CA2444697C - Long life lubricating oil with enhanced oxidation and nitration resistance - Google Patents

Long life lubricating oil with enhanced oxidation and nitration resistance Download PDF

Info

Publication number
CA2444697C
CA2444697C CA2444697A CA2444697A CA2444697C CA 2444697 C CA2444697 C CA 2444697C CA 2444697 A CA2444697 A CA 2444697A CA 2444697 A CA2444697 A CA 2444697A CA 2444697 C CA2444697 C CA 2444697C
Authority
CA
Canada
Prior art keywords
vol
oil
composition
dihydrocarbyl
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2444697A
Other languages
French (fr)
Other versions
CA2444697A1 (en
Inventor
Stanley James Cartwright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Publication of CA2444697A1 publication Critical patent/CA2444697A1/en
Application granted granted Critical
Publication of CA2444697C publication Critical patent/CA2444697C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

A long life lubricating oil, as evidenced by a reduction in oil thickening, oxidation and nitration, comprises a major amount of a base oil of lubricating viscosity and a minor amount of a mixture of neutral and overbased metallic detergents and at least one trinuclear molybdenum compound.

Description

LONG LIFE LUBRICATING OIL WITH ENHANCED OXIDATION AND
NITRATION RESISTANCE

FIELD OF INVENTION

[0001] The present invention relates to lubricating oils, especially gas engine oils, having extended life as evidenced by a reduction in viscosity increase, oxidation and nitration.

BACKGROUND OF INVENTION

to [0002] Gas fired engines are typically used in the oil and gas industry to drive compressors that compress natural gas at well heads and along pipelines. These engines are large, having up to 16 cylinders and often generate between 500 to 3000 HP. The nature of their use requires them to be able to run continuously near full load conditions, shutting down only for maintenance such as for oil changes. Under these operating conditions severe demands are placed on the engine lubricant. Indeed, because the lubricant is subjected to a high temperature environment, the life of the lubricant often is limited by oil oxidation processes. Additionally, natural gas fired engines generate nitrogen oxides (NOx) that can limit lubricant life by oil nitration processes.
Therefore, gas engine operators are constantly seeking gas engine oils that have improved resistance to oxidation and nitration.

[0003] In addition to controlling oxidation and nitration properties of a gas engine oil it also is necessary to control the ash content of the oil because the lubricant ash acts as a solid lubricant protecting the valve/seat interface of the engine. For this reason gas engine oils are classified according to their ash content. The classifications are:
Ash Designation Ash Level, wt% (ASTM D874) Ashless Ash < 0.1 %
Low Ash 0.1% < Ash < 0.6%
Medium Ash 0.6% < Ash < 1.5%
High Ash Ash > 1.5 %

[0004] The ash level of the lubricant often is determined by its formulation components, with metal-containing detergents and metallic-containing antiwear additives contributing to the ash level of the lubricant. Gas engine manu-facturers specify the appropriate lubricant ash level for correct operation of a given engine. Thus, manufacturers of 2-cycle engines often specify use of an ashlers oil. Manufacturers of 4-cycle engine may specify low, medium or high ash depending upon the level required for engine cleanliness and durability.

io [0005] As is known in the art, additives are used in lubricants to perform numerous functions. For example, some are antioxidants, some are friction modifiers; and some are extreme pressure agents. Indeed some additives perform more than one function. Also as is known in the art additives will lose their effectiveness if they are improperly combined. Therefore, extreme care must be exercised in combining various additives to assure both compatibility and effectiveness. For example, some friction modifiers affect metal surfaces differently than antiwear agents do. When both are present, friction-reducing and antiwear additives may compete for the surface of the metal parts which are subject to lubrication. This competition can produce a lubricant that is less effective than is suggested by the individual properties of the additive components.

[0006] Accordingly, the components of a gas engine lubricant need to be selected to meet the specified ash level and to provide, among other functions, a 2s high level of oxidation and nitration resistance. Whether selected components and their amounts can be balanced to meet desired specification is not a priori predictable.

