CA2451521C - Use of poly-glu, tyr for neuroprotective therapy - Google Patents
Use of poly-glu, tyr for neuroprotective therapy Download PDFInfo
- Publication number
- CA2451521C CA2451521C CA2451521A CA2451521A CA2451521C CA 2451521 C CA2451521 C CA 2451521C CA 2451521 A CA2451521 A CA 2451521A CA 2451521 A CA2451521 A CA 2451521A CA 2451521 C CA2451521 C CA 2451521C
- Authority
- CA
- Canada
- Prior art keywords
- disease
- injury
- cns
- poly
- tyr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000011859 neuroprotective therapy Methods 0.000 title description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims abstract description 92
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 62
- 208000014674 injury Diseases 0.000 claims abstract description 61
- 230000006378 damage Effects 0.000 claims abstract description 59
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 52
- 210000003169 central nervous system Anatomy 0.000 claims abstract description 52
- 229930195712 glutamate Natural products 0.000 claims abstract description 41
- 201000010099 disease Diseases 0.000 claims abstract description 37
- 208000035475 disorder Diseases 0.000 claims abstract description 25
- 210000001428 peripheral nervous system Anatomy 0.000 claims abstract description 25
- 231100000419 toxicity Toxicity 0.000 claims abstract description 18
- 230000001988 toxicity Effects 0.000 claims abstract description 18
- 210000005036 nerve Anatomy 0.000 claims abstract description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 13
- 230000008929 regeneration Effects 0.000 claims abstract description 10
- 238000011069 regeneration method Methods 0.000 claims abstract description 10
- 230000004770 neurodegeneration Effects 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- 230000001737 promoting effect Effects 0.000 claims abstract description 4
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 3
- 210000004027 cell Anatomy 0.000 claims description 19
- 208000020431 spinal cord injury Diseases 0.000 claims description 15
- 239000003814 drug Substances 0.000 claims description 11
- 208000024827 Alzheimer disease Diseases 0.000 claims description 9
- 230000008733 trauma Effects 0.000 claims description 9
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 7
- 210000004556 brain Anatomy 0.000 claims description 7
- 229940079593 drug Drugs 0.000 claims description 7
- 208000023275 Autoimmune disease Diseases 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 6
- 230000001684 chronic effect Effects 0.000 claims description 6
- 208000000044 Amnesia Diseases 0.000 claims description 5
- 208000031091 Amnestic disease Diseases 0.000 claims description 5
- 208000019901 Anxiety disease Diseases 0.000 claims description 5
- 208000010412 Glaucoma Diseases 0.000 claims description 5
- 208000023105 Huntington disease Diseases 0.000 claims description 5
- 208000004454 Hyperalgesia Diseases 0.000 claims description 5
- 208000035154 Hyperesthesia Diseases 0.000 claims description 5
- 208000018737 Parkinson disease Diseases 0.000 claims description 5
- 208000028017 Psychotic disease Diseases 0.000 claims description 5
- 230000006986 amnesia Effects 0.000 claims description 5
- 230000036506 anxiety Effects 0.000 claims description 5
- 230000004406 elevated intraocular pressure Effects 0.000 claims description 5
- 206010015037 epilepsy Diseases 0.000 claims description 5
- 230000036542 oxidative stress Effects 0.000 claims description 5
- 206010010904 Convulsion Diseases 0.000 claims description 4
- 208000032131 Diabetic Neuropathies Diseases 0.000 claims description 4
- 208000032382 Ischaemic stroke Diseases 0.000 claims description 4
- 206010033799 Paralysis Diseases 0.000 claims description 4
- 206010039966 Senile dementia Diseases 0.000 claims description 4
- 229940127240 opiate Drugs 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 4
- 208000000412 Avitaminosis Diseases 0.000 claims description 3
- 208000016988 Hemorrhagic Stroke Diseases 0.000 claims description 3
- 206010021135 Hypovitaminosis Diseases 0.000 claims description 3
- 210000000256 facial nerve Anatomy 0.000 claims description 3
- 208000020658 intracerebral hemorrhage Diseases 0.000 claims description 3
- 201000001119 neuropathy Diseases 0.000 claims description 3
- 230000007823 neuropathy Effects 0.000 claims description 3
- 208000021090 palsy Diseases 0.000 claims description 3
- 208000005809 status epilepticus Diseases 0.000 claims description 3
- 208000030401 vitamin deficiency disease Diseases 0.000 claims description 3
- 208000023761 AL amyloidosis Diseases 0.000 claims description 2
- 206010000599 Acromegaly Diseases 0.000 claims description 2
- 201000011452 Adrenoleukodystrophy Diseases 0.000 claims description 2
- 208000018126 Adrenomyeloneuropathy Diseases 0.000 claims description 2
- 208000031277 Amaurotic familial idiocy Diseases 0.000 claims description 2
- 208000003808 Amyloid Neuropathies Diseases 0.000 claims description 2
- 206010003591 Ataxia Diseases 0.000 claims description 2
- 206010003594 Ataxia telangiectasia Diseases 0.000 claims description 2
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 claims description 2
- 206010004659 Biliary cirrhosis Diseases 0.000 claims description 2
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 claims description 2
- 208000010200 Cockayne syndrome Diseases 0.000 claims description 2
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 claims description 2
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 claims description 2
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 claims description 2
- 208000004986 Diffuse Cerebral Sclerosis of Schilder Diseases 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 208000024720 Fabry Disease Diseases 0.000 claims description 2
- 208000024412 Friedreich ataxia Diseases 0.000 claims description 2
- 208000009119 Giant Axonal Neuropathy Diseases 0.000 claims description 2
- 208000013016 Hypoglycemia Diseases 0.000 claims description 2
- 208000005531 Immunoglobulin Light-chain Amyloidosis Diseases 0.000 claims description 2
- 208000003618 Intervertebral Disc Displacement Diseases 0.000 claims description 2
- 206010050296 Intervertebral disc protrusion Diseases 0.000 claims description 2
- 208000009829 Lewy Body Disease Diseases 0.000 claims description 2
- 201000002832 Lewy body dementia Diseases 0.000 claims description 2
- 208000004155 Malabsorption Syndromes Diseases 0.000 claims description 2
- 208000002537 Neuronal Ceroid-Lipofuscinoses Diseases 0.000 claims description 2
- 208000011623 Obstructive Lung disease Diseases 0.000 claims description 2
- 206010061323 Optic neuropathy Diseases 0.000 claims description 2
- 206010034620 Peripheral sensory neuropathy Diseases 0.000 claims description 2
- 206010036105 Polyneuropathy Diseases 0.000 claims description 2
- 206010036673 Primary amyloidosis Diseases 0.000 claims description 2
- 208000005587 Refsum Disease Diseases 0.000 claims description 2
- 201000007737 Retinal degeneration Diseases 0.000 claims description 2
- 206010048676 Sjogren-Larsson Syndrome Diseases 0.000 claims description 2
- 208000031240 Uraemic neuropathy Diseases 0.000 claims description 2
- 208000017733 acquired polycythemia vera Diseases 0.000 claims description 2
- 208000030597 adult Refsum disease Diseases 0.000 claims description 2
- 206010064930 age-related macular degeneration Diseases 0.000 claims description 2
- 230000001977 ataxic effect Effects 0.000 claims description 2
- 208000003295 carpal tunnel syndrome Diseases 0.000 claims description 2
- 230000002218 hypoglycaemic effect Effects 0.000 claims description 2
- 229960003350 isoniazid Drugs 0.000 claims description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 claims description 2
- 208000017476 juvenile neuronal ceroid lipofuscinosis Diseases 0.000 claims description 2
- 208000002780 macular degeneration Diseases 0.000 claims description 2
- 229960000282 metronidazole Drugs 0.000 claims description 2
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 claims description 2
- 201000007607 neuronal ceroid lipofuscinosis 3 Diseases 0.000 claims description 2
- 229960000564 nitrofurantoin Drugs 0.000 claims description 2
- NXFQHRVNIOXGAQ-YCRREMRBSA-N nitrofurantoin Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)NC(=O)C1 NXFQHRVNIOXGAQ-YCRREMRBSA-N 0.000 claims description 2
- 208000020911 optic nerve disease Diseases 0.000 claims description 2
- 208000037244 polycythemia vera Diseases 0.000 claims description 2
- 230000007824 polyneuropathy Effects 0.000 claims description 2
- 230000004258 retinal degeneration Effects 0.000 claims description 2
- 201000005572 sensory peripheral neuropathy Diseases 0.000 claims description 2
- 239000003053 toxin Substances 0.000 claims description 2
- 231100000765 toxin Toxicity 0.000 claims description 2
- 108700012359 toxins Proteins 0.000 claims description 2
- 241000700159 Rattus Species 0.000 description 49
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 47
- 210000001744 T-lymphocyte Anatomy 0.000 description 41
- 229940049906 glutamate Drugs 0.000 description 37
- 239000000203 mixture Substances 0.000 description 26
- 210000003994 retinal ganglion cell Anatomy 0.000 description 25
- 239000000427 antigen Substances 0.000 description 24
- 108091007433 antigens Proteins 0.000 description 24
- 102000036639 antigens Human genes 0.000 description 24
- 230000000694 effects Effects 0.000 description 22
- 241000699670 Mus sp. Species 0.000 description 20
- 238000002649 immunization Methods 0.000 description 19
- 230000003053 immunization Effects 0.000 description 19
- 238000002347 injection Methods 0.000 description 18
- 239000007924 injection Substances 0.000 description 18
- 210000000278 spinal cord Anatomy 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- 210000000653 nervous system Anatomy 0.000 description 17
- 210000001328 optic nerve Anatomy 0.000 description 17
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 16
- 230000007850 degeneration Effects 0.000 description 16
- 102000047918 Myelin Basic Human genes 0.000 description 14
- 101710107068 Myelin basic protein Proteins 0.000 description 14
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 14
- 210000001508 eye Anatomy 0.000 description 14
- 239000002953 phosphate buffered saline Substances 0.000 description 14
- 210000002569 neuron Anatomy 0.000 description 12
- 230000004112 neuroprotection Effects 0.000 description 12
- 239000002671 adjuvant Substances 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 210000004988 splenocyte Anatomy 0.000 description 10
- 208000034656 Contusions Diseases 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- 230000009519 contusion Effects 0.000 description 9
- 210000003141 lower extremity Anatomy 0.000 description 9
- 210000001525 retina Anatomy 0.000 description 9
- 108010062580 Concanavalin A Proteins 0.000 description 8
- 241000282414 Homo sapiens Species 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000003902 lesion Effects 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 230000037023 motor activity Effects 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 208000025962 Crush injury Diseases 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 210000003050 axon Anatomy 0.000 description 6
- 201000006417 multiple sclerosis Diseases 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 6
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 230000034994 death Effects 0.000 description 5
- 230000003412 degenerative effect Effects 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 230000000324 neuroprotective effect Effects 0.000 description 5
- 239000002858 neurotransmitter agent Substances 0.000 description 5
- 210000003733 optic disk Anatomy 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 108010058846 Ovalbumin Proteins 0.000 description 4
- 206010049679 Spinal shock Diseases 0.000 description 4
- 230000001363 autoimmune Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 210000005056 cell body Anatomy 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 230000004410 intraocular pressure Effects 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 229940092253 ovalbumin Drugs 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000004224 protection Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 210000004885 white matter Anatomy 0.000 description 4
- 201000006474 Brain Ischemia Diseases 0.000 description 3
- 206010008120 Cerebral ischaemia Diseases 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000036770 blood supply Effects 0.000 description 3
- 208000029028 brain injury Diseases 0.000 description 3
- 206010008118 cerebral infarction Diseases 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- -1 e.g. Substances 0.000 description 3
- 201000002491 encephalomyelitis Diseases 0.000 description 3
- 239000003797 essential amino acid Substances 0.000 description 3
- 235000020776 essential amino acid Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000004884 grey matter Anatomy 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229960003299 ketamine Drugs 0.000 description 3
- 238000011694 lewis rat Methods 0.000 description 3
- 230000003137 locomotive effect Effects 0.000 description 3
- 239000003068 molecular probe Substances 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229940054269 sodium pyruvate Drugs 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012353 t test Methods 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000009529 traumatic brain injury Effects 0.000 description 3
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 3
- 229960001600 xylazine Drugs 0.000 description 3
- UUDAMDVQRQNNHZ-UHFFFAOYSA-N (S)-AMPA Chemical compound CC=1ONC(=O)C=1CC(N)C(O)=O UUDAMDVQRQNNHZ-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 208000003098 Ganglion Cysts Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 235000019759 Maize starch Nutrition 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 2
- 102000006386 Myelin Proteins Human genes 0.000 description 2
- 108010083674 Myelin Proteins Proteins 0.000 description 2
- 229940127523 NMDA Receptor Antagonists Drugs 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 208000017442 Retinal disease Diseases 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000004141 Sodium laurylsulphate Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 208000005400 Synovial Cyst Diseases 0.000 description 2
- 206010072731 White matter lesion Diseases 0.000 description 2
- NOSIYYJFMPDDSA-UHFFFAOYSA-N acepromazine Chemical compound C1=C(C(C)=O)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 NOSIYYJFMPDDSA-UHFFFAOYSA-N 0.000 description 2
- 229960005054 acepromazine Drugs 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000006931 brain damage Effects 0.000 description 2
- 231100000874 brain damage Toxicity 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000000795 conjunctiva Anatomy 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 230000000254 damaging effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000003492 excitotoxic effect Effects 0.000 description 2
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229940014259 gelatin Drugs 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000008629 immune suppression Effects 0.000 description 2
- 229960001375 lactose Drugs 0.000 description 2
- 231100000636 lethal dose Toxicity 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000006742 locomotor activity Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 108010077055 methylated bovine serum albumin Proteins 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 210000005012 myelin Anatomy 0.000 description 2
- PPAYPDQCRKDOKR-UHFFFAOYSA-M n,n-didecyl-4-[2-(1-methylpyridin-1-ium-4-yl)ethenyl]aniline;iodide Chemical compound [I-].C1=CC(N(CCCCCCCCCC)CCCCCCCCCC)=CC=C1\C=C\C1=CC=[N+](C)C=C1 PPAYPDQCRKDOKR-UHFFFAOYSA-M 0.000 description 2
- 210000003061 neural cell Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 229960001412 pentobarbital Drugs 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 229940044551 receptor antagonist Drugs 0.000 description 2
- 239000002464 receptor antagonist Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 230000020192 tolerance induction in gut-associated lymphoid tissue Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229960004441 tyrosine Drugs 0.000 description 2
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 102000003678 AMPA Receptors Human genes 0.000 description 1
- 108090000078 AMPA Receptors Proteins 0.000 description 1
- 229940098747 AMPA receptor antagonist Drugs 0.000 description 1
- 239000000775 AMPA receptor antagonist Substances 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 239000004097 EU approved flavor enhancer Substances 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 108010072051 Glatiramer Acetate Proteins 0.000 description 1
