cable resulting from a method as hereinabove defined.
BRIEF DESCRIPTION OF THE DRAWINGS
In order that the invention may be better understood, preferred embodiments will now be described by way of example only with reference to the accompanying drawings wherein Figs. 1 A - 1 H represent diagrammatic sketches of the components and preparatory steps practised in a general method of explosively joining wire ends with a connector, according to the prior art;
Figs. 2A-2E represent diagrammatic sketches of the components and preparatory steps practised in a general method of explosively joining wire ends with a connector, according to the present invention;
Fig. 3 is a diagrammatic sketch of a cap within a plurality of strands of a cable, according to the invention; and Fig. 4 is a diagrammatic longitudinal cross-section of a resultant joint according to a method and components according to the invention; and wherein the same numerals denote like parts.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
With reference to Figs. lA and 1 B, a conductor splice consists of (a) an outer aluminum cylindrical sleeve (10) having a pre-mounted implosive charge layer (12) coifed
Thus, in a further feature, the invention provides a connector as hereinabove defined of use in the methods as hereinabove defined.
In a still further aspect, the invention provides a joined cable assembly comprising a connecting tube and cable resulting from a method as hereinabove defined.
BRIEF DESCRIPTION OF THE DRAWINGS
In order that the invention may be better understood, preferred embodiments will now be described by way of example only with reference to the accompanying drawings wherein Figs. 1 A - 1 H represent diagrammatic sketches of the components and preparatory steps practised in a general method of explosively joining wire ends with a connector, according to the prior art;
Figs. 2A-2E represent diagrammatic sketches of the components and preparatory steps practised in a general method of explosively joining wire ends with a connector, according to the present invention;
Fig. 3 is a diagrammatic sketch of a cap within a plurality of strands of a cable, according to the invention; and Fig. 4 is a diagrammatic longitudinal cross-section of a resultant joint according to a method and components according to the invention; and wherein the same numerals denote like parts.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
With reference to Figs. lA and 1 B, a conductor splice consists of (a) an outer aluminum cylindrical sleeve (10) having a pre-mounted implosive charge layer (12) coifed
4 around the outer surface ( 16) of connector ( 10). Layer ( 12) is of uniform thickness essentially the length of surface ( 16) except at a thicker central portion ( I 8) (Fig. I
A); and (b) an inner steel sleeve (20) having an aluminum filter tube (not shown) on the outside (Fig. 1B).
Operational guidance as given to operators in the field follows with reference to Figs.
IC- IH.
1. Cut conductors (22) as cleanly as possible and minimize burring or bending aluminum strands (24). Cut steel strands (26) at a distance of half the length of inner steel sleeve (20) less 0.1 in. (2 - 3mm). Rewind any loose steel strands and bind securely with wire. (Fig. I C).
2. Mark each end of conductors (22) at a distance of half the length of outer aluminum sleeve (10) less 0.1 (2 - 3 mm). (Fig. ID).
3. Slide the combined charge and aluminum sleeve (10) onto one of conductor (22) ends. (Fig. IE).
4. Insert steel sleeve (20) into the core of conductor (22) and remove the binding wire. Repeat with the other conductor (22) end and push both conductors (22) until steel strands (26) meet inner steel sleeve (20). (Fig. 1F).
A); and (b) an inner steel sleeve (20) having an aluminum filter tube (not shown) on the outside (Fig. 1B).
Operational guidance as given to operators in the field follows with reference to Figs.
IC- IH.
1. Cut conductors (22) as cleanly as possible and minimize burring or bending aluminum strands (24). Cut steel strands (26) at a distance of half the length of inner steel sleeve (20) less 0.1 in. (2 - 3mm). Rewind any loose steel strands and bind securely with wire. (Fig. I C).
2. Mark each end of conductors (22) at a distance of half the length of outer aluminum sleeve (10) less 0.1 (2 - 3 mm). (Fig. ID).
3. Slide the combined charge and aluminum sleeve (10) onto one of conductor (22) ends. (Fig. IE).
4. Insert steel sleeve (20) into the core of conductor (22) and remove the binding wire. Repeat with the other conductor (22) end and push both conductors (22) until steel strands (26) meet inner steel sleeve (20). (Fig. 1F).