SUMMARY OF INVENTION
[0007] Simply stated the present invention relates to a lubricating oil, especially useful as a gas engine oil, comprising a major amount of a base oil of lubricating viscosity; effective amounts of a mixture of neutral and overbased metallic detergents; and, a minor amount of at least one trinuclear molybdenum I o compound.

[0007a] According to one aspect of the present invention there is provided a lubricating oil composition comprising: an oil of lubricating viscosity in amount that is at least 50 vol % of the composition; a mixture of neutral metal alkylsalicylates and overbased metallic detergents, wherein the mixture of neutral metal alkylsalicylates and overbased metallic detergents is in an amount sufficient to provide the composition with a sulfated ash content of from about 0.2 wt % to about 2.0 wt %; a trinuclear molybdenum compound having the formula Mo3SkLnQz where L is an independently selected ligand, n is from 1 to 4, k is from 4 to 7, Q Is a neutral electron donating moiety, and z is from 0 to 5; from greater than 0 to 1.9 vol % of a dihydrocarbyl thiocarbamoyl compound having the formula;

R1 II II i 3 /N-C -(X)-C _ \

where RI, R2, R3 and R4 are the same or different alkyl groups of from 3 to 30 carbon atoms; Xis S, S-S, S +CH2+ yS, S-CH2CH(CH3)-S; and y is an integer of 1 to 3; the combined amount of trinuclear molybdenum compound -3a-and dihydrocarbyl thiocarbamoyl compound being in the range of about 0.1 vol o o to about 2.0 vol %; wherein the oil life of the lubricating oil composition is improved as evidenced by a reduction in viscosity increase, oxidation and nitration when compared to the same lubricating oil composition without the trinuclear molybdenum compound and dihydrocarbyl thiocarbamoyl compound.

(0007b] According to a further aspect of the present invention there is provided a method for enhancing the life of a lubricating oil as evidenced by a to reduction in viscosity increase, oxidation and nitration, the method comprising:
adding to the lubricating oil additives comprising: a mixture of neutral metal alkylsalicylates and overbased metallic detergents, wherein the mixture of neutral metal alkylsalicylates and overbased metallic detergents is in an amount sufficient to provide the composition with a sulfated ash content of from about 0.2 wt % to about 2.0 wt %, at least 0.1 vol % of a trinuclear molybdenum compound having the formula Mo3 SkLnQz where L is an independently selected ligand, n is 1 to 4, k is 4 to 7, Q is a neutral electron donating moiety, and z is 0 to 5; and a dihydrocarbyl thiocarbamoyl compound; the combined amount of trinuclear molybdenum compound and dihydrocarbyl thiocarbamoyl compound being in the range of 0.1 vol % to about 2.0 vol %; wherein the oil life of the lubricating oil composition is improved as evidenced by a reduction in viscosity increase, oxidation and nitration when compared to the same lubricating oil composition without the trinuclear molybdenum compound and dihydrocarbyl thiocarbamoyl compound.

-3b-[0008] The lubricant composition of the invention has extended life as evidenced by reductions in oxidation and nitration relative to commercial and reference oils and, may also be compatible with other standard additives used in formulating commercial lubricating compositions.

DETAILED DESCRIPTION OF INVENTION

[0009] The lubricant compositions of the present invention include a major amount of a base oil of lubricating viscosity. Suitable base oils include natural and synthetic oils and mixtures thereof in API Categories I, II and III, and having a kinematic viscosity of about 9 to 13 cSt at 100 C.

[0010] The metallic detergent contained in the composition of the invention is a mixture of neutral and overbased metal sulfonates, phenates and alkylsalicylates. The metals may be alkali and alkaline earth metals and preferably are alkaline earth metals, especially calcium and barium. Examples of suitable neutral metallic detergents are calcium sulfonates and calcium alkylsalicylates having a TBN of from 10 to 100. Examples of overbased metallic detergents are calcium phenates, sulphonates and alkylsalicylates having a TBN of 150 to 400. The amount of the neutral and overbased metallic detergent is chosen having regard to the desired TBN of the final product and especially having regard to the desired sulfated ash of the final product.