- YSWHPLCDIMUKFE-QWRGUYRKSA-N Glu-Tyr Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 YSWHPLCDIMUKFE-QWRGUYRKSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 208000023329 Gun shot wound Diseases 0.000 description 1
- 101001018318 Homo sapiens Myelin basic protein Proteins 0.000 description 1
- 102220486194 Hydroxyacylglutathione hydrolase, mitochondrial_E50Y_mutation Human genes 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 125000003798 L-tyrosyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 208000026072 Motor neurone disease Diseases 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 206010056677 Nerve degeneration Diseases 0.000 description 1
- 208000001738 Nervous System Trauma Diseases 0.000 description 1
- 102000004108 Neurotransmitter Receptors Human genes 0.000 description 1
- 108090000590 Neurotransmitter Receptors Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 206010030043 Ocular hypertension Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 208000024777 Prion disease Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010010974 Proteolipids Proteins 0.000 description 1
- 102000016202 Proteolipids Human genes 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 230000009692 acute damage Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000007844 axonal damage Effects 0.000 description 1
- 230000006736 behavioral deficit Effects 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000006726 chronic neurodegeneration Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 229940038717 copaxone Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000002461 excitatory amino acid Effects 0.000 description 1
- 239000003257 excitatory amino acid Substances 0.000 description 1
- 231100000318 excitotoxic Toxicity 0.000 description 1
- 231100000063 excitotoxicity Toxicity 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- DVGHHMFBFOTGLM-UHFFFAOYSA-L fluorogold Chemical compound F[Au][Au]F DVGHHMFBFOTGLM-UHFFFAOYSA-L 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000019264 food flavour enhancer Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 210000000609 ganglia Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 230000036433 growing body Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000000548 hind-foot Anatomy 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 102000054064 human MBP Human genes 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229940028435 intralipid Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- VCMGMSHEPQENPE-UHFFFAOYSA-N ketamine hydrochloride Chemical compound [Cl-].C=1C=CC=C(Cl)C=1C1([NH2+]C)CCCCC1=O VCMGMSHEPQENPE-UHFFFAOYSA-N 0.000 description 1
- 238000002684 laminectomy Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 230000004065 mitochondrial dysfunction Effects 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000016273 neuron death Effects 0.000 description 1
- 230000009689 neuronal regeneration Effects 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000001769 paralizing effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000000649 photocoagulation Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 230000000506 psychotropic effect Effects 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007441 retrograde transport Effects 0.000 description 1
- 229940069575 rompun Drugs 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 238000013077 scoring method Methods 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000024587 synaptic transmission, glutamatergic Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000003614 tolerogenic effect Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 229940125725 tranquilizer Drugs 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- QYEFBJRXKKSABU-UHFFFAOYSA-N xylazine hydrochloride Chemical compound Cl.CC1=CC=CC(C)=C1NC1=NCCCS1 QYEFBJRXKKSABU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/47—Brain; Nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/02—Peptides of undefined number of amino acids; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0007—Nervous system antigens; Prions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/46432—Nervous system antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/02—Antidotes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Epidemiology (AREA)
- Neurosurgery (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Zoology (AREA)
- Virology (AREA)
- Developmental Biology & Embryology (AREA)
- Biotechnology (AREA)
- Psychiatry (AREA)
- Physical Education & Sports Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychology (AREA)
- Pain & Pain Management (AREA)
- Hospice & Palliative Care (AREA)
- Obesity (AREA)
- Oncology (AREA)
- Addiction (AREA)
- Ophthalmology & Optometry (AREA)
- Urology & Nephrology (AREA)
Abstract
Poly-Glu,Tyr is used for the preparation of a pharmaceutical composition for preventing or inhibiting neuronal degeneration, or for promoting nerve rege neration, in the central nervous system (CNS) or peripheral nervous system (PNS), or for treating an injury, disorder or disease in the CNS or PNS caused or exacerbated by glutamate toxicity.
Description
USE OF POLY-GLU,TYR FOR NEUROPROTECTIVE THERAPY
FIELD OF THE INVENTION
The present invention relates to compositions for the promotion of nerve regeneration or prevention or inhibition of neuronal degeneration to ameliorate the effects of injury, disorder or disease of the nervous system (NS). In particular, the invention relates to compositions comprising poly-Glu,Tyr to protect central nervous system (CNS) cells from glutamate toxicity, to promote nerve regeneration or to prevent or inhibit neuronal degeneration caused by injury or disease of nerves within the CNS or peripheral nervous system (PNS) of a human subject. The compositions of the present invention may be administered alone or may be optionally administered in any desired combination.
ABBREVIATIONS: CFA: complete Freund's adjuvant; CNS: central nervous system;
MBP: myelin basic protein; MHC: major histocompatibility complex; NS: nervous system; PBS: phosphate-buffered saline; pEY: poly-Glu,Tyr; PNS: peripheral nervous system; Poly-Glu,Tyr: copolymer poly-Glu50Tyr50, a random heterocopolymer of L-glutamic acid and L-tyrosine; RGC: retinal ganglion cells.
BACKGROUND OF THE INVENTION
The nervous system comprises the central (CNS) and the peripheral nervous system (PNS). The CNS is composed of the brain spinal cord and visual system;
the PNS
consists of all of the other neural elements, namely the nerves and ganglia outside of the brain and spinal cord.
Damage to the nervous system may result from a traumatic injury, such as penetrating trauma or blunt trauma, or a disease or disorder including, but not limited to, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), diabetic neuropathy, senile dementia, stroke and ischemia.
Maintenance of CNS integrity is a complex "balancing act" in which compromises are struck with the immune system. In most tissues, the immune system plays an essential part in protection, repair, and healing. In the CNS, because of its unique immune privilege, immunological reactions are relatively limited. A growing body of evidence indicates that the failure of the mammalian CNS to achieve functional recovery after injury reflects an ineffective dialog between the damaged tissue and the immune system.
For example, the restricted communication between the CNS and blood-borne macrophages affects the capacity of axotomized axons to regrow, while transplants of activated macrophages can promote CNS regrowth.
Activated T cells have been shown to enter the CNS parenchyma, irrespective of their antigen specificity, but only T cells capable of reacting with a CNS
antigen seem to persist there (Hickey et al, 1991). T cells reactive to antigens of CNS white matter, such as myelin basic protein (MBP), can induce the paralytic disease experimental autoimmune encephalomyelitis (EAE) within several days of their inoculation into naive recipient rats (Ben-Nun, 1981). Anti-MBP T cells may also be involved in the human disease multiple sclerosis (Ota et al, 1990). However, despite their pathogenic potential, anti-MBP T cell clones are present in the immune systems of healthy subjects (Pette et al, 1990). Activated T cells, which normally patrol the intact CNS, transiently accumulate at sites of CNS
white matter lesions (Hirschberg et al, 1998).
A catastrophic consequence of CNS injury is that the primary damage is often compounded by the gradual secondary loss of adjacent neurons that apparently were undamaged, or only marginally damaged, by the initial injury (McIntosh, 1993).
The primary lesion causes changes in extracellular ion concentrations, elevation of amounts of free radicals, release of neurotransmitters, depletion of growth factors, and local inflammation. These changes trigger a cascade of destructive events in the adjacent neurons that initially escaped the primary injury (Lynch et al, 1994). This secondary damage is mediated by activation of voltage-dependent or agonist-gated channels, ion leaks, activation of calcium-dependent enzymes such as proteases, lipases and nucleases, mitochondrial dysfunction and energy depletion, culminating in neuronal cell death. The widespread loss of neurons beyond the loss caused directly by the primary injury has been called "secondary degeneration."
One of the most common mediators which cause self-propagation of the diseases even when the primary risk factor is removed or attenuated is glutamate, an excitatory amino acid capable of displaying dual activity: it plays a pivotal role in normal CNS
functioning as an essential neurotransmitter, but becomes toxic when its physiological levels are exceeded. Elevation of glutamate has been reported in many CNS
disorders. In its role as an excitotoxic compound, glutamate is one of the most common mediators of toxicity in acute and chronic (including optic nerve degeneration in glaucoma) degenerative disorders (Pitt et al., 2000). Endogenous glutamate has been attributed to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. Endogenous glutamate may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea.
Intensive research has been devoted to attenuating the cytotoxic effect of glutamate by the use of locally acting drugs, such as N-methyl-D-aspartate (NMDA)-receptor antagonists. In humans, such compounds have psychotropic and other side effects that make them unsuitable as therapeutic agents. In addition, conventional therapy of this type is often unsatisfactory, since neutralization of the glutamate toxic effect is likely to interfere with its physiological functioning as a ubiquitous CNS
neurotransmitter. Because glutamate activity is essential for normal physiological functioning, yet is potentially devastating after acute injury or in chronic CNS disorders, any attempt to neutralize its harmful effect should avoid eliminating its essential activity at other sites in the body.
Another tragic consequence of CNS injury is that neurons in the mammalian CNS
do not undergo spontaneous regeneration following an injury. Thus, a CNS
injury causes permanent impairment of motor and sensory functions.
Spinal cord lesions, regardless of the severity of the injury, initially result in a complete functional paralysis known as spinal shock. Some spontaneous recovery from spinal shock may be observed, starting a few days after the injury and tapering off within three to four weeks. The less severe the insult, the better the functional outcome. The extent of recovery is a function of the amount of initially undamaged tissue minus the loss due to secondary degeneration. Recovery from injury would be improved by neuroprotective treatment that could reduce secondary degeneration. For example, alleviation of the effect of glutamate is a frequent target of neuroprotective drug development. Among the drugs which are being developed for this purpose are N-methyl-D-aspartate (NMDA)-receptor or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-receptor antagonists. These drugs will inevitably have severe side effects as they interfere with the functioning of NMDA and AMPA receptors, which are crucial for normal CNS activity. One of the most intensely studied NMDA-receptor antagonists is MK801, which provides effective neuroprotection but with severe side effects.
In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect from acute brain damage and delayed behavioral deficits.
Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis (Meldrum, 2000).
In the laboratory of the present inventors, it has recently been discovered that activated T cells that recognize an antigen of the NS of the patient confer neuroprotection.
Reference is made to US Publication No. 2003/108528 and PCT Publication WO 99/60021. More specifically, T cells reactive to MBP were shown to be neuroprotective in rat models of partially crushed optic nerve (see also Moalem et al, 1999) and of spinal cord injury (see also Hauben et al, 2000). Until recently, it had been thought that immune cells do not participate in NS repair. Furthermore, any immune activity in the context of CNS damage was traditionally considered detrimental for recovery. It was quite surprising to discover that NS-specific activated T
cells could be used to protect nervous system tissue from secondary degeneration which may follow damage caused by injury or disease of the CNS or PNS. The mechanism of action of such NS-specific T cells has yet to be discovered, but the massive accumulation of exogenously administered T cells at the site of CNS injury suggests that the presence of T
cells at the site of injury plays a prominent role in neuroprotection. It appears, however, that the accumulation, though a necessary condition, is not sufficient for the purpose, as T cells specific to the non-self antigen ovalbumin also accumulate at the site, but have no neuroprotective effect (Hirschberg et al, 1998).
In addition to the NS-specific activated T cells, the above-referenced US
applications and PCT publication WO 99/60021 disclose that therapy for amelioration of effects of injury or disease of NS can be carried out also with a natural or synthetic NS-specific antigen such as MAG, S-100, 0-amyloid, Thy-1, P0, P2, a neurotransmitter receptor, and preferably human MBP, human proteolipid protein (PLP), and human oligodendrocyte glycoprotein (MOG), or with a peptide derived from an NS-specific antigen such as a peptide comprising amino acids 51-70 of MBP or amino acids 35-55 of MOG.
FIELD OF THE INVENTION
The present invention relates to compositions for the promotion of nerve regeneration or prevention or inhibition of neuronal degeneration to ameliorate the effects of injury, disorder or disease of the nervous system (NS). In particular, the invention relates to compositions comprising poly-Glu,Tyr to protect central nervous system (CNS) cells from glutamate toxicity, to promote nerve regeneration or to prevent or inhibit neuronal degeneration caused by injury or disease of nerves within the CNS or peripheral nervous system (PNS) of a human subject. The compositions of the present invention may be administered alone or may be optionally administered in any desired combination.
ABBREVIATIONS: CFA: complete Freund's adjuvant; CNS: central nervous system;
MBP: myelin basic protein; MHC: major histocompatibility complex; NS: nervous system; PBS: phosphate-buffered saline; pEY: poly-Glu,Tyr; PNS: peripheral nervous system; Poly-Glu,Tyr: copolymer poly-Glu50Tyr50, a random heterocopolymer of L-glutamic acid and L-tyrosine; RGC: retinal ganglion cells.
BACKGROUND OF THE INVENTION
The nervous system comprises the central (CNS) and the peripheral nervous system (PNS). The CNS is composed of the brain spinal cord and visual system;
the PNS
consists of all of the other neural elements, namely the nerves and ganglia outside of the brain and spinal cord.
Damage to the nervous system may result from a traumatic injury, such as penetrating trauma or blunt trauma, or a disease or disorder including, but not limited to, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), diabetic neuropathy, senile dementia, stroke and ischemia.
Maintenance of CNS integrity is a complex "balancing act" in which compromises are struck with the immune system. In most tissues, the immune system plays an essential part in protection, repair, and healing. In the CNS, because of its unique immune privilege, immunological reactions are relatively limited. A growing body of evidence indicates that the failure of the mammalian CNS to achieve functional recovery after injury reflects an ineffective dialog between the damaged tissue and the immune system.
For example, the restricted communication between the CNS and blood-borne macrophages affects the capacity of axotomized axons to regrow, while transplants of activated macrophages can promote CNS regrowth.