5. Slide the combined charge and aluminum sleeve (10) until each end of the sleeve corresponds with the marks previously made. (Fig. 1G).
6. Mount the assembly and tape the detonator securely at the indicated position on the implosive sleeve (Fig. IH). Before initiation, ensure that outside aluminum sleeve ( 10) is correctly positioned with conductors (22). (Fig. 1 H).
7. Effect initiation and detonation.
With reference to Figs. 2A - 2E, the conductor splice of use in the present invention consists of an outer aluminum sleeve (100) shown in Fig. 2A equipped with a pre-mounted implosive charge (102), wherein the amount of implosive charge is approx. 20 -25% less than the aforesaid prior art embodiment of Fig. lA and a pair of studs (104) steel insert (Fig. 2B).
In instructional format, the operational steps are as follows.
Cut conductors (22) as cleanly as possible. Push steel stud ( 104) through the center of conductor (22) at the end thereof until the aluminum head of stud (104) rests against the conductor (Figs. 2C and 2D) and provides an enlarged terminal portion (106).
Insert both conductors (22) inside the implosive aluminum sleeve (100), one on each side, until they abut at the center of sleeve ( 100) (Fig. 2E).
Main sleeve ( 100) has a layer of explosive cord ( 102) of essentially uniform thickness along the length of sleeve ( I 00), except at a first portion ( 108) and a second portion ( 110) displaced from the middle of sleeve (100) as to provide an intervening interportion distance (112) which interportion layer of explosive surrounds each of the enlarged terminal portions (106). Each of first and second explosive layers at portions (108) and ( 110) has a greater thickness than at said interportion distance, and wherein said first and second portions are disposed on the outside surface of said connecting tube such that said interportion surrounds each of said enlarged terminal portions of said ends of said cables and said first and second portion surround said cables adjacent said ends, prior to said detonation, as to effect a greater explosive compaction force onto said cables adjacent said ends relative to the forces exerted on said terminal portions.
The explosive is initiated as an implosive charge as for prior art embodiments.
Fig. 3 shows a cap 150 having a head 152 partly inserted into cable 22 to surround an inner of streel strands 154 and surrounded by outer aluminum strands 156. The arrow indicates the direction that cap 150 is to be moved to be fully inserted into cable 22 Fig. 4 is a diagrammatic longitudinal cross-section of a resultant join according to a method and components according to the invention.
It can, thus, be readily seen that most advantageously only a single connector, sleeve or the like need be used to provide a most el~cacious joint, in a faster and cheaper manner than the prior art methods, while providing a non-slip product.
Although this disclosure has described and illustrated certain preferred embodiments of the invention, it is to be understood that the invention is not restricted to those particular embodiments. Rather, the invention includes all embodiments which are functional or mechanical equivalents of the specific embodiments and features that have been described and illustrated.
With reference to Figs. 2A - 2E, the conductor splice of use in the present invention consists of an outer aluminum sleeve (100) shown in Fig. 2A equipped with a pre-mounted implosive charge (102), wherein the amount of implosive charge is approx. 20 -25% less than the aforesaid prior art embodiment of Fig. lA and a pair of studs (104) steel insert (Fig. 2B).
In instructional format, the operational steps are as follows.
Cut conductors (22) as cleanly as possible. Push steel stud ( 104) through the center of conductor (22) at the end thereof until the aluminum head of stud (104) rests against the conductor (Figs. 2C and 2D) and provides an enlarged terminal portion (106).
Insert both conductors (22) inside the implosive aluminum sleeve (100), one on each side, until they abut at the center of sleeve ( 100) (Fig. 2E).