Preferably the mixture of neutral and overbased metallic detergents is sufficient to provide the composition with a sulfated ash in the range of about 0.2 mass %
to about 2.0 mass %.

[0011] The compositions of the present invention also include a minor to amount of at least one trinuclear molybdenum compound. A preferred trinuclear molybdenum compound is represented by the formula Mo3SkLnQz where L
represents independently selected ligands, n varies from 1 to 4, k varies from to 7 and Q is selected from the group consisting of neutral electron donating compounds including water, amines, alcohols, phosphines and ethers and z ranges from 0 to 5. Such compounds and their method of preparation are disclosed in great detail in U.S. Patent 6,232,276 B1. In the present invention L preferably is dithiocarbamate, n is 4, k is 7, Q is an electron-donating compound, and z is 0. The trinuclear molybdenum compound preferably constitutes from 0.1 vol % to about 2.0 vol % based on the total volume of the total lubricant composition.

[0012] Optionally, the composition may contain an ashlers dihydrocarbyl thiocarbamoyl in combination with the trinuclear molybdenum compound.

[0013] Suitable dihydrocarbylthiocarbamoyl compounds are represented by the formula R~ II II i 3 /N-C-(X)-C \

where R1, R2, R3 and R4 are the same or different and each represents an alkyl group of _3_ to _30_ carbon atoms, X represents S, S-S, S -(-CH2+ yS, S-CH2CH(CH3)-S and y is an integer of I to 3.

[0014] Preferably the combined materials will constitute from about 0.1 vol % to about 2.0 vol % based on the volume of the total lubricant composition;
however, the amount of dihydrocarbyl thiocarbamoyl will not exceed about 1.90 vol %.

[0015] The fully formulated oil may contain additional, typical additives known to those skilled in the industry, used on an as-received basis.

[0016] Thus, the fully formulated oil may contain dispersants of the type generally represented by succimides (e.g., polyisobutylene succinic acid/anhydride (PIBSA)-polyamine having a PIB moiety molecular weight of about 700 to 2500). The dispersants may be borated or non-borated. The dispersant can be present in the amount of about 0.5 to 8 vol%, more preferably in the amount of about 1 to 6 vol%, most preferably in the amount of about 2 to 4 vol%.

[0017] Antioxidants may be of the phenol (e.g., o,o'ditertiary alkyl phenol such as ditertbutyl phenol), or amine (e.g., dialkyl diphenyl amine such as dibutyl, octyl buty, or dioctyl diphenyl amine) type, or mixtures thereof.
More preferably, the antioxidants will be hindered phenols, or aryl amines which may or may not be sulfurized. Antioxidants can be present in the amount of about a 1 0.05 to 2.0 vol%, more preferably in the amount of about 0.1 to 1.75 vol%, most preferably in the amount of about 0.5 to 1.5 vol%.

[0018] Metal deactivators may be of the aryl thiazines, triazoles, or alkyl substituted dimercapto thiadiazoles (DMTD's), or mixtures thereof. Metal deactivators can be present in the amount of about 0.01 to 0.2 vol%, more preferably in the amount of about 0.02 to 0.15 vol%, most preferably in the amount of about 0.05 to 0.1 vol%.

io [0019] Antiwear additives such as metal dithiophosphates (e.g., zinc dialkyl dithiophosphate, ZDDP), metal dithiocarbamates, metal xanthates or tricreeylphosphates may be included. Antiwear additives can be present in the amount of about 0.05 to 1.5 vol%, more preferably in the amount of about 0.1 to.
1.0 vol%, most preferably in the amount of about 0.2 to 0.5 vol%.