Activated T cells have been shown to enter the CNS parenchyma, irrespective of their antigen specificity, but only T cells capable of reacting with a CNS
antigen seem to persist there (Hickey et al, 1991). T cells reactive to antigens of CNS white matter, such as myelin basic protein (MBP), can induce the paralytic disease experimental autoimmune encephalomyelitis (EAE) within several days of their inoculation into naive recipient rats (Ben-Nun, 1981). Anti-MBP T cells may also be involved in the human disease multiple sclerosis (Ota et al, 1990). However, despite their pathogenic potential, anti-MBP T cell clones are present in the immune systems of healthy subjects (Pette et al, 1990). Activated T cells, which normally patrol the intact CNS, transiently accumulate at sites of CNS
white matter lesions (Hirschberg et al, 1998).
A catastrophic consequence of CNS injury is that the primary damage is often compounded by the gradual secondary loss of adjacent neurons that apparently were undamaged, or only marginally damaged, by the initial injury (McIntosh, 1993).
The primary lesion causes changes in extracellular ion concentrations, elevation of amounts of free radicals, release of neurotransmitters, depletion of growth factors, and local inflammation. These changes trigger a cascade of destructive events in the adjacent neurons that initially escaped the primary injury (Lynch et al, 1994). This secondary damage is mediated by activation of voltage-dependent or agonist-gated channels, ion leaks, activation of calcium-dependent enzymes such as proteases, lipases and nucleases, mitochondrial dysfunction and energy depletion, culminating in neuronal cell death. The widespread loss of neurons beyond the loss caused directly by the primary injury has been called "secondary degeneration."
One of the most common mediators which cause self-propagation of the diseases even when the primary risk factor is removed or attenuated is glutamate, an excitatory amino acid capable of displaying dual activity: it plays a pivotal role in normal CNS
functioning as an essential neurotransmitter, but becomes toxic when its physiological levels are exceeded. Elevation of glutamate has been reported in many CNS
disorders. In its role as an excitotoxic compound, glutamate is one of the most common mediators of toxicity in acute and chronic (including optic nerve degeneration in glaucoma) degenerative disorders (Pitt et al., 2000). Endogenous glutamate has been attributed to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. Endogenous glutamate may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea.
Intensive research has been devoted to attenuating the cytotoxic effect of glutamate by the use of locally acting drugs, such as N-methyl-D-aspartate (NMDA)-receptor antagonists. In humans, such compounds have psychotropic and other side effects that make them unsuitable as therapeutic agents. In addition, conventional therapy of this type is often unsatisfactory, since neutralization of the glutamate toxic effect is likely to interfere with its physiological functioning as a ubiquitous CNS
neurotransmitter. Because glutamate activity is essential for normal physiological functioning, yet is potentially devastating after acute injury or in chronic CNS disorders, any attempt to neutralize its harmful effect should avoid eliminating its essential activity at other sites in the body.
Another tragic consequence of CNS injury is that neurons in the mammalian CNS
do not undergo spontaneous regeneration following an injury. Thus, a CNS
injury causes permanent impairment of motor and sensory functions.
Spinal cord lesions, regardless of the severity of the injury, initially result in a complete functional paralysis known as spinal shock. Some spontaneous recovery from spinal shock may be observed, starting a few days after the injury and tapering off within three to four weeks. The less severe the insult, the better the functional outcome. The extent of recovery is a function of the amount of initially undamaged tissue minus the loss due to secondary degeneration. Recovery from injury would be improved by neuroprotective treatment that could reduce secondary degeneration. For example, alleviation of the effect of glutamate is a frequent target of neuroprotective drug development. Among the drugs which are being developed for this purpose are N-methyl-D-aspartate (NMDA)-receptor or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-receptor antagonists. These drugs will inevitably have severe side effects as they interfere with the functioning of NMDA and AMPA receptors, which are crucial for normal CNS activity. One of the most intensely studied NMDA-receptor antagonists is MK801, which provides effective neuroprotection but with severe side effects.
In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect from acute brain damage and delayed behavioral deficits.
Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis (Meldrum, 2000).
In the laboratory of the present inventors, it has recently been discovered that activated T cells that recognize an antigen of the NS of the patient confer neuroprotection.
Reference is made to US Publication No. 2003/108528 and PCT Publication WO 99/60021. More specifically, T cells reactive to MBP were shown to be neuroprotective in rat models of partially crushed optic nerve (see also Moalem et al, 1999) and of spinal cord injury (see also Hauben et al, 2000). Until recently, it had been thought that immune cells do not participate in NS repair. Furthermore, any immune activity in the context of CNS damage was traditionally considered detrimental for recovery. It was quite surprising to discover that NS-specific activated T
cells could be used to protect nervous system tissue from secondary degeneration which may follow damage caused by injury or disease of the CNS or PNS. The mechanism of action of such NS-specific T cells has yet to be discovered, but the massive accumulation of exogenously administered T cells at the site of CNS injury suggests that the presence of T
cells at the site of injury plays a prominent role in neuroprotection. It appears, however, that the accumulation, though a necessary condition, is not sufficient for the purpose, as T cells specific to the non-self antigen ovalbumin also accumulate at the site, but have no neuroprotective effect (Hirschberg et al, 1998).
In addition to the NS-specific activated T cells, the above-referenced US
applications and PCT publication WO 99/60021 disclose that therapy for amelioration of effects of injury or disease of NS can be carried out also with a natural or synthetic NS-specific antigen such as MAG, S-100, 0-amyloid, Thy-1, P0, P2, a neurotransmitter receptor, and preferably human MBP, human proteolipid protein (PLP), and human oligodendrocyte glycoprotein (MOG), or with a peptide derived from an NS-specific antigen such as a peptide comprising amino acids 51-70 of MBP or amino acids 35-55 of MOG.
More recently, it has been discovered in the laboratory of the present inventors that a high molecular weight synthetic basic random copolymer consisting of L-Ala, L-Glu, L-Lys and L-Tyr residues with an average molar fraction of 0.141, 0.427, 0.095 and 0.338, designated Copolymer 1 or Cop 1 and being the active ingredient of COPAXONE
(Teva Pharmaceuticals Ltd., Israel), a medicament for the treatment of multiple sclerosis, is able to prevent or inhibit neuronal degeneration, or to promote nerve regeneration, in the CNS
or PNS, as well as to protect CNS cells from glutamate toxicity. Reference is made to copending US Patent No. 6,844,314, and PCT Publications WO 01/52878 and WO 01/93893. More specifically, Cop 1-specific activated T cells were shown to accumulate in both injured and non-injured neuronal tissues and to be protective in the injured optic nerve against the destructive effect of secondary degeneration, and immunization with Cop 1 was shown to protect against glutamate toxicity.
Oral administration of autoantigen in order to obtain "oral tolerance" has been disclosed for the treatment of various autoimmune diseases. For example, EP
discloses the oral administration of MBP for the treatment of multiple sclerosis, and PCT
International Publications WO 91/12816, WO 91/08760 and WO 92/06704 disclose the treatment of other autoimmune diseases using the oral tolerance method with a variety of autoantigens. Treatment of multiple sclerosis by ingestion or inhalation of Copolymer 1, to achieve suppression of the autoimmune T cell response to myelin antigens, has been disclosed in PCT publication WO 98/30227.
The copolymer poly-G1u50Tyr.5o, formerly often termed polyGT and hereinafter also called pEY, is a random heterocopolymer of L-glutamic acid and L-tyrosine, with an average length of 100 amino acids and a capacity to elicit strong immune response in certain mouse strains (Vidovic et al., 1985; Vidovic and Matzinger, 1988).
More than 20 years ago, it was shown that several inbred as well as congenic resistant strains of mice, which fail to respond to pEY, developed specific plaque-forming cell (PFC) responses when stimulated by pEY complexed to an immunogenic carrier such as methylated bovine serum albumin (MBSA); pre-immunization with pEY had a tolerogenic effect on the response to pEY-MBSA in some mouse strains and this tolerance could be transferred to normal, syngeneic recipients by spleen cells or thymocytes of pEY-primed animals (Debre et al., 1975). More recently, pEY was shown to activate murine epidermal V
gamma 5/V
(Teva Pharmaceuticals Ltd., Israel), a medicament for the treatment of multiple sclerosis, is able to prevent or inhibit neuronal degeneration, or to promote nerve regeneration, in the CNS
or PNS, as well as to protect CNS cells from glutamate toxicity. Reference is made to copending US Patent No. 6,844,314, and PCT Publications WO 01/52878 and WO 01/93893. More specifically, Cop 1-specific activated T cells were shown to accumulate in both injured and non-injured neuronal tissues and to be protective in the injured optic nerve against the destructive effect of secondary degeneration, and immunization with Cop 1 was shown to protect against glutamate toxicity.
Oral administration of autoantigen in order to obtain "oral tolerance" has been disclosed for the treatment of various autoimmune diseases. For example, EP
discloses the oral administration of MBP for the treatment of multiple sclerosis, and PCT
International Publications WO 91/12816, WO 91/08760 and WO 92/06704 disclose the treatment of other autoimmune diseases using the oral tolerance method with a variety of autoantigens. Treatment of multiple sclerosis by ingestion or inhalation of Copolymer 1, to achieve suppression of the autoimmune T cell response to myelin antigens, has been disclosed in PCT publication WO 98/30227.
The copolymer poly-G1u50Tyr.5o, formerly often termed polyGT and hereinafter also called pEY, is a random heterocopolymer of L-glutamic acid and L-tyrosine, with an average length of 100 amino acids and a capacity to elicit strong immune response in certain mouse strains (Vidovic et al., 1985; Vidovic and Matzinger, 1988).
More than 20 years ago, it was shown that several inbred as well as congenic resistant strains of mice, which fail to respond to pEY, developed specific plaque-forming cell (PFC) responses when stimulated by pEY complexed to an immunogenic carrier such as methylated bovine serum albumin (MBSA); pre-immunization with pEY had a tolerogenic effect on the response to pEY-MBSA in some mouse strains and this tolerance could be transferred to normal, syngeneic recipients by spleen cells or thymocytes of pEY-primed animals (Debre et al., 1975). More recently, pEY was shown to activate murine epidermal V
gamma 5/V
delta 1-TCR(+) T cell lines (Seo et al., 2001). None of these publications describes or suggests any useful biological activity of pEY and, particularly, not the use of pEY for neuroprotection.
Citation or identification of any reference in this section or any other part of this application shall not be construed as an admission that such reference is available as prior art to the invention.
SUMMARY OF THE INVENTION
It has now been found, in accordance with the present invention, that poly-Glu,Tyr can protect nerve cells from glutamate toxicity and from undergoing secondary degeneration following spinal cord contusion. The spontaneous appearance of T-cells specific to MBP and T-cells specific to poly-Glu,Tyr was examined in rats after spinal cord contusion. In addition, active immunization with poly-Glu,Tyr was used to attenuate neuronal degeneration induced by glutamate toxicity or by mechanical injury to the spinal cord.
The present invention thus relates, in one aspect, to the use of poly-Glu,Tyr for the preparation of a pharmaceutical composition which is useful for neuroprotection, namely for preventing or inhibiting neuronal degeneration, or for promoting nerve regeneration, in the CNS or PNS, particularly for treating an injury, disorder or disease of the CNS or PNS
that results in, or is accompanied by, axonal damage.
In a further embodiment of the invention, the pharmaceutical compositions are useful for protecting CNS or PNS cells from glutamate toxicity, particularly for treatment of an injury, disorder or disease of the CNS or PNS that is caused or exacerbated by glutamate toxicity.
In one embodiment, the injury, disorder or disease comprises spinal cord injury, blunt trauma, penetrating trauma, brain coup or contrecoup, hemorrhagic stroke, or ischemic stroke. In one preferred embodiment, the injury is spinal cord injury.
In another embodiment, the injury, disorder or disease comprises diabetic neuropathy, senile dementia, Alzheimer's disease, Parkinson's disease, facial nerve (Bell's) palsy, Huntington's chorea, amyotrophic lateral sclerosis (ALS), vitamin deficiency, epilepsy, amnesia, anxiety, hyperalgesia, psychosis, seizures, oxidative stress, or opiate tolerance and dependence and other disorders and diseases as described hereinafter.
Citation or identification of any reference in this section or any other part of this application shall not be construed as an admission that such reference is available as prior art to the invention.
SUMMARY OF THE INVENTION
It has now been found, in accordance with the present invention, that poly-Glu,Tyr can protect nerve cells from glutamate toxicity and from undergoing secondary degeneration following spinal cord contusion. The spontaneous appearance of T-cells specific to MBP and T-cells specific to poly-Glu,Tyr was examined in rats after spinal cord contusion. In addition, active immunization with poly-Glu,Tyr was used to attenuate neuronal degeneration induced by glutamate toxicity or by mechanical injury to the spinal cord.
The present invention thus relates, in one aspect, to the use of poly-Glu,Tyr for the preparation of a pharmaceutical composition which is useful for neuroprotection, namely for preventing or inhibiting neuronal degeneration, or for promoting nerve regeneration, in the CNS or PNS, particularly for treating an injury, disorder or disease of the CNS or PNS
that results in, or is accompanied by, axonal damage.
In a further embodiment of the invention, the pharmaceutical compositions are useful for protecting CNS or PNS cells from glutamate toxicity, particularly for treatment of an injury, disorder or disease of the CNS or PNS that is caused or exacerbated by glutamate toxicity.
In one embodiment, the injury, disorder or disease comprises spinal cord injury, blunt trauma, penetrating trauma, brain coup or contrecoup, hemorrhagic stroke, or ischemic stroke. In one preferred embodiment, the injury is spinal cord injury.
In another embodiment, the injury, disorder or disease comprises diabetic neuropathy, senile dementia, Alzheimer's disease, Parkinson's disease, facial nerve (Bell's) palsy, Huntington's chorea, amyotrophic lateral sclerosis (ALS), vitamin deficiency, epilepsy, amnesia, anxiety, hyperalgesia, psychosis, seizures, oxidative stress, or opiate tolerance and dependence and other disorders and diseases as described hereinafter.
In a further embodiment, the injury, disorder or disease is associated with the eye and includes optic neuropathy, age-related macular degeneration, a retinal disorder such as retinal degeneration or disease associated with abnormally elevated intraocular pressure such as glaucoma. In one preferred embodiment, the disorder or disease is glaucoma.
In still another embodiment, the injury, disorder or disease is an autoimmune disease.
An "an effective amount" is defined herein as an amount which is effective to ameliorate the effects of an injury, disorder or disease of the CNS or PNS.