Main sleeve ( 100) has a layer of explosive cord ( 102) of essentially uniform thickness along the length of sleeve ( I 00), except at a first portion ( 108) and a second portion ( 110) displaced from the middle of sleeve (100) as to provide an intervening interportion distance (112) which interportion layer of explosive surrounds each of the enlarged terminal portions (106). Each of first and second explosive layers at portions (108) and ( 110) has a greater thickness than at said interportion distance, and wherein said first and second portions are disposed on the outside surface of said connecting tube such that said interportion surrounds each of said enlarged terminal portions of said ends of said cables and said first and second portion surround said cables adjacent said ends, prior to said detonation, as to effect a greater explosive compaction force onto said cables adjacent said ends relative to the forces exerted on said terminal portions.
The explosive is initiated as an implosive charge as for prior art embodiments.
Fig. 3 shows a cap 150 having a head 152 partly inserted into cable 22 to surround an inner of streel strands 154 and surrounded by outer aluminum strands 156. The arrow indicates the direction that cap 150 is to be moved to be fully inserted into cable 22 Fig. 4 is a diagrammatic longitudinal cross-section of a resultant join according to a method and components according to the invention.
It can, thus, be readily seen that most advantageously only a single connector, sleeve or the like need be used to provide a most el~cacious joint, in a faster and cheaper manner than the prior art methods, while providing a non-slip product.
Although this disclosure has described and illustrated certain preferred embodiments of the invention, it is to be understood that the invention is not restricted to those particular embodiments. Rather, the invention includes all embodiments which are functional or mechanical equivalents of the specific embodiments and features that have been described and illustrated.
Claims (36)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method of joining the interfacing ends of cables, one to another, each cable comprising a first plurality of conductor strands, said method comprising (a) providing each of said ends with an enlarged terminal portion of greater diameter than said cable adjacent said end; (b) inserting said ends into a connecting tube; (c) providing said tube with an outer layer of an explosive charge, and (d) detonating the explosive layer so as to compress the connecting tube around the conductor strands, wherein said explosive layer comprises a first portion of explosive and a second portion of explosive separated therefrom by an intervening interportion distance, wherein each of said first and second portions has a greater thickness than at said interportion distance, and wherein said first and second portions are disposed on the outside surface of said connecting tube such that said interportion surrounds each of said enlarged terminal portions of said ends of said cables and said first and second portion surround said cables adjacent said ends, prior to said detonation, as to effect a greater explosive compaction force onto said cables adjacent said ends relative to the forces exerted on said terminal portions.
2. A method of joining the interfacing ends of cables, one to another, each cable comprising a first plurality of conductor strands, said method comprising (a) providing each of said ends with a terminal enlarging member longitudinally of said cable to produce an enlarged terminal portion of greater diameter than said cable adjacent said end; (b) inserting said ends into a connecting tube; (c) providing said tube with an outer layer of an explosive charge, and (d) detonating the explosive layer so as to compress the connecting tube around the conductor strands.
3. The method as defined in claim 2 wherein said enlarging member is a metal stud.
4. A method as defined in claim 3 wherein said metal stud has a flat head.
5. The method as defined in claim 4 wherein said flat heads abut one to another within said connecting tube prior to said detonation.
6. The method as defined in claim 2 wherein said terminal enlarging member is a metal inner sleeve, which inner sleeve embraces at least one of said conductor strands at an inner location within said plurality of said conductor strands.
7. The method as defined in claim 6 wherein said metal sleeve embraces a second plurality of said conductor strands at an inner location within said first plurality of said conductor strands, wherein said second plurality is a portion of said first plurality of conductor strands.
8. The method as defined in claim 6 wherein said metal sleeve has a flat head.
9. The method as defined in claim 7 wherein said metal sleeve has a flat head.
10. The method as defined in claim 8 wherein said flat heads abut one to another within said connecting tube prior to said detonation.
11. The method as defined in claim 9 wherein said flat heads abut one to another within said connecting tube prior to said detonation.
12. The method as defined in claim 7 wherein said second plurality of conductor strands at an inner location within said first plurality of conductor strands are formed of steel, while the remainder of said first plurality are formed of aluminum or alloy thereof.
13. A joined cable assembly joining the interfacing ends of cables, one to another, the joint comprising: a pair of cables, each cable having an end and comprising a first plurality of conductor strands, a terminal enlarging member provided longitudinally of each cable producing an enlarged terminal portion of greater diameter than said cable adjacent said end, and a connecting tube compressed at least around the conductor strands at the enlarged terminal portions of each cable, thereby joining the cables, wherein said enlarging member is a metal stud.
