CA2447517C - Metered dose inhaler for fluticasone propionate - Google Patents

Metered dose inhaler for fluticasone propionate Download PDF

Info

Publication number
CA2447517C
CA2447517C CA002447517A CA2447517A CA2447517C CA 2447517 C CA2447517 C CA 2447517C CA 002447517 A CA002447517 A CA 002447517A CA 2447517 A CA2447517 A CA 2447517A CA 2447517 C CA2447517 C CA 2447517C
Authority
CA
Canada
Prior art keywords
inhaler according
drug formulation
fluticasone propionate
fluorocarbon
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002447517A
Other languages
French (fr)
Other versions
CA2447517A1 (en
Inventor
Ian C. Ashurst
Craig S. Herman
Li Li-Bovet
Michael T. Riebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Corp
Original Assignee
SmithKline Beecham Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32073639&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2447517(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SmithKline Beecham Corp filed Critical SmithKline Beecham Corp
Priority claimed from CA002367013A external-priority patent/CA2367013C/en
Publication of CA2447517A1 publication Critical patent/CA2447517A1/en
Application granted granted Critical
Publication of CA2447517C publication Critical patent/CA2447517C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A metered dose inhaler has part or all of its internal surfaces coated with fluorinated ethylene propylene (FEP) and contains an inhalation drug formulation comprising fluticasone propionate or a physiologically acceptable solvate thereof and a fluorocarbon propellant, optionally in combination with one or more other pharmacologically active agents or one or more excipients.

Description

This Application is a Division of Canadian Patxnt Application S:N.
2,367,013, filed April 10, 1996.
BACKGROUND OF THE INVENTION
Drugs for treating respiratory and nasal disorders are frequently administered in aerosol formulations through the mouth or nose. One widely used method for dispensing such aerosol drug formulations involves making a suspension formulation of the drug as a finely divided powder in a liquefied gas known as a propellant. The suspension is stored in a sealed container capable of withstanding the pressure required to maintain the propellant as a liquid. The suspension is dispersed by activation of a dose metering valve affixed to the container.
A metering valve may be designed to consistently release a fixed, predetermined mass of the drug formulation upon each activation. As the suspension is forced from the container through the dose metering valve by the high vapor pressure of the propellant, the propellant rapidly vaporizes leaving a fast moving cloud of very fine particles of the drug formulation. This cloud of particles is directed into the nose or mouth of the patient by a channelling device such as a cylinder or open ended cone. Concurrently with the activation of the aerosol dose metering valve, the patient inhales the drug particles into the lungs or nasal cavity. Systems of dispensing drugs in this way are known as 'metered dose inhalers'(MDI's). See Peter Byron, Respiratory Drug Delivery, CRC Press, Boca Raton, FL (1990) for a general background on this form of therapy.
Patients often rely on medication delivered by MDI's for rapid treatment of respiratory disorders which are debilitating and in some cases, even life threatening. Therefore, it is essential that the prescribed dose of aerosol medication delivered to the patient consistently meet the specifications claimed by the manufacturer and comply with the requirements of the FDA and other regulatory authorities. That is, every dose in the can must be the same within close tolerances.

Some aerosol drugs tend to adhere to the inner surfaces, i.e., walls of the can, valves, and caps, of the MDI. This can lead to the patient getting significantly less than the prescribed amount of drug upon each activation of the MDI. The problem s is particularly acute with hydrofluoroalkane (also known as simply "fluorocarbon") propellant systems, e.g., P 134a and P227, under development in recent years to replace chlorofluorocarbons such as P11, P114 and P12.
We have found that coating the interior can surfaces of MDI's with a fluorocarbon polymer significantly reduces or essentially eliminates the problem of adhesion or to deposition of fluticasone propionate on the can walls and thus ensures consistent delivery of medication in aerosol from the MDI.
SUMMARY OF THE INVENTION
A metered dose inhaler having part or all of its internal surfaces coated with one or more fluorocarbon polymers, optionally in combination with one or more non-15 fluorocarbon polymers, more especially fluorinated ethylene propylene (FEP), for dispensing an inhalation drug formulation comprising fluticasone propionate, or a physiologically acceptable solvate thereof, and a fluorocarbon propellant optionally in combination with one or more other pharmacologically active agents or one or more excipients.
z o Thus, in accordance with one aspect of the invention, there is provided a metered dose inhaler comprising a can, said metered dose inhaler having part or all of its internal surfaces coated with a polymer blend comprising one or more fluorocarbon polymers in combination with one or more non-fluorocarbon polymers, and wherein said can is made of strengthened aluminium and comprises a 5 a substantially ellipsoidal base, for dispensing an inhalation drug formulation comprising fluticasone propionate or a physiologically acceptable solvate thereof and a fluorocarbon propellant.