As used herein, the term "neuroprotection" refers to the prevention or inhibition of degenerative effects of an injury, disorder or disease in the CNS or PNS, including protection from the secondary neurodegenerative effects which persist even when the primary risk factor is removed or attenuated. This includes protection of both white matter and gray matter.
Furthermore, as poly-Glu,Tyr protects from glutamate toxicity, it must also have a regulatory activity, such as by creating regulatory cells or regulatory substances. In view of this regulatory activity, the poly-Glu,Tyr vaccination is expected also to protect white matter and gray matter from damage caused by oxidative stress and other sources of damage to neural cells. In addition, because of this regulatory activity, the present invention can also be used to protect neural cells from autoimmune diseases.
The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of poly-Glu,Tyr, to inhibit or ameliorate the effects of an injury, disorder or disease of the CNS or PNS.
Additionally, oral administration of poly-Glu,Tyr may be effective for neuroprotection after priming with poly-Glu,Tyr administered in adjuvant.
Thus, oral poly-Glu,Tyr can be used to boost the activity of the T cells, subsequent to primary activation of such poly-Glu,Tyr, preferably in adjuvant, to build up a critical T cell response immediately after injury.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a graph showing the results of proliferation assay of splenocytes in response to different antigens: ovalbumin (Ova), copolymer 1 (Cop 1), myelin basic protein (MBP), the MBP peptide p87-99, poly-Glu,Tyr (pEY) and concanavalin A
(Con A). The assay was carried out in splenocytes isolated from SPD rats 8-10 days after the rats were subjected to spinal cord contusion. The index was determined in comparison to proliferation of splenocytes in medium not containing any antigen (SI=1).
Fig. 2 is a graph showing how immunization with pEY attenuates significantly retinal ganglion cells (RGCs) death induced by glutamate. The number of labeled (surviving) RGC/mm2 in retinas excised from C57BL/6J mice who had been immunized with an emulsion of pEY in complete Freund's adjuvant (CFA- pEY) or with PBS
in CFA
(CFA-PBS), 7 days prior to intravitreal glutamate injection, and 7 days later was counted.
Bars represent mean sem of percentage of RGC death compared to the naive retina.
Fig. 3 depicts the effects of pEY/CFA immunization on the recovery of rats from spinal cord contusion. The graph presents the mean sd of hindlimbs motor activity scores in open field (BBB test as described in Example 3.1 hereinafter) with time after spinal cord injury in two groups of SPD rats immunized with pEY/CFA (squares) or CFA-PBS (control; triangles) immediately after spinal cord injury.
Fig. 4 depicts the effects of adoptive transfer of splenocytes activated with pEY on spinal cord injury recovery. The graph presents the mean sd of the hindlimb motor activity scores in open field with time after spinal cord injury in two groups of SPD rats injected intraperitoneally with CFA-pEY-activated T cells (SPc+pEY; squares) or CFA-PBS-treated T cells (control; triangles) immediately after spinal cord injury.
DETAILED DESCRIPTION OF THE INVENTION
The compositions of the invention comprising poly-Glu,Tyr may be used to promote nerve regeneration or to prevent or inhibit secondary degeneration which may otherwise follow primary NS injury, e.g., spinal cord injury, blunt trauma such as those caused by participation in dangerous sports, penetrating trauma such as gunshot wounds, brain coup or contrecoup, hemorrhagic stroke, ischemic stroke, cerebral ischemia, or damages caused by surgery such as tumor excision.
In addition, such compositions may be used to ameliorate the effects of disease that result in a degenerative process, e.g., degeneration occurring in either gray or white matter (or both) as a result of various diseases or disorders, including, without limitation, an injury, disorder or disease selected from a senile dementia including Alzheimer's disease, Parkinsonian syndrome including Parkinson's disease, facial nerve (Bell's) palsy, Huntington's chorea, a motor neuron disease including amyotrophic lateral sclerosis, a prion disease including Creutzfeldt-Jakob disease, Alper's disease, Batten disease, Cockayne syndrome, Lewy body disease, status epilepticus, carpal tunnel syndrome, intervertebral disc herniation, vitamin deficiency, epilepsy, amnesia, anxiety, hyperalgesia, psychosis, seizures, oxidative stress, opiate tolerance and dependence, an autoimmune disease, or a peripheral neuropathy associated with a disease such as amyloid polyneuropathy, diabetic neuropathy, uremic neuropathy, porphyric polyneuropathy, hypoglycemia, Sjogren-Larsson syndrome, acute sensory neuropathy, chronic ataxic neuropathy, biliary cirrhosis, primary amyloidosis, obstructive lung diseases, acromegaly, malabsorption syndromes, polycythemia vera, IgA and IgG gammapathies, complications of various drugs such as nitrofurantoin, metronidazole, isoniazid and toxins such as alcohol or organophosphates, Charcot-Marie-Tooth disease, ataxia telangiectasia, Friedreich's ataxia, adrenomyeloneuropathy, giant axonal neuropathy, Refsum's disease, Fabry's disease, or lipoproteinemia.
In addition, in light of the findings with respect to the glutamate protective aspect of the present invention, other clinical conditions that may be treated in accordance with the present invention include epilepsy, amnesia, anxiety, hyperalgesia, psychosis, seizures, abnormally elevated intraocular pressure e.g. glaucoma, oxidative stress, and opiate tolerance and dependence. In addition, the glutamate protective aspect of the present invention, i.e., treating injury or disease caused or exacerbated by glutamate toxicity, can include post-operative treatments such as for tumor removal from the CNS and other forms of surgery on the CNS.
In view of the fact that poly-Glu,Tyr immunization has been surprisingly found useful in protecting against glutamate toxicity, it is expected that poly-Glu,Tyr treatment in accordance with the present invention will be effective in the treatment of the above listed conditions not only in a late phase when myelin is being affected, but also in the early stages in which the neurons are being attacked by factors which cause an elevation in glutamate levels to toxic levels. Thus, the present invention is useful for any indication, i.e., chronic or acute neurodegeneration, which is caused or exacerbated by an elevation in glutamate levels, including the early stages of ischemic stroke, Alzheimer's disease, etc.
In still another embodiment, the injury, disorder or disease is an autoimmune disease.
An "an effective amount" is defined herein as an amount which is effective to ameliorate the effects of an injury, disorder or disease of the CNS or PNS.
As used herein, the term "neuroprotection" refers to the prevention or inhibition of degenerative effects of an injury, disorder or disease in the CNS or PNS, including protection from the secondary neurodegenerative effects which persist even when the primary risk factor is removed or attenuated. This includes protection of both white matter and gray matter.
Furthermore, as poly-Glu,Tyr protects from glutamate toxicity, it must also have a regulatory activity, such as by creating regulatory cells or regulatory substances. In view of this regulatory activity, the poly-Glu,Tyr vaccination is expected also to protect white matter and gray matter from damage caused by oxidative stress and other sources of damage to neural cells. In addition, because of this regulatory activity, the present invention can also be used to protect neural cells from autoimmune diseases.
The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of poly-Glu,Tyr, to inhibit or ameliorate the effects of an injury, disorder or disease of the CNS or PNS.
Additionally, oral administration of poly-Glu,Tyr may be effective for neuroprotection after priming with poly-Glu,Tyr administered in adjuvant.
Thus, oral poly-Glu,Tyr can be used to boost the activity of the T cells, subsequent to primary activation of such poly-Glu,Tyr, preferably in adjuvant, to build up a critical T cell response immediately after injury.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a graph showing the results of proliferation assay of splenocytes in response to different antigens: ovalbumin (Ova), copolymer 1 (Cop 1), myelin basic protein (MBP), the MBP peptide p87-99, poly-Glu,Tyr (pEY) and concanavalin A
(Con A). The assay was carried out in splenocytes isolated from SPD rats 8-10 days after the rats were subjected to spinal cord contusion. The index was determined in comparison to proliferation of splenocytes in medium not containing any antigen (SI=1).
Fig. 2 is a graph showing how immunization with pEY attenuates significantly retinal ganglion cells (RGCs) death induced by glutamate. The number of labeled (surviving) RGC/mm2 in retinas excised from C57BL/6J mice who had been immunized with an emulsion of pEY in complete Freund's adjuvant (CFA- pEY) or with PBS
in CFA
(CFA-PBS), 7 days prior to intravitreal glutamate injection, and 7 days later was counted.
Bars represent mean sem of percentage of RGC death compared to the naive retina.
Fig. 3 depicts the effects of pEY/CFA immunization on the recovery of rats from spinal cord contusion. The graph presents the mean sd of hindlimbs motor activity scores in open field (BBB test as described in Example 3.1 hereinafter) with time after spinal cord injury in two groups of SPD rats immunized with pEY/CFA (squares) or CFA-PBS (control; triangles) immediately after spinal cord injury.
Fig. 4 depicts the effects of adoptive transfer of splenocytes activated with pEY on spinal cord injury recovery. The graph presents the mean sd of the hindlimb motor activity scores in open field with time after spinal cord injury in two groups of SPD rats injected intraperitoneally with CFA-pEY-activated T cells (SPc+pEY; squares) or CFA-PBS-treated T cells (control; triangles) immediately after spinal cord injury.
DETAILED DESCRIPTION OF THE INVENTION
The compositions of the invention comprising poly-Glu,Tyr may be used to promote nerve regeneration or to prevent or inhibit secondary degeneration which may otherwise follow primary NS injury, e.g., spinal cord injury, blunt trauma such as those caused by participation in dangerous sports, penetrating trauma such as gunshot wounds, brain coup or contrecoup, hemorrhagic stroke, ischemic stroke, cerebral ischemia, or damages caused by surgery such as tumor excision.
In addition, such compositions may be used to ameliorate the effects of disease that result in a degenerative process, e.g., degeneration occurring in either gray or white matter (or both) as a result of various diseases or disorders, including, without limitation, an injury, disorder or disease selected from a senile dementia including Alzheimer's disease, Parkinsonian syndrome including Parkinson's disease, facial nerve (Bell's) palsy, Huntington's chorea, a motor neuron disease including amyotrophic lateral sclerosis, a prion disease including Creutzfeldt-Jakob disease, Alper's disease, Batten disease, Cockayne syndrome, Lewy body disease, status epilepticus, carpal tunnel syndrome, intervertebral disc herniation, vitamin deficiency, epilepsy, amnesia, anxiety, hyperalgesia, psychosis, seizures, oxidative stress, opiate tolerance and dependence, an autoimmune disease, or a peripheral neuropathy associated with a disease such as amyloid polyneuropathy, diabetic neuropathy, uremic neuropathy, porphyric polyneuropathy, hypoglycemia, Sjogren-Larsson syndrome, acute sensory neuropathy, chronic ataxic neuropathy, biliary cirrhosis, primary amyloidosis, obstructive lung diseases, acromegaly, malabsorption syndromes, polycythemia vera, IgA and IgG gammapathies, complications of various drugs such as nitrofurantoin, metronidazole, isoniazid and toxins such as alcohol or organophosphates, Charcot-Marie-Tooth disease, ataxia telangiectasia, Friedreich's ataxia, adrenomyeloneuropathy, giant axonal neuropathy, Refsum's disease, Fabry's disease, or lipoproteinemia.
In addition, in light of the findings with respect to the glutamate protective aspect of the present invention, other clinical conditions that may be treated in accordance with the present invention include epilepsy, amnesia, anxiety, hyperalgesia, psychosis, seizures, abnormally elevated intraocular pressure e.g. glaucoma, oxidative stress, and opiate tolerance and dependence. In addition, the glutamate protective aspect of the present invention, i.e., treating injury or disease caused or exacerbated by glutamate toxicity, can include post-operative treatments such as for tumor removal from the CNS and other forms of surgery on the CNS.
In view of the fact that poly-Glu,Tyr immunization has been surprisingly found useful in protecting against glutamate toxicity, it is expected that poly-Glu,Tyr treatment in accordance with the present invention will be effective in the treatment of the above listed conditions not only in a late phase when myelin is being affected, but also in the early stages in which the neurons are being attacked by factors which cause an elevation in glutamate levels to toxic levels. Thus, the present invention is useful for any indication, i.e., chronic or acute neurodegeneration, which is caused or exacerbated by an elevation in glutamate levels, including the early stages of ischemic stroke, Alzheimer's disease, etc.
In a preferred embodiment, the immunization composition comprising poly-G1u,Tyr of the present invention is used to treat diseases or disorders where promotion of nerve regeneration or prevention or inhibition of secondary neural degeneration is indicated.
In a preferred embodiment, the present invention contemplates the use of poly-G1u,Tyr administered in adjuvants. Oral administration of poly-Glu,Tyr for neuroprotection, if possible, is contemplated always subsequent to primary activation with poly-Glu,Tyr, preferably in adjuvant. Thus, oral poly-Glu,Tyr can be used to boost the activity of the T cells subsequent to primary activation with poly-Glu,Tyr.
Poly-Glu,Tyr may also be used to ameliorate the degenerative process caused by neoplasms, without using immunotherapy processes.
Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipient thereof.
The following exemplification of carriers, modes of administration, dosage forms, etc., are listed as known possibilities from which the carriers, modes of administration, dosage forms, etc., may be selected for use with the present invention. Those of ordinary skill in the art will understand, however, that any given formulation and mode of administration selected should first be tested to determine that it achieves the desired results. Thus, for example, when the active principle is poly-Glu,Tyr, the particular formulation and mode of administration must permit the active principle to act as a vaccine so as to raise T cells activated thereagainst in vivo. If such an immune response is not obtained, then that particular formulation and mode of administration should not be used in accordance with the present invention.
The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. The carriers in the pharmaceutical composition may comprise a binder, such as microcrystalline cellulose, polyvinylpyrrolidone (polyvidone or povidone), gum tragacanth, gelatin, starch, lactose or lactose monochydrate; a disintegrating agent, such as alginic acid, maize starch and the like; a lubricant or surfactant, such as magnesium stearate, or sodium lauryl sulphate; a glidant, such as colloidal silicon dioxide; a sweetening agent, such as sucrose or saccharin;
and/or a flavoring agent, such as peppermint, methyl salicylate, or orange flavoring.
Methods of administration include, but are not limited to, parenteral, e.g., intravenous, intraperitoneal, intramuscular, subcutaneous, mucosal (e.g., oral, intranasal, buccal, vaginal, rectal, intraocular), intrathecal, topical and intradermal routes.