14. The assembly as defined in claim 13, wherein said metal stud has a flat head.
15. The assembly as defined in claim 14, wherein said flat heads abut one to another within said connecting tube.
16. The assembly as defined in claim 13, wherein the connecting tube is of aluminum material constructed and arranged so that the compression thereof can be caused by an explosive force without destruction of the tube.
17. A joined cable assembly joining the interfacing ends of cables, one to another, the joint comprising: a pair of cables, each cable having an end and comprising a first plurality of conductor strands, a terminal enlarging member provided longitudinally of each cable producing an enlarged terminal portion of greater diameter than said cable adjacent said end, and a connecting tube compressed at least around the conductor strands at the enlarged terminal portions of each cable, thereby joining the cables.
18. The assembly as defined in claim 17, wherein said metal sleeve embraces a second plurality of said conductor strands at an inner location within said first plurality of said conductor strands, wherein said second plurality is a portion of said first plurality of conductor strands.
19. The assembly as defined in claim 18, wherein said metal sleeve has a flat head.
20. The assembly as defined in claim 19, wherein said flat heads generally abut one to another within said connecting tube.
21. The assembly as defined in claim 18, wherein said second plurality of conductor strands at an inner location within said first plurality of conductor strands are formed of steel, while the remainder of said first plurality are formed of aluminum or alloy thereof.
22. The assembly as defined in claim 17, wherein said metal sleeve has a flat head.
23. The assembly as defined in claim 22, wherein said flat heads generally abut one to another within said connecting tube.
24. The assembly as defined in claim 17, wherein the connecting tube is of aluminum material constructed and arranged so that the compression thereof can be caused by an explosive force without destruction of the tube.
25. A combination including cables and a connector, the connector for joining the interfacing ends of the cables, one to another, the combination comprising:
at least two cables, each cable comprising a first plurality of conductor strands, each of the ends having an enlarged terminal portion of greater diameter than the cable adjacent said end, and a connector comprising:
a connecting tube, and an explosive layer provided about at least a portion of an outside surface of the connecting tube, the explosive layer comprising a first portion of explosive and a second portion of explosive separated therefrom by an intervening interportion distance, wherein each of said first and second portions has a greater thickness than at said interportion distance, and wherein said first and second portions are disposed on the outside surface of said connecting tube such that said interportion surrounds each of said enlarged terminal portions of said ends of said cables and said first and second portion surround said cables adjacent said ends, prior to detonation of the explosive layer, as to effect a greater explosive compaction force onto said cables adjacent said ends relative to the forces exerted on said terminal portions, wherein said ends include a terminal enlarging member, having a diameter less than a diameter of said cable prior to enlargement at the ends, longitudinally of said cable extending through said terminal portion to effect said enlargement.
at least two cables, each cable comprising a first plurality of conductor strands, each of the ends having an enlarged terminal portion of greater diameter than the cable adjacent said end, and a connector comprising:
a connecting tube, and an explosive layer provided about at least a portion of an outside surface of the connecting tube, the explosive layer comprising a first portion of explosive and a second portion of explosive separated therefrom by an intervening interportion distance, wherein each of said first and second portions has a greater thickness than at said interportion distance, and wherein said first and second portions are disposed on the outside surface of said connecting tube such that said interportion surrounds each of said enlarged terminal portions of said ends of said cables and said first and second portion surround said cables adjacent said ends, prior to detonation of the explosive layer, as to effect a greater explosive compaction force onto said cables adjacent said ends relative to the forces exerted on said terminal portions, wherein said ends include a terminal enlarging member, having a diameter less than a diameter of said cable prior to enlargement at the ends, longitudinally of said cable extending through said terminal portion to effect said enlargement.
26. The combination as defined in claim 25, wherein said enlarging member is a metal stud of pin shape having an elongated portion extending from a head.