2a In another aspect of the invention, there is provided a metered dose inhaler system comprising a metered dose inhaler of the invention in combination with a suitable channelling device for oral or nasal inhalation of the drug formulation.
s In still another aspect of the invention, there is provided use of the aforementioned system of the invention for the treatment of respiratory disorders.
DETAILED DESCRIPTION OF THE INVENTION
The term "metered dose inhaler" or "MDI" means a unit comprising a can, a crimped cap covering the mouth of the can, and a drug metering valve situated in to the cap, while the term "MDI system" also includes a suitable channelling device.
The terms "MDI can" means the container without the cap and valve. The term "drug metering valve" or "MDI valve" refers to a valve and its associated mechanisms which delivers a predetermined amount of drug formulation from an MDI upon each activation. The channelling device may comprise, for example, an i 5 actuating device for the valve and a cylindrical or cone-like passage through which medicament may be delivered from the filled MDI can via the MDI valve to the nose or mouth of a patient, e.g., a mouthpiece actuator. The relation of the parts of a typical MDI is illustrated in US Patent 5,281,538:
The term "fluorocarbon polymers" means a polymer in which one or more of the hydrogen atoms of the hydrocarbon chain have been replaced by fluorine atoms.
Thus, "fluorocarbon polymers" include perfluorocarbon, hydrofluorocarbon, chlorofluorocarbon, hydro-chlorofiuorocarbon polymers or other halogen substituted derivatives thereof. The "fluorocarbon polymers" may be branched, homo-polymers or co-polymers.
U.S. Patent No. 4,335,121, teaches an antiinflammatory steroid compound known by the chemical name [(6a, 11 b, 16a, 17a)-6, 9-difluoro-ll-hydroxy-16-methyl-3-oxo-i7-(1-oxopropoxy) androsta-1, 4-diene-17-carbothioic acid, S-fiuoromethyl ester and the generic name'fluticasone propionate'. Fluticasone propionate in aerosol form, has been accepted by the medical community as useful in the treatment of asthma and is marketed under the trademarks 'Flovent " and "Ffonase". Fluticasone propionate may also be used in the form of a physiologically acceptable solvate.
The term 'drug formulation' means fluticasone propionate (or a physiologically acceptable solvate thereof) optionally in combination with one or more other pharmacologically active agents such as other antiinfiammatory agents, analgesic agents or other respiratory drugs and optionally containing one or more excipients, and a fluorocarbon propellant. The term °excipients" as used herein means chemical agents having little or no pharmacological activity (for the quantities used) but which enhance the drug formulation or the performance of the MDI system. For example, excipients include but are not limited to surfactants, preservatives, flavorings, antioxidants, antiaggregating agents, and cosoivents, e.g., ethanol and diethyl ether.
Suitable surfactants are generally known in the art, for example, those surfactants disclosed in EP 0327777, published 16.08.89. The amount of surfactant employed is desirably in the range of 0.0001% to 50% weight to weight ratio relative to the drug, in particular 0.05 to 5% weight to a weight ratio. A
particularly useful surfactant is 1,2-di[7-(F-hexyl) hexanoyl]-giycero-3-phospho N,N,N-trimethylethanolamine also known as 3, 5, 9-trioxa-4-phosphadocosan-1 aminium, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 22-tridecafluoro-7-[(8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13-tridecafluoro-1-oxotridecyl)oxy]-4-hydroxy N, N,N-trimethyl-10-oxo-, inner salt, 4-oxide.
A polar cosolvent such as C~~ aliphatic alcohols and polyois e.g. ethanol, isopropanol and propylene glycol, preferably ethanol, may be included in the drug formulation in the desired amount, either as the only excipient or in addition to other excipients such as surtactants. Suitably, the drug formulation may contain 0.01 to 5% w/w based on the propellant of a polar cosoivent e.g. ethanol, preferably 0.1 to 5% w/w e.g. about 0.1 to 1 % w/w.
It will be appreciated by those skilled in the art that the drug formulation for use in the invention may, if desired, contain fluticasone propionate (or a physiologically acceptable solvate thereof) in combination with one or more other pharnnacologically active agents. Such medicaments may be selected from any suitable drug useful in inhalation therapy. Appropriate medicaments may thus be selected from, for example, analgesics, e.g. codeine, dihydromorphine, ergotamine, fentanyl or morphine; anginai preparations, e.g. diltiazem;
antiallergics, e.g. cromoglycate, ketotifen or nedocromil; antiinfectives e.g.
cephalosporins, penicillins, streptomycin, sulphonamides, tetracyclines and pentamidine; antihistamines, e.g. methapyrilene; anti-inflammatories, e.g.
beclomethasone (e.g. the dipropionate), flunisolide, budesonide, tipredane or triamcinolone acetonide; antitussives, e.g. noscapine; bronchodilators, e.g.
saibutamoi, salmeteroi, ephedrine, adrenaline, fenoterol, formoterol, isoprenaline, metaproterenol, phenylephrine, phenylpropanolamine, pirbuteroi, reproterol, rimiterol, terbutaline, isoetharine, tulobuteroi, orciprenaline, or (-)-4-amino-3,5-dichioro- a -[[[6-[2-(2-pyridinyl)ethoxy]hexyl]amino]methyl]benzenemethanol;
diuretics, e.g. amiloride; anticholinergics e.g. ipratropium, atropine or oxitropium;
hormones, e.g. cortisone, hydrocortisone or prednisolone; xanthine:; e.g.