Administration can be systemic or local.
For oral administration, the pharmaceutical preparation may be in liquid form, for example, solutions, syrups or suspensions, or may be presented as a drug product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinized maize starch, polyvinyl pyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well-known in the art. Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner. When poly-Glu,Tyr is introduced orally, it may be mixed with other food forms and consumed in solid, semi-solid, suspension, or emulsion form; and it may be mixed with pharmaceutically acceptable carriers, including water, suspending agents, emulsifying agents, flavor enhancers, and the like. In one embodiment, the oral composition is enterically-coated.
Use of enteric coatings is well known in the art.
The compositions may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multidose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen free water, before use.
The compositions may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
For administration by inhalation, the compositions for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro- tetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin, for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. Poly-Glu,Tyr may also be administered nasally in certain of the above-mentioned forms by inhalation or nose drops. Furthermore, oral inhalation may be employed to deliver poly-Glu,Tyr to the mucosal linings of the trachea and bronchial passages.
In a preferred embodiment, compositions comprising poly-Glu,Tyr are formulated in accordance with routine procedures as pharmaceutical compositions adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water or saline for injection can be provided so that the ingredients may be mixed prior to administration.
Pharmaceutical compositions comprising poly-Glu,Tyr may optionally be administered with an adjuvant in the usual manner for immunization. Non-limiting examples of such adjuvants include alum and incomplete Freund's adjuvant.
In a preferred embodiment, the present invention contemplates the use of poly-G1u,Tyr administered in adjuvants. Oral administration of poly-Glu,Tyr for neuroprotection, if possible, is contemplated always subsequent to primary activation with poly-Glu,Tyr, preferably in adjuvant. Thus, oral poly-Glu,Tyr can be used to boost the activity of the T cells subsequent to primary activation with poly-Glu,Tyr.
Poly-Glu,Tyr may also be used to ameliorate the degenerative process caused by neoplasms, without using immunotherapy processes.
Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipient thereof.
The following exemplification of carriers, modes of administration, dosage forms, etc., are listed as known possibilities from which the carriers, modes of administration, dosage forms, etc., may be selected for use with the present invention. Those of ordinary skill in the art will understand, however, that any given formulation and mode of administration selected should first be tested to determine that it achieves the desired results. Thus, for example, when the active principle is poly-Glu,Tyr, the particular formulation and mode of administration must permit the active principle to act as a vaccine so as to raise T cells activated thereagainst in vivo. If such an immune response is not obtained, then that particular formulation and mode of administration should not be used in accordance with the present invention.
The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. The carriers in the pharmaceutical composition may comprise a binder, such as microcrystalline cellulose, polyvinylpyrrolidone (polyvidone or povidone), gum tragacanth, gelatin, starch, lactose or lactose monochydrate; a disintegrating agent, such as alginic acid, maize starch and the like; a lubricant or surfactant, such as magnesium stearate, or sodium lauryl sulphate; a glidant, such as colloidal silicon dioxide; a sweetening agent, such as sucrose or saccharin;
and/or a flavoring agent, such as peppermint, methyl salicylate, or orange flavoring.
Methods of administration include, but are not limited to, parenteral, e.g., intravenous, intraperitoneal, intramuscular, subcutaneous, mucosal (e.g., oral, intranasal, buccal, vaginal, rectal, intraocular), intrathecal, topical and intradermal routes.
Administration can be systemic or local.
For oral administration, the pharmaceutical preparation may be in liquid form, for example, solutions, syrups or suspensions, or may be presented as a drug product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinized maize starch, polyvinyl pyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well-known in the art. Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner. When poly-Glu,Tyr is introduced orally, it may be mixed with other food forms and consumed in solid, semi-solid, suspension, or emulsion form; and it may be mixed with pharmaceutically acceptable carriers, including water, suspending agents, emulsifying agents, flavor enhancers, and the like. In one embodiment, the oral composition is enterically-coated.
Use of enteric coatings is well known in the art.
The compositions may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multidose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen free water, before use.
The compositions may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
For administration by inhalation, the compositions for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro- tetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin, for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. Poly-Glu,Tyr may also be administered nasally in certain of the above-mentioned forms by inhalation or nose drops. Furthermore, oral inhalation may be employed to deliver poly-Glu,Tyr to the mucosal linings of the trachea and bronchial passages.
In a preferred embodiment, compositions comprising poly-Glu,Tyr are formulated in accordance with routine procedures as pharmaceutical compositions adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water or saline for injection can be provided so that the ingredients may be mixed prior to administration.
Pharmaceutical compositions comprising poly-Glu,Tyr may optionally be administered with an adjuvant in the usual manner for immunization. Non-limiting examples of such adjuvants include alum and incomplete Freund's adjuvant.
Metabolizable lipid emulsions, such as Intralipid or Lipofundin may also be used as vehicles for the poly-Glu,Tyr therapy in the manner disclosed in WO 97/02016.
While these materials are known to cause a THI to TH2 cytokine shift, there is no reason to believe that TH2 cytokines will not be operable, and perhaps even preferable, for the purpose of the present invention.
The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
In a preferred embodiment, the pharmaceutical compositions of the invention are administered to a mammal, preferably a human, shortly after injury or detection of a degenerative lesion in the NS.
In one embodiment, the compositions of the invention are administered in combination with one or more of the following: (a) mononuclear phagocytes, preferably cultured monocytes (as described in WO 97/09985, WO 98/41220, US 5,800,812, US
6,117,424 and US 6,267,955), that have been stimulated to enhance their capacity to promote neuronal regeneration; and (b) a neurotrophic factor such as acidic fibroblast growth factor.
In another embodiment, mononuclear phagocyte cells according to WO 97/09985, WO 98/41220, US 5,800,812, US 6,117,424 and US 6,267,955, are injected into the site of injury or lesion within the CNS, either concurrently, prior to, or following parenteral administration of poly-Glu,Tyr.
In another embodiment, poly-Glu,Tyr may be administered as a single dose or may be repeated, preferably at 2 week intervals, and then at successively longer intervals once a month, once a quarter, once every six months, etc. The course of treatment may last several months, several years or occasionally also through the life-time of the individual, depending on the condition or disease which is being treated. In the case of a CNS injury, the treatment may range between several days to months or even years, until the condition has stabilized and there is no or only a limited risk of development of secondary degeneration. In chronic human disease or Parkinson's disease, the therapeutic treatment in accordance with the invention may be for life.
While these materials are known to cause a THI to TH2 cytokine shift, there is no reason to believe that TH2 cytokines will not be operable, and perhaps even preferable, for the purpose of the present invention.
The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
In a preferred embodiment, the pharmaceutical compositions of the invention are administered to a mammal, preferably a human, shortly after injury or detection of a degenerative lesion in the NS.
In one embodiment, the compositions of the invention are administered in combination with one or more of the following: (a) mononuclear phagocytes, preferably cultured monocytes (as described in WO 97/09985, WO 98/41220, US 5,800,812, US
6,117,424 and US 6,267,955), that have been stimulated to enhance their capacity to promote neuronal regeneration; and (b) a neurotrophic factor such as acidic fibroblast growth factor.
In another embodiment, mononuclear phagocyte cells according to WO 97/09985, WO 98/41220, US 5,800,812, US 6,117,424 and US 6,267,955, are injected into the site of injury or lesion within the CNS, either concurrently, prior to, or following parenteral administration of poly-Glu,Tyr.
In another embodiment, poly-Glu,Tyr may be administered as a single dose or may be repeated, preferably at 2 week intervals, and then at successively longer intervals once a month, once a quarter, once every six months, etc. The course of treatment may last several months, several years or occasionally also through the life-time of the individual, depending on the condition or disease which is being treated. In the case of a CNS injury, the treatment may range between several days to months or even years, until the condition has stabilized and there is no or only a limited risk of development of secondary degeneration. In chronic human disease or Parkinson's disease, the therapeutic treatment in accordance with the invention may be for life.
As will be evident to those skilled in the art, the therapeutic effect depends at times on the condition or disease to be treated, on the individual's age and health condition, on other physical parameters (e.g., gender, weight, etc.) of the individual, as well as on various other factors, e.g., whether the individual is taking other drugs, etc.
The following examples illustrate certain features of the present invention but are not intended to limit the scope of the present invention.
EXAMPLES
Materials and Methods Animals. All animals were handled according to the regulations formulated by the Institutional Animal Care and Use Committee (IACUC). Mice of the C57BL/6J
strain, aged 8-13 weeks, and adult male SPD rats aged 8-12 weeks were supplied by the Animal Breeding Center of the Weizmann Institute of Science (Rehovot, Israel) and housed in light- and temperature-controlled rooms. The rats were matched for age and size in each experiment. Prior to the experiments, animals were anesthetized by intraperitoneal administration of ketamine 80 mg/kg and xylazine 16 mg/kg.
Antigens. MBP from the spinal cords of guinea pigs and ovalbumin (OVA), poly-Glu,Tyr and Con-A were purchased from Sigma (St. Louis, MO). Cop 1 was purchased from Teva Pharmaceuticals (Petah Tikva, Israel). The MBP p87-99 peptide was synthesized at the Weizmann Institute of Science (Rehovot, Israel).
Immunization. Mice or rats were immunized with 100 g of poly-Glu,Tyr emulsified with an equal volume of CFA containing 0.5 mg/ml Mycobacterium tuberculosis.
The emulsion (total volume 0.1 ml) was injected subcutaneously at one site in the flank in the mice and in the upper back in the rats. Control mice and rats were injected with PBS in CFA (Difco, Detroit, Michigan, USA).
Glutamate injection. The right eye of the anesthetized mouse or rat was punctured with a 27-gauge needle in the upper part of the sclera, and a 1 0- l Hamilton syringe with a 30-gauge needle was inserted as far as the vitreal body. Mice were injected with a total volume of 1 l (200 nmole) of L-glutamate dissolved in saline.
T Cell Lines. T cell lines were generated from draining lymph node cells obtained from Lewis rats immunized with the above antigens (Ben-Nun et al, 1981). The antigen was dissolved in PBS (1 mg/ml) and emulsified with an equal volume of incomplete Freund's adjuvant (IFA) (Difco Laboratories, Detroit, MI) supplemented with 4 mg/ml Mycobacterium tuberculosis (Difco). Ten days after the antigen was injected into the rats' hind foot pads in 0.1 ml of the emulsion, the rats were killed and their draining lymph nodes were surgically removed and dissociated. The cells were washed and activated with the antigen (10 gg/ml) in stimulation medium containing Dulbecco's modified Eagle's medium (DMEM) supplemented with L-glutamine (2 mM), 2-mercaptoethanol (5 x 10-M), sodium pyruvate (1 mM), penicillin (100 IU/ml), streptomycin (100 g/ml), non-essential amino acids (1 ml/I 00 ml), and autologous serum I% (volume/volume).
After incubation for 72 hours at 37 C, 98% relative humidity and 10% CO2, the cells were transferred to propagation medium consisting of DMEM, L-glutamine, 2-mercaptoethanol, sodium pyruvate, non-essential amino acids, and antibiotics in the same concentrations as above, with the addition of 10% fetal calf serum (FCS) (volume/volume) and 10%
T-cell growth factor derived from the supernatant of concanavalin A (ConA)-stimulated spleen cells. Cells were grown in propagation medium for 4-10 days before being restimulated with their antigen (10 gg/ml) in the presence of irradiated (2000 rad) thymus cells (107 cells/ml) in stimulation medium. The T cell lines were expanded by repeated stimulation and propagation (Ben-Nun et al, 1982).
Crush Injury of Optic Nerve: (a) The optic nerve was subjected to crush injury. Briefly, rats were deeply anesthetized by intraperitoneal (i.p.) injection of Rompun (xylazine, 10 mg/kg; Vitamed, Israel) and Vetalar (ketamine, 50 mg/kg; Fort Dodge Laboratories, Fort Dodge, IA). Using a binocular operating microscope, lateral canthotomy was performed in the right eye, and the conjunctiva was incised lateral to the cornea. After separation of the retractor bulbi muscles, the optic nerve was exposed intraorbitally by blunt dissection.
Using calibrated cross-action forceps, the optic nerve was subjected to a crush injury 1-2 mm from the eye. Mild and severe crush injuries were inflicted for short-term trials (two weeks), as this time period was shown to be optimal for demonstrating secondary degeneration and its response to treatment (Yoles, 1998). The uninjured contralateral nerve was left undisturbed; (b) Mice or rats were anesthetized and subjected to graded crush injury in the intraorbital portion of the optic nerve, 1-2 mm from the eyeball. With the aid of a binocular operating microscope, the conjunctiva was incised and the optic nerve exposed. Using cross-action calibrated forceps and taking special care not to interfere with the blood supply, the nerve was crushed for 2 s (mice) or 30 s (rats).
Measurement of Secondary Degeneration in the Rat following Optic Nerve Crush, by Retrograde Labeling of RGCs. Secondary degeneration of the optic nerve axons and their attached RGCs was measured by post-injury application of the fluorescent lipophilic dye, 4-(4-(didecylamino)styryl)-N-methylpyridinium iodide (4-Di-10-Asp) (Molecular Probes Europe By, Netherlands), distally to the lesion site, two weeks after crush injury. Because only axons that are intact can transport the dye back to their cell bodies, application of the dye distally to the lesion site after two weeks ensures that only axons that survived both the primary damage and the secondary degeneration will be counted. This approach enabled differentiation between neurons that are still functionally intact and neurons in which the axons are injured but the cell bodies are still viable, because only those neurons whose fibers are morphologically intact can take up dye applied distally to the site of injury and transport it to their cell bodies. Using this method, the number of labeled RGCs reliably reflects the number of still-functioning neurons. Labeling and measurement were carried out as follows: the right optic nerve was exposed for the second time, again without damaging the retinal blood supply. Complete axotomy was performed 1-2 mm from the distal border of the injury site and solid crystals (0.2-0.4 mm diameter) of 4-Di-10-Asp were deposited at the site of the newly formed axotomy. Five days after dye application the rats were killed. The retina was detached from the eye, prepared as a flattened whole mount in 4% paraformaldehyde solution, and examined for labeled RGCs by fluorescence microscopy.
The following examples illustrate certain features of the present invention but are not intended to limit the scope of the present invention.