27. The combination as defined in claim 26, wherein the head of said metal stud is flat.
28. The combination as defined in claim 27, wherein said flat heads abut one to another within said connecting tube prior to said detonation.
29. The combination as defined in claim 25, wherein said terminal enlarging member is a metal inner sleeve, which inner sleeve embraces at least one of said conductor strands at an inner location within said plurality of said conductor strands.
30. The combination as defined in claim 29, wherein said metal sleeve embraces a second plurality of said conductor strands at an inner location within said first plurality of said conductor strands, wherein said second plurality is a portion of said first plurality of conductor strands.
31. The combination as defined in claim 29, wherein said metal sleeve has a flat head.
32. The combination as defined in claim 30, wherein said metal sleeve has a flat head.
33. The combination as defined in claim 31, wherein said flat heads abut one to another within said connecting tube prior to said detonation.
34. The combination as defined in claim 32, wherein said flat heads abut one to another within said connecting tube prior to said detonation.
35. The combination as defined in claim 30, wherein said second plurality of conductor strands at an inner location within said first plurality of conductor strands are formed of steel, while the remainder of said first plurality are formed of aluminum or alloy thereof.
36. The assembly as defined in claim 17 wherein said terminal enlarging member is a metal inner sleeve, which inner sleeve embraces at least one of said conductor strands at an inner location within said plurality of said conductor strands.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2460282A CA2460282C (en) | 2003-04-04 | 2004-03-09 | Method and apparatus for joining ends of wires and the like |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002424594A CA2424594A1 (en) | 2003-04-04 | 2003-04-04 | Method and apparatus for joining ends of wires and the like |
CA2,424,594 | 2003-04-04 | ||
CA2460282A CA2460282C (en) | 2003-04-04 | 2004-03-09 | Method and apparatus for joining ends of wires and the like |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2460282A1 CA2460282A1 (en) | 2004-10-04 |
CA2460282C true CA2460282C (en) | 2012-07-17 |
Family
ID=33098727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2460282A Expired - Lifetime CA2460282C (en) | 2003-04-04 | 2004-03-09 | Method and apparatus for joining ends of wires and the like |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2460282C (en) |
-
2004
- 2004-03-09 CA CA2460282A patent/CA2460282C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA2460282A1 (en) | 2004-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7414199B2 (en) | Joined cable assembly | |
US6805596B2 (en) | Compression formed connector for a composite conductor assembly used in transmission line installations and method of constructing the same | |
US8022301B2 (en) | Collet-type splice and dead end for use with an aluminum conductor composite core reinforced cable | |
US3033600A (en) | Connectors for jointing wires, rods and the like | |
US3996417A (en) | Cable core grip, electrical cable and connector assembly, and electrical connector kit | |
US4385515A (en) | Calibrated cable connector crimping tool and method of use | |
US4453034A (en) | One die system of compression transmission fittings | |
US8653366B2 (en) | Implosive joint and dead-end apparatus and method | |
US20080233787A1 (en) | Implosion Connector and Method for Use With Transmission Line Conductors Comprising Composite Cores | |
US20130068501A1 (en) | Wave Gripping Core Sleeve | |
CA2460282C (en) | Method and apparatus for joining ends of wires and the like | |
EP1544965B1 (en) | Crimp die locator | |
US1711832A (en) | Method of making connections | |
US5095178A (en) | Electrical connector and method | |
CN102957002B (en) | For the swaged forging connector of the tension state of cable strengthened | |
US3783487A (en) | Cable splice apparatus | |
US4623213A (en) | Method for joining two aluminum conductors of electric cables and the joint thus obtained | |
CA1219738A (en) | One die system of compression transmission fittings | |
RU2011567C1 (en) | Device for compressed jointing of two multiple-strand cables of contact system | |
CN1894827A (en) | Collet-type splice and dead end fitting | |
US20150263438A1 (en) | Wire compression connector | |
CN105206948B (en) | Collet chuck type joint and end fitting | |
GB2625983A (en) | Subsea termination assembly for umbilical | |
EP0841717A2 (en) | Electrical connector | |
CA2851846C (en) | Wire compression connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKEX | Expiry |
Effective date: 20240311 |