[0020] Pour point depressants such as poly(meth)acrylates, or alkyl-aromatic polymers may be included. Pour point depressants can be present in the amount of about 0.05 to 0.6 vol%, more preferably in the amount of about 0.1 to 0.4 vol%, most preferably in the amount of about 0.2 to 0.3 vol%.

[0021] Antifoamants such as silicone antifoaming agents can be present in the amount of about 0.001 to 0.2 vol%, more preferably in the amount of about 0.005 to 0.15 vol%, most preferably in the amount of about 0.01 to 0.1 vol%.

[0022] Viscosity index Improvers (VII's) may be any polymer which imparts multifunctional viscosity properties to the finished oil, including materials such as olefin copolymers, polymethacrylates, styrene diene block copolymers, and star copolymers. the VII's may also be multifunctional from the perspective of offering secondary lubricant performance features such as additional dispersancy. VII's can be present in the amount of up to 15 vol%, more preferably in the amount of up to 13 vol%, most preferably in the amount of up to 10 vol%.

[0023] Lubricating oil additives are described generally in "Lubricants and Related Products" by Dieter Klamanm, Verlag Chemie, Deerfield, Fla., 1984, and also in "Lubricant Additives" by C. V. Smaiheer and R. Kennedy Smith, 1967, pages 1-11.

to [0024] The present invention is further described in the following non-limiting examples and comparative examples.

EXPERIMENTAL
A. Lab Nitration Screener Test Results [0025] A lab nitration screener test was used to assess the oil life performance of various oil compositions. The test results identify a number of parameters including oil viscosity increase, oxidation, and nitration. All measurements are reported on a relative basis (unless otherwise indicated) so that results greater than unity represent greater levels of degradation. Numerically lower relative results represent a measure of longer oil life. In each test, a Reference Oil is tested and results are reported as a ratio of the result for the test oil divided by the result for the Reference Oil. Thus, if a tested oil has an oxidation result of 1.0, then it has oxidation performance equal to that of the Reference Oil. If the tested oil has an oxidation result less than 1.0, then the tested oil demonstrates oxidation performance superior to that of the Reference Oil EXAMPLES AND COMPARATIVE EXAMPLES

[0026] In the Examples, the base oil in all cases was a heavy Group II
basestock. Comparative Oil 1, Reference Oil 1 and Examples 1 and 2 contained the same viscosity index improver (VI). Comparative Oil 2 is a current commercial oil based solely on API Group II basestocks. Reference Oil 1 and Example Oils 1 and 2 each contained the same mixture of neutral and overbased metallic detergents, ashlers dispersant, ZDDP, pour point depressant, metal passivator and antifoamant. Reference Oil 1, however, employed a phenolic io antioxidant whereas the oils of Examples 1 and 2 employed a trinuclear molybdenum compound, Mo3S7(DTC)4, and a mixture of a trinuclear molybdenum compound, Mo3S7(DTC)4, and an ashlers dihydrocarbyl thiocarbamoyl, (S2CNR2)2CH2, respectively. Comparative Oil 1 used a commercially available gas engine oil additive package, Oloa 1255 sold by is Chevron Chemical Company. Oloa 1255 is one of the most widely sold gas engine oil packages and therefore represents a "benchmark standard" against which other engine oil formulations may be measured.

[0027] The results show that the oils of the present invention, Examples 1 and 20 2, provided superior performance to both of the Comparative oils and the Reference Oil, in terms of reduced oxidation, nitration and viscosity increase.
The invention examples provided superior oil life despite the absence of conventional aminic and phenolic antioxidants. The small negative normalized viscosity increase values for the invention examples simply reflect that there was 25 no significant change in viscosity, unlike the Comparative and Reference oils.
* Trade-mark Comparative Reference Example Example Comparative OilI Oill 1 2 Oil2 Component (vol%) Group II basestock 87.90 90.00 90.00 90.00 -----NGEO conunercial 9.6 ----- ----- -----additive package VI -----Phenolic antioxidant 1.00 1.00 Moly trimer ----- ----- 1.00 1.00 -----Ashless dihydrocarbyl ----- ----- -----thiocarbamoyl 0.50 Balance of additives 1.00 9.00 9.00 9.00 -----Commercial Oil ----- ----- ----- ----- 100.00 Properties KV, cSt @ 100 C 13.25 13.14 13.20 13.13 13.51 Test Results Nitration Screener Test Oxidation (relative) 1.76 1.00 0.86 0.79 1.57 Nitration (relative) 1.55 1.00 1.15 0.91 1.48 Viscosity Increase 1.70 1.00 - 0.16 - 0.12 0.73 (relative)