EXAMPLES
Materials and Methods Animals. All animals were handled according to the regulations formulated by the Institutional Animal Care and Use Committee (IACUC). Mice of the C57BL/6J
strain, aged 8-13 weeks, and adult male SPD rats aged 8-12 weeks were supplied by the Animal Breeding Center of the Weizmann Institute of Science (Rehovot, Israel) and housed in light- and temperature-controlled rooms. The rats were matched for age and size in each experiment. Prior to the experiments, animals were anesthetized by intraperitoneal administration of ketamine 80 mg/kg and xylazine 16 mg/kg.
Antigens. MBP from the spinal cords of guinea pigs and ovalbumin (OVA), poly-Glu,Tyr and Con-A were purchased from Sigma (St. Louis, MO). Cop 1 was purchased from Teva Pharmaceuticals (Petah Tikva, Israel). The MBP p87-99 peptide was synthesized at the Weizmann Institute of Science (Rehovot, Israel).
Immunization. Mice or rats were immunized with 100 g of poly-Glu,Tyr emulsified with an equal volume of CFA containing 0.5 mg/ml Mycobacterium tuberculosis.
The emulsion (total volume 0.1 ml) was injected subcutaneously at one site in the flank in the mice and in the upper back in the rats. Control mice and rats were injected with PBS in CFA (Difco, Detroit, Michigan, USA).
Glutamate injection. The right eye of the anesthetized mouse or rat was punctured with a 27-gauge needle in the upper part of the sclera, and a 1 0- l Hamilton syringe with a 30-gauge needle was inserted as far as the vitreal body. Mice were injected with a total volume of 1 l (200 nmole) of L-glutamate dissolved in saline.
T Cell Lines. T cell lines were generated from draining lymph node cells obtained from Lewis rats immunized with the above antigens (Ben-Nun et al, 1981). The antigen was dissolved in PBS (1 mg/ml) and emulsified with an equal volume of incomplete Freund's adjuvant (IFA) (Difco Laboratories, Detroit, MI) supplemented with 4 mg/ml Mycobacterium tuberculosis (Difco). Ten days after the antigen was injected into the rats' hind foot pads in 0.1 ml of the emulsion, the rats were killed and their draining lymph nodes were surgically removed and dissociated. The cells were washed and activated with the antigen (10 gg/ml) in stimulation medium containing Dulbecco's modified Eagle's medium (DMEM) supplemented with L-glutamine (2 mM), 2-mercaptoethanol (5 x 10-M), sodium pyruvate (1 mM), penicillin (100 IU/ml), streptomycin (100 g/ml), non-essential amino acids (1 ml/I 00 ml), and autologous serum I% (volume/volume).
After incubation for 72 hours at 37 C, 98% relative humidity and 10% CO2, the cells were transferred to propagation medium consisting of DMEM, L-glutamine, 2-mercaptoethanol, sodium pyruvate, non-essential amino acids, and antibiotics in the same concentrations as above, with the addition of 10% fetal calf serum (FCS) (volume/volume) and 10%
T-cell growth factor derived from the supernatant of concanavalin A (ConA)-stimulated spleen cells. Cells were grown in propagation medium for 4-10 days before being restimulated with their antigen (10 gg/ml) in the presence of irradiated (2000 rad) thymus cells (107 cells/ml) in stimulation medium. The T cell lines were expanded by repeated stimulation and propagation (Ben-Nun et al, 1982).
Crush Injury of Optic Nerve: (a) The optic nerve was subjected to crush injury. Briefly, rats were deeply anesthetized by intraperitoneal (i.p.) injection of Rompun (xylazine, 10 mg/kg; Vitamed, Israel) and Vetalar (ketamine, 50 mg/kg; Fort Dodge Laboratories, Fort Dodge, IA). Using a binocular operating microscope, lateral canthotomy was performed in the right eye, and the conjunctiva was incised lateral to the cornea. After separation of the retractor bulbi muscles, the optic nerve was exposed intraorbitally by blunt dissection.
Using calibrated cross-action forceps, the optic nerve was subjected to a crush injury 1-2 mm from the eye. Mild and severe crush injuries were inflicted for short-term trials (two weeks), as this time period was shown to be optimal for demonstrating secondary degeneration and its response to treatment (Yoles, 1998). The uninjured contralateral nerve was left undisturbed; (b) Mice or rats were anesthetized and subjected to graded crush injury in the intraorbital portion of the optic nerve, 1-2 mm from the eyeball. With the aid of a binocular operating microscope, the conjunctiva was incised and the optic nerve exposed. Using cross-action calibrated forceps and taking special care not to interfere with the blood supply, the nerve was crushed for 2 s (mice) or 30 s (rats).
Measurement of Secondary Degeneration in the Rat following Optic Nerve Crush, by Retrograde Labeling of RGCs. Secondary degeneration of the optic nerve axons and their attached RGCs was measured by post-injury application of the fluorescent lipophilic dye, 4-(4-(didecylamino)styryl)-N-methylpyridinium iodide (4-Di-10-Asp) (Molecular Probes Europe By, Netherlands), distally to the lesion site, two weeks after crush injury. Because only axons that are intact can transport the dye back to their cell bodies, application of the dye distally to the lesion site after two weeks ensures that only axons that survived both the primary damage and the secondary degeneration will be counted. This approach enabled differentiation between neurons that are still functionally intact and neurons in which the axons are injured but the cell bodies are still viable, because only those neurons whose fibers are morphologically intact can take up dye applied distally to the site of injury and transport it to their cell bodies. Using this method, the number of labeled RGCs reliably reflects the number of still-functioning neurons. Labeling and measurement were carried out as follows: the right optic nerve was exposed for the second time, again without damaging the retinal blood supply. Complete axotomy was performed 1-2 mm from the distal border of the injury site and solid crystals (0.2-0.4 mm diameter) of 4-Di-10-Asp were deposited at the site of the newly formed axotomy. Five days after dye application the rats were killed. The retina was detached from the eye, prepared as a flattened whole mount in 4% paraformaldehyde solution, and examined for labeled RGCs by fluorescence microscopy.
Labeling of retinal ganglion cells (RCGs) in mice. RCGs were labeled 72 hours before the end of the experiment. Mice were anesthetized and placed in a stereotactic device. The skull was exposed and kept dry and clean. The bregma was identified and marked. The designated point of injection was at a depth of 2 mm from the brain surface, 2.92 mm behind the bregma in the anteroposterior axis and 0.5 mm lateral to the midline. A window was drilled in the scalp above the designated coordinates in the right and left hemispheres.
The neurotracer dye FluoroGold (5% solution in saline; Fluorochrome, Denver, CO) was then applied (1 l, at a rate of 0.5 l/min in each hemisphere) using a Hamilton syringe, and the skin over the wound was sutured.
Assessment of RGC survival in mice. Mice were given a lethal dose of pentobarbitone (170 mg/kg). Their eyes were enucleated and the retinas were detached and prepared as flattened whole mounts in paraformaldehyde (4% in PBS). Labeled cells from 4-6 selected fields of identical size (0.7 mm2) were counted. The selected fields were located at approximately the same distance from the optic disk (0.3 mm) to overcome the variation in RGC density as a function of distance from the optic disk. Fields were counted under the fluorescence microscope (magnification x800) by observers blinded to the treatment received by the mouse. The average number of RGCs per field in each retina was calculated.
Assessment of RGC survival in rats. Survival of RGCs in rats was measured after post-injury application of the fluorescent lipophilic dye, 4-(4-(didecylamino)styryl)-N-methylpyridinium iodide (4-Di-10-Asp) (Molecular Probes Europe By, Netherlands), distally to the optic nerve head. Labeling and measurement were carried out as follows:
the optic nerve was exposed without damaging the retinal blood supply.
Complete axotomy was performed 1-2 mm from the optic nerve head and solid crystals (0.2-0.4 mm diameter) of 4-Di-10-Asp were deposited at the site of the formed axotomy.
Five days after dye application the rats were killed. The retina was detached from the eye, prepared as a flattened whole mount in 4% paraformaldehyde solution, and examined for labeled RGCs by fluorescence microscopy. In the IOP experimental animals, the ganglion cells were labeled by retrograde transport dextran tetramethylrhodamine (DTMR) (Molecular Probes, OR). Crystals of 3000 MW DTMR were applied to the cut end of the optic nerve about 2 to 3 mm from the globe. Twenty-four hours later the retinas were whole-mounted and labeled ganglion cells in 8 regions, 2 in each quadrant, (0.66 to 1.103mm from the edge of the optic disk) were counted with 400x magnification.
Histological analysis. Seven days after glutamate or saline injection the mice were killed by injection of a lethal dose of pentobarbitone (170 mg/kg) and their eyes were removed and fixed in formaldehyde (4% in PBS) for 48 h at 4 C. Sections (10 m thick) were embedded in paraffin and stained with hematoxylin and eosin (H&E).
Generation of ocular hypertension in rats/Elevation of intraocular pressure in rats.
Male Lewis rats were anesthetized with a mixture of ketamine (15 mg/kg), acepromazine (1.5 mg/kg), and xylazine (0.3 mg/kg). An increase in intraocular pressure (IOP) was achieved by laser photocoagulation of the limbal and episcleral veins. Rats received 2 laser treatments, 1 week apart, with a blue-green argon laser (1 watt for 0.2 s, delivering a total of 130-150 spots of 50 m in the 2 treatments; Coherent, Palo Alto, CA).
IOP was measured once a week using TONO-PEN (Mentor, Norwell, MA), after injecting the rats intramuscularly with the veterinary tranquilizer acepromazine 3.0 mg/kg and applying procaine 0.5% topically on the eyes to anesthetize the cornea.
EXAMPLE 1. Physiological T-cell repertoire in contused animals.
SPD rats were anesthetized and their spinal cords were exposed by laminectomy at the level of T8. One hour after induction of anesthesia, a 10-g rod was dropped onto the laminectomized cord from a height of 50mm, using the NYU impactor (Basso et al., 1995 and 1996).
Rats were killed 8-10 days after spinal cord contusion and their spleens were excised and pressed trough a fine wire mesh. The washed cells (2x106/ml) were cultured in triplicate in flat-bottomed microtiter wells in 0.2 ml proliferation medium containing DMEM supplemented with L-glutamine (2 mM), 2-mercaptoethanol (5x10-5 M), sodium pyruvate (1 mM), penicillin (100 IU/ml), streptomycin (100 g/ml), non-essential amino acids, and autologous rat serum 1% (vol/vol) with the antigen (15 g/ml) or Con A (1.25 g/ml), and irradiated thymocytes (2000 rad, 2x106 cells/ml). The proliferative response to different antigens namely Ova, Cop 1, MBP, 87-99, poly-Glu,Tyr and Con A, was determined by measuring the incorporation of [3H]thymidine (1 pCi/well), which was added for the last 16h of a 72h culture. The splenocyte proliferation index (SI) was determined as compared to the proliferation of the splenocytes in medium with no antigen (SI=1 indicates no proliferation response to the antigen above the proliferation without any antigen). This parameter is indicative of the physiological T-cell repertoire in contused animals. Con-A is the positive control. The results in Fig. 1 indicate that in the spinally contused rats there is a high occurrence of T-cells reactive to poly-Glu,Tyr, more than to Cop-1 or to MBP.
EXAMPLE 2. Protection of optic nerve fibers from glutamate toxicity In order to find out whether poly-Glu,Tyr can impart a more general neuroprotection from hostile environmental conditions caused by glutamate-induced toxicity, the following experiment was conducted.
Injection of the excitatory neurotransmitter glutamate into the vitreal body of C57B1/6J mice eye causes dose-dependent death of the cell bodies of optic nerve neurons.
A previous study showed that the onset of RGC death is delayed (by more than 24 hours after glutamate injection) and is apoptotic-like.
In the present experiment, 8-week-old male C57B1/6J mice were immunized subcutaneously with 100 g poly-Glu,Tyr emulsified in CFA, 7 days prior to glutamate injection. A group of mice immunized at the same time with PBS emulsified in CFA to rule out a non-specific effect of the immunization and a group of non-immunized mice served as controls. Mice in all three groups received an injection of glutamate (400 nmole) into the vitreous of the right eye. The left eye received no injection and was used as an intact control. Seven days after glutamate injection, the eyes were excised and RGC
survival was determined.
The average number of RGCs per mm2 counted in the intact retinas of the poly-Glu,Tyr-immunized, the PBS-immunized, and the non-immunized mice were 2796 165, 2874 197 and 2807 42, respectively, indicating that immunization had no effect on survival of RGCs in the contralateral intact eye. These average values of RGCs per mm2 in intact retina in all 3 experimental groups were therefore combined and taken as 100%
RGC survival (0% toxicity).
The results depicted in Fig. 2 show that immunization of the mice with poly-Glu,Tyr in CFA (CFA-EY) significantly attenuated the glutamate-induced RGC
death compared to immunization with PBS (t-test, p=0.007) or to non-immunization (t-test, p=0.01). There was no difference in RGC survival between the 2 latter groups (t-test, p=
0.71).
EXAMPLE 3. Neuroprotection in spinal cord injury Acute incomplete spinal cord injury at the low thoracic levels causes an immediate loss of hindlimb motor activity that spontaneously recovers within the first 12 days post-injury and stabilizes on deficient movement abilities. The amount of motor function restoration is the sum up effect of the positive recovery from spinal shock and the negative effect of longitudinal and ventral spread of damage. A therapeutic approach aiming at reducing the spread of damage through neuroprotection will result in a better recovery in terms of hind limb motor activity.
In the following experiments, the effect of active or passive immunization with poly-Glu,Tyr on motor activity of the hind limb after spinal cord contusion, was tested.
3.1 Active immunization with poly-Glu,Tyr : the effect of poly-Glu,Tyr/CFA
immunization on rat recovery from spinal cord contusion A contusive injury of the spinal cord was inflicted on anesthetized 12 SPD
male rats by using the NYU impactor device to drop a 10-g rod from a height of 50 mm onto the exposed laminectomized spinal cord at level T8. The NYU impactor device used allowed, for each animal, measurement of the trajectory of the rod and its contact with the exposed spinal cord to allow uniform lesion.
Due to the spinal shock, the motor skills of the rats' hindlimbs initially disappeared, but recovered with time to reach a steady state of deficient motor activity.
The amount of this deficiency caused by the injury can be reduced with adequate neuroprotective treatment.