aminophylline, choline theophyliinate, lysine theophyllinate or theophyliine;
and therapeutic proteins and peptides, e.g. insulin or glucagon. it will be clear to a person skilled in the art that, where appropriate, the medicaments may be used in the form of salts (e.g. as alkali metal or amine salts or as acid addition salts) or as esters (e.g. lower alkyl esters) or as solvates (e.g. hydrates) to optimise the activity and/or stability of the medicament and/or to minimise the solubility of the medicament in the propellant.
Particularly preferred drug formulations contain fluticasone propionate (or a physiologically acceptable solvate thereof) in combination with a bronchodilator such as salbutamol (e.g. as the free base or the sulphate salt) or salmeteroi (e.g.
as the xinafoate salt).
A particularly preferred drug combination is fiuticasone propionate and salmeterol xinafoate.
'Propellants' used herein mean pharmacologically inert liquids with boiling points from about room temperature (25°C) to about -25°C which singly or in combination exert a high vapor pressure at room temperature. Upon activation of the MDI system, the high vapor pressure of the propellant in the MDI forces a metered amount of drug formulation out through the metering valve then the propellant very rapidly vaporizes dispersing the drug particles. The propellants used in the present invention are low boiling fluorocarbons; in particular, 1,1,1,2-tetrafluoroethane also known as 'propellant 134a" or "P 134a' and 1,1,1,2,3,3,3-heptafluoro-n-propane also known as 'propellant 227' or 'P 22T.
Drug formulations for use in the invention may be free or substantially free of formulation excipients e.g. surfactants and cosoivents etc. Such drug formulations ace advantageous since they may be substantially taste and odour free, less irritant and less toxic than excipient-containing formulations.
Thus, a preferred drug formulation consists essentially of fluticasone propionate, or a physiciologically acceptable solvate thereof, optionally in combination with one or more other pharmacologically active agents particularly salmeterol (e.g. in the form of the xinafoate salt), and a fluorocarbon propellant. Preferred propellants and 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoro-n-propane or mixtures thereof, and especially 1,1,1,2-tetrafluoroethane.
Further drug formulations for use in the invention may be free or substantially free of surfactant. Thus, a further preferred drug formulation comprises or consists essentially of albuterol (or aphysiciologically acceptable solvate thereof), optionally in combination with one or more other pharmacologically active agents a fluorocarbon propellant and 0.01 to S% w/w based on the propellant of a polar cosolvent, which formulation is substantially free of surfactant. Preferred propellants and 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoro-n-propane or mixtures thereof, and especially 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoro-n-propane.
Most often the MDI can and cap are made of aluminum or an alloy of aluminum, although other metals not affected by the drug formulation, such as stainless steel, an alloy of copper or tin plate, may be used. An MDI can may also be fabricated from glass or plastic. Preferably, however, the MDI cans employed in the present invention are made of aluminium or an alloy thereof.
Advantageously, strengthened aluminium or aluminum alloy MDI cans may be employed. Such strengthened MDI cans are capable of withstanding particularly stressful coating and curing conditions, e.g. particularly high temperatures, which may be required for certain fluorocarbon polymers. Strengthened MDI cans which have a reduced tendency to malform under high terr~peratures include MDI
cans comprising side walls and a base of increased thickness and MDI cans comprising a substantially ellipsoidal base (which increases the angle between the side walls and the base of the can), rather than the hemispherical base of standard MDI cans. MDI cans having an ellipsoidal base offer the further advantage of facilitating the coating process.
The drug metering valve consists of parts usually made of stainless steel, a pharmacologically inert and propellant resistant polymer, such as acetal, polyamide (e.g., Nylon°), polycarbonate, polyester, fluorocarbon polymer (e.g., Teflonm) or a combination of these materials. Additionally, seals and "O"
rings of various materials (e.g., nitrite rubbers, polyurethane, acetyl resin, fluorocarbon polymers), or other elastomeric materials are employed in and around the valve.
Fluorocarbon polymers for use in the invention include fluorocarbon polymers which are made of multiples of one or more of the following monomeric units:
tetrafiuoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroaikoxyalkane (PFA), ethylene tetrafluoroethylene (ETFE), vinyldienefluoride (PVDF), and chlorinated ethylene tetrafluoroethylene.
Fluorinated polymers which have a relatively high ratio of fluorine to carbon, such as perfluorocarbon polymers e.g. PTFE, PFA, and FEP, are preferred.
The fluorinated polymer may be blended with non-fluorinated polymers such as polyamides, polyimides, polyethersulfones, polyphenylene sulfides and amine-formaldehyde thermosetting resins. These added polymers improve adhesion of the polymer coating to the can walls. Preferred polymer blends are PTFE/FEP/polyamideimide, PTFE/polyethersulphone (PES) and FEP-benzoguanamine.
Particularly preferred coatings are pure PFA, FEP and blends of PTFE and polyethersulphone (PES).
Fluorocarbon polymers are marketed under trademarks such as Tefiono, Tefzelm, Halarm , Hostaflonm Poiyfion~ and Neofionm. Grades of polymer include FEP
DuPont 856-200, PFA DuPont 857-200, PTFE-PES DuPont 3200-100, PTFE
FEP-polyamideimide DuPont 856P23485, FEP powder DuPont 532, and PFA
Hoechst 6900n. The coating thickness is in the range of about 1 Eun to about 1 mm. Suitably the coating thickness is in the range of about 1 Irm to about 100 pm, e.g. 1 Eun to 25 pm. Coatings may be applied in one or more coats.
Preferably the fluorocarbon polymers for use in the invention are coated onto MDI
cans made of metal, especially MDI cans made of aluminium or an alloy thereof.
The particle size of the particular (e.g., micronised) drug should be such as to permit inhalation of substantially all the drug into the lungs upon administration of the aerosol formulation and will thus be less than 100 microns, desirably less than 20 microns, and, ~in particular, in the range of 1-10 microns, e.g., 1-5 microns.
The final drug formulation desirably contains 0.005-10% weight to weight ratio, in particular 0.005-5% weight to weight ratio, especially 0.01-1.0% weight to weight ratio, of drug relative to the total weight of the formulation.
A further aspect of the present invention is a metered dose inhaler having part or all of its internal metallic surfaces coated with one or more fluorocarbon polymers, optionally in combination with one or more non-fluorocarbon polymers, for dispersing an inhalation drug formulation comprising fluticasone propionate and a fluorocarbon propellant optionally in combination with one or more other pharmacologically active agents and one or more excipients.
A particular aspect of the present invention is an MDI having part or essentially all of its internal metallic surfaces coated with PFA or FEP, or blended fluoropolymer resin systems such as PTFE-PES with or without a primer coat of a polyamideimide or polyethersulfone for dispensing a drug formulation as defined hereinabove. Preferred drug formulations for use in this MDI consist essentially of fluticasone propionate (or a physiologically acceptable solvate, thereof), optionally in combination with one or more other pharmacologically active agents particularly salmeterot (e.g. in the form of the xinafoate salt), and a fluorocarbon propellant, particularly 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane or mixtures thereof, and especially 1,1,1,2-tetrafluoroethane.
Preferably the MDI can is made of aluminium or an alloy thereof.
The MDI can may be coated by the means known in the art of metal coating. For example, a metal, such as aluminum or stainless steel, may be precoated as coil stock and cured before being stamped or drawn into the can shape. This method is well suited to high volume production for two reasons. First, the art of coating coil stock is well developed and several manufacturers can custom coat metal coil stock to high standards of uniformity and in a wide range of thicknesses.
Second, the precoated stock can be stamped or drawn at high speeds and precision by essentially the same methods used to draw or stamp uncoated stock.
Other techniques for obtaining coated cans is by electrostatic dry powder coating or by spraying preformed MDI cans inside with formulations of the coating fluorinated polymer/potymer blend and then curing. The preformed MDI cans may also be dipped in the fluorocarbon polymer/polymer blend coating formulation and cured, thus becoming coated on the inside and out. The fluorocarbon polymer/polymer blend formulation may also be poured inside the MDI cans then drained out leaving the insides with the polymer coat.
Conveniently, for ease of manufacture, preformed MDI cans are spray-coated with the fluorinated polymer/polymer blend.
The fluorocarbon polymer/polymer blend may also be formed in situ at the can walls using plasma polymerization of the fluorocarbon monomers. Fluorocarbon polymer film may be blown inside the MDI cans to form bags. A variety of fluorocarbon polymers such as ETFE, FEP, and PTFE are available as film stock.
The appropriate curing temperature is dependent on the fluorocarbon polymer/polymer blend chosen for the coating and the coating method employed.
However, for coil coating and spray coating temperatures in excess of the melting point of the polymer are typically required, for example, about 50°C
above the melting point, for up to about 20 minutes such as about 5 to 10 minutes e.g.
about 8 minutes or as required. For the above named preferred and particularly preferred fluorocarbon polymer/polymer blends curing temperatures in the range of about 300°C to about 400°C, e.g. about 350°C to 380°C are suitable for plasma polymerization typically temperatures in the range of about 20°C
to about 100°C may be employed.
The MDI's taught herein may be prepared by methods of the art (e.g., see Byron, above and U.S. patent 5,345,980) substituting conventional cans for those coated with a fluorinated polymer/polymer blend. That is, fluticasone propionate and other components of the formulation are filled into an aerosol can coated with a fluorinated pofymedpolymer blend. The can is fitted with a cap assembly w~iich is crimped in place. The suspension of the drug in the fluorocarbon propellant in liquid form may be introduced through the metering valve as taught in U.S.
5,345,980 .

The MDI's with fluorocarbon polymer/polymer blend coated interiors taught herein may be used in medical practice in a similar manner as non-coated MDI's now in clinical use. However the MDI's taught herein are particularly useful for containing 5 and dispensing inhaled drug formulations with hydrofluoroalkanefluorocarbon propellants such as 134a with little, or essentially no, excipient and which tend to deposit or cling to the interior walls and parts of the MDI system. In certain cases it is advantageous to dispense an inhalation drug with essentially no excipient, e.g., where the patient may be allergic to an excipient or the drug reacts with an 10 exciptent.
MDI's containing the formulations described hereinabove, MDI systems and the use of such MDI systems for the treatment of respiratory disorders e.g. asthma comprise further aspects of the present invention.
It will be apparent to those skilled in the art that modifications to the invention described herein can readily be made without departing from the spirit of the invention. Protection is sought for all the subject matter described herein including any such modifications.
The following non-limitative Examples serve to illustrate the invention.
EXAMPLES
Standard 12.5 ml MDI cans (Presspart Inc., Cary, NC) were spray-coated (Livingstone Coatings, Charlotte, NC) with primer (DuPont 851-204) and cured to the vendor's standard procedure, then further spray-coated with either FEP or PFA (DuPont 856-200 and 857-200, respectively) and cured according to the vendor's standard procedure. The thickness of the coating is approximately 10 ~m to 50 Vim. These cans are then purged of air (see PCT application number W094/22722 (PCTIEP94/0092~)), the valves crimped in place, and a suspension of about 20 mg fluticasone propionate in about 12 gm P134a is filled through the valve.
Standard 0.46 mm thick aluminum sheet (United Aluminum) was spray-coated (DuPont, Wilmington, DE) with FEP (DuPont 856-200) and cured. This sheet was then deep-drawn into cans (Presspart Inc., Cary, NC}. The thickness of the coating is approximately 10 Eun to 50 Ir,m. These cans are then purged of air, the valves crimped in place, and a suspension of about 40 mg fluticasone propionate in about 12 gm P134A is tilled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with PTFE-PES blend (DuPont) as a single coat and cured according to the vendor's standard procedure. The thickness of the coating is between approximately 1 pm and approximately 20 N.m. These cans are then purged of air, the valves crimped in place, and a suspension of about 41.0 mg, 21.0 mg, 8.8 mg or 4.4 mg micronised fluticasone propionate in about 12 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with PTFE-FEP-polyamideimide blend (DuPont) and cured according to the vendor's standard procedure. The thickness of the coating is between approximately 1 Nm and approximately 20 Vim. These cans are then purged of air the valves crimped in place, and a suspension of about 41.0 mg, 21.0 mg, 8.8 mg or 4.4 mg micronised fluticasone propionate in about 12 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with FEP
powder (DuPont FEP 532) using an electrostatic gun. The thickness of the coating is between approximately 7 lun and approximately 20 ~Cm. These cans are then purged of air, the valves crimped in place, and a suspension of about 41.0 mg, 21.0 mg, 8.8 mg or 4.4 mg micronised fluticasone propionate in about 12 g P134a was filled through the valve.
Standard 0.46 mm thick aluminium sheet is spray coated with FEP-Benzoguanamine and cured. This sheet is then deep-drawn into cans. These cans are then purged of air, the valves crimped in place, and a suspension o1 about 41.0 mg, 21.0 mg, 8.8 mg, or 4.4 mg micronised fluticasone propionate in about 12 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spraycoated with an aqueous dispersion of PFA (Hoechst PFA-6900n) and cured. The thickness of the coating is between approximately 1 lun and approximately 20 ~.m. These cans are then purged of air, the valves crimped in place, and a suspension of about 41.0 mg, 21.0 mg, 8.8 mg, or 4.4 mg micronised fluticasone propionate in about 12 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with PTFE-PES blend (DuPont) as a single coat and cured according to the vendor's standard procedure. The thickness of the coating is between approximately 1 fun and approximately 20 um. These cans are then purged of air, the valves crimped in place, and a suspension of about 8.8 mg, 22 mg or 44 mg of micronised 34 fluticasone propionate with about 6.4 mg micronised saimeteroi xinafoate in about 12 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with PTFE-FEP-potyamideimide blend (DuPont) and cured according to the vendor's standard procedure. The thickness of the coating is between approximately 1 I,tm and approximately 20 um. These cans are then purged of air the valves crimped in place, and a suspension of about 8.8 mg, 22 mg or 44 mg of micronised fluticasone propionate with about 6.4 mg micronised salmeterol xinafoate in about 12 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with FEP
powder (DuPon! FEP 532) using an electrostatic gun. The thickness of the coating is between approximately 1 lun and approximately 20 p.m. These cans are then purged of air, the valves crimped in place, and a suspension of about 8.8 mg, 22 mg or 44 mg of micronised fluticasone propionate with about 6.4 mg micronised salrneterol xinafoate in about 12 g P134a is filled through the valve.
Example 11 Standard 0.46 mm thick aluminium sheet is spray coated with FEP-Benzoguanamine and cured. This sheet is then deep-drawn into cans. These cans are then purged of air, the valves crimped in place, and a suspension of about 8.8 mg, 22 mg or 44 mg of micronised fluticasone propionate with about 6.4 mg micronised salmeterol xinafoate in about 12 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with an aqueous dispersion of PFA (Hoechst PFA-6900n) and cured. The thickness of the coating is between approximately 1 lun and approximately 20 pm. These cans are then purged of air, the valves crimped in place, and a suspension of about 8.8 mg, 22 mg or 44 mg of micronised fluticasone propionate with about 6.4 mg micronised salmeterol xinafoate in about 12 g P134a is filled through the valve.
Exam nle 13 Standard 12.5 ml MDI cans (Presspart int., Cary NC) are spray-coated with PTFE-PES blend (DuPont) as a single coat and cured according to the vendor's standard procedure. The thickness of the coating is between approximately 1 !un and approximately 20 u.m. These cans are then purged of air, the valves crimped in place, and a suspension of about 5.5 mg, 13.8 mg or 27.5 mg micronised fiuticasone propionate with about 4 mg micronised salmeterol xinafoate in about 8 g P134a is filled through the valve.
Fxamole 14 Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with PTFE-FEP-polyamideimide blend (DuPont) and cured according to the vendor's standard procedure. The thickness of the coating is between approximately 1 Eun and approximately 20 pm. These cans are then purged of air the valves crimped in place, and a suspension of about 5.5 mg, 13.8 mg or 27.5 mg micronised fluticasone propionate with about 4 mg micronised salmeterol xinafoate in about 8 g P134a is fitted through the valve.
Example 15 Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with FEP
powder (DuPont FEP 532) using an electrostatic gun. The thickness of the coating is between approximately 1 Nm and approximately 20 pm. These cans are then purged of air, the valves crimped in place, and a suspension of about 5.5 mg, 13.8 mg or 27.5 mg micronised fluticasone propionate with about 4 mg micronised salmeteroi xinafoate in about 8 g P134a is filled through the valve.

Standard 0.46 mm thick aluminium sheet is spray coated with FEP-Benzoguanamine and cured. This sheet is then deep-drawn into cans. These 5 cans are then purged of air, the valves crimped in place, and a suspension of about 5.5 mg, 13.8 mg or 27.5 mg micronised fluticasone propionate with about mg micronised salmeterol xinafoate in about 8 g P134a is filled through the valve.
Standard 12.5 ml MDI cans (Presspart Inc., Cary NC) are spray-coated with an aqueous dispersion of PFA (Hoechst PFA-6900n) and cured. The thickness of the coating is between approximately 1 Erm and approximately 20 Vim. These cans are then purged of air, the valves crimped in place, and a suspension of about 5.5 mg, 13.8 mg or 27.5 mg micronised fluticasone propionate with about mg micronised salmeterol xinafoate in about 8 g P134a is filled through the valve.
Examples 3 to 7 are repeated except that a suspension of about 13.3 mg micronised fluticasone proprionate in about 21.4 g P227 is filled through the valve.
Examples 3 to 7 are repeated except that 66 mg, or 6.6 mg micronised fluticasone proprionate in about 182 mg ethanol and about 18.2 g P134a is filled through the valve.
Examples 28-52 Examples 3 to 27 are repeated except that modified 12.5 ml MDI cans having a substantially ellipsoidal base (Presspart Inc., Cary NC) were used.

Dose delivery from the MDis tested under simulated use conditions is found to be constant, compared to control MDis filled Into uncoated cans which exhibit a significant decrease in dose delivered through use.

Claims (26)

CLAIMS:
1. A metered dose inhaler comprising a can said metered dose inhaler having part or all of its internal surfaces coated with a polymer blend comprising one or more fluorocarbon polymers in combination with one or more non fluorocarbon polymers, and wherein said can is made of strengthened aluminium and comprises a substantially ellipsoidal base, for dispensing an inhalation drug formulation comprising fluticasone propionate or a physiologically acceptable solvate thereof and a fluorocarbon propellant.
2. An inhaler according to Claim 1 containing said drug formulation.
3. An inhaler according to Claim 2, wherein said drug formulation is in combination with one or more other pharmacologically active agents.
4. An inhaler according to Claim 2 or 3, wherein said drug formulation further comprises one or more excipients.
5. An inhaler according to any one of Claims 2 to 4, wherein said drug formulation further comprises a surfactant.
6. An inhaler according to any one of Claims 2 to 5 wherein said drug formulation further comprises a polar co-solvent.
7. An inhaler according to any one of Claims 2 to 4, wherein said drug formulation further comprises 0.01 to 5% w/w based upon propellant of a polar co-solvent, which formulation is substantially free of surfactant,
8. An inhaler according to any one of claims 2 to 7, wherein said drug formulation comprises fluticasone propionate or a physiologically acceptable solvate thereof in combination with a bronchodilator or an antiallergic.
9. An inhaler according to Claim 8, wherein said drug formulation comprises fluticasone propionate in combination with salmeterol xinafoate.
10. An inhaler according to Claim 2 or 3, wherein said drug formulation consists essentially of fluticasone propionate or a physiologically acceptable solvate thereof, optionally in combination with one or more other pharmaceutically active agents, and a fluorocarbon propellant.
11. An inhaler according to Claim 10, wherein said drug formulation consists essentially of fluticasone propionate or a physiologically acceptable solvate thereof in combination with a bronchodilator or an antiallergic, and a fluorocarbon propellant.
12. An inhaler according to Claim 11, wherein said drug formulation consists essentially of fluticasone propionate or a physiologically acceptable solvate thereof in combination with salmeterol or a physiologically acceptable salt thereof, and a fluorocarbon propellant.
13. An inhaler according to Claim 12, wherein said drug formulation consists essentially of fluticasone propionate in combination with salmeterol xinafoate, and a fluorocarbon propellant.
14. An inhaler according to Claim 2, wherein said drug formulation consists of fluticasone propionate or a physiologically acceptable solvate thereof and a fluorocarbon propellant.
15. An inhaler according to any one of Claims 2 to 14, wherein the fluorocarbon propellant is 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-hepta-fluoro-n-propane or mixtures thereof.
16. An inhaler according to any one of claims 1 to 15 wherein part or all of the can's internal metallic surfaces are coated
17. An inhaler according to any one of claims 1 to 16 wherein the one or more fluorocarbon polymers is/are a perfluorocarbon polymer(s).
18. An inhaler according to Claim 17 wherein the one or more fluorocarbon polymers is/are selected from PTFE, PFA, FEP and mixtures thereof.
19. An inhaler according to any one of Claims 1 to 18, wherein the one or more non-fluorocarbon polymers is/are selected from polyamide, polyimide, polyamideimide, polyethersulfone, polyphenylene sulfide and amine-formaldehyde thermosetting resins.
20. An inhaler according to any one of claims 1 to 19, wherein the non-fluorocarbon polymer is polyethersulphone.
21. An inhaler according to any one of Claims 1 to 20, wherein the internal surfaces are coated with PTFE and polyethersulfone.
22. An inhaler according to any one of Claims 1 to 20 wherein the internal surfaces are coated with a blend comprising PTFE, FEP, and polyamideimide.
23. An inhaler according to any one of Claims 1 to 20 wherein the internal surfaces are coated with a FEP-benzoguanamine blend.
24. An inhaler according to any one of claims 1 to 23 wherein the internal surfaces are coated with a coating with a thickness in the range 1 µm to 25µm.
25. A metered dose inhaler system comprising a metered dose inhaler according to any one of Claim 1 to 24 in combination with a suitable channelling device for oral or nasal inhalation of the drug formulation.
26. Use of a metered dose inhaler system according to claim 25 for the treatment of respiratory disorders.
CA002447517A 1995-04-14 1996-04-10 Metered dose inhaler for fluticasone propionate Expired - Lifetime CA2447517C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US42211195A 1995-04-14 1995-04-14
US08/422,111 1995-04-14
US58485996A 1996-01-05 1996-01-05
US08/584,859 1996-01-05
CA002367013A CA2367013C (en) 1995-04-14 1996-04-10 Metered dose inhaler for fluticasone propionate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002367013A Division CA2367013C (en) 1995-04-14 1996-04-10 Metered dose inhaler for fluticasone propionate

Publications (2)

Publication Number Publication Date
CA2447517A1 CA2447517A1 (en) 1996-10-17
CA2447517C true CA2447517C (en) 2006-11-14

Family

ID=32073639

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002447517A Expired - Lifetime CA2447517C (en) 1995-04-14 1996-04-10 Metered dose inhaler for fluticasone propionate

Country Status (1)

Country Link
CA (1) CA2447517C (en)

Also Published As

Publication number Publication date
CA2447517A1 (en) 1996-10-17

Similar Documents

Publication Publication Date Title
CA2217948C (en) Metered dose inhaler for fluticasone propionate
CA2217954C (en) Metered dose inhaler for salmeterol
CA2217950C (en) Metered dose inhaler for albuterol
AU718851B2 (en) Metered dose inhaler for beclomethasone dipropionate
CA2447517C (en) Metered dose inhaler for fluticasone propionate
CA2367013C (en) Metered dose inhaler for fluticasone propionate
CA2467462A1 (en) Metered dose inhaler for salmeterol
AU4517000A (en) Metered dose inhaler for salmeterol

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20160411