Claims (8)

1. A lubricating composition comprising:
an oil of lubricating viscosity in an amount that is at least 50 vol% of the composition;
a mixture of one or more neutral metal alkylsalicylates and one or more overbased metallic detergents, wherein the mixture of neutral metal alkylsalicylates and overbased metallic detergents is in an amount sufficient to provide the composition with a sulfated ash content of from about 0.2 wt% to about 2.0 wt%;
a trinuclear molybdenum compound having the formula Mo3S k L n Q z where L is an independently selected ligand, n is from 1 to 4, k is from 4 to 7, Q is a neutral electron donating moiety and z is from 0 to 5;
from greater than 0 to 1.9 vol % of a dihydrocarbyl thiocarbamoyl compound having the formula;

where R1, R2, R3 and R4 are the same or different alkyl groups of from 3 to 30 carbon atoms; X is S, S-S, S ~CH2~ y S, S-CH2CH(CH3)-S; and y is an integer of 1 to 3;

the combined amount of trinuclear molybdenum compound and dihydrocarbyl thiocarbamoyl compound being in the range of about 0.1 vol % to about 2.0 vol %;
wherein the oil life of the lubricating oil composition is improved as evidenced by a reduction in viscosity increase, oxidation and nitration when compared to the same lubricating oil composition without the trinuclear molybdenum compound and dihydrocarbyl thiocarbamoyl compound.
2. A method for enhancing the life of a lubricating oil as evidenced by a reduction in viscosity increase, oxidation and nitration, the method comprising:
adding to the lubricating oil additives comprising:
a mixture of one or more neutral metal alkylsalicylates and one or more overbased metallic detergents, wherein the mixture of neutral metal alkylsalicylates and overbased metallic detergents is in an amount sufficient to provide the composition with a sulfated ash content of from about 0.2 wt % to about 2.0 wt %;
at least 0.1 vol% of a trinuclear molybdenum compound having the formula Mo3S k L n Q z where L is an independently selected ligand, n is 1 to 4, k is 4 to 7, Q is a neutral electron donating moiety, and z is 0 to 5; and a dihydrocarbyl thiocarbamoyl compound;
the combined amount of trinuclear molybdenum compound and dihydrocarbyl thiocarbamoyl compound being in the range of 0.1 vol% about 2.0 vol%;
wherein the oil life of the lubricating oil composition is improved as evidenced by a reduction in viscosity increase, oxidation and nitration when compared to the same lubricating oil composition without the trinuclear molybdenum compound and dihydrocarbyl thiocarbamoyl compound.
3. The method of claim 2, wherein the dihydrocarbyl thiocarbamoyl compounds has the formula where R1, R2, R3 and R4 are the same or different alkyl groups of from 3 to 30 carbon atoms; X is S, S-S, S ~CH2~ y S, S-CH2CH(CH3)-S; and y is an integer of 1 to 3.
4. The lubricating composition of claim 1, wherein the one or more neutral metal alkylsalicylates have a TBN from 10 to 100 and the overbased metallic detergents have a TBN from 110 to 400.
5. The lubricating composition of claim 1, wherein the oil of lubricating viscosity has a kinematic viscosity in the range of 9 to 13 cSt at 100°C.
6. The method of claim 2, wherein the one or more neutral metal alkylsalicylates have a TBN from 10 to 100 and the overbased metallic detergents have a TBN
from 110 to 400.
7. The method of claim 3, wherein the one or more neutral metal alkylsalicylates have a TBN from 10 to 100 and the overbased metallic detergents have a TBN
from 110 to 400.
8. The method of claim 3, wherein the lubricating oil has a kinematic viscosity in the range of 9 to 13 cSt at 100°C.
CA2444697A 2002-10-18 2003-10-15 Long life lubricating oil with enhanced oxidation and nitration resistance Expired - Fee Related CA2444697C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41974502P 2002-10-18 2002-10-18
US60/419,745 2002-10-18
US10/683,651 2003-10-10
US10/683,651 US20040110646A1 (en) 2002-10-18 2003-10-10 Long life lubricating oil with enhanced oxidation and nitration resistance

Publications (2)

Publication Number Publication Date
CA2444697A1 CA2444697A1 (en) 2004-04-18
CA2444697C true CA2444697C (en) 2012-05-22

Family

ID=32469231

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2444697A Expired - Fee Related CA2444697C (en) 2002-10-18 2003-10-15 Long life lubricating oil with enhanced oxidation and nitration resistance

Country Status (2)

Country Link
US (1) US20040110646A1 (en)
CA (1) CA2444697C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680030B2 (en) * 2005-11-18 2014-03-25 Exxonmobil Research And Engineering Company Enhanced deposit control for lubricating oils used under sustained high load conditions employing glycerine derivative with a grafted hindered phenolic and/or a hindered phenolic containing a thioether group

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911397A (en) * 1982-06-09 1984-01-20 Idemitsu Kosan Co Ltd Fatigue life modifying lubricant
US5719107A (en) * 1996-08-09 1998-02-17 Exxon Chemical Patents Inc Crankcase lubricant for heavy duty diesel oil
US6232276B1 (en) * 1996-12-13 2001-05-15 Infineum Usa L.P. Trinuclear molybdenum multifunctional additive for lubricating oils
US6423670B2 (en) * 2000-03-20 2002-07-23 Infineum International Ltd. Lubricating oil compositions

Also Published As

Publication number Publication date
CA2444697A1 (en) 2004-04-18
US20040110646A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
EP1250406B1 (en) Long life lubricating oil composition using particular detergent mixture
EP1250407B1 (en) Long life medium and high ash oils with enhanced nitration resistance
JP5260829B2 (en) Antiwear additive composition and lubricating oil composition containing the same
WO2005021693A1 (en) High performance non-zinc, zero phosphorus engine oils for internal combustion engines
JPH06336592A (en) Lubricant composition
EP1788069A1 (en) A low sulfur and low phosphorus heavy duty diesel engine lubricating oil composition
EP1785477A1 (en) A low sulfur and low phosphorus lubricating oil composition
JPH0693281A (en) Engine oil composition
CA2971329A1 (en) Lubricating oil compostions for use in spark-ignited and compression-ignited internal combustion engines
US7183241B2 (en) Long life lubricating oil composition with very low phosphorus content
EP3434755B1 (en) Motorcycle lubricant
EP3546549B1 (en) Lubricating oil composition
CA2524989A1 (en) Lubricating compositions
JPH08253785A (en) Lubricating oil composition
EP0731829A1 (en) Lubrication oil composition
CA2444697C (en) Long life lubricating oil with enhanced oxidation and nitration resistance
US20050153851A1 (en) Long life lubricating oil with enhanced oxidation and nitration resistance
CA2532260C (en) Lubricating oil compositions containing a trinuclear molybdenum compound to provide advantages to oil life and deposit control
CA2465734C (en) Ashless lubricating oil composition with long life
WO2005026301A1 (en) Long life lubricating oil composition using particular antioxidant components
EP0913455B1 (en) Lubricating composition comprising molybdenum dithiocarbamate and having reduced copper corrosion .
WO1995002026A1 (en) Lubricating oil composition containing friction modifier and corrosion inhibitor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20161017