The rats were divided into 2 groups (6 each) according to their impact errors to achieve similar groups. In one group, the rats were SC immunized in their upper back with PBS/CFA (triangles). In the other group, the rats were SC immunized with pEY/CFA (100 pg/rat, squares). Both groups were immunized immediately after the injury and 7 days later both groups received a second immunization identical to the first one.
The hind limb motor skills of the animals were scored using a scoring method developed by Basso et al., 1995 (the locomotor activity is scored (range of 0-21) according to the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale) following the kinetics and amount of hind limb motor activity in the two experimental groups. Approximately twice a week, locomotor activity of the trunk, tail and hind limbs in an open field was evaluated by placing the rat for 4 min in the middle of a circular enclosure made of molded plastic with a smooth, non-slip floor (90 cm diameter, 7 cm wall height). The results depicted in Fig. 3 show that rats treated with pEY (squares) showed a tendency to recover better than PBS-treated rats.
3.2 Passive immunization with poly-Glu,Tyr In order to examine whether poly-Glu,Tyr-specific T cells also provide neuroprotection after spinal cord injury, the following experiment was conducted.
For the preparation of the T cells, four SPD rats were SC immunized in their lower back with pEY/CFA (125 g/rat). Seven days later their splenocytes were harvested and a single cell suspension was prepared by pressing the spleens against a metal mesh using the plunger of a syringe. The splenocytes were activated in culture for 3 days with pEY (10 g/ml). The cells were harvested, washed in PBS and counted.
Another group of 12 male SPD rats went trough surgery and their spinal cord contused at T7 level using 1 0-g weight drop from 50 mm height as described in Example 3.1 above. Immediately after the contusion, the rats were divided to 2 equal groups according to their impact errors. One group received intravenously 0.5 ml of PBS and the other group received splenocytes activated with pEY (30x 1 06/0). .5ml PBS/rat). The rats were followed for their recovery of function using the open field BBB score.
The results depicted in Fig. 4 show that the rats treated with splenocytes activated with pEY (squares) recovered better than the control group (triangles).
The neurotracer dye FluoroGold (5% solution in saline; Fluorochrome, Denver, CO) was then applied (1 l, at a rate of 0.5 l/min in each hemisphere) using a Hamilton syringe, and the skin over the wound was sutured.
Assessment of RGC survival in mice. Mice were given a lethal dose of pentobarbitone (170 mg/kg). Their eyes were enucleated and the retinas were detached and prepared as flattened whole mounts in paraformaldehyde (4% in PBS). Labeled cells from 4-6 selected fields of identical size (0.7 mm2) were counted. The selected fields were located at approximately the same distance from the optic disk (0.3 mm) to overcome the variation in RGC density as a function of distance from the optic disk. Fields were counted under the fluorescence microscope (magnification x800) by observers blinded to the treatment received by the mouse. The average number of RGCs per field in each retina was calculated.
Assessment of RGC survival in rats. Survival of RGCs in rats was measured after post-injury application of the fluorescent lipophilic dye, 4-(4-(didecylamino)styryl)-N-methylpyridinium iodide (4-Di-10-Asp) (Molecular Probes Europe By, Netherlands), distally to the optic nerve head. Labeling and measurement were carried out as follows:
the optic nerve was exposed without damaging the retinal blood supply.
Complete axotomy was performed 1-2 mm from the optic nerve head and solid crystals (0.2-0.4 mm diameter) of 4-Di-10-Asp were deposited at the site of the formed axotomy.
Five days after dye application the rats were killed. The retina was detached from the eye, prepared as a flattened whole mount in 4% paraformaldehyde solution, and examined for labeled RGCs by fluorescence microscopy. In the IOP experimental animals, the ganglion cells were labeled by retrograde transport dextran tetramethylrhodamine (DTMR) (Molecular Probes, OR). Crystals of 3000 MW DTMR were applied to the cut end of the optic nerve about 2 to 3 mm from the globe. Twenty-four hours later the retinas were whole-mounted and labeled ganglion cells in 8 regions, 2 in each quadrant, (0.66 to 1.103mm from the edge of the optic disk) were counted with 400x magnification.
Histological analysis. Seven days after glutamate or saline injection the mice were killed by injection of a lethal dose of pentobarbitone (170 mg/kg) and their eyes were removed and fixed in formaldehyde (4% in PBS) for 48 h at 4 C. Sections (10 m thick) were embedded in paraffin and stained with hematoxylin and eosin (H&E).
Generation of ocular hypertension in rats/Elevation of intraocular pressure in rats.
Male Lewis rats were anesthetized with a mixture of ketamine (15 mg/kg), acepromazine (1.5 mg/kg), and xylazine (0.3 mg/kg). An increase in intraocular pressure (IOP) was achieved by laser photocoagulation of the limbal and episcleral veins. Rats received 2 laser treatments, 1 week apart, with a blue-green argon laser (1 watt for 0.2 s, delivering a total of 130-150 spots of 50 m in the 2 treatments; Coherent, Palo Alto, CA).
IOP was measured once a week using TONO-PEN (Mentor, Norwell, MA), after injecting the rats intramuscularly with the veterinary tranquilizer acepromazine 3.0 mg/kg and applying procaine 0.5% topically on the eyes to anesthetize the cornea.
EXAMPLE 1. Physiological T-cell repertoire in contused animals.
SPD rats were anesthetized and their spinal cords were exposed by laminectomy at the level of T8. One hour after induction of anesthesia, a 10-g rod was dropped onto the laminectomized cord from a height of 50mm, using the NYU impactor (Basso et al., 1995 and 1996).
Rats were killed 8-10 days after spinal cord contusion and their spleens were excised and pressed trough a fine wire mesh. The washed cells (2x106/ml) were cultured in triplicate in flat-bottomed microtiter wells in 0.2 ml proliferation medium containing DMEM supplemented with L-glutamine (2 mM), 2-mercaptoethanol (5x10-5 M), sodium pyruvate (1 mM), penicillin (100 IU/ml), streptomycin (100 g/ml), non-essential amino acids, and autologous rat serum 1% (vol/vol) with the antigen (15 g/ml) or Con A (1.25 g/ml), and irradiated thymocytes (2000 rad, 2x106 cells/ml). The proliferative response to different antigens namely Ova, Cop 1, MBP, 87-99, poly-Glu,Tyr and Con A, was determined by measuring the incorporation of [3H]thymidine (1 pCi/well), which was added for the last 16h of a 72h culture. The splenocyte proliferation index (SI) was determined as compared to the proliferation of the splenocytes in medium with no antigen (SI=1 indicates no proliferation response to the antigen above the proliferation without any antigen). This parameter is indicative of the physiological T-cell repertoire in contused animals. Con-A is the positive control. The results in Fig. 1 indicate that in the spinally contused rats there is a high occurrence of T-cells reactive to poly-Glu,Tyr, more than to Cop-1 or to MBP.
EXAMPLE 2. Protection of optic nerve fibers from glutamate toxicity In order to find out whether poly-Glu,Tyr can impart a more general neuroprotection from hostile environmental conditions caused by glutamate-induced toxicity, the following experiment was conducted.
Injection of the excitatory neurotransmitter glutamate into the vitreal body of C57B1/6J mice eye causes dose-dependent death of the cell bodies of optic nerve neurons.
A previous study showed that the onset of RGC death is delayed (by more than 24 hours after glutamate injection) and is apoptotic-like.
In the present experiment, 8-week-old male C57B1/6J mice were immunized subcutaneously with 100 g poly-Glu,Tyr emulsified in CFA, 7 days prior to glutamate injection. A group of mice immunized at the same time with PBS emulsified in CFA to rule out a non-specific effect of the immunization and a group of non-immunized mice served as controls. Mice in all three groups received an injection of glutamate (400 nmole) into the vitreous of the right eye. The left eye received no injection and was used as an intact control. Seven days after glutamate injection, the eyes were excised and RGC
survival was determined.
The average number of RGCs per mm2 counted in the intact retinas of the poly-Glu,Tyr-immunized, the PBS-immunized, and the non-immunized mice were 2796 165, 2874 197 and 2807 42, respectively, indicating that immunization had no effect on survival of RGCs in the contralateral intact eye. These average values of RGCs per mm2 in intact retina in all 3 experimental groups were therefore combined and taken as 100%
RGC survival (0% toxicity).
The results depicted in Fig. 2 show that immunization of the mice with poly-Glu,Tyr in CFA (CFA-EY) significantly attenuated the glutamate-induced RGC
death compared to immunization with PBS (t-test, p=0.007) or to non-immunization (t-test, p=0.01). There was no difference in RGC survival between the 2 latter groups (t-test, p=
0.71).
EXAMPLE 3. Neuroprotection in spinal cord injury Acute incomplete spinal cord injury at the low thoracic levels causes an immediate loss of hindlimb motor activity that spontaneously recovers within the first 12 days post-injury and stabilizes on deficient movement abilities. The amount of motor function restoration is the sum up effect of the positive recovery from spinal shock and the negative effect of longitudinal and ventral spread of damage. A therapeutic approach aiming at reducing the spread of damage through neuroprotection will result in a better recovery in terms of hind limb motor activity.
In the following experiments, the effect of active or passive immunization with poly-Glu,Tyr on motor activity of the hind limb after spinal cord contusion, was tested.
3.1 Active immunization with poly-Glu,Tyr : the effect of poly-Glu,Tyr/CFA
immunization on rat recovery from spinal cord contusion A contusive injury of the spinal cord was inflicted on anesthetized 12 SPD
male rats by using the NYU impactor device to drop a 10-g rod from a height of 50 mm onto the exposed laminectomized spinal cord at level T8. The NYU impactor device used allowed, for each animal, measurement of the trajectory of the rod and its contact with the exposed spinal cord to allow uniform lesion.
Due to the spinal shock, the motor skills of the rats' hindlimbs initially disappeared, but recovered with time to reach a steady state of deficient motor activity.
The amount of this deficiency caused by the injury can be reduced with adequate neuroprotective treatment.
The rats were divided into 2 groups (6 each) according to their impact errors to achieve similar groups. In one group, the rats were SC immunized in their upper back with PBS/CFA (triangles). In the other group, the rats were SC immunized with pEY/CFA (100 pg/rat, squares). Both groups were immunized immediately after the injury and 7 days later both groups received a second immunization identical to the first one.
The hind limb motor skills of the animals were scored using a scoring method developed by Basso et al., 1995 (the locomotor activity is scored (range of 0-21) according to the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale) following the kinetics and amount of hind limb motor activity in the two experimental groups. Approximately twice a week, locomotor activity of the trunk, tail and hind limbs in an open field was evaluated by placing the rat for 4 min in the middle of a circular enclosure made of molded plastic with a smooth, non-slip floor (90 cm diameter, 7 cm wall height). The results depicted in Fig. 3 show that rats treated with pEY (squares) showed a tendency to recover better than PBS-treated rats.
3.2 Passive immunization with poly-Glu,Tyr In order to examine whether poly-Glu,Tyr-specific T cells also provide neuroprotection after spinal cord injury, the following experiment was conducted.
For the preparation of the T cells, four SPD rats were SC immunized in their lower back with pEY/CFA (125 g/rat). Seven days later their splenocytes were harvested and a single cell suspension was prepared by pressing the spleens against a metal mesh using the plunger of a syringe. The splenocytes were activated in culture for 3 days with pEY (10 g/ml). The cells were harvested, washed in PBS and counted.
Another group of 12 male SPD rats went trough surgery and their spinal cord contused at T7 level using 1 0-g weight drop from 50 mm height as described in Example 3.1 above. Immediately after the contusion, the rats were divided to 2 equal groups according to their impact errors. One group received intravenously 0.5 ml of PBS and the other group received splenocytes activated with pEY (30x 1 06/0). .5ml PBS/rat). The rats were followed for their recovery of function using the open field BBB score.
The results depicted in Fig. 4 show that the rats treated with splenocytes activated with pEY (squares) recovered better than the control group (triangles).
REFERENCES
Basso et al, "A sensitive and reliable locomotor rating scale for open field testing in rats", J. Neurotrauma 12(l):1-21 (1995) Basso et al, "Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection", Exp.Neurol. 139(2): 244-(1996) Ben-Nun et al, "The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis", Eur. J. Immunol._11(3):195-(1981) Ben-Nun et al, "Experimental autoimmune encephalomyelitis (EAE) mediated by T
cell lines: process of selection of lines and characterization of the cells", J.
Immunol.
129(l):303-308 (1982) Debre et al., "Genetic control of specific immune suppression. II. H-2-linked dominant genetic control of immune suppression by the random copolymer L-glutamic acid50-L-tyrosine50 (GT)", J. Exp. Med. 142(6):1447-54 (1975) Hauben et al, "Autoimmune T cells as potential neuroprotective therapy for spinal cord injury", Lancet 355:286-287 (2000) Hickey, W.F. et al, "T-lymphocyte entry into the central nervous system", J.
Neurosci.
Res. 28(2):254-260 (1991) Hirschberg et al, "Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma" J.
Neuroimmunol. 89(1-2):88-96 (1998) Lynch et al, "Secondary mechanisms in neuronal trauma, Curr. Opin. Neurol.
7(6):510-516 (1994) McIntosh, T.K., "Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review", J. Neurotrauma 10(3):215-261 (1993) Meldrum, "Glutamate as a neurotransmitter in the brain: review of physiology and pathology", J. Nutr. 130:(4S Suppl):1007S-1015S (2000) Moalem et al, "Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy", Nat. Med. 5:49-55 (1999a) Mor et al, "Pathogenicity of T cells responsive to diverse cryptic epitopes of myelin basic protein in the Lewis rat", J. Immunol. 155(7):3693-3699 (1995) Ota et al, "T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis", Nature 346(6280):183-187 (1990) Pette et al, "Myelin basic protein-specific T lymphocyte lines from MS
patients and healthy individuals", Proc. Natl. Acad. Sci. USA 87(2):7968-7972 (1990) Pitt et al., "Glutamate excitotoxicity in a model of multiple sclerosis", Nat Med, 6:67-70 (2000) Seo et al, "Activation of murine epidermal V gamma 5/V delta 1-TCR(+) T cell lines by Glu-Tyr polypeptides", J. Invest. Dermatol. 116(6):880-885 (2001) Vidovic et al., Recessive T cell response to poly (Glu50Tyr.50) possibly caused by self tolerance", J. Immunol. 134(6):3563-68 (1985) Vidovic and Matzinger, "Unresponsiveness to a foreign antigen can be caused by self-tolerance", Nature 336:222 (1988) Yoles et al, "Degeneration of spared axons following partial white matter lesion:
implications for optic nerve neuropathies", Exp. Neurol. 153:1-7 (1998)
Basso et al, "A sensitive and reliable locomotor rating scale for open field testing in rats", J. Neurotrauma 12(l):1-21 (1995) Basso et al, "Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection", Exp.Neurol. 139(2): 244-(1996) Ben-Nun et al, "The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis", Eur. J. Immunol._11(3):195-(1981) Ben-Nun et al, "Experimental autoimmune encephalomyelitis (EAE) mediated by T
cell lines: process of selection of lines and characterization of the cells", J.
Immunol.
129(l):303-308 (1982) Debre et al., "Genetic control of specific immune suppression. II. H-2-linked dominant genetic control of immune suppression by the random copolymer L-glutamic acid50-L-tyrosine50 (GT)", J. Exp. Med. 142(6):1447-54 (1975) Hauben et al, "Autoimmune T cells as potential neuroprotective therapy for spinal cord injury", Lancet 355:286-287 (2000) Hickey, W.F. et al, "T-lymphocyte entry into the central nervous system", J.
Neurosci.
Res. 28(2):254-260 (1991) Hirschberg et al, "Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma" J.
Neuroimmunol. 89(1-2):88-96 (1998) Lynch et al, "Secondary mechanisms in neuronal trauma, Curr. Opin. Neurol.
7(6):510-516 (1994) McIntosh, T.K., "Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review", J. Neurotrauma 10(3):215-261 (1993) Meldrum, "Glutamate as a neurotransmitter in the brain: review of physiology and pathology", J. Nutr. 130:(4S Suppl):1007S-1015S (2000) Moalem et al, "Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy", Nat. Med. 5:49-55 (1999a) Mor et al, "Pathogenicity of T cells responsive to diverse cryptic epitopes of myelin basic protein in the Lewis rat", J. Immunol. 155(7):3693-3699 (1995) Ota et al, "T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis", Nature 346(6280):183-187 (1990) Pette et al, "Myelin basic protein-specific T lymphocyte lines from MS
patients and healthy individuals", Proc. Natl. Acad. Sci. USA 87(2):7968-7972 (1990) Pitt et al., "Glutamate excitotoxicity in a model of multiple sclerosis", Nat Med, 6:67-70 (2000) Seo et al, "Activation of murine epidermal V gamma 5/V delta 1-TCR(+) T cell lines by Glu-Tyr polypeptides", J. Invest. Dermatol. 116(6):880-885 (2001) Vidovic et al., Recessive T cell response to poly (Glu50Tyr.50) possibly caused by self tolerance", J. Immunol. 134(6):3563-68 (1985) Vidovic and Matzinger, "Unresponsiveness to a foreign antigen can be caused by self-tolerance", Nature 336:222 (1988) Yoles et al, "Degeneration of spared axons following partial white matter lesion:
implications for optic nerve neuropathies", Exp. Neurol. 153:1-7 (1998)
Claims (7)
1. Use of poly-Glu50,Tyr50 for the preparation of a pharmaceutical composition for preventing or inhibiting neuronal degeneration in the central nervous system (CNS) or peripheral nervous system (PNS), for promoting nerve regeneration in the CNS
or PNS, for protecting CNS cells from glutamate toxicity, or for treating an injury, disorder or disease in the CNS or PNS caused or exacerbated by glutamate toxicity.
or PNS, for protecting CNS cells from glutamate toxicity, or for treating an injury, disorder or disease in the CNS or PNS caused or exacerbated by glutamate toxicity.
2. Use according to claim 1, wherein the pharmaceutical composition is for treating an injury, disorder or disease of the CNS or PNS in order to prevent or inhibit neuronal degeneration or for promoting nerve regeneration, or for treating an injury, disorder or disease in the CNS or PNS caused or exacerbated by glutamate toxicity.
3. Use according to claim 2, wherein said injury, disorder or disease is spinal cord injury, blunt trauma, penetrating trauma, brain coup or contrecoup, hemorrhagic stroke, or ischemic stroke.
4. Use according to claim 3, wherein said injury is spinal cord injury.
5. Use according to claim 2, wherein said injury, disorder or disease is a senile dementia which is Alzheimer's disease or Parkinson's disease, facial nerve (Bell's) palsy, Huntington's chorea, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Alper's disease, Batten disease, Cockayne syndrome, Lewy body disease, status epilepticus, carpal tunnel syndrome, intervertebral disc herniation, vitamin deficiency, epilepsy, amnesia, anxiety, hyperalgesia, psychosis, seizures, oxidative stress, opiate tolerance or dependence, an autoimmune disease, or a peripheral neuropathy associated with amyloid polyneuropathy, diabetic neuropathy, uremic neuropathy, porphyric polyneuropathy or hypoglycemia, Sjogren-Larsson syndrome, acute sensory neuropathy, chronic ataxic neuropathy, biliary cirrhosis, primary amyloidosis, obstructive lung diseases, acromegaly, malabsorption syndromes, polycythemia vera, IgA or IgG gammapathies, complications of various drugs selected from the group consisting of nitrofurantoin, metronidazole, or isoniazid or toxins selected from the group consisting of alcohol and organophosphates, Charcot-Marie-Tooth disease, ataxia telangiectasia, Friedreich's ataxia, adrenomyeloneuropathy, giant axonal neuropathy, Refsum's disease, Fabry's disease, or lipoproteinemia.
6. Use according to claim 2, wherein said injury, disorder or disease is associated with the eye and is non-arteritic optic neuropathy, age-related macular degeneration, retinal degeneration or a disease associated with abnormally elevated intraocular pressure.
7. Use according to claim 6, wherein said disease associated with abnormally elevated intraocular pressure is glaucoma.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/893,344 US6835711B2 (en) | 2001-06-28 | 2001-06-28 | Use of poly-Glu,Tyr for neuroprotective therapy |
US09/893,344 | 2001-06-28 | ||
PCT/IL2002/000517 WO2003002140A1 (en) | 2001-06-28 | 2002-06-27 | Use of poly-glu, tyr and t cells treated therewith for neuroprotection therapy |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2451521A1 CA2451521A1 (en) | 2003-01-09 |
CA2451521C true CA2451521C (en) | 2011-05-17 |
Family
ID=25401407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2451521A Expired - Fee Related CA2451521C (en) | 2001-06-28 | 2002-06-27 | Use of poly-glu, tyr for neuroprotective therapy |
Country Status (16)
Country | Link |
---|---|
US (1) | US6835711B2 (en) |
EP (1) | EP1406650B1 (en) |
JP (1) | JP4434729B2 (en) |
KR (1) | KR20040032825A (en) |
CN (1) | CN1326560C (en) |
AT (1) | ATE412419T1 (en) |
AU (1) | AU2002345323B2 (en) |
CA (1) | CA2451521C (en) |
DE (1) | DE60229639D1 (en) |
DK (1) | DK1406650T3 (en) |
ES (1) | ES2315371T3 (en) |
HK (1) | HK1064951A1 (en) |
IL (1) | IL159535A0 (en) |
MX (1) | MXPA03011926A (en) |
NZ (1) | NZ530261A (en) |
WO (1) | WO2003002140A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7399740B2 (en) * | 2001-06-28 | 2008-07-15 | Yeda Research And Development Co. Ltd. | Poly-Glu,Tyr for neuroprotective therapy |
WO2004060266A2 (en) * | 2003-01-07 | 2004-07-22 | Yeda Research And Development Co. Ltd. | Eye-drop vaccine containing copolymer poly-ye for therapeutic immunization |
NZ533356A (en) * | 2001-12-06 | 2006-10-27 | Yeda Res & Dev | Vaccine and method for treatment of motor neurone diseases |
CA2529488A1 (en) * | 2003-06-16 | 2004-12-23 | Kyushu Tlo Company, Limited | Method for producing human-derived immunocompetent cells |
US9592258B2 (en) | 2003-06-27 | 2017-03-14 | DePuy Synthes Products, Inc. | Treatment of neurological injury by administration of human umbilical cord tissue-derived cells |
WO2005055920A2 (en) * | 2003-12-09 | 2005-06-23 | Yeda Research And Development Co. Ltd. | Compositions and methods for treatment of psychiatric disorders |
PL1701730T3 (en) * | 2003-12-09 | 2014-04-30 | Yeda Res & Dev | Method and vaccine comprising copolymer 1 for treatment of psychiatric disorders |
CA2588908C (en) * | 2004-11-29 | 2014-09-23 | Yeda Research And Development Co. Ltd | Induction of neurogenesis and stem cell therapy in combination with copolymer 1 |
US9220813B2 (en) * | 2005-04-18 | 2015-12-29 | Holy Cross Hospital, Inc. | Cell therapy for limiting overzealous inflammatory reactions in tissue healing |
CA2709662A1 (en) * | 2007-12-21 | 2009-07-02 | Alon Monsonego | A method of treating neurodegenerative diseases |
WO2009124170A1 (en) * | 2008-04-04 | 2009-10-08 | The Cleveland Clinic Foundation | Use of epineural sheath grafts for neural regeneration and protection |
DK2379087T3 (en) * | 2008-12-19 | 2014-11-10 | Depuy Synthes Products Llc | Cells derived from umbilical cord tissue for the treatment of neuropathic pain and spasticity |
BRPI1013409A2 (en) | 2009-03-26 | 2018-01-16 | Advanced Tech And Regenerative Medicine Llc | human umbilical cord tissue cells as therapy for alzheimer's disease |
US20120171172A1 (en) * | 2009-09-04 | 2012-07-05 | Maria Siemionow | Methods Of Engineering Neural Tissue |
JP5916622B2 (en) | 2010-01-04 | 2016-05-11 | マピ ファーマ リミテッド | Depot system containing glatiramer or a pharmacologically acceptable salt thereof |
USRE49251E1 (en) | 2010-01-04 | 2022-10-18 | Mapi Pharma Ltd. | Depot systems comprising glatiramer or pharmacologically acceptable salt thereof |
US8377885B2 (en) | 2010-01-04 | 2013-02-19 | Mapi Pharma Ltd. | Depot systems comprising glatiramer or pharmacologically acceptable salt thereof |
ES2601892T3 (en) | 2011-04-21 | 2017-02-16 | Mapi Pharma Limited | Random Pentapolymer for the treatment of autoimmune diseases |
US12097292B2 (en) | 2016-08-28 | 2024-09-24 | Mapi Pharma Ltd. | Process for preparing microparticles containing glatiramer acetate |
US11167003B2 (en) | 2017-03-26 | 2021-11-09 | Mapi Pharma Ltd. | Methods for suppressing or alleviating primary or secondary progressive multiple sclerosis (PPMS or SPMS) using sustained release glatiramer depot systems |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1039929A1 (en) | 1998-07-21 | 2000-10-04 | YEDA RESEARCH AND DEVELOPMENT Co. Ltd. | Activated t-cells and their uses |
-
2001
- 2001-06-28 US US09/893,344 patent/US6835711B2/en not_active Expired - Fee Related
-
2002
- 2002-06-27 AU AU2002345323A patent/AU2002345323B2/en not_active Ceased
- 2002-06-27 JP JP2003508379A patent/JP4434729B2/en not_active Expired - Fee Related
- 2002-06-27 DE DE60229639T patent/DE60229639D1/en not_active Expired - Lifetime
- 2002-06-27 CA CA2451521A patent/CA2451521C/en not_active Expired - Fee Related
- 2002-06-27 NZ NZ530261A patent/NZ530261A/en not_active IP Right Cessation
- 2002-06-27 CN CNB028165462A patent/CN1326560C/en not_active Expired - Fee Related
- 2002-06-27 ES ES02743592T patent/ES2315371T3/en not_active Expired - Lifetime
- 2002-06-27 KR KR10-2003-7016949A patent/KR20040032825A/en not_active Application Discontinuation
- 2002-06-27 MX MXPA03011926A patent/MXPA03011926A/en active IP Right Grant
- 2002-06-27 DK DK02743592T patent/DK1406650T3/en active
- 2002-06-27 AT AT02743592T patent/ATE412419T1/en not_active IP Right Cessation
- 2002-06-27 IL IL15953502A patent/IL159535A0/en unknown
- 2002-06-27 WO PCT/IL2002/000517 patent/WO2003002140A1/en active Application Filing
- 2002-06-27 EP EP02743592A patent/EP1406650B1/en not_active Expired - Lifetime
-
2004
- 2004-10-12 HK HK04107851.9A patent/HK1064951A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2005502616A (en) | 2005-01-27 |
DE60229639D1 (en) | 2008-12-11 |
IL159535A0 (en) | 2004-06-01 |
EP1406650A1 (en) | 2004-04-14 |
ES2315371T3 (en) | 2009-04-01 |
NZ530261A (en) | 2006-06-30 |
KR20040032825A (en) | 2004-04-17 |
US6835711B2 (en) | 2004-12-28 |
DK1406650T3 (en) | 2009-03-02 |
MXPA03011926A (en) | 2004-03-26 |
HK1064951A1 (en) | 2005-02-08 |
CN1326560C (en) | 2007-07-18 |
AU2002345323B2 (en) | 2006-12-21 |
EP1406650B1 (en) | 2008-10-29 |
ATE412419T1 (en) | 2008-11-15 |
JP4434729B2 (en) | 2010-03-17 |
CA2451521A1 (en) | 2003-01-09 |
US20030003082A1 (en) | 2003-01-02 |
WO2003002140A1 (en) | 2003-01-09 |
CN1547482A (en) | 2004-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2451521C (en) | Use of poly-glu, tyr for neuroprotective therapy | |
EP1248643B1 (en) | The use of copolymer 1 and related peptides and polypeptides and t cells treated therewith for neuroprotective therapy | |
EP1294390B1 (en) | The use of copolymer 1 and related peptides and polypeptides and t cells treated therewith for neuroprotection from glutamate toxicity | |
AU2002345323A1 (en) | Use of poly-Glu, Tyr for neuroprotective therapy | |
US7399740B2 (en) | Poly-Glu,Tyr for neuroprotective therapy | |
IL159535A (en) | USE OF POLY-Glu50, Tyr50 FOR THE PREPARATION OF PHARMACEUTICAL COMPOSITIONS FOR NEUROPROTECTION THERAPY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |